
Conformance Relations for Labeled Event
Structures

Hernán Ponce de León1, Stefan Haar1, and Delphine Longuet2

1 INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France
ponce@lsv.ens-cachan.fr

stefan.haar@inria.fr
2 Univ Paris-Sud, LRI UMR8623, Orsay, F-91405

longuet@lri.fr

Abstract. We propose a theoretical framework for testing concurrent
systems from true concurrency models like Petri nets or networks of au-
tomata. The underlying model of computation of such formalisms are
labeled event structures, which allow to represent concurrency explicitly.
The activity of testing relies on the definition of a conformance rela-
tion that depends on the observable behaviors on the system under test,
which is given for sequential systems by ioco type relations. However,
these relations are not capable of capturing and exploiting concurrency
of non sequential behavior. We study different conformance relations for
labeled event structures, relying on different notions of observation, and
investigate their properties and connections.

1 Introduction

This paper aims at laying the foundations of a systematic study of conformance
relations for specifications that integrate features of concurrent behavior. Our
ultimate goal is to lift conformance testing and its formal tools to the level of
event structure semantics, where it currently focusses on sequential actions.

The present state of the art: a sequential picture. In fact, one of
the most popular formalisms studied in conformance testing is that of labeled
transition systems (LTS). A labeled transition system is a structure consisting
of states and transitions labeled with actions from one state to another. This
formalism is usually used for modeling the behavior of processes and as a seman-
tical model for various formal languages such as CCS [1], CSP [2], SDL [3] and
LOTOS [4]. Depending on the nature of the possible observations, different con-
formance relations have been defined for labeled transitions systems [5–11]; we
will study how these lift to the “concurrent world”. Several developments were
built on the relation of trace preorder (trace inclusion). Firstly, it was refined
into the testing preorder, that requires not only the inclusion of the implementa-
tion traces in those of the specification, but also that any action refused by the
implementation should be refused by the specification [5, 12]. A practical modi-
fication of the testing preorder was presented in [7], which proposed to base the
observations on the traces of the specification only, leading to a weaker relation

called conf. A further refinement concerns the inclusion of quiescent traces as
a conformance relation (e.g. Segala [10]). Moreover, Tretmans [11] proposed the
ioco relation: each output produced by the implementation on specified stimuli
should corresponde to the specified ones, and the implementation is authorised
to reach a state where it cannot produce any output only if this is the case in
the specification too.

Shifting to concurrent specifications. However, this framework does not
yet very well support the testing from concurrent specifications, in which some
pairs of events can be specified to occur in arbitrary order, or jointly. The exhaus-
tive testing of all interleavings for a set of concurrent transitions is prohibitively
slow, and is also conceptually inadequate; for both reasons, our aim is to provide
a generalized framework that handles true concurrency in partially ordered mod-
els. The first major steps in this direction had been made in [13, 14]: partially
ordered patterns of input/output events were admitted as transition labels in a
generalized I/O-automaton model, leading to a generalization of the basic no-
tions and techniques of I/O-sequence based conformance testing. An important
practical benefit of true-concurrency models here is an overall complexity reduc-
tion, despite the fact that checking partial orders requires in general multiple
passes through the same labelled transition, so as to check for presence/absence
of specified order relations between input and output events. In fact, if the sys-
tem has n parallel and interacting processes, the length of checking sequences
increases by a factor that is polynomial in n. At the same time, the overall size
of the automaton model (in terms of the number of its states and transitions)
shrinks exponentially if the concurrency between the processes is explicitly mod-
eled. This feature indicates that with increasing size and distribution of SUTs in
practice, it is computationally wise to seek alternatives for the direct sequential
modeling approach. We add that true concurrency models are not only promis-
ing for practical reasons, but also are more adequate in reflecting the actual
structure of distributed systems, and tend to be more accessible for designers
and implementers, in particular if modularity can be exploited.

As indicated above, the work presented in [13, 14] presents a first step towards
a concurrency-based conformance theory. The partial-order I/O automata mod-
els developed there progress with respect to global state models such as multiport
I/O-Automata by specifying dependence relations across processes explicitly,
and allow to specify natural conditions that avoid e.g. controllability violations.
However, the models of [13, 14] still force us to maintain a sequential automaton
as the system’s skeleton, and to include synchronization constraints (typically:
that all events specified in the pattern of a transition must be completed before
any other transition can start), which limit both the application domain and
the benefits from concurrency modeling. In other work in progress, we abandon
automata altogether and focus on Petri nets as system models, which allows to
completely discard any global synchronizations, and to exploit existing theory of
concurrent behavior for devising testing strategies.

The present article provides the semantic viewpoint which accompanies and
complements that shift in systems modeling. We use throughout a canonical

semantic model for concurrent behavior, labeled event structures, providing a
unifying semantic framework for system models such as Petri nets, communicat-
ing automata, or process algebras; we abstract away from the particularities of
system specification models, to focus entirely on behavioral relations.

The underlying mathematical structure for the system semantics is given by
event structures in the sense of Winskel et al [15]. Mathematically speaking,
they are particular partially ordered sets, in which order between events e and
e′ indicates precedence, and where any two events e and e′ that are not ordered
maybe either

– in conflict, meaning that in any evolution of the system in which e occurs,
e′ cannot occur; or

– concurrent, in which case they may occur in the same system run, without
a temporal ordering, i.e. e may occur before e′, after e′, or simultaneously.

The state reached after some execution is represented by a configuration of
the event structure, that is a conflict-free, history-closed set. The use of partial
order semantics provides richer information and finer system comparisons than
the interleaved view.

Overview. The paper is organized as follows: Section 2 gives the funda-
mental definitions of the semantic model of labeled event structures and Sect. 3
gives two definitions of observation of processes. Then, Sect. 4 introduces and
studies conformance relations for general labeled event structures, and Sect. 5
specializes to I/O systems in which the label set is split into input and output
labels, and introduces a new, true-concurrency-enabled ioco relation. Section 6
discusses the advantages and drawbacks of the conformance relations presented,
and concludes.

2 Labeled Event Structures

We shall be using event structures following Winskel et al [15] to describe the
dynamic behavior of a system. In this paper we will consider only prime event
structures [16], a subset of the original model which is sufficient to describe
concurrent models (therefore we will simply call them event structures), and we
label their events with actions over a fixed alphabet L.

Definition 1 (Labeled event structure). A labeled event structure over an
alphabet L is a 4-tuple E = (E,≤,#, λ) such that

– E is a set of events,
– ≤ ⊆ E × E is a partial order (called causality) satisfying the property of

finite causes, i.e. ∀e ∈ E : |{e′ ∈ E | e′ ≤ e}| < ∞,
– # ⊆ E×E is an irreflexive symmetric relation (called conflict) satisfying the

property of conflict heredity, i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′,
– λ : E → L is a labeling mapping.

We denote the class of all labeled event structures over L by LES(L).

Given a labeled event structure E = (E,≤,#, λ) ∈ LES(L), two events
e, e′ ∈ E are said to be concurrent, written e co e′, iff neither e ≤ e′ nor e′ ≤ e

nor e # e′ hold.

but1

change
1

#liq
1 choc1

q1

#but2 but′
2

liq
2 choc2

change
2 change′

2

q2

but3

liq
3

change
3

q3

but4

#liq
4

change
4

change′
4

liq′
4

q4

but′
5

but5

liq
5 choc5

change
5 change′

5

q5

Fig. 1. Labeled event structures

Example 1. Fig. 1 presents different LES specifications of vending machines. The
requirements are the following: when one pushes a button, the machine delivers
chocolate bars or liquorices, and supplies change. We represent causality between
events by the Hasse diagram of ≤, and direct conflict by #. The labeling λ is
such that λ(ei) = λ(e′i) = e.

Machine q1 to q4 have only one button while machine q5 has two of them. In
machines q1 and q2, a choice is made between supplying liquorice or chocolate
after pressing the button, and concurrently, the machines supply change. The
choice is made when the button is pushed in machine q2 but internally after
the pressing of the button in machine q1. Machine q3 only supplies liquorice and
change concurrently while q4 do both, but in a sequential way. We can press
concurrently two different buttons in q5, each of them producing liquorice or
chocolate and supplying change.

A computation state of an event structure is called a configuration and is
represented by the set of events that have occurred in the computation. If an
event is present in a configuration, then so are all the events on which this
event causally depends. Moreover, a configuration obviously does not contain
conflicting events.

Definition 2 (Configuration). Let E = (E,≤,#, λ) ∈ LES(L), a configuration
of E is a set of events C ⊆ E such that

– C is causally closed: e ∈ C ⇒ ∀e′ ≤ e : e′ ∈ C, and

– C is conflict-free: ∀e, e′ ∈ C : ¬(e # e′).

The initial configuration of E, denoted by ⊥E , is the empty set of events. We
denote the set of all the configurations of E by C(E).

Example 2. The configurations of the labeled event structure q1 of Fig. 1 are
⊥q1 , {but1}, {but1, liq1}, {but1, change1}, {but1, choc1}, {but1, liq1, change1}, and
{but1, choc1, change1}. It is worth noting that the configurations of q1 and q2 are
different but their λ-images are the same.

A particular kind of event structures are those representing only sequential
behaviors, i.e. without concurrency. A labeled event structure is called sequential
iff there are no pairs of concurrent events in it: ≤ ∪ # = E×E. Sequential event
structures can be seen as the computation trees obtained by unfolding labeled
transition systems [17]. In Fig. 1, q4 is a sequential labeled event structure.

3 Observing Event Structures

The next sections will present several conformance relations over labeled event
structures. These relations are based on the chosen notion of observation of the
system behavior in response to stimuli. The observations most studied in the
literature for defining conformance relations are (execution) traces and refusals.

The definition of the notion of trace for a labeled event structure is not
straightforward since it relies on the chosen semantics for concurrency [18]. The
presence of explicit concurrency in a specification may be interpreted in several
ways. In an early stage of specification, concurrency between events may be used
as underspecification, leaving the choice of the actual order between events to
the developper. The events specified as concurrent may then occur in any order
in the implementation (maybe always the same one). In the specification of a
distributed system however, concurrent events in the specification may be meant
to remain concurrent in the implementation, because they are destined to occur
in different components executed in parallel for instance.

We follow here two established semantics for concurrency, namely interleav-
ing semantics where concurrent events may be executed in any order, and partial
order semantics where no order is wanted or can be observed between concur-
rent events. In the first case, observing the behavior of the system action by
action is sufficient since concurrent events will be observed sequentially. In the
second case, several concurrent events may be observed together in one step,
since they are not ordered. This leads to two definitions of traces for labeled
event structures.

3.1 Single Action Observations

In this first setup, one considers atomic experiments on a system as single actions,
and obtains an interleaving semantics for concurrency.

Definition 3. Let E = (E,≤,#, λ) ∈ LES(L), a ∈ L, σ = σ1 · σ2 · . . . · σn ∈ L+

and C,C ′ ∈ C(E), we define

C
a

=⇒ C ′ , ∃e ∈ E\C : C ′ = C ∪ {e} and λ(e) = a

C
a

=⇒ , ∃C ′ : C
a

=⇒ C ′

C
σ

=⇒ C ′ , ∃C0, . . . Cn : C = C0
σ1=⇒ C1

σ2=⇒ . . .
σn=⇒ Cn = C ′

C
σ

=⇒ , ∃C ′ : C
σ

=⇒ C ′

One goes from a configuration to another by performing only one action at
a time, thus leading to a trace semantics where an execution is a sequence of
single actions (obviously, the empty sequence leads to the same configuration,

i.e. C
ǫ

=⇒ C).3 Possible observations of the system behavior are captured by the
following definition.

Definition 4. Let E ∈ LES(L), A ⊆ L, σ ∈ L∗, S ⊆ C(E) and C,C ′ ∈ C(E),
we define

– traces(E) , {σ ∈ L∗ | ⊥E
σ

=⇒}

– C after σ , {C ′ | C
σ

=⇒ C ′}

– C refuses A , ∀a ∈ A : C 6
a

=⇒
– S refuses A , ∃C ∈ S : C refuses A

The set traces(E) contains the full action sequences of E , while C after σ

contains the possible configurations reached from C when σ was observed. Re-
fusal of an action set A means the impossibility of executing any transition with
a label in A. In the next section we will use refuses together with after, and as
the system can reach several configurations after σ, we extend refuses to sets
of configurations.

Example 3. With this interleaving semantics, the traces of machine q3 in Fig. 1
are {ǫ, but, but · liq, but ·change, but · liq ·change, but ·change · liq}, since concurrent
events may be seen in any order. Therefore, machines q3 and q4 have the same
traces. Due to the inheritance of conflict, machines q1 and q2 also have the same
traces since after but, one can perform liq and change in any order, or choc and
change in any order.

Concerning refusals, one can see that machine q1 cannot produce chocolate
after producing liquorice, i.e. (⊥q1 after but · liq) refuses {choc}. Note that
S refuses A is false when S is empty, therefore (⊥q3 after but · choc) refuses ∅
is false since but · choc is not a trace of q3.

3 We denote by ǫ the empty word and by · the concatenation of words in L∗.

3.2 Partially Ordered Observations

Since the event structure model is capable of explicitly distinguishing the causal
structure of the model, it is natural to expect the observations of machines q3
and q4 of Fig. 1 to be different; in fact, actions liq and change are independent
in q3, but they are causally ordered in q4.

In order to distinguish such behaviors, the notion of trace must keep concur-
rency explicit, i.e. must preserve the partial order of the events of an execution.
We first recall the notion of labeled partial order, then we lift Def. 3 and Def. 4
to the partial order setting.

Definition 5 (Labeled partial order). A labeled partial order over L is a
tuple ω = (Eω,≤ω, λω), where

– (Eω,≤ω) is a partial order, and
– λω : Eω → L is a labeling mapping.

We denote the class of all labeled partial orders over L by LPO(L).

Labeled partial orders will be used to represent observations of executions
containing concurrent events. Moreover, we will need the notion of labeled con-
current set to represent a set of concurrent events: we say that α ∈ LPO(L) is
a labeled concurrent set over L iff <α= ∅, and denote the class of such objects
by CO(L).

In partial order semantics, a step of an execution from a given configuration
may be a single action or a set of actions performed concurrently. This leads to
the following definitions. We indicate by a subscript or superscript π the relations
and sets to be interpreted in the partial order semantics.

Definition 6. Let E = (E,≤,#, λ) ∈ LES(L), α = (Eα,≤α, λα) ∈ CO(L),
ω = (Eω,≤ω, λω) ∈ LPO(L) and C,C ′ ∈ C(E), we define

C
α

=⇒π C ′ , ∃A ⊆ E\C : C ′ = C ∪A,A = Eα,

<|A×A= ∅ and λ|A = λα

C
α

=⇒π , ∃C ′ : C
α

=⇒π C ′

C
ω

=⇒π C ′ , ∃A ⊆ E\C : C ′ = C ∪A,A = Eω,

≤|A×A = ≤ω and λ|A = λω

C
ω

=⇒π , ∃C ′ : C
ω

=⇒π C ′

The ability of making concurrent execution explicit is the key advantage in
using partial order semantics.

Definition 7. Let E ∈ LES(L), A ⊆ CO(L), ω ∈ LPO(L), S ⊆ C(E) and
C,C ′ ∈ C(E), we define

– tracesπ(E) , {ω ∈ LPO(L) | ⊥E
ω

=⇒π}

– C afterπ ω , {C ′ | C
ω

=⇒π C ′}

but

liq

change

ω1

but

change

liq

σ1

but

liq

change

σ2

but

liq

σ3

Fig. 2. Partially ordered observations vs. sequential observations

– C refusesπ A , ∀α ∈ A : C 6
α

=⇒π

– S refusesπ A , ∃C ∈ S : C refusesπ A

Example 4. We consider labeled partial orders of Fig 2. We can observe liq and
change concurrently after but in machine q1 of Fig. 1, so we have ω1 ∈ tracesπ(q1),
but we cannot observe them concurrently in q4 because the system only allows
to see them ordered, thus ω1 6∈ tracesπ(q4).

In the other way round, causality between liq and change is desired in q4
but cannot be observed or is not wanted in q1, so σ1 ∈ tracesπ(q4) and σ1 6∈
tracesπ(q1).

Prefixes are also allowed, we have for instance σ3 ∈ tracesπ(q1).

Note that in a sequential labeled event structure E , since there is no concur-
rency, we have tracesπ(E) = traces(E). Since L ⊆ CO(L) and L∗ ⊆ LPO(L),
Def. 6 and Def. 7 are strict generalizations of Def. 3 and Def. 4.

Remark 1. By abuse of notation, we will use indistinctly σ1 and but · change · liq
or ω1 and but · (liq co change).

4 Conformance Relations for Concurrent Systems

The objective of this paper is to propose a generalization of the ioco relation [11].
We first propose generalizations of the conformance relations defined in the lit-
erature for systems with symmetric interactions, i.e. where inputs and outputs
are not differentiated. We follow the presentation and notations adopted in [11].

The first relation proposed in the literature, called trace preorder, is based
on the inclusion of the executions of the system under test in those allowed by
the specification. The intuition is that an implementation i should not exhibit
any unspecified sequence of actions, i.e. not present in the specification s.

Definition 8 (Trace preorder for single action observation). Let i, s ∈
LES(L), then

i ≤tr s ⇔ traces(i) ⊆ traces(s)

Example 5. With the interleaving semantics, the traces of q1 and q2 are the
same, and we have q1 ≤tr q2 and q2 ≤tr q1. Analogously, q3 ≤tr q4 and q4 ≤tr q3.
The systems q3 and q4 implement part of what is specified in q1 and q2, therefore
q3, q4 ≤tr q1, q2.

This relation is very similar to the trace preorder for labeled transition sys-
tems since it is based on the observation of sequences of actions. On the contrary,
the adaptation of the trace preorder to labeled event structures with the partial
order semantics leads to a new conformance relation.

Definition 9 (Trace preorder for partially ordered observation). Let
i, s ∈ LES(L), then

i ≤π
tr
s ⇔ tracesπ(i) ⊆ tracesπ(s)

Example 6. Since tracesπ(q1) = tracesπ(q2), we have q1 ≤π
tr q2 and q2 ≤π

tr q1 . We
also have q3 ≤π

tr q1 and q3 ≤π
tr q2, but q4 6≤π

tr q3 because ≤π
tr requires concurrent

events in the specification to remain truly concurrent in the implementation and
does not accept any order between them as it is the case of ≤tr. The traces of
q2 are observable in q5, but q5 accepts more behaviors since the second button
can still be pushed after the first one was, so q2 ≤π

tr q5 but q5 6≤π
tr q2.

With both relations, we have that q2 correctly implements q1, but q1 specifies
that after pressing a button the user has a choice between liquorice and chocolate,
while q2 may refuse one of these. The reason of this is that both ≤tr and ≤π

tr

only consider sequences (resp. partial order) of actions as observations, and not
whether conflicts are resolved internally by the machine, or externally by the
environment.

Therefore, we propose a stronger relation to refine ≤π
tr. In addition to requir-

ing that any execution of the implementation is allowed in the specification, we
require that any time the implementation refuses to perform a new action, that
action cannot be performed in the specification either. This new conformance
relation generalizes the testing preorder of [5].4

Definition 10 (Testing preorder for partially ordered observation). Let
i, s ∈ LES(L), then

i ≤π
te
s ⇔ ∀ω ∈ LPO(L), A ⊆ CO(L) :

⊥i afterπ ω refusesπ A ⇒ ⊥s afterπ ω refusesπ A

Example 7. Consider again Fig. 1, we have q1 ≤π
te q2: there are no trace

ω and no set of events A such that ⊥q1 afterπ ω refusesπ A and ¬(⊥q2

afterπ ω refusesπ A). However, q2, q3 6≤π
te q1, since for instance ⊥q2

afterπ but refusesπ {choc} and ¬(⊥q1 afterπ but refusesπ {choc}). The

4 From now on, we will present the conformance relations for the partial order seman-
tics only. The corresponding conformance relations for the interleaving semantics
can be straightforwardly deduced.

button can be pressed twice concurrently in q5, but not in q2, so (⊥q2

after but) refuses {but} and q2 6≤π
te q5.

Note that the relation ≤π
te does not allow extra traces in the implementation.

In fact, q1 6≤π
te q3 since ⊥q1 afterπ but · choc refusesπ ∅, yet ⊥q3 afterπ but ·

choc = ∅, hence ¬(⊥q3 afterπ but · choc refusesπ ∅). As but co but is a trace of
q5 yet not one of q2, we have q5 6≤π

te q2. As this relation checks for trace inclusion,
it still differentiates between q3 and q4, i.e. q4 6≤π

te q3

We propose a weaker relation confπ restricting all the traces to only the ones
contained in the specification. This relation requires that the implementation
does what it has to do, not that it does not what it is not allowed to do. It
allows underspecification, i.e. that only a subset of the functionalities of the
actual system are specified.

Definition 11 (Relation conf for partially ordered observation). Let
i, s ∈ LES(L), then

i confπ s ⇔ ∀ω ∈ tracesπ(s), A ⊆ CO(L) :
⊥i afterπ ω refusesπ A ⇒ ⊥s afterπ ω refusesπ A

Example 8. We saw in Ex. 7 that q1 ≤π
te q2, and since confπ considers the traces

of q2 only, we have q1 confπ q2.
Since the relation confπ is based on the traces of the specification only,

it allows extra traces in the implementation. So even if q1 6≤π
te q3, we have

q1 confπ q3. In the same way, q5 6≤π
te q2 but q5 confπ q2.

However, if all traces of the implementation are also traces of the specifica-
tion, then the testing preorder is equivalent to confπ. We have ¬(q2 confπ q1)
since q2 6≤π

te q1 and tracesπ(q1) = tracesπ(q2). Moreover, we have ¬(q3 confπ q1)
since q3 6≤π

te q1 and tracesπ(q3) ⊆ tracesπ(q1), and also ¬(q2 confπ q5) since
q2 6≤π

te q5 and tracesπ(q2) ⊆ tracesπ(q5).

The following result relates the different implementation relations in the par-
tial order semantics.

Proposition 1
1. ≤π

tr
and ≤π

te
are preorders; confπ is reflexive.

2. ≤π
te

= ≤π
tr
∩ confπ

Proof. Point 1 being obvious, we only show point 2, by proving that the inclu-
sion holds in both directions. Suppose i 6≤π

tr s, then there exists ω ∈ LPO(L) such

that⊥i
ω

=⇒π, but⊥s 6
ω

=⇒π, thus⊥s afterπ ω = ∅ and ¬(⊥s afterπ ω refusesπ ∅)
while ⊥i afterπ ω refusesπ ∅, i 6≤π

te s and finally ≤π
te ⊆ ≤π

tr. As confπ is a re-
striction of ≤π

te to the traces of s, it is easy to prove that ≤π
te ⊆ confπ.

Suppose i 6≤π
te s, then there exist ω ∈ LPO(L), A ⊆ CO(L) such that ⊥i

afterπ ω refusesπ A and ¬(⊥s afterπ ω refusesπ A). If ω ∈ tracesπ(s) we
have that ¬(i confπ s). If ω 6∈ tracesπ(s), we know by ⊥i afterπ ω refusesπ A

that ω ∈ tracesπ(i) and therefore i 6≤π
tr s.

#a a

c b c

p1

a

c

p2

a

#b c

p3

Fig. 3. The confπ relation is not transitive.

Example 9. In Fig. 3 we can see that p2 confπ p1. If we denote the set {a, b, c} by
L, we have ⊥p2

afterπ a refusesπ {a, b} and ⊥p1
afterπ a refusesπ {a, b}; we

also have ⊥p2
afterπ a · c refusesπ L and ⊥p1

afterπ a · c refusesπ L; finally
⊥p2

afterπ a · b refusesπ S is false for any set S. We can see that p3 confπ p2
since p3 is p2 with an additional branch. Nevertheless we do not have p3 confπ p1:
we have ⊥p3

afterπ a · b refusesπ {c} but ¬(⊥p1
afterπ a · b refusesπ {c}).

This shows that confπ is not transitive.

The interested reader may verify that the relations presented in Ex. 6, Ex. 7
and Ex. 8 satisfy Prop. 1.

5 Conformance Relations for Input/Output Concurrent
Systems

As usual when testing reactive systems, we want to distinguish between the
controllable and observable actions of the system under test. We extend the
model of labeled event structures to make a distinction between input actions
(proposed by the environment) and output actions (produced by the system) of
the system, leading input-output labeled event structures (IOLES).

Definition 12 (Input-output labeled event structure). An input-output
labeled event structure is a labeled event structure over the alphabet L = Li ⊎
Lo. The class of input-output labeled event structures over L is denoted by
IOLES(L).

As usual, let ?a denote an input action in Li and !a an output action in Lo.
Examples of IOLES are given in Fig. 4.

5.1 The ioco Relation for the Interleaving Semantics

We first present the definition of the ioco conformance relation for labeled event
structures with the interleaving semantics.

The ioco relation requires that, after a trace of the specification, the outputs
produced by the implementation are authorized by the specification, but also the
absence of outputs. A state where the system cannot produce outputs is called
quiescent in the labeled transition system framework. Similarly, in the labeled
event structure framework, a configuration where the system cannot produce
outputs will be called quiescent.

Definition 13 (Quiescent configuration for single action observation).

Let E ∈ IOLES(L). A configuration C ∈ C(E) is quiescent iff ∀a ∈ Lo : C 6
a

=⇒.

In our framework, a system is in a quiescent configuration if it is waiting for
an input from the environment or it deadlocks.

As it is now standard in the LTS framework, we assume that quiescent config-
urations are observable by a special output action δ ∈ Lo. The event correspond-
ing to a δ action should be unique in the given configuration (1), and it should
be in conflict with all the other possible events from the same configuration (2).
Additionally, since the δ action captures the notion of not observing anything
but the absence of reaction of the system, observing δ should not change the be-
havior of the system (3). We denote by ∆E an IOLES E enriched by δ such that
these properties hold. Formally, we assume that every quiescent configuration
C ∈ C(∆E) has the following properties:

(∃! eδ ∈ E \ C : λ(eδ) = δ ∧ C
δ

=⇒) (1)

∧ (∀e′ ∈ E \ (C ∪ {eδ}), C
λ(e′)
=⇒ ⇒ eδ#e′) (2)

∧ (∀σ ∈ L∗ : C
σ

=⇒ ⇒ C ∪ {eδ}
σ

=⇒) (3)

In the interleaving semantics, the way to observe the outputs of the system
in response to stimuli is the same as in the LTS framework: the set of possible
outputs from a given configuration is the set of every single possible output.

Definition 14 (Expected outputs for single action observation). Let E ∈
IOLES(L) and S ⊆ C(E), then

out(S) ,
⋃

C∈S

{a ∈ Lo | C
a

=⇒}

We obtain the following adaptation of the ioco conformance relation to the
labeled event structure framework with the interleaving semantics: for any trace
of the specification enriched with δ actions, every single output produced by the
implementation after this trace (including δ) is authorised by the specification.

Definition 15 (ioco for single action observation). Let i, s ∈ IOLES(L),
then

i ioco s ⇔ ∀σ ∈ traces(∆s) : out(⊥∆i
after σ) ⊆ out(⊥∆s

after σ)

Example 10. We consider the labeled event structures of Fig. 4, s and s′ being
two specifications and i a possible implementation.

As we saw in previous examples, with the interleaving semantics, s and s′

have the same traces: traces(s) = traces(s′) = {ǫ, ?but, ?but · !liq, ?but · !change,
?but · !liq · !change, ?but · !change · !liq} and we obtain:5

5 To lighten the examples, we consider the traces of s and i only, and not all the traces
of ∆s and ∆i, since it makes no difference in these cases.

?but

!liq !change

s

?but

!liq

!change

i

?but

#!liq !change

!change !liq

s′

Fig. 4. Difference between ioco and co-ioco

σ out(⊥∆s
after σ) out(⊥∆′

s
after σ) out(⊥∆i

after σ)
ǫ {δ} {δ} {δ}

?but {!liq, !change} {!liq, !change} {!liq}
?but · !liq {!change} {!change} {!change}

?but · !change {!liq} {!liq} ∅
?but · !liq · !change {δ} {δ} {δ}
?but · !change · !liq {δ} {δ} ∅

We conclude that both i ioco s and i ioco s′ hold. Note that the fact of ob-
serving the empty set is different from observing δ. Observing δ after executing
a trace σ means that the system performed σ and reached a quiescent configu-
ration, while observing the empty set formally denotes the fact of not being able
to execute the experiment σ as in the case of i for the trace ?but · !change.

5.2 The ioco Relation for the Partial Order Semantics: co-ioco

We define a new conformance relation co-ioco for labeled event structures with
the partial order semantics.

We first need to define the notion of quiescent configuration in this semantics:
here, the possible actions in a given configuration are not only single actions but
also sets of concurrent events.

Definition 16 (Quiescent configuration for partially ordered observa-
tion). Let E ∈ IOLES(L). A quiescent configuration C ∈ C(E) is such that

∀α ∈ CO(Lo) : C 6
α

=⇒π.

We also need to redefine the properties that the enhancement of an IOLES
by δ actions must verify. The conflict with other possible events in the given
configuration expressed by property (2) extends to sets of concurrent events.
Property (3) naturally extends to partial order semantics, considering partially
ordered trace instead of sequential ones. Therefore, denoting by ∆E the enhance-
ment by δ actions of an IOLES E , we assume that every quiescent configuration

C ∈ C(∆E) has the following properties:

(∃! eδ ∈ E \ C : λ(eδ) = δ ∧ C
δ

=⇒π)

∧ (∀α = (Eα,≤α, λα) ∈ CO(L) : C
α

=⇒π ⇒ ∀e′ ∈ Eα : eδ#e′)

∧ (∀ω ∈ LPO(L) : C
ω

=⇒π ⇒ C ∪ {eδ}
ω

=⇒π)

In the partial order semantics, the outputs of the system under test in re-
sponse to stimuli may be single outputs as well as sets of concurrent outputs.
We need any set of concurrent outputs to be entirely produced by the system
under test, so we define the set of expected outputs from a set of configurations
S as the set of maximal sets of concurrent outputs.

Definition 17 (Expected outputs for partially ordered observation).
Let E ∈ IOLES(L) and S ⊆ C(E), then

outπ(S) ,
⋃

C∈S

{α ∈ CO(Lo) | C
α

=⇒π and Eα is maximal w.r.t ⊆}

We obtain the following formulation of the co-ioco conformance relation, in
the case of the partial order semantics: for any partially ordered trace of the
specification enriched with δ actions, the sets of concurrent outputs produced
by the implementation after this trace (including δ) are among those authorised
by the specification.

Definition 18 (co-ioco). Let i, s ∈ IOLES(L), then

i co-ioco s ⇔ ∀ω ∈ tracesπ(∆s) : outπ(⊥∆i
afterπ ω) ⊆ outπ(⊥∆s

afterπ ω)

Example 11. We have tracesπ(s) = {ǫ, ?but, ?but · !liq, ?but · !change, ?but ·
(!liq co !change)} and tracesπ(s

′) = {ǫ, ?but, ?but·!liq, ?but · !change, ?but ·
!liq · !change, ?but · !change · !liq} and we can observe:

ω outπ(⊥∆s
afterπ ω) outπ(⊥∆′

s
afterπ ω) outπ(⊥∆i

afterπ ω)

ǫ {δ} {δ} {δ}
?but {!liq co !change} {!liq, !change} {!liq}

?but · !liq {!change} {!change} {!change}
?but · !change {!liq} {!liq} ∅

?but · (!liq co !change) {δ} ∅ ∅
?but · !liq · !change ∅ {δ} {δ}
?but · !change · !liq ∅ {δ} ∅

We conclude that i co-ioco s′ but ¬(i co-ioco s). This is due to the fact that
the co-ioco relation requires any concurrent set of outputs depending on the
same input to remain concurrent.

6 Conclusion, Discussion and Future Work

We have laid several cornerstones for conformance testing under true concur-
rency. Four well-established conformance relations over labeled transition sys-
tems [11] (trace preorder, testing preorder, conf and ioco) have been extended

to concurrency-enabled relations over labeled event structures, and illustrated
in several examples. The next steps will encompass test case generation and the
formalization of adequate centralized and distributed test architectures.

With the interleaving semantics, the relations we obtain boil down to the
same relations defined for LTS, since they focus on sequences of actions. The
only advantage of using labeled event structures as a specification formalism
for testing remains in the conciseness of the concurrent model with respect to
a sequential one. As far as testing is concerned, the benefit is low since every
interleaving has to be tested.

By contrast, under the partial order semantics, the relations we obtain allow
to distinguish explicitly implementations where concurrent actions are imple-
mented concurrently, from those where they are interleaved, i.e. implemented
sequentially. Therefore, these relations will be of interest when designing dis-
tributed systems, since the natural concurrency between actions that are per-
formed in parallel by different processes can be taken into account. In particular,
the fact of being unable to control or observe the order between actions taking
place on different processes will not be considered as an impediment for test-
ing. This opens interesting perspectives for a distributed test architecture where
testers would scarcely have to synchronize. If the specification allows it, one could
even think of a local test architecture where testers are completely independent
from each other.

It should be noted that the co-ioco relation allows for further refinement that
we do not discuss here. As defined in Def. 7, this relation deals with concurrent
inputs and concurrent outputs in the same way: it requires concurrency to be
preserved by the implementation. This is exactly what should be the case when
the specification requires these concurrent inputs to be processed by different
entities, and the concurrent outputs to be issued from different processes. That
is, the distribution or attribution of events assigned to concurrent processes is
then part of the specification, and conformance requires the implementation to
have exactly this distribution. An analogous idea is captured in the concurrency-
preserving bisimulation relation developed in [19]. It is natural to look also for
means of dealing with concurrency in specifications in a different way, namely
with a “don’t care”-type approach: that is, for some events a and b that are
specified as concurrent, one may accept implementations that order a before b

OR that order b before a (provided of course they conform otherwise to the spec-
ification). Care must then be taken to distinguish different types of dependency
(output on output? input on output? output on input?) and to study which kind
of dependency may be added without compromising required properties. A dis-
cussion of some of these aspects, plus the question when dependencies might be
dropped in the implementation, can be found in [14]. In the present context, such
generalization requires the modification of Def. 6: the requirement ≤|A×A = ≤ω

is then replaced by an inclusion relation, with additional constraints such as
preservation of immediate input-output-orders etc. The discussion and develop-
ment of these points, which are at the heart of work in progress, would have
taken us too far afield here.

Acknowledgment: The research related here was funded by the DIGITEO/DIM-
LSC project TECSTES, convention DIGITEO Number 2011-052D - TECSTES.

References

1. Milner, R.: Communication and concurrency. PHI Series in computer science.
Prentice Hall (1989)

2. Hoare, T.: Communicating Sequential Processes. Prentice-Hall (1985)
3. ITU-TS: Recommendation Z.100: Specification and Description Language (2002)
4. Brinksma, E., Scollo, G., Steenbergen, C.: Lotos specifications, their implemen-

tations and their tests. In Linn, R.J., Uyar, M.U., eds.: Conformance testing
methodologies and architectures for OSI protocols. IEEE Computer Society Press
(1995) 468–479

5. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34 (1984) 83–133

6. Abramsky, S.: Observation equivalence as a testing equivalence. Theoretical Com-
puter Science 53 (1987) 225–241

7. Brinksma, E.: A theory for the derivation of tests. In: Protocol Specification
Testing and Verification VIII, North-Holland (1988) 63–74

8. Phillips, I.: Refusal testing. Theoretical Computer Science 50 (1987) 241–284
9. Langerak, R.: A testing theory for LOTOS using deadlock detection. In: Protocol

Specification, Testing and Verification IX, North-Holland (1990) 87–98
10. Segala, R.: Quiescence, fairness, testing, and the notion of implementation. Infor-

mation and Computation 138(2) (1997) 194–210
11. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.

Software - Concepts and Tools 17(3) (1996) 103–120
12. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica

24(2) (1987) 211–237
13. von Bochmann, G., Haar, S., Jard, C., Jourdan, G.V.: Testing systems specified as

partial order input/output automata. In: Testing of Software and Communicating
Systems. Volume 5047 of Lecture Notes in Computer Science., Springer (2008)
169–183

14. Haar, S., Jard, C., Jourdan, G.V.: Testing input/output partial order automata. In:
Testing of Software and Communicating Systems. Volume 4581 of Lecture Notes
in Computer Science., Springer (2007) 171–185

15. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13 (1981) 85–108

16. Winskel, G.: Event structures. In: Advances in Petri Nets. Volume 255 of Lecture
Notes in Computer Science. (1986) 325–392

17. Nielsen, M., Sassone, V., Winskel, G.: Relationships between models of concur-
rency. In: REX School/Symposium. (1993) 425–476

18. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures.
In: Mathematical Models for the Semantics of Parallelism. Volume 280 of Lecture
Notes in Computer Science. (1986) 1–20

19. Balaguer, S., Chatain, Th., Haar, S.: A concurrency-preserving translation from
time Petri nets to networks of timed automata. In: International Symposium on
Temporal Representation and Reasoning, IEEE Computer Society Press (2010)
77–84

