
Unfolding-based Test Selection for Concurrent
Conformance

Herńan Ponce de Léon1, Stefan Haar1, and Delphine Longuet2

1 INRIA and LSV,École Normale Suṕerieure de Cachan and CNRS, France
ponce@lsv.ens-cachan.fr , stefan.haar@inria.fr

2 Univ Paris-Sud, LRI UMR8623, Orsay, F-91405
longuet@lri.fr

Abstract. Model-based testing has mainly focused on models where currency is
interpreted as interleaving (like theioco theory for labeled transition systems),
which may be too coarse when one wants concurrency to be preservedin the
implementation. In order to test such concurrent systems, we choose touse Petri
nets as specifications and define a concurrent conformance relation namedco-
ioco. We propose a test generation algorithm based on Petri net unfolding able
to build a complete test suite w.r.t ourco-iococonformance relation. In addition
we propose a coverage criterion based on a dedicated notion of completeprefixes
that selects a manageable test suite.

Model-based Testing.The aim of testing is to execute a software system, theimplemen-
tation, on a set of input data selected so as to find discrepancies between actual behavior
and intended behavior described by thespecification. The testing process is usually de-
composed into three phases: selection of relevant input data, called atest suite, among
the possible inputs of the system; submission of this test suite to the implementation, its
execution; and decision of the success or the failure of the test suite submission, known
as theoracle problem. We focus here on the selection phase, crucial for relevanceand
efficiency of testing.

Model-based testing requires a behavioral description of the system under test. One
of the most popular formalisms studied in conformance testing is that ofinput output la-
beled transition systems(IOLTS). In this framework, the correctness (or conformance)
relation the system under test (SUT) and its specification must verify is formalized by
the ioco relation [1]. This relation has become a standard, and is used as a basis in sev-
eral testing theories for extended state-based models: restrictive transition systems [2,
3], symbolic transition systems [4, 5], timed automata [6],multi-port finite state ma-
chines [7].

Model-based Testing of Concurrent Systems.Systems composed of concurrent compo-
nents are naturally modeled as anetwork of finite automata, a formal class of models
that can be captured equivalently bysafe Petri nets. Concurrency in a specification can
arise for different reasons. First, two events may be physically localized on different
components, and thus be “naturally” independent of one another; this distribution is
then part of the system construction. Second, the specification may not care about the
order in which two actions are performedon the same component, and thus leave the

choice of their ordering to the implementation. Depending on the nature of the con-
currency specified in a given case, and thus on the intention of the specification, the
implementation relationshave to allow or disallow ordering of concurrent events. The
kind of systems that we consider is of the first type, where concurrency comes from the
distribution of components. Therefore, we want concurrency of the specification to be
preserved in the implementation.

Model-based testing of concurrent systems has been studiedfor a long time [8–10],
however it is most of the time studied in the context of interleaving, or trace, seman-
tics, which is known to suffer the state space explosion problem. While the passage
to models with explicit concurrency has been successfully performed in other fields of
formal analysis such as model checking or diagnosis, testing has embraced such mod-
els somewhat more recently. Ulrich and König propose in [11] a framework for testing
concurrent systems specified by communicating labeled transition systems. The spec-
ification is translated into a Petri net, and a complete prefixof its unfolding is used
to construct abehavior machine. The conformance relation proposed in [11] is a gen-
eralization of trace equivalence relation; their work doesnot include a test selection
procedure, or how the choice of complete prefix impacts selection. Since our goal is to
includeconflict relations as well, we will useevent structuresand their properties.

Haar et al [12, 13] generalize the basic notions and techniques of I/O-sequence
based conformance testing via a generalized I/O-automatonmodel where partially or-
dered patterns of input/output events are admitted as transition labels. However, these
models still maintain a sequential automaton as the system’s skeleton, and include syn-
chronization constraints, e.g. all events in the course of atransition must be completed
before any other transition can start.

Our Contribution. In order to enlarge the application domain, and at stronger benefits
from concurrency modeling, we have introduced in [14] a concurrent conformance rela-
tion namedco-ioco, as a generalization ofioco. In [15], we dropped the input enabled-
ness assumption and enlarged the conformance relation in order to observe refusals.
Extra causality between outputs specified as concurrent is also allowed.

This paper extends [14, 15] with a conformance relation where actions specified as
concurrent must occur independently, on different processes, in any conformant imple-
mentation. While sufficient conditions for soundness and exhaustiveness of test suites
have been given in [15], we need more: in practice, only a finite number of test cases
can be executed; hence we need a method to select a finite set ofrelevant test cases
covering as many behaviors as possible (thus finding as many anomalies as possible).

The main contributions of this paper are the following: an algorithm to construct a
complete test suite; a selection criterion that stipulateswhich behaviors of the system
should be tested in order to have a good coverage of the specification; and an algorithm
to construct a sound test suite based on this criterion.

Outline. The paper is organized as follows. Section 1 recalls basic notions about Petri
nets, occurrence nets and labeled event structures. Section 2 introduces our testing hy-
potheses and ourco-iococonformance relation. In Section 3, we define the notion of
complete test suite, we give sufficient conditions for a testsuite to be complete and
an algorithm producing such a test suite. Finally, we define in Section 4 our notion of

coverage criterion and we adapt the complete finite prefix algorithm of [16] to build a
sound test suite satisfying this criterion.

1 I/O Petri Nets and their Semantics

We choose to usePetri netsas specifications to have explicit concurrency. The semantics
associated to a Petri net is given by its unfolding to anoccurrence net, which can also be
seen as anevent structure. We will present both notions since we use them in different
contexts in the following. The execution traces for this semantics are not sequences but
partial orders, which keep concurrency explicit. We recall here these basic notions.

I/O Petri Nets. A net is a tupleN = (P ,T ,F) where(i) P 6= ∅ is a set ofplaces, (ii)
T 6= ∅ is a set oftransitionssuch thatP ∩T = ∅, (iii) F ⊆ (P ×T)∪ (T ×P) is a set
of flow arcs. A markingis a multisetM of places, i.e. a mapM : P → N. A Petri netis
a tupleN = (P ,T ,F ,M0), where(i) (P ,T ,F) is a finite net, and(ii) M0 : P → N is
aninitial marking. Elements ofP∪T are called thenodesof N . For a transitiont ∈ T ,
we call •t = {p | (p, t) ∈ F} the presetof t, andt• = {p | (t, p) ∈ F} the postset
of t . In figures, we represent as usual places by empty circles, transitions by squares,F
by arrows, and the marking of a placep by black tokens inp. A transitiont is enabled

in markingM , writtenM
t

−→, if ∀p ∈ •t , M (p) > 0. This enabled transition can
fire, resulting in a new markingM ′ = M − •t + t•. This firing relation is denoted

by M
t

−→ M ′. A markingM is reachablefrom M0 if there exists afiring sequence,

i.e. transitionst0 . . . tn such thatM0

t0−→ M1

t1−→ . . .
tn−→ M . The set of markings

reachable fromM0 (in N) is denotedRN (M0) (we drop the subscript referring toN
when it is clear from the context). A Petri netN = (P ,T ,F ,M0) is (1-)safeiff for all
reachable markingsM ∈ R(M0), M(p) ∈ {0, 1} for all p ∈ P .

Let I andO be two disjoint non-empty sets ofinputandoutputlabels, respectively.
For a netN = (P ,T ,F), a mappingλ : T → (I⊎O) is called anI/O-labeling. Denote
byTI andTO the input and output transition sets, respectively; that is, TI , λ−1(I)
andTO , λ−1(O). An I/O Petri netis a pairΣ = (N , λ), whereN = (P ,T ,F ,M0)
is a 1-safe Petri net andλ : T → (I ⊎O) an I/O-labeling.Σ is calleddeterministically
labelediff no two transitions with the same label are simultaneously enabled, i.e. for all
t1, t2 ∈ T andM ∈ R(M0):

(M
t1−→ ∧ M

t2−→ ∧ λ(t1) = λ(t2)) ⇒ t1 = t2

Note that 1-safeness of the Petri net is not sufficient for guaranteeing deterministic
labeling. Deterministic labeling ensures that the system behavior is locally discernible
through labels, either through distinct inputs or through observation of different outputs.

When testing reactive systems, we need to differentiate situations where the system
can still produce some outputs and those where the system cannot evolve without an
input from the environment. Such situations are captured bythe notion ofquiescence

[17]. A marking is said quiescent if it does not enable outputtransitions, i.e.M
t

−→
impliest ∈ TI . The observation of quiescence is usually instrumented by timers. Jard
and J́eron [18] present three different kinds of quiescence:output quiescencewhen the

t λ(t)
t1 ?login
t2 ?insurance
t3 !ins price
t4 !ins data
t5 !us data

t λ(t)
t6 ?train
t7 !tr price 1
t8 !tr price 2
t9 ?plane
t10 !pl price

t1

t5

t6

t7

t8

t9 t10

t2

t3

t4

Fig. 1.A travel agency specified by an I/O Petri net

system is waiting for an input from the environment,deadlockwhen the system can not
evolve anymore, andlivelockwhen the system diverges by an infinite sequence of silent
actions.

Occurrence Nets and Unfoldings.Occurrence nets can be seen as Petri nets3 with a
special acyclic structure that highlightsconflict between transitions that compete for
resources. Formally, letN = (P ,T ,F) be a net,<N the transitive closure ofF , and
6N the reflexive closure of<N . We say that transitionst1 and t2 are in structural
conflict, written t1#ωt2, if and only if t1 6= t2 and•t1 ∩

•t2 6= ∅. Conflict is inherited
along<N , that is, the conflict relation# is given by

a # b ⇔ ∃ta, tb ∈ T : ta#
ωtb ∧ ta 6N a ∧ tb 6N b

Finally, theconcurrency relationcoholds between nodesa, b ∈ P ∪ T that are neither
ordered nor in conflict, i.e.a co b ⇔ ¬ (a 6 b) ∧ ¬ (a # b) ∧ ¬ (b < a).

Definition 1. A netON = (B ,E ,G) is anoccurrence netif and only if

1. 6ON is a partial order;
2. for all b ∈ B , |•b| ∈ {0, 1};
3. for all x ∈ B ∪ E , the set[x] = {y ∈ E | y 6 x} is finite;
4. no self-conflict, i.e. there is nox ∈ B ∪ E such thatx#x;
5. ⊥∈ E is the only≤-minimal node (event⊥ creates the initial conditions)

Call the elements ofE events, those ofB conditions. An ON can also be given
as a tuple(B,E\{⊥}, F, cut0), wherecut0 = ⊥• is the set of minimal conditions.
Occurrence nets are the mathematical form of thepartial order unfolding semantics
[16]. A branching processof a 1-safe Petri netN = (N ,M0) is given by a pairΦ =
(ON , ϕ), whereON = (B ,E ,G) is an occurrence net, andϕ : B ∪ E → P ∪ T is
such that:

1. it is a homomorphism fromON toN , i.e.
– ϕ(B) ⊆ P andϕ(E) ⊆ T , and
– for everye ∈ E , the restriction ofϕ to •e is a bijection between the set•e in

ON and the set•ϕ(e) in N , and similarly fore• andϕ(e)•;

3 when one allows Petri nets to beinfinite

⊥
e ϕ(e) λ(e)

e1 t1 ?login
e2 t2 ?insurance
e3 t3 !ins price
e4 t4 !ins data
e5 t5 !us data
e6 t6 ?train
e7 t7 !tr price 1
e8 t8 !tr price 2
e9 t9 ?plane
e10 t10 !pl price

e1

e9

e10

e6

e7 e8

e2

e3

e4

e5

Fig. 2. Part of the unfolding of the PN from Figure 1 represented as an IOLES.Causality is
represented by arrows and immediate conflict by dashed lines.

2. the restriction ofϕ to cut0 is a bijection fromcut0 toM0; and
3. for everye1, e2 ∈ E , if •e1 = •e2 andϕ(e1) = ϕ(e2) thene1 = e2.

The unique (up to isomorphism) maximal branching processU = (ON U , ϕU) of
N is called theunfoldingof N .

Input/Output Labeled Event Structures.Occurrence nets give rise to event structures
in the sense of Winskel et al [19]; as usual, we will use both the event structure and
the occurrence net formalism, whichever is more convenient. An input/output labeled
event structure (IOLES)over an alphabetL = I ⊎ O is a 4-tupleE = (E,≤,#, λ)
where(i) E is a set of events,(ii) ≤ ⊆ E × E is a partial order (calledcausality)
satisfying the property offinite causes, i.e.∀e ∈ E : |{e′ ∈ E | e′ ≤ e}| < ∞, (iii)
⊆ E×E is an irreflexive symmetric relation (calledconflict) satisfying the property
of conflict heredity, i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′, (iv) λ : E →
(I ⊎ O) is a labeling mapping. In addition, we assume every IOLESE has a unique
minimal event⊥E . We denote the class of all input/output labeled event structures over
L by IOLES(L). Given evente, its local configurationis [e] , {e′ ∈ E | e′ ≤ e},
and its set ofcausal predecessorsis 〈e〉 , [e]\{e}. Two eventse, e′ ∈ E are said to
be concurrent (e co e′) iff neither e ≤ e′ nor e′ ≤ e nor e # e′ hold; e, e′ ∈ E are
in immediate conflict(e1 #µ e2) iff [e1] × [e2] ∩ # = {(e1, e2)}. A configurationof
an IOLES is a non-empty setC ⊆ E that is (i) causally closed, i.e. e ∈ C implies
[e] ⊆ C, and(ii) conflict-free, i.e.e ∈ C ande#e′ imply e′ 6∈ C. Note that we define,
for technical convenience, all configurations to be non-empty; the initial configuration
of E , containing only⊥E and denoted by⊥E , is contained in every configuration ofE .
We denote the set of all the configurations ofE by C(E).

Labeled Partial Orders.We are interested in testing distributed systems where concur-
rent actions occur in different components of the system. For this reason, we want to
keep concurrency explicit, i.e. specifications do not impose any order of execution be-
tween concurrent events. Labeled partial orders can then beused to represent executions
of such systems. Alabeled partial order(lpo) is a tuplelpo = (E,≤, λ) whereE is a set
of events,≤ is a reflexive, antisymmetric, and transitive relation, andλ : E → L is a la-
beling mapping to a fix alphabetL. We denote the class of all labeled partial orders over

L by LPO(L). Considerlpo1 = (E1,≤1, λ1) and lpo2 = (E2,≤2, λ2) ∈ LPO(L).
A bijective functionf : E1 → E2 is an isomorphism betweenlpo1 and lpo2 iff (i)
∀e, e′ ∈ E1 : e ≤1 e′ ⇔ f(e) ≤2 f(e′) and(ii) ∀e ∈ E1 : λ1(e) = λ2(f(e)). Two
labeled partial orderslpo1 andlpo2 are isomorphic if there exists an isomorphism be-
tween them. Apartially ordered multiset(pomset) is an isomorphism class of lpos. We
will represent such a class by one of its objects. Denote the class of all non empty pom-
sets overL byPOMSET (L). The evolution of the system is captured by the following
definition: pomsets are observations.

Definition 2. For E = (E,≤,#, λ) ∈ IOLES(L), ω ∈ POMSET (L) andC,C ′ ∈
C(E), define

C
ω

=⇒ C ′ , ∃lpo = (Eω,≤ω, λω) ∈ ω : Eω ⊆ E\C,C ′ = C ∪ Eω,

≤ ∩ (Eω × Eω) = ≤ω andλ|Eω
= λω

C
ω

=⇒ , ∃C ′ : C
ω

=⇒ C ′

We can now define the notions of traces and of configurations reachable from a
given configuration by an observation. Our notion of traces is similar to the one of
Ulrich and König [11].

Definition 3. For E ∈ IOLES(L), ω ∈ POMSET (L), C, C ′ ∈ C(E), define

traces(E) , {ω ∈ POMSET (L) |⊥E
ω

=⇒}

C after ω , {C ′ | C
ω

=⇒ C ′}

Note that for deterministically labeled I/O Petri nets, thecorresponding IOLES is
deterministic and the set of reachable configurations is a singleton.

2 Testing Framework for IOPNs

Testing Hypotheses.We assume that the specification of the system under test is given
as a 1-safe and deterministically labeled I/O Petri netΣ = (N , λ) over alphabetL =
I ⊎ O of input and output labels. To be able to test an implementation against such
a specification, we make a set of testing assumptions. First of all, we make the usual
testing assumption that the behavior of the SUT itself can bemodeled by a 1-safe I/O
Petri net over the same alphabet of labels. We also assume as usual that the specification
does not contain cycles of outputs actions, so that the number of expected outputs after
a given trace is finite.

Assumption 1 The netN has no cycle containing only output transitions.

Third, in order to allow the observation of both the outputs produced by the system
and the inputs it can accept, markings where conflicting inputs and outputs are enabled
should not be reachable. As a matter of fact, if conflicting input and output are enabled
in a given marking, once the output is produced, the input is not enabled anymore, and

vice versa. Such markings prevent from observing the inputsenabled in a given config-
uration, which we will see is one of the key points of our conformance relation. For this
reason, we restrict the form of the nets we consider via the following assumption on the
unfolding:4

Assumption 2 The unfolding of the netN has no immediate conflict between input and
output events, i.e.∀e1 ∈ EI , e2 ∈ EO : ¬(e1 #

µ e2).

Conformance Relation.A formal testing framework relies on the definition of a confor-
mance relation to be satisfied by the SUT and its specification. In the LTS framework,
the ioco conformance relation compares the outputs and blockings inthe implementa-
tion after a trace of the specification to the outputs and blockings authorised after this
trace in the specification. Classically, the produced outputs of the system under test are
elements ofO (single actions) and blockings are observable by a special action δ 6∈ L

which represents the expiration of a timer.
By contrast, in partial order semantics, we need any set of outputs to be entirely

produced by the system under test before we send a new input; this is necessary to
detect outputs depending on extra inputs. Suppose two concurrent outputso1 ando2
depending on inputi1 and another inputi2 depending on both outputs. Clearly, an
implementation that acceptsi2 beforeo2 should not be considered as correct, but ifi2 is
sent too early to the system, we may not know if the occurrenceof o2 depends or not on
i2. For this reason we define the expected outputs from a configurationC as the pomset
of outputs leading to a quiescent configuration. Such a configuration always exists, and
must be finite by Assumption 1.

The notion of quiescence is inherited from nets, i.e. a configurationC is quiescent iff
C

ω
=⇒ impliesω ∈ POMSET (I). We assume as usual that quiescence is observable

by a specialδ action, i.e.C is quiescent iffC
δ

=⇒.

Definition 4. For E ∈ IOLES(L), C ∈ C(E), the outputs produced byC are

outE(C) , {!ω ∈ POMSET (O) | C
!ω
=⇒ C ′ ∧ C ′ δ

=⇒} ∪ {δ | C
δ

=⇒}

The ioco theory assumes the input enabledness of the implementation[1], i.e. in
any state of the implementation, every input action is enabled. This assumption is made
to ensure that no blocking can occur during the execution of the test until its end and
the emission of a verdict. However, as explained by Heerink,Lestiennes and Gaudel
in [2, 3] even if many realistic systems can be modeled with such an assumption, there
remains a significant portion of realistic systems that can not be modeled as such. In
order to overcome these difficulties, Lestiennes and Gaudelenrich the system model by
refused transitions and a set of possible actions is defined in each state. Any possible
input in a given state of the specification should be possiblein a correct implementation.

Definition 5. For E ∈ IOLES(L) andC ∈ C(E), the possible inputs inC are

possE(C) , {?ω ∈ POMSET (I) | C
?ω
=⇒}

4 Gaudel et al [3] assume a similar property calledIO-exclusiveness.

Our co-ioco conformance relation for labeled event structures can be informally
described as follows. The behavior of a correctco-iocoimplementation after some ob-
servations (obtained from the specification) should respect the following restrictions:
(1) the outputs produced by the implementation should be specified; (2) if a quiescent
configuration is reached, this should also be the case in the specification; (3) any time an
input is possible in the specification, this should also be the case in the implementation.
These restrictions are formalized by the following conformance relation.

Definition 6. LetEi, Es ∈ IOLES(L), then

Ei co-ioco Es ⇔ ∀ω ∈ traces(Es) :
posss(⊥ after ω) ⊆ possi(⊥ after ω)
outi(⊥ after ω) ⊆ outs(⊥ after ω)

When several outputs in conflicts are possible, our conformance relation allows
implementations where at least one of them is implemented. Extra inputs are allowed
in any configuration, but extra outputs, extra quiescence and extra causality between
events specified as concurrent are forbidden.

P1 P2

a

b
c

d

S1

P1 P2

a

b

d

S2

Fig. 3. Message sequence charts showing
two implementations of concurrency.

Consider Figure 3. In theioco theory
where concurrency is interpreted as interleav-
ing, the concurrency between outputs!b and
!d of systemS2 would be described allowing
either!b before!d or !d before!b.S1 would be
a correct implementation w.r.tioco because
one of the two possible orders between the
outputs is observed, even if processP2 in-
terferes in the behavior of processP1 (!b de-
pends on!d). We want to prevent implemen-
tations likeS1 introducing extra dependency
between events specified as concurrent. Therefore actions specified as concurrent must
be implemented as such, meaning that they must occur on different processes and must
be independent from each other.

3 Complete Test Suites

A test case is a specification of the tester’s behavior duringan experiment carried out
on the SUT. It must be controllable, i.e. the tester must not have choices to make during
the execution of the test. That is, tests must be deterministic, and at any stage, the next
input to be proposed by the tester must be unique, i.e. there are no immediate conflicts
between inputs. Finally, we require the experiment to terminate, i.e. the resulting event
structure to be finite.

Definition 7. A test case is a finite deterministic IOLESEt = (Et,≤t,#t, λt) where
(EI

t × EI
t) ∩#µ

t = ∅. A test suite is a set of test cases.

The successof a test is determined by the verdict associated to the result of its
executionon the system,passor fail, the pass verdict meaning that the result of the test is

consistent with the specification according to the conformance relation. As IOLES can
be seen as occurrence nets, we can model the test execution asthe parallel composition
of labeled nets [20]. This execution leads to a fail verdict in the following situations: (1)
the implementation produces a pomset of outputs that the test case can not accept, (2)
the test case can accept such a pomset of outputs, but the reached configuration is not
quiescent, (3) a quiescent configuration is reached in the implementation, but not in the
test case, or (4) the test case proposes an input that the implementation is not prepared
to accept. These situations corresponds to a deadlock in theparallel composition, but
not in the test case. If the test case deadlocks (and therefore the execution), the SUT
passes the test case.

We expect our test suite to besound, i.e. if the implementation fails the test, then
it does not conform to the specification. A test suite isexhaustiveiff it contains, for
every non conforming implementation, a test that detects it. The existence of acomplete
(sound and exhaustive) test suite ensurestestabilityof the conformance relation, since
success of the SUT under such a test suite proves the SUT’s conformance. For obtaining
sound and exhaustive test suites, we give in [15] the following sufficient conditions.
First, for a test suite to be sound, each test must produce only traces of the specification,
and preserve all possible outputs for each such trace.

Theorem 1 ([15]).LetEs ∈ IOLES(L) andT a test suite such that5

1. ∀Et ∈ T : traces(Et) ⊆ traces(Es)
2. ∀Et ∈ T, ω ∈ traces(Et) : outt(⊥ after ω) = outs(⊥ after ω)

thenT is sound forEs w.r.t co-ioco.

A test suite is exhaustive if each trace of the specification appears in at least one test
and if tests preserve quiescence.

Theorem 2 ([15]).LetEs ∈ IOLES(L) andT a test suite such that

1. ∀ω ∈ traces(Es), ∃Et ∈ T : ω ∈ traces(Et);
2. ∀Et ∈ T, ω ∈ traces(Et) : (⊥t after ω) is quiescent implies(⊥s after ω) is quies-

cent;

thenT is exhaustive forEs w.r.t co-ioco.

The algorithm below builds a test case from an IOLES by resolving immediate
conflicts between inputs, while accepting several branchesin case of conflict between
outputs (note that “mixed” immediate conflicts between inputs and outputs have been
ruled out by Assumption 2). At the end of the algorithm, all such conflicts have been
resolved in one way, following one fixed strategy of resolution of immediate input con-
flicts; the resulting object, the test case, is thus one branching prefix of the IOLES. In
order to cover the other branches, the algorithm must be run several times withdifferent
conflict resolution schemes, to obtain a test suite that represents every possible event
in at least one test case. Each such scheme can be representedas a linearization of the
causality relation that specifies in which order the events are selected by the algorithm.

5 The inclusion of possible inputs follows from point 1.

Algorithm 1 Constructs a test case fromE
Require: A finite and deterministically labeledE = (E,≤,#, λ) ∈ IOLES(L) such that

∀e ∈ EI , e′ ∈ EO : ¬(e#µe′) and a linearizationR of ≤
Ensure: A test caseEt such that

∀ω ∈ traces(Et) : outEt
(⊥ after ω) = outE(⊥ after ω)

1: Et := ∅
2: Etemp := E

3: while Etemp 6= ∅ do
4: em := min

R
(Etemp)

5: Etemp := Etemp\ {em}
6: if ({em} × EI

t) ∩#µ = ∅ ∧ [em] ⊆ Et then
7: Et := Et ∪ {em}
8: end if
9: end while

10: ≤t := ≤ ∩ (Et × Et)
11: #t := # ∩ (Et × Et)
12: λt := λ|Et

13: return Et = (Et,≤t,#t, λt)

By the above, we need to be sure that the collection of linearizations that we use con-
siders all resolutions of immediate input conflict, i.e. is rich enough such that there is a
pair of linearizations that reverses the order in a given immediate input conflict.

Definition 8. Fix E ∈ IOLES(L), and letL be a set of linearizations of≤. ThenL is
an immediate input conflict saturatedset, oriics set, forE iff for all e1, e2 ∈ EI such
thate1#µe2, there existR1,R2 ∈ L with ∀e ∈ [e1] : eR1e2 and∀e ∈ [e2] : eR2e1.

Proposition 1. Let L be an iics set forE , andT the test suite obtained using Algo-
rithm 1 withL. Then every evente ∈ E is represented by at least one test caseEt ∈ T .

Proof. Let T be the test suite obtained by the algorithm andL and supposee is not
represented by any test case inT . We have then that for everyEt ∈ T either(i) e ∈ EI

and{e} × EI
t ∩#µ 6= ∅ or (ii) [e] 6⊆ Et. If (i), we have that there existse′ ∈ EI

t such
thate #µe′ ande′R1e (whereR1 is the linearization used to buildEt). By Proposition
1 we know there existR2 ∈ L such that∀e′′ ∈ [e] : e′′R2e

′ and then we can useR2 to
constructE ′

t ∈ T such thate is represented byE ′
t which leads to a contradiction. If(ii) ,

then there existse′ ∈ [e] such that{e′}×EI
t ∩ 6= ∅ and the analysis is analogous to the

one in(i). ⊓⊔

Note that the size ofL and hence ofT can be bounded by the number of input
events in immediate conflict, i.e.|T | ≤ 2K, whereK = |#µ ∩ (EI × EI)|. Note that
in the case where several input events are two by two in immediate conflict, we need
fewer test cases than one per pair. For example ife1 #µe2, e2 #µe3 ande3 #µe1, we
only need three linearizations, each having a different event ei preceding the two others
whose order does not matter, and therefore only three cases.Moreover, for any pair of
concurrent eventse co e′, the order in which they appear in anyR ∈ L is irrelevant;
it suffices therefore to have inL only one representative for any class of permutations

of some set of pairwise concurrent events inE . Therefore, the size ofL and thus ofT
depends on the degree of input conflict inE and not on the degree of concurrency. It
is known that such a performance is characteristic of methods based on partial order
unfoldings.

⊥

e1

e6

e7 e8

e2

e3

e4

e5

(a)

⊥

e1

e9

e10

e2

e3

e4

e5

(b)

Fig. 4. Two test cases build using the IOLES in Figure 2 and Algorithm 1.

Example 1.The test cases (a) and (b) in Figure 4 can be obtained using Algorithm 1
and any linearizationsR1,R2 such thate6R1e9 ande9R2e6.

Let PREF(E) be the set of all prefixes ofE , we show now that Algorithm 1 is
general enough to produce a complete test suite from it.

Theorem 3. From PREF(E) and an iics setL for E , Algorithm 1 yields a complete
test suiteT .

Proof. Soundness:By Theorem 1 we need to prove: (1) the traces of every test caseare
traces of the specification; (2) the outputs following a trace of the test case are preserved.
(1) Trace inclusion is immediate as the test case is a prefix ofthe unfolding of the
specification. (2) For a testEt and a traceω ∈ traces(Et), if an output in outs(⊥ after ω)
is not in outt(⊥ after ω), it means either that it is in conflict with an input inEt, which
is impossible by Assumption 2, or that its past is not alreadyin Et, which is impossible
sinceω is a trace ofEt.

Exhaustiveness:By Theorem 2 we need to prove that every trace is represented in at
least one test case, and that the algorithm does not introduce extra quiescence. Clearly,
for all ω ∈ traces(Es) there exists at least one complete prefixc ∈ PREF(E) such
thatω ∈ traces(c). By Proposition 1 we can findR ∈ L such that this trace remains in
the test case obtain by the algorithm, i.e.∃t ∈ T : ω ∈ traces(t). If we only consider
the prefixesc ∈ PREF(E) such that(⊥c after ω) is quiescent implies(⊥s after ω)
is quiescent, it follows that any test case built with the algorithm from c inherits this
property. ⊓⊔

4 Coverage Criteria for Labeled Event Structures

In the ioco framework and its extensions, the selection of test suites is achieved by dif-
ferent methods. Tests can be built in a randomized way from a canonical tester, which
is a completion of the specification representing all the authorized and forbidden be-
haviors [1]. Closer to practice is the selection of tests according to test purposes, which
represent a set of behaviors one wants to test. [18]. Anothermethod, used for sym-
bolic transition systems for instance, is to unfold the specification until a certain testing
criterion is fulfiled, and then to build a test suite coveringthis unfolding. Criteria for
stopping the unfolding can be a given depth or state inclusion for instance [21].

The behavior of the system described by the specification consists usually of infi-
nite traces. However, in practice, these long traces can be considered as a sequence of
(finite) “basic” behaviors. For example, the travel agency offers few basic behaviors:
(1) interaction with the server; (2) selection of insurance; and (3) selection of tickets.
Any “complex” behavior of the agency is built from such basicbehaviors. We choose
a criterion allowing to cover each basic behavior describedby the specification once,
using a proper notion ofcomplete prefixes.

Complete Prefixes as Testing Criteria.The dynamic behavior of a Petri net is entirely
captured by its unfolding, but this unfolding is usually infinite. There are several dif-
ferent methods of truncating an unfolding. The differencesare related to the kind of
information about the original unfolding one wants to preserve in the prefix. Our aim is
to use such a prefix to build test cases, therefore obtaining afinite prefix can be seen as
defining a testing criterion.

As it is shown above, if the information about the produced outputs (and quies-
cence) is preserved in the test cases, we can prove the soundness of the test suite. Hence
we aim at truncating the unfolding following an inclusion criterion, while preserving
information about outputs and quiescence.

We say that a branching processβ of an I/O Petri netΣ is completeif for every
reachable markingM there exists a configurationC in β such that

1. Mark(C) = M (i.e.M is represented inβ), and
2. for every transitiont enabled byM there existsC ∪ {e} ∈ C(β) such thate is

labeled byt.

A complete prefixFin can be obtained modifying the unfolding algorithm. The
complete finite prefix algorithmis presented in [16] and depends on the notion ofcut-off
event: how long the net is unfolded. The following notion corresponds to our inclusion
criterion: every cycle is unfolded once.

Definition 9. Let Fin be a branching process. An evente is a cut-off event iffFin
contains an evente′ ≤ e such thatMark([e′]) = Mark([e]).

Nevertheless, as explained in Example 2, completeness doesnot imply that the in-
formation about outputs and quiescence is preserved.

Example 2.Consider Figure 5, we have thatFin is complete, but the expected outputs
are not part of the prefix. We expect thato1 is produced by the system afteri2 andi4,

s1

i1 i2 i3

s2

i4
s5 s6

o1

s3

s4

Σ

⊥

i1 i3 i2 i4

o1 o1

i1 i3 i2 i4

o1 o1

i1 i3 i2 i4

o1 o1

.

E

⊥

i1 i3 i2 i4

o1

Fin

⊥

i1 i3 i2 i4

o1 o1

EΘ

Fig. 5. I/O Petri netΣ, part of its unfoldingE , a complete finite prefixFin and its quiescent
closureEΘ.

i.e. outE(⊥ after (i2 · i4)) = {o1}, but this is not the case inFin, i.e. o2 6∈ outFin(⊥
after (i2 · i4)) = {δ}.

In order to preserve this information, we follow [21] and modify the complete fi-
nite prefix algorithm adding all the outputs from the unfolding that the complete prefix
enables. As there exists no cycles of outputs in the originalnet, this procedure termi-
nates, yielding a finite prefix. The procedure to compute thequiescent closureEΘ of
the complete finite prefix is described by Algorithm 2.

As in [16], we implement a branching process of an I/O Petri net Σ as a list of
nodes. A node is either a condition or an event. A condition isa pair(s, e), wheres is a
place ofΣ ande its preset. An event is a pair(t, B), wheret is a transition inΣ, andB
is its preset. The possible extensions of a branching processβ are the pairs(t, B) where
the elements ofB are pairwise inco relation,t is such thatϕ(B) = •t andβ contains
no evente satisfyingϕ(e) = t and•e = B. We denote the set of possible extensions of
β byPE(β). The following result is central and will help proving soundness of the test
suites proposed below.

Theorem 4. Let E ∈ IOLES(L) andEΘ the quiescent closure of its complete finite
prefix. Then

1. traces(EΘ) ⊆ traces(E)
2. ∀ω ∈ traces(EΘ) : outEΘ (⊥ after ω) = outE(⊥ after ω)

Algorithm 2 The quiescent closure of the complete finite prefix algorithm
Require: A 1-safe I/O Petri netΣ = (T, P, F,M0, λ) whereM0 = {s1, . . . , sk}.
Ensure: A complete finite prefixEΘ of the unfoldingE of Σ such that

∀ω ∈ traces(EΘ) : outEΘ (⊥ after ω) = outE(⊥ after ω)
1: EΘ := (s0, ∅), . . . , (sk, ∅)
2: pe := PE(EΘ)
3: cut-off := ∅
4: while pe 6= ∅ do
5: choose an evente = (t, B) in pe such thate is minimal w.r.t≤;
6: if [e] ∩ cut-off= ∅ then
7: append toEΘ the evente and a condition(s, e) for every places in t•

8: pe := PE(EΘ);
9: if e is acut-offevent ofEΘ then

10: cut-off := cut-off∪ {e}
11: end if
12: else
13: pe := pe\{e}
14: end if
15: end while
16: pe := PE(EΘ)
17: while pe ∩ T

O 6= ∅ do
18: choose an evente = (t, B) in pe ∩ T

O such thate is minimal w.r.t≤;
19: append toEΘ the evente and a condition(s, e) for every places in t•

20: pe := PE(EΘ);
21: end while
22: return EΘ

Proof. 1) is immediate sinceEΘ is a prefix ofE . Since only the outputs produced after
the traces ofEΘ are considered, 2) follows by its construction. ⊓⊔

The test suite build based on the inclusion criteria is sound:

Theorem 5. LetΣs be the specification of a system andEs the IOLES of its unfolding.
Any test suite constructed using Algorithm 1 andEΘ

s as an input is sound forEs w.r.t
co-ioco.

Proof. By Theorem 1 we need to prove that any trace of a test caseEt is a trace of
Es (which is trivial asEt is a prefix ofEΘ

s and therefore ofEs) and that outputs and
quiescence produced after any traceω of such a test are preserved. The events ofEΘ

s

that are added toEt are all the events whose past is already inEt and which are not
in immediate conflict with an input. An output cannot be in immediate conflict with
an input by Assumption 2, so all the outputs whose past is already in Et are added.
So all the outputs fromEΘ

s after a traceω are preserved and by Theorem 4 we have
∀ω ∈ traces(Et) : outt(⊥ after ω) = outs(⊥ after ω). ⊓⊔

Example 3.The IOLES of Figure 2 is a complete prefix of the unfolding of the net in
Figure 1 and can be obtained using Algorithm 2. We saw in Example 1 how to build test
cases that cover such a complete prefix. Thus the test cases ofFigure 4 form a sound
test suite that covers the specification according to our inclusion criterion.

5 Conclusion and Future Work

We have presented a testing framework and a test generation algorithm for true concur-
rency specifications of distributed and concurrent systems. Our test selection criterion
is based on the quiescent closure of the complete finite prefixof the unfolding of the
specification; it allows to select, among all possible test cases, those covering the be-
haviors traversing each cycle once. As in the case of McMillan’s complete prefixes, the
size of our prefixes can be exponential in the number of reachable markings in worst
case (see for example [16]). However, for several families of nets, the resulting prefix
is smaller than the reachability graph. Full information about the behavior of the net
can be reconstructed with only a finite marking-complete prefix whose size is bounded
by the number of states in the reachability graph. However such reconstruction is not
straight forwards.

Future technical studies include the question whether it ispossible to drop assump-
tions 1 and 2 under a fairness assumption, meaning that in a given configuration, all
the different events will eventually occur if the experiment is repeated enough times.
However under such an assumption, controllability of test cases must be ensured during
their construction.

The present testing approach here is global, meaning that a global control and ob-
servation of the distributed system is assumed, and tests are performed in a centralized
way. The next step of our work is to distribute control and observation over several
concurrent components. This will necessarily weaken the conformance relation, since
dependencies between events occurring on different components cannot be observed
anymore. The local test cases should, roughly speaking, be projections of the global
test cases onto the different components, since concurrency of the specification was pre-
served in the test cases. We still have to investigate how distribution affects the power
of testing, and how the resulting methods compares to others, such as thedioco frame-
work of Hierons et al. [7] for multi-port IOTS.

Acknowledgment: This work was funded by the DIGITEO / DIM-LSC project
TECSTES, convention DIGITEO Number 2011-052D - TECSTES.

References

1. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software -
Concepts and Tools17(3) (1996) 103–120

2. Heerink, L., Tretmans, J.: Refusal testing for classes of transitionsystems with inputs and
outputs. In: Formal Description Techniques for Distributed Systems andCommunication
Protocols. Volume 107 of IFIP Conference Proceedings., Chapman& Hall (1997) 23–38

3. Lestiennes, G., Gaudel, M.C.: Test de systèmes ŕeactifs non ŕeceptifs. Journal Européen des
Syst̀emes Automatiśes39(1-2-3) (2005) 255–270

4. Faivre, A., Gaston, C., Le Gall, P., Touil, A.: Test purpose concretization through symbolic
action refinement. In: Testing of Software and Communicating Systems. Volume 5047 of
LNCS., Springer (2008) 184–199

5. J́eron, T.: Symbolic model-based test selection. Electronic Notes in Theoretical Computer
Science240(2009) 167–184

6. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in
System Design34(3) (2009) 238–304

7. Hierons, R.M., Merayo, M.G., Ńuñez, M.: Implementation relations for the distributed test
architecture. In: Testing of Software and Communicating Systems. Volume 5047 of LNCS.,
Springer (2008) 200–215

8. Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)
9. Peleska, J., Siegel, M.: From testing theory to test driver implementation. In: Formal Meth-

ods Europe. Volume 1051 of LNCS., Springer (1996) 538–556
10. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. 1st edn. John Wiley

& Sons, Inc., New York, NY, USA (1999)
11. Ulrich, A., König, H.: Specification-based testing of concurrent systems. In: Formal De-

scription Techniques for Distributed Systems and Communication Protocols. Volume 107 of
IFIP Conference Proceedings., Chapman & Hall (1998) 7–22

12. von Bochmann, G., Haar, S., Jard, C., Jourdan, G.V.: Testing systems specified as partial
order input/output automata. In: Testing of Software and Communicating Systems. Volume
5047 of LNCS., Springer (2008) 169–183

13. Haar, S., Jard, C., Jourdan, G.V.: Testing input/output partial order automata. In: Testing of
Software and Communicating Systems. Volume 4581 of LNCS., Springer(2007) 171–185

14. Ponce de Léon, H., Haar, S., Longuet, D.: Conformance relations for labeled event structures.
In: Tests and Proofs. Volume 7305 of LNCS., Springer (2012) 83–98

15. Ponce de Léon, H., Haar, S., Longuet, D.: Model-based testing for concurrentsystems with
labeled event structures. http://hal.inria.fr/hal-00796006 (2012)

16. Esparza, J., R̈omer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. In:
Tools and Algorithms for Construction and Analysis of Systems. Volume 1055 of LNCS.,
Springer (1996) 87–106

17. Segala, R.: Quiescence, fairness, testing, and the notion of implementation. Information and
Computation138(2) (1997) 194–210

18. Jard, C., J́eron, T.: TGV: theory, principles and algorithms. International Journal on Software
Tools for Technology Transfer7 (2005) 297–315

19. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I.
Theoretical Computer Science13 (1981) 85–108

20. Winskel, G.: Petri nets, morphisms and compositionality. In: Applications and Theory in
Petri Nets. (1985) 453–477

21. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for test purpose
definition. In: Testing of Software and Communicating Systems. Volume 3964 of LNCS.,
Springer (2006) 1–18

