Unfolding-based Test Selection for Concurrent
Conformance

Herran Ponce de L@n', Stefan Hadr, and Delphine Longuét

1 INRIA and LSV, Ecole Normale Sugrieure de Cachan and CNRS, France
ponce@sv. ens-cachan. fr ,stefan. haar@nria.fr
2 Univ Paris-Sud, LRI UMR8623, Orsay, F-91405
| onguet @ri.fr

Abstract. Model-based testing has mainly focused on models where currency is
interpreted as interleaving (like thieco theory for labeled transition systems),
which may be too coarse when one wants concurrency to be presertee
implementation. In order to test such concurrent systems, we choase ®etri

nets as specifications and define a concurrent conformance relatioadco-

ioco. We propose a test generation algorithm based on Petri net unfoldieag ab
to build a complete test suite w.r.t oco-iococonformance relation. In addition

we propose a coverage criterion based on a dedicated notion of cogéxes

that selects a manageable test suite.

Model-based TestingThe aim of testing is to execute a software systemirttigemen-
tation, on a set of input data selected so as to find discrepancieséetctual behavior
and intended behavior described by pecification The testing process is usually de-
composed into three phases: selection of relevant inpat datled aest suite among
the possible inputs of the system; submission of this tet tuthe implementation, its
executionand decision of the success or the failure of the test subiegssion, known
as theoracle problemWe focus here on the selection phase, crucial for relevande
efficiency of testing.

Model-based testing requires a behavioral descriptioh@gystem under test. One
of the most popular formalisms studied in conformancerigss that ofinput output la-
beled transition system(§OLTS). In this framework, the correctness (or conformgnc
relation the system under test (SUT) and its specificatioatmerify is formalized by
theiocorelation [1]. This relation has become a standard, and id ase basis in sev-
eral testing theories for extended state-based modetsictie® transition systems [2,
3], symbolic transition systems [4, 5], timed automata [Gjlti-port finite state ma-
chines [7].

Model-based Testing of Concurrent Syste@gstems composed of concurrent compo-
nents are naturally modeled amatwork of finite automataa formal class of models
that can be captured equivalently gfe Petri netsConcurrency in a specification can
arise for different reasons. First, two events may be philgitocalized on different
components, and thus be “naturally” independent of onehampthis distribution is
then part of the system construction. Second, the spedificatay not care about the
order in which two actions are performed the same componerand thus leave the

choice of their ordering to the implementation. Dependingtlee nature of the con-
currency specified in a given case, and thus on the intenfidsheospecification, the
implementation relationbave to allow or disallow ordering of concurrent events. The
kind of systems that we consider is of the first type, whereamency comes from the
distribution of components. Therefore, we want concuryesfadhe specification to be
preserved in the implementation.

Model-based testing of concurrent systems has been stfotiadong time [8—10],
however it is most of the time studied in the context of irgavling, or trace, seman-
tics, which is known to suffer the state space explosion lprabWhile the passage
to models with explicit concurrency has been successf@tjopmed in other fields of
formal analysis such as model checking or diagnosis, géi@ts embraced such mod-
els somewhat more recently. Ulrich andiig propose in [11] a framework for testing
concurrent systems specified by communicating labeleditian systems. The spec-
ification is translated into a Petri net, and a complete prefiits unfolding is used
to construct ébehavior machineThe conformance relation proposed in [11] is a gen-
eralization of trace equivalence relation; their work does include a test selection
procedure, or how the choice of complete prefix impacts selecSince our goal is to
includeconflictrelations as well, we will usevent structureand their properties.

Haar et al [12,13] generalize the basic notions and teclesioqpf I/O-sequence
based conformance testing via a generalized I/O-autonratatel where partially or-
dered patterns of input/output events are admitted asiti@ntabels. However, these
models still maintain a sequential automaton as the systskeleton, and include syn-
chronization constraints, e.g. all events in the coursetrdrasition must be completed
before any other transition can start.

Our Contribution. In order to enlarge the application domain, and at strongaeefits
from concurrency modeling, we have introduced in [14] a corent conformance rela-
tion namedco-iocq as a generalization @dco. In [15], we dropped the input enabled-
ness assumption and enlarged the conformance relatiordar tw observe refusals.
Extra causality between outputs specified as concurrefgasadiowed.

This paper extends [14, 15] with a conformance relation @laetions specified as
concurrent must occur independently, on different praegds any conformant imple-
mentation. While sufficient conditions for soundness andagtiveness of test suites
have been given in [15], we need more: in practice, only agfinitmber of test cases
can be executed; hence we need a method to select a finite sdewvdnt test cases
covering as many behaviors as possible (thus finding as nraomalies as possible).

The main contributions of this paper are the following: agoaithm to construct a
complete test suite; a selection criterion that stipulatbich behaviors of the system
should be tested in order to have a good coverage of the gaidifi; and an algorithm
to construct a sound test suite based on this criterion.

Outline. The paper is organized as follows. Section 1 recalls bagiomabout Petri
nets, occurrence nets and labeled event structures. 8&ciidroduces our testing hy-
potheses and ow-iococonformance relation. In Section 3, we define the notion of
complete test suite, we give sufficient conditions for a seste to be complete and
an algorithm producing such a test suite. Finally, we defin8action 4 our notion of

coverage criterion and we adapt the complete finite prefigratgm of [16] to build a
sound test suite satisfying this criterion.

1 |/O Petri Nets and their Semantics

We choose to ugeetri netsas specifications to have explicit concurrency. The semanti
associated to a Petri net is given by its unfolding t@acurrence netwhich can also be
seen as amvent structureWe will present both notions since we use them in different
contexts in the following. The execution traces for this aatits are not sequences but
partial orders which keep concurrency explicit. We recall here thesedyasiions.

I/O Petri Nets. A netis atupleN = (P, T, F) where(i) P # () is a set ofplaces (ii)

T # () is a set otransitionssuch thatP N T' =), (iii) F € (P x T)U(T x P)is a set
of flow arcs A markingis a multiset)/ of places, i.e.amap/ : P — N. A Petri netis
atupleN = (P, T, F, M), where(i) (P, T, F) is a finite net, andii) M, : P — Nis
aninitial marking. Elements of? U T are called th@odesof . For a transitiornt € T,
we call*t = {p | (p,t) € F} thepresetof ¢, andt®* = {p | (¢t,p) € F} the postset
of ¢t. In figures, we represent as usual places by empty circlassitions by square#;
by arrows, and the marking of a plagéby black tokens irp. A transitiont is enabled
in marking M, written M s if Vp € *t, M(p) > 0. This enabled transition can
fire, resulting in a new marking/’ = M — *t + t*. This firing relation is denoted

by M -1 M’. A marking M is reachablefrom Mj if there exists diring sequence

i.e. transitiongy . . . t,, such thatM, o, M, My .. M. The set of markings
reachable from\f, (in NV) is denotedR (M) (we drop the subscript referring 1o
when it is clear from the context). A Petri nkf = (P, T, F, My) is (1-)safeiff for all
reachable markingd/ € R(My), M (p) € {0,1} forallp € P.

LetZ andO be two disjoint non-empty sets ofputandoutputlabels, respectively.
ForanetN = (P, T, F),amapping\: T — (ZWO) is called arl/O-labeling Denote
by 77 and T° the input and output transition sets, respectively; thal'’s = \~1(7)
andT° = X\~1(0). An /O Petri netis a pairy) = (N, \), whereN = (P, T, F, My)
is a 1-safe Petrinetand: T — (ZW O) an l/O-labeling.X’ is calleddeterministically
labelediff no two transitions with the same label are simultanepesiabled, i.e. for all
ti,to € TandM € R(My):

t1

(M5 AM2 AM)=At2) =t =t

Note that 1-safeness of the Petri net is not sufficient forguaeing deterministic
labeling. Deterministic labeling ensures that the systetmalior is locally discernible
through labels, either through distinct inputs or throughkervation of different outputs.

When testing reactive systems, we need to differentiatatsitos where the system
can still produce some outputs and those where the systematavolve without an
input from the environment. Such situations are capturethbynotion ofquiescence
[17]. A marking is said quiescent if it does not enable outpamsitions, i.e M N
impliest € TZ. The observation of quiescence is usually instrumentedntgrs. Jard
and &ron [18] present three different kinds of quiescemtgput quiescencahen the

t @) AER0)

t1| 7login tg| Ttrain
to|?7insurance |t |!tr_price 1
ts| lins_price ts |'tr_price 2
t4 lins_data tg| 7plane
t5| lusdata t10| !pl_price

Fig. 1. A travel agency specified by an 1/O Petri net

system is waiting for an input from the environmedagadlockwhen the system can not
evolve anymore, anlivelockwhen the system diverges by an infinite sequence of silent
actions.

Occurrence Nets and Unfolding€ccurrence nets can be seen as Petrineith a
special acyclic structure that highlightenflict between transitions that compete for
resources. Formally, le¥ = (P, T, F') be a net< y the transitive closure of’, and
<y the reflexive closure ok . We say that transitiong and ¢, are instructural
conflict, written t; #% t,, if and only ift; # ¢, and®t; N *#; # (. Conflictis inherited
along< y, that is, the conflict relatio# is given by

a# b oty € Tt ta#tty Ay <y aAty <y b

Finally, theconcurrency relatiorco holds between nodesb € P U T that are neither
ordered nor in conflict, i.es cob < —(a < b) A ~(a#b) A = (b<a).

Definition 1. AnetON = (B, E, G) is anoccurrence ndf and only if

<oy Is a partial order;

. forallb € B, |*b] € {0,1};

. forallz € BUE, thesefx] = {y € E | y < z} is finite;

no self-conflict, i.e. there is no€ B U E such thatr#x;

. Le FEisthe only<-minimal node (event creates the initial conditions)

GAWN R

Call the elements of’ events those of B conditions An ON can also be given
as a tuple(B, E\{L}, F, cuty), wherecuty, = L°* is the set of minimal conditions.
Occurrence nets are the mathematical form of ghdial order unfolding semantics
[16]. A branching processf a 1-safe Petri ne\” = (N, My) is given by a paip =
(ON,), whereON = (B, E, G) is an occurrence net, agd: BUE — PU T is
such that:

1. itis a homomorphism fror®N to N, i.e.
— ¢(B) C Pandp(F) C T, and
— for everye € F, the restriction ofp to *¢ is a bijection between the s®t in
ON and the sety(e) in N, and similarly fore® andp(e)®;

3 when one allows Petri nets to binite

e lo(e)] Ale)

e1| t1 ?login
e | ta |7insurance
es3| t3 |linsprice
es| ts | linsdata
es| ts | lusdata
e6| te ?train
e7| t7 |ltr_price 1
es| ts |!tr_price 2
eg | tg ?plane
e1o| t1o | !pl_price

Fig. 2. Part of the unfolding of the PN from Figure 1 represented as an IOKESsality is
represented by arrows and immediate conflict by dashed lines.

2. the restriction ofp to cutg is a bijection fromcut, to My; and
3. foreveryey, ex € E,if ®e; = *ex andp(e1) = ¢(e2) thene; = es.

The unique (up to isomorphism) maximal branching proééss (ON, ¢y) of
N is called theunfoldingof .

Input/Output Labeled Event Structure€ccurrence nets give rise to event structures
in the sense of Winskel et al [19]; as usual, we will use bothdhent structure and
the occurrence net formalism, whichever is more convenismtinput/output labeled
event structure (IOLES)ver an alphabel = Zw O is a 4-tuple€ = (E, <,#,)
where (i) F is a set of eventgjii) < C E x E is a partial order (calledausality
satisfying the property diinite causesi.e.Ve € E : [{¢/ € E | € < e}| < oo, (iii)
C E x Eis anirreflexive symmetric relation (callednflic) satisfying the property
of conflict heredityi.e.Ve,e¢’,¢” € E:e# e Ne' <e" = e#e, (V)N E —
(Z W O) is a labeling mapping. In addition, we assume every IOIERas a unique
minimal eventl . We denote the class of all input/output labeled event siras over
L by ZOLES(L). Given event, its local configurationis [e] = {¢' € E | ¢’ < e},
and its set otausal predecessois (¢) = [e]\{e}. Two events, e’ € E are said to
be concurrentd co ¢’) iff neithere < ¢’ nore’ < e nore # ¢’ hold; e, e’ € E are
in immediate conflicfe; #* es) iff [e1] x [e2] N # = {(e1, e2)}. A configurationof
an IOLES is a non-empty séf C F that is(i) causally closedi.e.e € C implies
[e] C C, and(ii) conflict-freg i.e.e € C ande#e’ imply ¢’ ¢ C. Note that we define,
for technical convenience, all configurations to be nontgnthe initial configuration
of £, containing onlyL¢ and denoted by ¢, is contained in every configuration &t
We denote the set of all the configurationsEdby C(E).

Labeled Partial Orders.We are interested in testing distributed systems whereuwenc
rent actions occur in different components of the system titie reason, we want to
keep concurrency explicit, i.e. specifications do not ingpasy order of execution be-
tween concurrent events. Labeled partial orders can thasdmto represent executions
of such systems. Fabeled partial ordei(lpo) is a tuplelpo = (E, <, \) whereF is a set

of events< is a reflexive, antisymmetric, and transitive relation, andtl — L is a la-
beling mapping to a fix alphabét We denote the class of all labeled partial orders over

L by LPO(L). Considerlpo, = (E1,<1,A1) andlpo, = (E3,<2,X2) € LPO(L).

A bijective functionf : E; — E, is an isomorphism betweeipo, and lpo, iff (i)
Ve, € Byt e <1 € & f(e) <2 f(¢') and(ii) Ve € Ey : Ai(e) = A2(f(e)). Two
labeled partial order&o, andlpo, are isomorphic if there exists an isomorphism be-
tween them. Apartially ordered multise{pomset) is an isomorphism class of Ipos. We
will represent such a class by one of its objects. Denotelttss of all non empty pom-
sets ovell by POMSET (L). The evolution of the system is captured by the following
definition: pomsets are observations.

Definition 2. For & = (E,<,#,\) € ZOLES(L), w € POMSET (L) andC,C’ €
C(€), define

C=%C"%23po=(E,, <,) Ew:E, C E\C,C' =CUBE,,
<N (B X By) =<, and)\ g, = A,

C= 2£3C":.C=C

We can now define the notions of traces and of configuratioashable from a
given configuration by an observation. Our notion of tracesimilar to the one of
Ulrich and Kbnig [11].

Definition 3. For £ € ZOLES(L),w € POMSET (L), C,C" € C(£), define

traceg€) £ {w € POMSET (L) |Le ==}
C after w £ {C'| C == C'}

Note that for deterministically labeled I/O Petri nets, tweresponding IOLES is
deterministic and the set of reachable configurations ingletion.

2 Testing Framework for IOPNs

Testing HypothesedlVe assume that the specification of the system under testan gi
as a 1-safe and deterministically labeled 1/O PetriXiet (N, \) over alphabef., =

7 ¢ O of input and output labels. To be able to test an implemeortagigainst such

a specification, we make a set of testing assumptions. Hiwt,ave make the usual

testing assumption that the behavior of the SUT itself cambdeled by a 1-safe 1/0
Petri net over the same alphabet of labels. We also assunseialsiat the specification
does not contain cycles of outputs actions, so that the nuoflexpected outputs after
a given trace is finite.

Assumption 1 The net\ has no cycle containing only output transitions.

Third, in order to allow the observation of both the outputsquced by the system
and the inputs it can accept, markings where conflictingt&ypad outputs are enabled
should not be reachable. As a matter of fact, if conflictinguinrand output are enabled
in a given marking, once the output is produced, the inpubtsenabled anymore, and

vice versa. Such markings prevent from observing the inpu&bled in a given config-
uration, which we will see is one of the key points of our canfance relation. For this
reason, we restrict the form of the nets we consider via thefing assumption on the
unfolding#

Assumption 2 The unfolding of the néY” has no immediate conflict between input and
output events, i.efe; € ET ey € E© 1 —(e) # e3).

Conformance RelationA formal testing framework relies on the definition of a canfo
mance relation to be satisfied by the SUT and its specificaliiothe LTS framework,
theioco conformance relation compares the outputs and blockingseimmplementa-
tion after a trace of the specification to the outputs andkitas authorised after this
trace in the specification. Classically, the produced astptithe system under test are
elements of?D (single actions) and blockings are observable by a speci@aired ¢ L
which represents the expiration of a timer.

By contrast, in partial order semantics, we need any set ffutsl to be entirely
produced by the system under test before we send a new ifmgiistnecessary to
detect outputs depending on extra inputs. Suppose two o@mtwoutputso; and o,
depending on input; and another inpui, depending on both outputs. Clearly, an
implementation that accepts beforeos should not be considered as correct, bu is
sent too early to the system, we may not know if the occurrefiog depends or not on
i2. For this reason we define the expected outputs from a coafignC' as the pomset
of outputs leading to a quiescent configuration. Such a corgtgn always exists, and
must be finite by Assumption 1.

The notion of quiescence is inherited from nets, i.e. a candigonC is quiescent iff
C = impliesw € POMSET (T). We assume as usual that quiescence is observable

by a speciab action, i.e.C' is quiescent ifiC =2

Definition 4. For £ € ZOLES(L), C € C(€), the outputs produced iy are

outs (C) 2 {lw € POMSET(0) | C =% C' A ¢ =510 {5 | C =%}

Theioco theory assumes the input enabledness of the implementaiione. in
any state of the implementation, every input action is exdbrhis assumption is made
to ensure that no blocking can occur during the executiometést until its end and
the emission of a verdict. However, as explained by Heelliglstiennes and Gaudel
in [2, 3] even if many realistic systems can be modeled withsaan assumption, there
remains a significant portion of realistic systems that cainbe modeled as such. In
order to overcome these difficulties, Lestiennes and Gardéath the system model by
refused transitions and a set of possible actions is defimeddh state. Any possible
input in a given state of the specification should be possitdecorrect implementation.

Definition 5. For £ € ZOLES(L) andC € C(€), the possible inputs ity are

poss (C) 2 {7w € POMSET(I) | C =2}

4 Gaudel et al [3] assume a similar property call®dexclusiveness

Our co-ioco conformance relation for labeled event structures can fmnmally
described as follows. The behavior of a correstiocoimplementation after some ob-
servations (obtained from the specification) should resgiecfollowing restrictions:
(1) the outputs produced by the implementation should beifspa; (2) if a quiescent
configuration is reached, this should also be the case irpgafication; (3) any time an
input is possible in the specification, this should also Ieectise in the implementation.
These restrictions are formalized by the following confanoe relation.

Definition 6. Leté&;, & € ZOLES(L), then

E; co-ioco & < VYw € tracegés) :
poss (L after w) C poss(L after w)
out;(L after w) C outy(L after w)

When several outputs in conflicts are possible, our confocmaglation allows
implementations where at least one of them is implementrttalinputs are allowed
in any configuration, but extra outputs, extra quiescenckextra causality between
events specified as concurrent are forbidden.

Consider Figure 3. In theoco theory
where concurrency is interpreted as interleavt p, P, P P
ing, the concurrency between outplisand
Id of systemS, would be described allowing
either!b beforeld or !d beforelb. S; would be c
a correct implementation w.ribco because | b
one of the two possible orders between the
outputs is observed, even if proceBs in- 5 S,
terferes in the behavior of process (b de- _
pends orld). We want to prevent implemen-F'g' 3. Message sequence charts showing

. . . . two implementations of concurrency.
tations like.S; introducing extra dependency
between events specified as concurrent. Therefore actiee#fied as concurrent must
be implemented as such, meaning that they must occur omatiffprocesses and must
be independent from each other.

3 Complete Test Suites

A test case is a specification of the tester’'s behavior dusimgxperiment carried out
on the SUT. It must be controllable, i.e. the tester must agelthoices to make during
the execution of the test. That is, tests must be deterriinéstd at any stage, the next
input to be proposed by the tester must be unique, i.e. tmerecimmediate conflicts

between inputs. Finally, we require the experiment to teatd, i.e. the resulting event
structure to be finite.

Definition 7. A test case is a finite deterministic IOLES = (E;, <:, #:, A+) where
(EL x ET) N #4 = (. Atest suite is a set of test cases.

The succesof a test is determined by the verdict associated to the treéuts
executioron the systenpassorfail, the pass verdict meaning that the result of the test is

consistent with the specification according to the conforcearelation. As IOLES can

be seen as occurrence nets, we can model the test executi@negallel composition

of labeled nets [20]. This execution leads to a fail verdidhie following situations: (1)

the implementation produces a pomset of outputs that thedse can not accept, (2)
the test case can accept such a pomset of outputs, but thedeeanfiguration is not

quiescent, (3) a quiescent configuration is reached in tpéemmentation, but not in the
test case, or (4) the test case proposes an input that thermaptation is not prepared
to accept. These situations corresponds to a deadlock ipatadiel composition, but

not in the test case. If the test case deadlocks (and thertiferexecution), the SUT
passes the test case.

We expect our test suite to m®und i.e. if the implementation fails the test, then
it does not conform to the specification. A test suitexhaustiveff it contains, for
every non conforming implementation, a test that detect$i existence of aomplete
(sound and exhaustive) test suite enstiestabilityof the conformance relation, since
success of the SUT under such a test suite proves the SUTromance. For obtaining
sound and exhaustive test suites, we give in [15] the foligwsufficient conditions.
First, for a test suite to be sound, each test must produgdrmaales of the specification,
and preserve all possible outputs for each such trace.

Theorem 1 ([15]).Let&, € ZOLES(L) andT a test suite such that

1. V& € T : traces&,) C tracesEs)
2. V& € T,w € traceg&,) : outy (L after w) = out, (L after w)

thenT is sound for€, w.r.t co-ioca

A test suite is exhaustive if each trace of the specificatjgears in at least one test
and if tests preserve quiescence.

Theorem 2 ([15]).Leté, € ZOLES(L) andT atest suite such that

1. Vw € traceg&;),3& € T : w € tracegEy);
2. V& € T,w € traceg&;) : (L, after w) is quiescent implie§L; after w) is quies-
cent;

thenT is exhaustive fo€, w.r.t co-ioca

The algorithm below builds a test case from an IOLES by résglimmediate
conflicts between inputs, while accepting several branohease of conflict between
outputs (note that “mixed” immediate conflicts between ispand outputs have been
ruled out by Assumption 2). At the end of the algorithm, aktlsiwonflicts have been
resolved in one way, following one fixed strategy of resolutbf immediate input con-
flicts; the resulting object, the test case, is thus one Iiaggrefix of the IOLES. In
order to cover the other branches, the algorithm must beaweral times withdifferent
conflict resolution schemes, to obtain a test suite thaiessmts every possible event
in at least one test case. Each such scheme can be repreagmtdidearization of the
causality relation that specifies in which order the evergssalected by the algorithm.

5 The inclusion of possible inputs follows from point 1.

Algorithm 1 Constructs a test case frafn

Require: A finite and deterministically labeled = (E,<,#,)\) € ZOLES(L) such that
Ve € EX ¢’ € EC : =(e#t"¢’) and a linearizatiorR of <

Ensure: A test case; such that

Vw € traceg:) : outg, (L after w) = oute (L after w)

Et = @

. Etemp =F

: while Eiemp# 0 do

em 1= m%n(Etemp)

Etempiz Etemp\ {em}

if ({em} x BE)N#* =0 A [em] C F; then
Et = Et U {em}

end if

: end while

10: <;:=<nN (Et X Et)

11: #t = # N (Et X Et)

12: A= A,

13: return &; = (Et, <¢, #t,)\t)

CoNoO rwNER

By the above, we need to be sure that the collection of limatidns that we use con-
siders all resolutions of immediate input conflict, i.e.ichrenough such that there is a
pair of linearizations that reverses the order in a given édiate input conflict.

Definition 8. Fix £ € ZOLES(L), and letL be a set of linearizations &f. Then. is
animmediate input conflict saturatest, oriics set, for iff for all e;,es € EZ such
thate; #+#eq, there existR1, R, € L withVe € [e1] : eRiez andVe € [es] : eRaey.

Proposition 1. Let £ be an iics set fo€, and 7" the test suite obtained using Algo-
rithm 1 with £. Then every evente E is represented by at least one test c§se T'.

Proof. Let T' be the test suite obtained by the algorithm ahdnd suppose is not
represented by any test caselinWe have then that for eve € T either(i) e € EZ
and{e} x EF N4+ £ (or (i) [e] € E;. If (i), we have that there exists € EZ such
thate #*¢’ ande’R e (WhereR, is the linearization used to buildl). By Proposition

1 we know there exisR, € £ such thatve” € [e] : ¢”Rse’ and then we can use; to
construct; € T such that is represented by, which leads to a contradiction. (i),
then there exists’ € [¢] such thate’} x EZN # () and the analysis is analogous to the
one in(i). a0

Note that the size of and hence ofl" can be bounded by the number of input

events in immediate conflict, i.¢T] < 2, wherekC = |## N (EZ x ET)|. Note that

in the case where several input events are two by two in imatedionflict, we need
fewer test cases than one per pair. For exampie #+ ez, eo #+e3 andes #+eq, we
only need three linearizations, each having a differemhivepreceding the two others
whose order does not matter, and therefore only three dslesover, for any pair of
concurrent events co ¢/, the order in which they appear in af® € L is irrelevant;

it suffices therefore to have il only one representative for any class of permutations

of some set of pairwise concurrent event£inTherefore, the size of and thus ofl’
depends on the degree of input conflictirand not on the degree of concurrency. It
is known that such a performance is characteristic of mettaded on partial order
unfoldings.

@ (b)

Fig. 4. Two test cases build using the IOLES in Figure 2 and Algorithm 1.

Example 1.The test cases (a) and (b) in Figure 4 can be obtained usimyitkim 1
and any linearization® ;, R, such thakgR1eq andegRoeq.

Let PREF(E) be the set of all prefixes &, we show now that Algorithm 1 is
general enough to produce a complete test suite from it.

Theorem 3. From PREF(E) and an iics set for £, Algorithm 1 yields a complete
test suitel.

Proof. Soundnes®y Theorem 1 we need to prove: (1) the traces of every testarase
traces of the specification; (2) the outputs following ag¢ratthe test case are preserved.
(1) Trace inclusion is immediate as the test case is a prefthefunfolding of the
specification. (2) For a te§t and atrace € traceg&,), if an outputin ou(_L after w)

is notin out(L after w), it means either that it is in conflict with an inputdh, which

is impossible by Assumption 2, or that its past is not alragady, which is impossible
sincew is a trace of;.

Exhaustivenes8y Theorem 2 we need to prove that every trace is represemtdd i
least one test case, and that the algorithm does not inteceiktca quiescence. Clearly,
for all w € tracegé;) there exists at least one complete prefix PREF(E) such
thatw € tracesc). By Proposition 1 we can fin® € £ such that this trace remains in
the test case obtain by the algorithm, Be.€ T : w € tracest). If we only consider
the prefixes: € PREF(E) such that(L. after w) is quiescent implie$.L ; after w)
is quiescent, it follows that any test case built with theoalipm from ¢ inherits this
property. O

4 Coverage Criteria for Labeled Event Structures

In theioco framework and its extensions, the selection of test sustashieved by dif-
ferent methods. Tests can be built in a randomized way froamardcal tester, which
is a completion of the specification representing all thdatited and forbidden be-
haviors [1]. Closer to practice is the selection of test®ediag to test purposes, which
represent a set of behaviors one wants to test. [18]. Anotiehod, used for sym-
bolic transition systems for instance, is to unfold the fjsation until a certain testing
criterion is fulfiled, and then to build a test suite coverthg unfolding. Criteria for
stopping the unfolding can be a given depth or state inalufgioinstance [21].

The behavior of the system described by the specificatiosistnusually of infi-
nite traces. However, in practice, these long traces cambsiadered as a sequence of
(finite) “basic” behaviors. For example, the travel agenffgrs few basic behaviors:
(1) interaction with the server; (2) selection of insurgrexed (3) selection of tickets.
Any “complex” behavior of the agency is built from such bak@&haviors. We choose
a criterion allowing to cover each basic behavior descripethe specification once,
using a proper notion afomplete prefixes

Complete Prefixes as Testing Criteri@he dynamic behavior of a Petri net is entirely
captured by its unfolding, but this unfolding is usually iifé. There are several dif-
ferent methods of truncating an unfolding. The differenaes related to the kind of
information about the original unfolding one wants to presen the prefix. Our aim is
to use such a prefix to build test cases, therefore obtainfimife prefix can be seen as
defining a testing criterion.

As it is shown above, if the information about the producetpots (and quies-
cence) is preserved in the test cases, we can prove the ssasafithe test suite. Hence
we aim at truncating the unfolding following an inclusionterion, while preserving
information about outputs and quiescence.

We say that a branching proce$of an I/O Petri net” is completeif for every
reachable marking/ there exists a configuratiafi in S such that

1. Mark(C) = M (i.e. M is represented if§), and
2. for every transitiort enabled byM there existaC U {e} € C(B) such thate is
labeled byt.

A complete prefixF'in can be obtained modifying the unfolding algorithm. The
complete finite prefix algorithims presented in [16] and depends on the notiooutfoff
event how long the net is unfolded. The following notion corresgs to our inclusion
criterion: every cycle is unfolded once.

Definition 9. Let F'in be a branching process. An evenis a cut-off event iffFin
contains an event’ < e such thatMark([e']) = Mark([e]).

Nevertheless, as explained in Example 2, completenessndb@siply that the in-
formation about outputs and quiescence is preserved.

Example 2.Consider Figure 5, we have th&in is complete, but the expected outputs
are not part of the prefix. We expect thatis produced by the system aftgrandiy,

Fin £°

Fig. 5. /0 Petri netX’, part of its unfolding€, a complete finite prefix’in and its quiescent
closure£®.

i.e. ouk (L after (iz - i4)) = {01}, but this is not the case ifin, i.e.02 & OUtp, (L
after (is - i4)) = {6}.

In order to preserve this information, we follow [21] and rifgdhe complete fi-
nite prefix algorithm adding all the outputs from the unfalgithat the complete prefix
enables. As there exists no cycles of outputs in the origieglthis procedure termi-
nates, yielding a finite prefix. The procedure to computectiiescent closur€® of
the complete finite prefix is described by Algorithm 2.

As in [16], we implement a branching process of an I/O PettiXieas a list of
nodes. A node is either a condition or an event. A conditianpsir(s, e), wheres is a
place ofX ande its preset. An eventis a p&jt, B), wheret is a transition in¥, and B
is its preset. The possible extensions of a branching psgtaee the pairgt, B) where
the elements oB are pairwise ircorelation,¢ is such thatp(B) = *t and 3 contains
no event satisfyingy(e) = ¢t and®e = B. We denote the set of possible extensions of
B by PE(3). The following result is central and will help proving soureds of the test
suites proposed below.

Theorem 4. Let£ € TOLES(L) and £€ the quiescent closure of its complete finite
prefix. Then

1. traceg€®) C traceg€)
2. Yw € traceg£E®) : outge (L after w) = oute (L after w)

Algorithm 2 The quiescent closure of the complete finite prefix algorithm
Require: A 1-safe I/O Petrinet’ = (T, P, F, Mo, \) whereMo = {s1, ..., sk}
Ensure: A complete finite prefix$© of the unfolding€ of X such that

Vw € trace$€®) : outee (L after w) = oute (L after w)

1: €9 = (s0,0),. .., (sk,0)
2. pe:= PE(E®)
3: cut-off:= ()
4: while pe # 0 do
5: choose an evert= (¢, B) in pe such that is minimal w.r.t<;
6: if [e] N cut-off= @ then
7: append t&€® the event and a conditior(s, e) for every places in ¢*
8: pe := PE(E°);
9: if e is acut-offevent of€€ then
10: cut-off:= cut-offu {e}
11: end if
12: else
13: pe := pe\{e}
14: endif
15: end while

16: pe := PE(E°)

17: while pe N T° # () do

18: choose an eveat= (t, B) in pe N T° such thae is minimal w.r.t<;
19: append t&€® the event and a conditior(s, e) for every places in t*
20: pe:= PE(E®);

21: end while

22: return £°

Proof. 1) is immediate sinc€® is a prefix of£. Since only the outputs produced after
the traces of® are considered, 2) follows by its construction. O

The test suite build based on the inclusion criteria is sound

Theorem 5. Let X be the specification of a system afidthe IOLES of its unfolding.
Any test suite constructed using Algorithm 1 &ffdl as an input is sound faf, w.r.t
co-ioca

Proof. By Theorem 1 we need to prove that any trace of a test £Ease a trace of

& (which is trivial as&; is a prefix of€® and therefore of,) and that outputs and
quiescence produced after any tracef such a test are preserved. The event§df
that are added té; are all the events whose past is already¥jrand which are not

in immediate conflict with an input. An output cannot be in iediate conflict with
an input by Assumption 2, so all the outputs whose past isdjrén £; are added.
So all the outputs frong® after a tracev are preserved and by Theorem 4 we have
Vw € traces:) : out, (L after w) = outs(L after w). O

Example 3.The IOLES of Figure 2 is a complete prefix of the unfolding af tiet in
Figure 1 and can be obtained using Algorithm 2. We saw in Exarhpow to build test
cases that cover such a complete prefix. Thus the test caséguoé 4 form a sound
test suite that covers the specification according to oungnan criterion.

5 Conclusion and Future Work

We have presented a testing framework and a test generégianitlam for true concur-
rency specifications of distributed and concurrent syst€s test selection criterion
is based on the quiescent closure of the complete finite poéfilre unfolding of the
specification; it allows to select, among all possible testes, those covering the be-
haviors traversing each cycle once. As in the case of Mchglaomplete prefixes, the
size of our prefixes can be exponential in the number of rédehaarkings in worst
case (see for example [16]). However, for several familfesets, the resulting prefix
is smaller than the reachability graph. Full informatioroabthe behavior of the net
can be reconstructed with only a finite marking-completédiyrehose size is bounded
by the number of states in the reachability graph. Howeveh saconstruction is not
straight forwards.

Future technical studies include the question whethempibssible to drop assump-
tions 1 and 2 under a fairness assumption, meaning that imea gionfiguration, all
the different events will eventually occur if the experiménrepeated enough times.
However under such an assumption, controllability of tases must be ensured during
their construction.

The present testing approach here is global, meaning thiabalgontrol and ob-
servation of the distributed system is assumed, and testsesiformed in a centralized
way. The next step of our work is to distribute control andestiation over several
concurrent components. This will necessarily weaken tmfocmance relation, since
dependencies between events occurring on different coemtertannot be observed
anymore. The local test cases should, roughly speakingrdjegtions of the global
test cases onto the different components, since concyrodiice specification was pre-
served in the test cases. We still have to investigate howsilnlition affects the power
of testing, and how the resulting methods compares to gqthech as theioco frame-
work of Hierons et al. [7] for multi-port IOTS.

Acknowledgment This work was funded by the DIGITEO / DIM-LSC project
TECSTES, convention DIGITEO Number 2011-052D - TECSTES.

References

1. Tretmans, J.: Test generation with inputs, outputs and repetitivecgnies. Software -
Concepts and Tools7(3) (1996) 103-120

2. Heerink, L., Tretmans, J.: Refusal testing for classes of trangfistems with inputs and
outputs. In: Formal Description Techniques for Distributed SystemsGordmunication
Protocols. Volume 107 of IFIP Conference Proceedings., Chagnidall (1997) 23-38

3. Lestiennes, G., Gaudel, M.C.: Test de eysts eactifs non eceptifs. Journal Eur@en des
Sysemes Automatiss39(1-2-3) (2005) 255-270

4. Faivre, A., Gaston, C., Le Gall, P., Touil, A.: Test purpose oetization through symbolic
action refinement. In: Testing of Software and Communicating Systeaismé 5047 of
LNCS., Springer (2008) 184-199

5. Fron, T.. Symbolic model-based test selection. Electronic Notes in &tiemirComputer
Science240(2009) 167-184

©

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Krichen, M., Tripakis, S.: Conformance testing for real-time systeFormal Methods in
System DesigiB34(3) (2009) 238-304

Hierons, R.M., Merayo, M.G., tfiez, M.: Implementation relations for the distributed test
architecture. In: Testing of Software and Communicating Systems. \é&017 of LNCS.,
Springer (2008) 200-215

Hennessy, M.: Algebraic Theory of Processes. MIT Press3(198

Peleska, J., Siegel, M.: From testing theory to test driver implementdtioFormal Meth-
ods Europe. Volume 1051 of LNCS., Springer (1996) 538-556

Schneider, S.: Concurrent and Real Time Systems: The CS@aghp 1st edn. John Wiley
& Sons, Inc., New York, NY, USA (1999)

Ulrich, A., Kdnig, H.: Specification-based testing of concurrent systems. Inm&oDe-
scription Techniques for Distributed Systems and Communication Prota&adlsne 107 of
IFIP Conference Proceedings., Chapman & Hall (1998) 7-22

von Bochmann, G., Haar, S., Jard, C., Jourdan, G.V.: Testiatems specified as partial
order input/output automata. In: Testing of Software and Communicagisge®s. Volume
5047 of LNCS., Springer (2008) 169-183

Haar, S., Jard, C., Jourdan, G.V.: Testing input/output parti@r@utomata. In: Testing of
Software and Communicating Systems. Volume 4581 of LNCS., Spr{@§éi7) 171-185
Ponce de L&n, H., Haar, S., Longuet, D.: Conformance relations for labeledtestructures.
In: Tests and Proofs. Volume 7305 of LNCS., Springer (2012) 83-9

Ponce de L&n, H., Haar, S., Longuet, D.: Model-based testing for concusgstems with
labeled event structures. http://hal.inria.fr/hal-00796006 (2012)

Esparza, J.,&ner, S., Vogler, W.: An improvement of McMillan’s unfolding algorithin:
Tools and Algorithms for Construction and Analysis of Systems. Volunrss 1§ LNCS.,
Springer (1996) 87-106

Segala, R.: Quiescence, fairness, testing, and the notion of imktioa. Information and
Computationl382) (1997) 194-210

Jard, C.,&8ron, T.: TGV: theory, principles and algorithms. International Jalwn Software
Tools for Technology Transfét (2005) 297-315

Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event strustared domains, part I.
Theoretical Computer Sciend@ (1981) 85-108

Winskel, G.: Petri nets, morphisms and compositionality. In: Applinatend Theory in
Petri Nets. (1985) 453-477

Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic executionni@gkes for test purpose
definition. In: Testing of Software and Communicating Systems. Volun@ 38 LNCS.,
Springer (2006) 1-18

