Noname manuscript No.
(will be inserted by the editor)

Model-based Testing for Concurrent Systems
Unfolding-based Test Selection

Hernan Ponce de Lén - Stefan Haar - Delphine Longuet

Received: date / Accepted: date

Abstract Model-based testing has mainly focused on mod-cess or the failure of the test suite submission, known as the
els where concurrency is interpreted as interleaving (likeracle problem
theioco theory for labeled transition systems), which may Model-based testing requires a behavioral description of
be too coarse when one wants concurrency to be preservéte system under test. One of the most popular formalisms
in the implementation. In order to test such concurrent sysstudied in conformance testing is thaimbut output labeled
tems, we choose to use Petri nets as specifications and deansition system@OLTS). In this framework, the correct-
fine a concurrent conformance relation nancedioca We ness (or conformance) relation the system under test (SUT)
present a test generation algorithm based on Petri net uand its specification must verify is formalized by tioeo
folding able to build a complete test suite w.r.t @ma-ioco relation [23]. This relation has become a standard, and it is
conformance relation. In addition we propose several covelused as a basis in several testing theories for extended stat
age criteria that allow to select finite prefixes of an unfofdi based models: restrictive transition systems [7, 16], ©jiob
in order to build manageable test suites. transition systems [4, 13], timed automata [15], multitier

nite state machines [10].

Different Semantics for Concurrencystems composed of
processes running in parallel are naturally modeledrst-a

Model-based TestingThe aim of testing is to execute a soft- work of finite automataa formal clasg of models that can
be captured equivalently bygafe Petri netsConcurrency

ware system, thamplementationon a set of input data se- . o) : .
! . . .in a specification can arise for different reasons. First, tw
lected so as to find discrepancies between actual behavior

and intended behavior described by gpecification The events may b © phy5|<3qlly localized on different pr.ocgss_es,
. . . . and thus be “naturally” independent of one another; this dis
testing process is usually decomposed into three phases:

. . . %nbution is then part of the system construction. Secamal, t
lection of relevant input data, calledt@st suite among the P . .
L) o . - specification may not care about the order in which two ac-
possible inputs of the system; submission of this test soite .
. L ; - tions are performedn the same procesand thus leave the
the implementation, itexecution and decision of the suc-
choice of their ordering to the implementation. Depending
This work was funded by the DIGITEO/DIM-LSC project TECSTES O the nature Of_ the concurrency Sp.e.CIfled in a given case,
convention DIGITEO Number 2011-052D - TECSTES. and thus on the intention of the specification, itnglemen-
tation relationshave to allow or disallow ordering of concur-
rent events. The kind of systems that we consider is of the
Herran Ponce de L&n - Stefan Haar first type, where concurrency comes from processes running

INRIA and LSV, Ecole Normale Sugrieure de Cachan and CNRS . -
61, avenue du Rsident Wilson 94235 CACHAN Cedex, France in parallel. Therefore, we want concurrency of the specifica

E-mail: ponce@Isv.ens-cachan.fr, stefan.haar@inria.fr tion to be preserved in the implementation.
Delphine Longuet We illustrate the need to preserve true concurrency (i.e.

Univ Paris-Sud, LRI UMR8623, Orsay, F-91405 independence of actions) by an example coming from the
Batiment 650 Universi Paris-Sud 11 91405 Orsay Cedex, France field of security protocols. When designing a security pro-
E-mail: longuet@lri.fr tocol, an important property, named unlinkability, is toldi

1 Introduction

This article is an extension of a paper published in ICTSS'18.[2

2 Herman Ponce de L@n et al.

the information about the source of a message. An attackéncorrect systems), and we provide a test case generation al
that can identify messages as coming from the same sourgerithm that builds a complete (i.e. sound and exhaustive)
might use this information and thus threaten the privacy ofest suite. We also propose a method to select a finite set of
the user. It has been shown that the security protocol of theelevant test cases covering as many behaviors as possible
French RFID e-passport is linkable, therefore anyone earry(thus finding as many anomalies as possible). This selection
ing a French e-passport can be physically traced [1]. Whilenethod relies on the choice of a finite prefixe of the unfold-
linkability can be interpreted as causality between messag ing of the specification.
concurrency interpreted as interleavings cannot be used to We extend here the work of [20] in two ways: we define
model unlinkability. This property needs to be modeled ushew testing criteria based on different notions of prefixes o
ing partial order semantics, and a correct implementatiothe unfolding; we propose a coverage measure that allows
must preserve the independence between messages. to compare these criteria with respect to the coverage they
reach and their cost to reach it.

) The testing approach we follow in this article is mostly
Model-based Testing of Concurrent Systetadel-based o retical: we study the testing problem from a centrellize

tgstmg of concurrent sygtgms has been. stud|ed-for.a Ic""igoint of view, as a basis to the distributed testing problem.
time [8'18{21]' however itis most of the.tlme St.l"d'?d In theThe global conformance relation we define is the relation
context of interleaving, or trace, semantics, which is know e \you1d Jike to be able to test in a distributed way (with

to suffer the state space explosion problem. To avoid thig,.4| control and observation), and the global test cases ar
problem, non-interleaving models can be used for genergpq hagis for the construction of distributed tests.

tion of test cases [9,11]. Ulrich anddkig [24] propose a

framework for testing concurrent systems specified by comptiine, The paper is organized as follows. Section 2 recalls
municating labeled transition systems. The specificaion ipasic notions about Petri nets, occurrence nets and labeled

translated into a Petri net, and a complete prefix of its UNgyent structures. Section 3 introduces our testing hypothe
folding is used to constructizehavior machineThe confor- a5 and ouco-iococonformance relation. In Section 4, we

mance relation proposed in [24] is a generalization of tracgefine the notion of complete test suite, give sufficient con-
equivalence relation; their work does not include a test Segitions for a test suite to be complete and an algorithm pro-
lection procedure, or how the choice of complete prefix im-ycing such a test suite. In Section 5, we define different
pacts selection. Since our goalis to inclegmflictrelations se|ection criteria and adapt the complete finite prefix algo-
as well, we will useevent structureand their properties. rithm of [3] to build a sound test suite satisfying a given

Haar et al [25, 6] generalize the basic notions and techeriterion. A comparison of these criteria concludes.
nigues of I/0-sequence based conformance testing via a gen-

eralized 1/0-automaton model where partially ordered pat-

terns of input/output events are admitted as transitioaltab 2 1/0O Petri Nets and their Semantics

However, these models still maintain a sequential automato

as the system’s skeleton, and include synchronization corfe choose to useetri netsas specifications to have explicit

straints, e.g. all events in the course of a transition mast bconcurrency. The semantics associated to a Petri net is give
completed before any other transition can start. by its unfolding to aroccurrence netwhich can also be seen

as arevent structureWe will present both notions since we
use them in different contexts in the following. The exe-
Our Contribution. In order to enlarge the application do- cution traces for this semantics are not sequencepdiut

main, and add stronger benefits from concurrency modelingial orders which keep concurrency explicit. We recall here
we have introduced in [19] a conformance relation hameghese basic notions.

co-iocq as a generalization @dco. This article is an exten-
sion of a paper published in ICTSS’13 [20]. In the original I/O Petri Nets. A netis a tupleN = (P, T, F) where(i)
paper, we extend the work of [19] with a conformance rela-P +# () is a set ofplaces (i) T' # 0 is a set oftransitions
tion where actions specified as concurrent must occur ind&uch thatP N 7 = 0, (i) F C (P x T)U (T x P)is a set
pendently, on different processes, in any conformant impleof flow arcs A markingis a multisetM of places, i.e. a map
mentation. Moreover we enlarge the conformance relation/ : P — N. A Petri netis a tupleN = (P, T, F, My),
in order to test for refusals instead of considering the usuawvhere(i) (P, T, F) is a finite net, andii) M, : P — Nis
input-enabledness assumption on the implementation. aninitial marking. Elements ofP U T are called thaxodes
Besides the definition of @-iococonformance relation of NV. For a transitiort € 7', we call*t = {p | (p, t) € F}
handling true concurrency, we define in [20] the notion ofthe presetof ¢, andt®* = {p | (t,p) € F} the postsetof
test case, we give sufficient properties for a test suite to be In figures, we represent as usual places by empty cir-
sound (not reject correct systems) and exhaustive (nopaccecles, transitions by squares, by arrows, and the marking

Model-based Testing for Concurrent Systems 3

INSURANCE

— [ERG
{\+ 4 Pa— _:é ty 710(g7?n
%,9 fees = ty l?ms
ty | lprice;
AGENCY / ti ;’ﬂfj
USER INTERFACE S ts | lus_data
TRAIN TICKET E
———& ‘l ' P A . = R 7 NG)
- ——>). > «—> v T | train
—o i 2 =2 Hhi= E - z‘: Iprice; 1
=5 3 R ts | !price, 2
(an mrmZa| . S to 7[)](_171,6
\ PLANE TICKETS tio | !price,
= Fig. 2 1/O Petri net of the travel agency
s
Fig. 1 A travel agency example its price (price;) and some extra data that is sent to the user
('data;).
of a placep by black tokens irp. A transitiont is enabled When testing reactive systems, we need to differentiate

in marking M, written M —Ls, if Vp € *t, M(p) > 0. situations where the system can still produce some outputs
This enabled transition cafire, resulting in a new mark- and those where the system can not evolve without an in-
ing M’ = M — *t + t*. This firing relation is denoted by put from the enyironment. Such sitqatiqns qre captured by
M -t M A marking M is reachablefrom M, if there the notion ofquiescencg22]. A marking is said quiescent

exists afiring sequencei.e. transitionsty . . . t,, such that If it does not enable output transitions, i. — implies
My -5 My 5 .5 M. The set of markings reachable t € TZ. The observation of quiescence is usually instru-

from M (in AV') is denotecdR x-(Mo) (we drop the subscript mented by timers. Jard anérdn [12] present three different

referring toA when it is clear from the context). A Petri net km_d_s of qmesgencmutput qmesc_encwhen the system is
N = (P, T, F, M) is (1-)safeiff for all reachable mark- waiting for an input from the environmerdeadlockwhen
ings M e7R’(M;) M(p) € {0,1} forallp € P the system can not evolve anymore, divelock when the

LetZ andO be two disjoint non-empty sets afputand system diverges by an infinite sequence of silent actions.
outputlabels, respectively. Forangt = (P, T, F'), a map- .
P P Y () P Occurrence Nets and Unfolding®ccurrence nets can be

ping A : T — (Zw) is called anl/O-labeling Denote . , . : .
by 7Z and T t(he inpgt and output transition sets respec_seen as Petri nétsvith a special acyclic structure that high-

tively; that is, TZ 2 \~1(T) and T© £ A\=1(0). An /O lightsconflictbetween transitions that compete for resources.

P s =). whre ' — (7 L. by R B () e 3t e st
is a 1-safe Petrinetand: T — (Z W O) an I/O-labeling. u ' = XV u ' y

o))) o
X is calleddeterministically labeledff no two transitions sitionst; and; are instructural conflicy written ¢, 7%, if

with the same label are simultaneously enabled, i.e. for affnd only ifty 5 t> and®# 1 *4, # 0. Conflictis inherited
bty € TandM € R(Mo): along<, that is, the conflict relatios# between transitions

a,b € T is given by

t1 to
(M — AM—= AAt)=At2) =t =1 Qb e Iy ty € T tadtty Ay <anty <b
guaranteeing deterministic labeling. Deterministic laige a,b € P U T that are neither ordered nor in conflict, i.e.
ensures that the system’s behavior is locally distingli&ha ; cop < —(a <b) A = (a#b) A = (b <a).
through labels, either through distinct inputs or through o
servation of different outputs. Definition 1 A net ON = (B, E,) is anoccurrence net
if and only if
Example 1Fig. 2 shows a schematic travel agency whose . .
. o X . < is a partial order;
behavior can be formally specified by the 1/O Petri net pre-
o . . 2. forallb € B,|*°b| € {0,1};
sented in Fig. 2, where denotes input actions anautput 3 for all BUE. the sefla] — B o is
ones. In this system, once the user has logged@ lsy4n),) T e ']l ={y € Efy<a}i

. finite;
some data is sent to the servirs(data) and he can choose ! L .
. i . Sc. ata) . 4. no self-conflict, i.e. there is n@ € B U F such that
an insurance?ins) and a train ticket {train) or a plane o
THT,

ticket (?plane). If a plane ticket is chosen, its price is sent
to the userlprice,). If a train ticket is selected, two kind of
prices can be proposed: a first clags-{ce; 1) or a second
class onelfprice; 2). The insurance choice is followed by ! when one allows Petri nets to beinite

5. L€ FEis the only<-minimal node (event_ creates the
initial conditions)

4 Herman Ponce de L@n et al.

Call the elements of events those of B conditions

A set of conditions is a co-set if its elements are pairwise g
in co relation. A maximal co-set with respect to set inclu- e | to Zins

sion is called acut An ON can also be given as a tuple o jfz ',’;’;‘f;
(B, E\{L}, F, cuty), wherecut, = L°* is the set of mini- es | t5 | lus-data
mal conditions. Given an occurrence @V = (B, E, G), ol I I
every <-closed set of event8’ C F induces gorefix with es]t‘s !g;récct 2
conditions(*E U E*). oo | 1o | tprice,

Occurrence nets are the mathematical form ofuial
order unfolding semantid8]. A branching processfal- Fig. 3 Part of the unfolding of the PN from Fig. 2 represented as an
safe Petri net\ = (N, M) is given by a paith = (ON, ¢) IOLES. Causality is represented by arrows and immediate cobiflict

- /' dashed lines.
whereON = (B, E, G) is an occurrence net, ang: B U
E — P U T is such that:
the set of all the configurations éfby C(€) and the set of

1. itis a homomorphism fron®N to N, i.e. i . .
P maximal configurations (those that can not be extended) by

— ¢(B)C Pandy(FE) C T, and

— for everye € F, the restriction ofp to ® e is a bijec- 2().
tion between the séte in ON and the setp(e) in
N, and similarly fore® andyp(e)®; Example 2In the travel agency example, as can be seen in
2. the restriction ofp to cut, is a bijection fromcut, to Fig- 3, the data cannot be sent before the user logged in
Moy; and (?login < lus_data) and the selections for a ticket and an
3. foreveryey, e, € B, if *e; = ®ey ande(er) = o(e2) insurance can be done concurrentlr@in co ?ins), but
thene; = eo. only one ticket can be chosetifain # ?plane). From the

conflict heredity property, only one ticket price is proddce
The unique (up to isomorphism) maximal (w.r.t prefixes)(!pm-cet 1 # price, and!price; 2 # price,). A transition
branching procest = (ONy;, ¢u) of N is called theun- from the net is usually represented by several events in its
folding of \V. unfolding: other instances of (?login) can be added to the
unfolding causally depending @3, ey, e5 and eithefer, eg
I/O Labeled Event StructurefDccurrence nets give rise to Or ey as it is shown in Fig 8.
event structures in the sense of Winskel et al [17]; as usual,
we will use both the event structure and the occurrence net
formalism, whichever is more convenient. Amput/output Labeled Partial Orders.We are interested in testing dis-
labeled event structure (IOLESYer an alphabet = Zw(® tributed systems where concurrent actions occur in differ-
is a 4-tuple€ = (E, <,#, \) where(i) E is a set of events, ent processes of the system. For this reason, we want to
(i) < C E x E is a partial order (calledausality satis- keep concurrency explicit, i.e. implementations do not im-
fying the property offinite causesi.e. Ve € E : |{¢/ € pose any order of execution between concurrent events. La-
E | e < e} < oo, (i) # C E x Eis an irreflexive beled partial orders can then be used to represent exesution
symmetric relation (calledonflic) satisfying the property 0f such systems. Aabeled partial order(Ipo) is a tuple
of conflict heredityi.e.Ve,e/,e” € E:e# ¢ Ne' <€’ = Ipo=(E,<,\) whereE' is a set of eventst is a reflexive,
e# e (V)X : E - (TwO)is alabeling mapping. In antisymmetric, and transitive relation, and £ — Lis a
addition, we assume every IOLEShas a unique minimal labeling mapping to a fix alphabét We denote the class
event L¢. We denote the class of all input/output labeledof all labeled partial orders ovelr by LPO(L). Consider
event structures ovek by TOLES(L). Given evente, its po; = (E1, <1, A1) andipo, = (E2, <2, \2) € LPO(L).
local configurationis [¢] £ {¢/ € E | ¢’ < ¢}, and its set of A bijective functionf : E; — Es is an isomorphism be-
causal predecessors (¢) £ [¢]\{e}. Two events:,¢’ ¢ E tweenipo, andipo, iff (i) Ve,e’ € By 1 e <1 €' & f(e) <o
are said to be concurrent €o ¢) iff neithere < ¢’ nor f(€') and(ii) Ve € Ey : Ai(e) = A2(f(e)). Two labeled
¢/ < enore# ¢ hold;e, e’ € F are inimmediate conflict partial ordersipo, and lpo, are isomorphic if there exists
(e1 #* e) iff [e1] X [e2] N# = {(e1,e2)}. A configuration ~ an isomorphism between them partially ordered multiset
of an IOLES is a non-empty sét C F that is(i) causally ~ (pomset) is an isomorphism class of Ipos. We will represent
closedi.e.e € C implies[e] C C, and(ii) conflict-freg i.e. ~ such a class by one of its objects. Denote the class of all non
e € C ande#te’ imply ¢/ ¢ C. Note that we define, for tech- empty pomsets ovell by POMSET (L). The evolution of
nical convenience, all configurations to be non-empty; théhe system is captured by the following definition: pomsets
initial configuration of€, containing onlyL¢ and denoted ~are observations.
by L¢, is contained in every configuration 6f We denote

Model-based Testing for Concurrent Systems 5

+ + assumptions. First of all, we make the usual testing assump-
‘ l l tion that the behavior of the SUT itself can be modeled by
s ”f T us-data ”"fm T uedata a 1-safe 1/O Petri net over the same alphabet of labels. We
e v also assume as usual that the specification does not contain
l / \ cycles of outputs actions, so that the number of expected
Ipricer 1 prien Yiata, outputs after a given trace is finite.

wi w2 Assumption 1 The net\/ has no cycle containing only out-

) put transitions.
Fig. 4 Traces of the travel agency.

Third, in order to allow the observation of both the out-
Definition 2 For £ = (E,<,#,\) € TOLES(L), w € puts produced by the system and the inputs it can accept,

POMSET(L) andC, C’ € C(€), define markings where conflicting inputs and outputs are enabled
should not be reachable. As a matter of fact, if conflicting

C =% C"%23lpo=(E,,<u,) Ew: E, CE\C, input and output are enabled in a given marking, once the

C'=CUE,,<Nn(E, x E,)=<,and output is produced, the input is not enabled anymore, and

NE, = Ao vice versa. Such markings prevent from observing the in-

puts enabled in a given configuration, which we will see is

one of the key points of our conformance relation. For this

Example 3Consider Fig. 2. Bothu; andw, are partial or- reason, we restrict the form of the nets we consider via the

ders that respect the structure of the unfolding in Fig. 3following assumption on the unfoldifg

Therefore we have. =% {1, ey, e, 5, €6, 7} and L ==

{L,e1,ea,e3,e4,€5}. Assumption 2 The unfolding of the net" has no imme-
diate conflict between input and output events, Vg, €

2 € B9 i =(eg #* e2).

C= 2£30':0=C"

Remark 1When the system is composed of a single pro—EI
cess, every configuratiafi generates a cut® = {q} in the
unfolding where; represents the current state of the processconformance RelationA formal testing framework relies
In this case, Definition 2 and the definition & for LTS on the definition of a conformance relation to be satisfied
presented in [23] coincide. by the SUT and its specification. In the LTS framework, the
ioco conformance relation compares the outputs and block-
We can now define the notions of traces and of configuings in the implementation after a trace of the specification
rations reachable from a given configuration by an observay the outputs and blockings authorised after this tracken t
tion. Our notion of traces is similar to the one of Ulrich and specification. Classically, the produced outputs of the sys
Konig [24]. tem under test are elements®f(single actions) and block-
Definition 3 For & € TOLES(L), w € POMSET(L), ings are obsgrvqble by a.special actiog L which repre-
C,C" € C(€), define sents the explrat_|on of_at|mer. _

By contrast, in partial order semantics, we need any set
trace$s) £ {w € POMSET(L) | Le ==} of outputs to be entirely produced by the system under test
C afterw 2 {C' | C == C'} before we send a new input; this is necessary to detect out-

puts depending on extra inputs. Suppose two concurrent out-

Remark 2Note that for deterministically labeled 1/O Petri putso; ando, depending on input; and another input,
nets, every configuration of the corresponding IOLES cangepending on both outputs. Clearly, an implementation that
not enable two equally labeled events, i.e. the IOLES is degccepts, beforeo, should not be considered as correct, but
terministic and the set of reachable configurations is a sing ;, is sent too early to the system, we may not know if
gleton. the occurrence o, depends or not oi,. For this reason
we define the expected outputs from a configuratibas
the pomset of outputs leading to a quiescent configuration.
Such a configuration always exists, and must be finite by
Assumption 1.

The notion of quiescence is inherited from nets, i.e. a
onfigurationC' is quiescent if and only it == implies

3 Testing Framework for IOPNs

Testing HypothesealNe assume that the specification of the
system under test is given as a 1-safe and deterministicall
labeled I/O Petri net’ = (N, \) over alphabel = Z W O

of input and output labels. To be able to test an implemen- 2 gaydel et al [16] assume a similar property callé@-
tation against such a specification, we make a set of testingclusiveness

6 Herman Ponce de L@n et al.

w & POMSET(0O). We assume as usual that quiescence Tickets Server Tickets Server
is observable by a specialaction, i.e.C is quiescent iff .)

s ?plane ?plane
C=. lus_data lus_data
Definition 4 For& € TOLES(L), C € C(£), the outputs price; price:
produced byC are

Sl 52

oute(C) £ {lw € POMSET(0) | C N e :6>} Fig. 5 Message sequence charts showing two implementations of con-

U {6 ‘ C :5>} currency.

The ioco theory assumes the input enabledness of the consider Fig. 5. In théoco theory where concurrency
implementation [23], i.e. in any state of the implementa{io s jnterpreted as interleaving, the concurrency between ou
every input action is enabled. This assumption is made tButs!pm’cep and!us_data of systemS, would be described
ensure that no blocking can occur during the execution ofjiowing either!price, beforelus_data or lus_data before
the test until its end and the emission of a verdict. Howeven,, S, would be a correct implementation w.idco
as explained by Heerink [7] and Lestiennes and Gaudel [16)ecause one of the two possible orders between the out-
even if many realistic systems can be modeled with sucRyts s observed (the action is unobservable), even if pro-
an assumption, there remains a significant portion of rea'cesng interferes in the behavior of proceBs (!price, de-
istic systems that can not be modeled as such. In order t&ends onlus_data). We want to prevent implementations
overcome these difficulties, Lestiennes and Gaudel enricfye g, introducing extra dependency between events speci-
the system model by refused transitions and a set of possizd as concurrent. Therefore actions specified as condurren
ble actions is defined in each state. Any possible input in @&st pe implemented as such, meaning that they must occur
given state of the specification should be possible in a colyp different processes and must be independent from each
rectimplementation. other. Theco-iococonformance relation detects this kind of
non conformant implementation. However, when there is no
concurrency in the system (the system is composed of a sin-
gle process), by Remark 1 we can conclude tbhab and
co-iococoincide.

Definition 5 For& € ZOLES(L) andC € C(€), the pos-
sible inputs inC' are

poss (C) 2 {?w € POMSET(I) | C =%}

Ourco-iococonformance relation for labeled event strucy Complete Test Suites

tures can be informally described as follows. The behavior

of a correcto-iocoimplementation after some observations A global test case is a specification of the tester's behav-
(obtained from the specification) should respect the followior during an experiment carried out on the SUT. It must be

ing restrictions: (1) the outputs produced by the implemencontrollable, i.e. the tester must not have choices to make
tation should be specified; (2) if a quiescent configuration i during the execution of the test. That is, tests must be deter

reached, this should also be the case in the specificatipn; (inistic, and at any stage, the next input to be proposed by
any time an input is possible in the specification, this stioul the tester must be unique, i.e. there are no immediate con-
also be the case in the implementation. These restrictiens aflicts between inputs. Finally, we require the experiment to

formalized by the following conformance relatfon terminate, i.e. the resulting event structure must be finite
Definition 6 Let&;, &, € TOLES(L), then Definition 7 A global test case is a finite deterministic IOLES
gt = (Et, Stv#b)\t) Where(EtI X E;Z) N #QL = @ A test
&; co-iocoé; & Yw € tracesss) : suite is a set of test cases.

poss(L after w) C poss(L after w)
out;(L after w) C out,(L after w)

As global test cases are defined as IOLES, concurrency
of the specification is preserved.
When several outputs in conflicts are possible, our con-
formance relation allows implementations where at least on .
- : . 4.1 Test Execution
of them is implemented. Extra inputs are allowed in any

ggnﬂglt_uag(r)rg,ozzt rer)((etr:?: O;Jtzté(t)s,b_eé((;r;qwescence and Xt hesuccessf a test is determined by the verdict associated
usality u y are forb ' to the result of itexecutionon the systempassor fail, the
3 As we consider only deterministically labeled nets, by Remark 2,0ass verdict meaning that the result of the test is consisten
(L after w) is always a singleton. with the specification according to the conformance retatio

Model-based Testing for Concurrent Systems 7

The interaction between two systems is usually formal4.2 Completeness of the Test Suite
ized by their parallel composition. This composition aseam
that both systems are always prepared to accept an outpde expect our test suite to lseund i.e. if the implementa-
that the other may produce. In the sequential setting, &-s a tion fails the test, then it does not conform to the specifica-
sumed that the implementation accepts any input the testépn. A test suite ixhaustiveff it contains, for every non
can propose (input enableness of the implementation) -Anatonforming implementation, a test that detects it. The-exis
ogously, the tester should be able to synchronize with an{ence of asompletgsound and exhaustive) test suite ensures
output the implementation may produce. Constructing atestabilityof the conformance relation, since success of the
event structure having such a property is almost impossiSUT under such a test suite proves the conformance of the
ble due to the fact that it should not only accept any outputSUT.
but also all the possible ways such an output could happen
(concurrently/sequentially with other outputs). In adlit Definition 11 Let s be a specification and” a test suite,
the parallel composition of nets [26] does not preserve con then
currency. We propose another approach to formalize the in- is sound A vi-ifailsT implies —(i co-iocos)
teraction between the implementation and a test case.
Deadlocks of the parallel composition are used to give
verdicts about the test run in the sequential frameworkhSuc 7' is complete &vVi:ifailsT iff (i co-iocos)
deadlocks are produced in the following situations: (1) the
implementation proposes an outputdoaction that the test IE

Tis exhaustiveé Vi:ifailsT if —(ico-iocos)

The following theorem gives sufficient conditions for
aving a sound test suite: each test must produce only traces

? he specification, and preserve all possible outputs for
the implementation can not accept, or (3) the test case h%%\ch such trace.

nothing else to propose (it deadlocks). The first two situa-
tions lead to a fail verdict and the last one to a pass one. Fatheorem 1 Let £, € TOLES(L) and T a test suite such
having such verdicts, we will define the notion of blocking that

in the test execution.

After observing a trace, the test execution can block be-
cause of an output @raction the implementation produces.
This happens if after such an observation the test case can
not accept that action or if the reached configuration is nothenT is sound for€, w.r.t co-ioco.
quiescent, i.e. the implementation produces an output that
the test case is not prepared to accept.

1. V& € T : tracegé&,) C tracegéEs)
2. V& € T,w € traceg&,;) : outy(L after w) C out(L
after w)

Assumption 1. in the theorem above guarantees that any
possible input in the test case is a possible input of the-spec

Definition 8 Leti,t € ZOLES(L) be an implementation ification, i.e. posg L after w) C poss (L after w).
and a test case respectively ande POMSET (L), we
haveblocksp (i,t,w) < 3z € out(L afterw) : = ¢ Proof. T is sound for s w.r.tco-iocoiff for every imple-
out, (L after w) with z € POMSET (O) U {5}. mentation: that fails the test suite, we have that it does not
conform to the specification. We assumfails 7' and by
The other blocking situation happens when the test caseefinition 10 we have:
can propose an input that the implementation is not prepared

to accept. Jt € T,w € tracest) : blocksy (4, ¢, w) Vv blocksz (i, t, w)

Definition 9 Let i, ¢ € TOLES(L) be an implementation 21 tleast one of the following cases holds:
and a test case respectively ande POMSET (L), we 1. the test execution blocks afterbecause of an output
haveblocksz (i, t,w) < F7w € possg(L after w) tw ¢ produced by the implementation:

1 aft .
poss(L after w) 3t € T, w € trace$t) : blocksy (i, t,w)

We can now define the verdict of the executions of a set implies {+ Definition 8}
a test cases on an implementation based on the notions of Jt € T,w € tracegt) :
blockings. out;(L after w) € out,(L after w)
implies {+* Assumptions 1. and %}
Definition 10 Leti be animplementation, arfda test suite, Jw € tracegs) :
we have fails T < 3t € T,w € tracest) : blocksp (4, t,w) out;(_L after w) Z out, (L after w)
V blocksz (i, t,w). If the implementation does not fail the implies {x Definition 6}

test suite, it passes it. —(4 co-iocos)

Herman Ponce de L@n et al.

2. the test execution blocks aftebecause of an input pro-
posed by the test case:

Jw € tracest) : blocksz (i, t,w)
implies {x Definition 9x}

Jw € tracegt) :

poss(.L after w) Z poss(.L after w)
implies {*x Assumption 1. twice:}

Jw € tracegs) :

poss (L after w) Z poss(L after w)
implies {x Definition 6:x}

—(7 co-iocos)

O

O

4.3 Test Suite Generation

The algorithm below builds a global test case from an IOLES
by resolving immediate conflicts between inputs, while ac-
cepting several branches in case of conflict between outputs
(note that “mixed” immediate conflicts between inputs and
outputs have been ruled out by Assumption 2). At the end
of the algorithm, all such conflicts have been resolved in
one way, following one fixed strategy of resolution of im-

Atestsuite is exhaustive if each trace of the specificationegiate input conflicts; the resulting object, the test ciase

appears in at least one test case.

Theorem 2 Let&; € ZOLES(L) and T a test suite such
thatvVw € tracegé;),3E € T : w € tracegé:), thenT is
exhaustive fo€, w.r.t co-ioco.

Proof. We need to prove that ifdoes not conform te then
i fails T. We assume-(i co-iocos), then at least one of the
following two cases holds:

thus one branching prefix of the IOLES. In order to cover
the other branches, the algorithm must be run several times
with different conflict resolution schemes, to obtain a test
suite that represents every possible event in at least she te
case. Each such scheme can be represented as a lineariza-
tion of the causality relation that specifies in which order
the events are selected by the algorithm. By the above, we
need to be sure that the collection of linearizations that we

1. The implementation does not conform to the specificause considers all resolutions of immediate input confliet, i
tion because an output produced by the implementatioﬁ rich enough such that there is a pair of linearizations tha

is not specified:

Jw € tracesgs) :

Jdx € out; (L after w) : « ¢ outy(_L after w)
implies {x by the assumption, we choossuch that

w € tracest) andx ¢ out, (L after w) =}

Jt € T,w € tracest) :

Jz € out; (L after w) : x & out,(L after w)
implies {x Definition 8x}

Jt € T,w € tracest) : blocksp (4, t, w)
implies {x Definition 10x}

i fails T

2. The implementation does not conform to the specificag ¢
tion because an input from the specification is not possi-

ble in the implementation:

Jw € tracegs) : 37w € poss (L after w) :
?w ¢ poss(L after w)
implies {x Definition 5x}
I(w-?w) € tracegs) :7w ¢ poss(L after w)
implies {x by the assumption, we choossuch that
(w-tw) € tracest) =}
JteT: (w?w) € tracegt) and
?w ¢ poss(L after w)
implies {x Definition 5x}
Jt € T,w € trace$t), 'w € poss(L after w) :
?w ¢ poss(L after w)
implies {* Definition 9x}
Jt € T,w € trace$t) : blocksz (i, t,w)
implies {x Definition 10x}
i fails T

reverses the order in a given immediate input conflict.

Definition 12 Fix& € ZOLES(L), and letC be a set of lin-
earizations oK. Then/ is animmediate input conflict sat-
uratedset, oriics set, for€ iff for all e1,es € EZ such that
e1#teq, there existR, R2 € L with Ve € [e1] : eRyez
andve € [es] : eRaes.

Algorithm 1 Test Case Construction

Require: A finite and deterministically labelefl = (E, <, #,)\) €
TOLES(L) such thatve € EZ e’ € E© : =(e#+e’) and a
linearizationR of <
ure: Atest case; such that
Yw € traceg&:) : outg, (L after w) = oute (L after w)
Et = 0
Etemp =F
: while Etemp# 0 do
em 1= m%n(E}emp)
Etemp = Etemp\ {em}
if ({em} x EZ)N#* =0 A (en,) C E; then
Et = Et @] {em}
end if
. end while
. St = Sﬂ(EtXEt)
. #t ::#O(Et X Et)
DA =)\‘Et
creturn &y = (B, <, #+¢, At)

COXNDU BwWNE

P el
WN PR

Proposition 1 Let£ be an iics set fo€, andT" the test suite
obtained using Algorithm 1 with. Then every evente E
is represented by at least one test cése T'.

Model-based Testing for Concurrent Systems 9

Proof Let T be the test suite obtained by the algorithm andExample 4The test cases (a) and (b) in Fig. 6 can be ob-
L and suppose is not represented by any test caselin tained using Algorithm 1 and any linearizatioRs, R such
We have then that for eve, € T either(i) e € EZ and thategRiey9 andegRoes.

{e} x EFN4t+ £ or (ii) [e] Z E;. If (i), we have that there _

existse’ € ET such that ##¢’ ande'R, e (whereR, is the Let PR5]—'(§) be t.he set of all prefixes df, we show
linearization used to build;). By Definition 12 we know NOW that Algorithm 1 is general enough to produce a com-

there existR, € £ such thatve” € [e] : ¢ Rqe’ and then plete test suite from it.
,)
\évegc/an#sﬁzlg t(()jconstrucﬁt Ed_T _such_;ha? IS rehpresen_ted Theorem 3 From PREF(E) and an iics seL for &, Algo-
/y ; which lea st? acon}ra iction. (i), then there EX.IS'FS rithm 1 yields a complete test suife
e’ € le] such that{e'} x Ef N #* # () and the analysis is
analogous to the one {i). O Proof SoundnesBy Theorem 1 we need to prove: (1) the
traces of every test case are traces of the specification; (2)
. o . .. _every output of the specification after a trace are presenved
by the number of input events in immediate conflict, i.e. y outp pec o . P
K T 7 ! "'the test case. (1) Trace inclusion is immediate as the test ca
|T| < 2%, whereKC = |#* N (E* x E*)|. Note that in .) : e
the case where several input events are two by two in imIS a prefix of the unfolding of the specification. (2) For a test
b y & andw € tracegs,), if an output in ouf(_L after w) is not

mediate confh_ct, we need fewer test cases than one per pallrif' out;(_L after w), it means either that it is in conflict with
For example ife; #*es, eq #He3 andes #+e1, we only

. g .) an input in&;, which is impossible as inputs and outputs can
need three linearizations, each having a different eggnt P ¢ P P P

. né)t be in conflict, or that its past is not alreadyéin which
preceding the two others whose order does not matter, and. :) .
IS impossible since is a trace of;.

therefore only thr/ee cases. Mpreovg r, for any pair of.concur Exhaustivenes®y Theorem 2 we need to prove that ev-
rent events co ¢, the order in which they appear in any .)
ery trace is represented in at least one test case. Clearly, f

R € L is irrelevant; it suffices therefore to have dhonly . .

. . a{l w € tracegE;) there exists at least one complete prefix
one representative for any class of permutations of some set_ PREF(E) such thatw € tracegc). By Proposition 1
of pairwise concurrent events & Therefore, the size of j

: . w n fin h that this tr remains in th
and thus ofl" depends on the degree of input conflictéin ©ca dR € L such that this trace remains in the test

) ase obtained by the algorithm, i#.€ T : tracest).
and not on the degree of concurrency. It is known that sucﬁ y 9 < we &)D
a performance is characteristic of methods based on partial
order unfoldings.

Note that the size of and hence of" can be bounded

5 Coverage Criteria for Labeled Event Structures

In theiocoframework and its extensions, the selection of test
suites is achieved by different methods. Tests can be built i
a randomized way from a canonical tester, which is a com-
pletion of the specification representing all the authatize
and forbidden behaviors [23]. Closer to practice is the se-
lection of tests according to test purposes, which reptesen
a set of behaviors one wants to test [12]. Another method,
used for symbolic transition systems for instance, is to un-
fold the specification until a certain testing criterion ig-f
filed, and then to build a test suite covering this unfolding.
Criteria for stopping the unfolding can be a given depth or
state inclusion for instance [5].

5.1 Prefixes as Testing Criteria

The dynamic behavior of a Petri net is entirely captured by
its unfolding, but this unfolding is usually infinite. Thesee
(b) several different methods of truncating an unfolding. The
differences are related to the kind of information about the
original unfolding one wants to preserve in the prefix.

The finite prefix algorithm depends on the notiorcaf-
off event: how long the net is unfolded. Our aim is to use

Fig. 6 Two test cases build using the IOLES in Fig. 3 and Algorithm 1.

10 Herman Ponce de L@n et al.

Algorithm 2 The quiescent closure of a finite prefix algo- All-Paths-of-Lengthz-Criterion. The first cut-off notion we

rithm present depends on the height of an event, defined as the
REQ?ifei A 1-Sa}fe Vg Petri f;feﬂ zl (T, P, F, Mo, \) whereMo = |ength of the longest causality chain containing this eviént
s1,...,8k}, and acut-off predicate on events 1 H H H H H H “
Ensure: A finite prefix£€ of the unfolding€ of X such that defines a s"elec'tlon (?rlterlon similar to the criterion “altips
Vw € trace$€®) : outeo (L after w) = oute (L after w) of lengthn” defined in [5].
N @ = . g

%j 56 ,jp(zﬁo(’g%’)‘ oo (5, 0) Definition 13 For a branching proce$$n, define theheight

3 toffie § of an event in Fin recursively by

4: while pe # 0 do 2

5: choose an evert= (¢, B) in pe H(L) N 0 ,

6: if [e] N cut-off= @ then Hie) =1+ 161,13};(7'[(6)

7: append ta€® the evente and a condition(s, e) for every o))]
places in t® Definition 14 Let Fin be a branching process. An everis

8: pe := PE(E°); ann-cut-off eventff H(e) = n.

9: if e is acut-offevent of€€ then . .

10: cut-off:= cut-offU {e} This criterion allows us to build test cases that cover all

11 end if paths of lengtm. However, the pertinent lengthto be cho-

ig else \(e} sen is up to the tester.

. e = . . .
14: eng if peate The behavior of the system described by the specifica-
15: end while tion consists usually of infinite traces. However, in preeti
16: pe := PE(E°) these long traces can be considered as a sequence of (finite)

17: while pe N T° # (do
18: choose an evert= (t, B) inpe N T©
19: append t&€® the event and a conditior(s, e) for every place

“basic” behaviors. For example, the travel agency offens fe
basic behaviors: (1) interaction with the server; (2) sabec

sint® of insurance; and (3) selection of tickets. Any “complex* be
20: pe:= PE(£®); havior of the agency is built from such basic behaviors. The
21: end while

longest length of these basic behaviors can be chosen as a
pertinent length to unfold (see Example 6).

such a prefix to build test cases, therefore obtaining a finitg, .|,sjon Criterion. From the observation that a specifica-
prefix can be seen as defining a testing criterion. tion generally describes a set of basic behaviors that event
oally repeat themselves, another natural criterion consist
covering the cycles of the specification. We define a criterio
allowing to cover each basic behavior once, using a proper

22: return £°

As in [3], we implement a branching process of an |/
Petri netY as a list of nodes. A node is either a condition or
an event. A condition is a pafk, e), wheres is a place oY .)
ande its preset. An event is a pait, B), wheret is a tran- notion ofcomplete prefix: .
sition in %7, and B s its preset. The possible extensions ofa Ve Say that a branching proce$sf an /0 Petri net”
branching process are the pairgt, B) where the elements 1S colmplet_ef for. every reachable marking/ there exists a
of B are pairwise irco relation, t is such thatp(B) = *¢ configurationCin 5 such that:
andg3 contains no event satisfyingp(e) = t and®e = B. 1. Mark(C) = M (i.e. M is represented if¥), and
We denote the set of possible extensiong by PE(3). 2. for every transitiort enabled byM there existsC' U

o . . . {e} € C(5) such that is labeled byt.
As it is shown above, if the information about the pro- , . : : .

.) . The following notion corresponds to the inclusion crite-

duced outputs (and quiescence) is preserved in the test, case .
. rion where each cycle in unfolded once.

we can prove the soundness of the test suite. Hence we aim
at truncating the unfolding following a specific criterion, Definition 15 Let Fin be a branching process. An everig
while preserving information about outputs and quiescencean inclusion cut-off eveniff Fin contains an event’ < e

In order to preserve this information, we follow [5] and mod- such thaMark([e']) = Mark([e]).

ify the_finite prefix algqrithm adding all the ou_tputs from the Note that the completeness of a prefix does not imply
unfolding that the prefix enables. As there exists no cydles Qhat the information about outputs and quiescence is pre-

outputs in the original net, this procedure terminateddyie gerved, so Algorithm 2 still is necessary to build its quies-
ing a finite prefix. The procedure to compute théescent .ant closure.

closure of a finite prefi{denoted by£®) is described by])]
Algorithm 2. Example 5Consider Fig. 7, we have th&in is complete,

but the expected outputs are not part of the prefix. We expect
The algorithm is parametric on the cutting criterion: if thato; is produced by the system aftgrandiy, i.e. oug (L
we change the notion of cutting event, the finite prefix ob-after (is - i4)) = {01}, but this is not the case ifin, i.e.
tained is different. 09 & OUtp;, (L after (iy - i4)) = {d}.

Model-based Testing for Concurrent Systems 11

Fig. 8 All-paths-of-lengthr criterion.

Example 6 (Determining lengthto fulfill the inclusion cri-
terion)

Consider the unfolding of the travel agency in Fig. 8.
The nodes in grey in sé&t; are those marked dsinclusion
cut-off, meaning that the prefix ending with these nodes ful-
fills the 1-inclusion criterion. As all these events have the
same height 4, this prefix also fulfills the “all paths of ldmgt
4" criterion. Finally we obtain the quiescent closure agdin
nodes of seb, in order to preserve outputs.

The following result is central and will help proving sound-
ness of the test suites proposed below.

Fin e Theorem 4 Let€ € ZOLES(L) and£° the quiescent clo-
sure of its finite prefix obtained either by thanclusion or
Fig. 7 1/O Petri nety, part of its unfolding€, a complete finite prefix the “all paths of lengthn” criterion. Then

Fin and its quiescent closui®.
1. trace$£®) C traceg&)

It has been proved that the prefix obtained in [3] is com-2. Vw € traceg£®) : outes (L after w) = oute (L after w)
plete, therefore such result also holds for the prefix oktiin o)] . . .
by our algorithm when we consider the inclusion criterion.Proof 1) is immediate sincé® is a prefix of£. Since only
However the notion of-cut-off event needed for the “all the outputs produced after the tracesS6f are considered,
paths of length.” criterion does not guarantee completeness?) follows by its construction. =
(it may be the case that not every marking is represented in

) The test suites constructed based on#kiaclusion or
the prefix).

the “all paths of lengt” criterion are sound:

k-inclusion Criterion. A natural extension of the previous Theorem 5 Let ¥ be the specification of a system afid
criterion consists in unfolding each cycle several times. W the IOLES of its unfolding. Any test suite constructed using
present below thé-inclusion criterion which together with Algorithm 1 and€€ as an input is sound faf, w.r.t co-ioco.
Algorithm 2 leads to a complete prefix unfolding each cycle

k times and preserving outputs and quiescence. Proof By Theorem 1 we need to prove that any trace of a

test cas&; is a trace of, (which is trivial asé; is a prefix
Definition 16 Let Fin be a branching process. An event ©0f £ and therefore of;) and that outputs and quiescence

is a k-inclusion cut-off eveniff Fin contains a family oy ~ Produced after any trace of such a test are preserved. The
events{e; };<;, suchthat; < e andMark([e;]) = Mark([¢]). €vents of€® that are added t6; are all the events whose

pastis already i&; and which are not in immediate conflict
Obviously a 1-inclusion cut-off event is an inclusion cut- with an input. An output cannot be in immediate conflict
off event in the sense of Definition 15. with an input by Assumption 2, so all the outputs whose

12 Herman Ponce de L@n et al.

past is already irf; are added. So all the outputs fraff?
after a tracew are preserved and by Theorem 4 we have
Vw € traces&:) : out(L after w) = out,(L afterw). O

Example 7The IOLES of Fig. 3 is a complete prefix of the
unfolding of the net in Fig. 2 and can be obtained using Al-
gorithm 2. We saw in Example 4 how to build test cases that
cover such a complete prefix. Thus the test cases of Fig. 6
form a sound test suite that covers the specification accord-
ing to our inclusion criterion.

Remark 3Let us note that we lose completeness of the test
suite we build by selecting test cases from the original com- @ (b)
plete test suite. While in a model-checking context, finite
prefixes have been shown to contain enough information to
verify global properties [2], in a testing context, it is iog
sible for a finite test suite to be complete with respect to
a specification containing infinite behaviors. Since the im-
plementation is not known, we do not have any information
about its space state, therefore we can aslyumehat any
incorrect behavior will occur in a finite path of the system.

©

Fig. 9 Complete prefixes with adequate orders.

5.2 Comparing Different Criteria as a measure for the quality of the test suite, however this

. . . does not consider the “cost” of producing such test suite: as
The notion of cut-off presented in [3] is more general that : g

A it is shown in Fig. 9, our prefixes can be exponentially big-
ours and depends on the notion of ‘""’““?q“a‘e orderAn . ger than those constructed using adequate orders. We need
adequate ordek is a well-founded partial order on the fi-

) : . :) . therefore to balance between the testing power and the size
nite configurations of the unfolding that refines set inclu-) o - o .

. X . o of the prefix. As itis shown in Fig. 10, the size in which each
sion and is preserved by extensions, i.eCif < C> and . - . o
Mark(Ch) — Mark(Co) thenC U E < (o U E for all fi branch increases for obtaining a certaimclusion is not al-

tar (tl) N grA(2) etn LY kjj 2 U) Olzfithl- ways the same. If we want to incredsénclusion by adding
g;gtesxa? izlszgu.rat?o%eir; irllzn;?éﬁi sisc;: frlljag L [?re i1, we need to make new copies pf and then only two

e .
new events (those corresponding’tq and?b,) need to be

andMark(C) = Mark([e]). Adequate orders lead usually (P gt)

t0 smaller orefixes which i methina desirable in mod iadded. However if we also want to increase the inclusion by
0 Smaller pretixes ch IS something desirable ° eadding!rz, 14 events (those presented in Fig. 9(c)) need to
checking, but this not always the case for testing.

be added. This kind of explosion is one of the disadvantages
Example 8Consider Fig. 9: (a) is a net; (b) the pre- of unfoldings, however there exist other ways to unfold the
fix obtained with an adequate ordet. presented in [3] net to avoid such kind of explosion (see for example [14]).
and adding the corresponding outputs; (c) the prefix ob- We define the coverage of a configuration to be mea-
tained by ourl-inclusion criterion. Prefix (b) is smaller sured by the number of times its corresponding marking is
than (c), however it is of less quality w.r.t. its ability to represented in any proper subset:

detect bugs. Consider a non conformant implementation

that accepts’d; followed by !d; and then deadlocks, i.e. Cov(C) £ [{C’' c C | Mark(C)) = Mark(C")}|

poss(L after ?b,!d;) = {} while poss(_L after 7b;!d;) =

2007 i - - _ .
{tas, 'b,f}" Th?e 'test? SL:'te ?tha:t Y?ve Sbt?'n? from h(b% 'S In order to take into account the “cost” of building a larger
T = {'bﬁ'c.l’ -b|1-d1, farldy, Tarler by, 'alf‘cl'az} whic prefix to increase the coverage of a configuration, we define
passes the implementation, i.e. non conformance is not dg- . quality of a configuration in a given prefixFin to be

tect'ed. LetT? be the test suite obtained from (c) and Al- its coverage divided by the number of events of the prefix:
gorithm 1, then?b,!d;7a; € T> and we have a test case

that makes the test execution fail, i.e. non conformance is
A Cov(CO)
detected. Q(C) == W

We need therefore a way to compare the testing power
of different prefixes. We can follow thé-inclusion crite- Finally, the quality of a prefix will be the smallest quality o
rion and consider the number of times a marking is preserits maximal configurations.

Model-based Testing for Concurrent Systems

13

Fig. 10 Exponential grow of unfoldings.

Definition 17 Let Fin be a finite prefix of the unfolding, we

partially, i.e. only the behavior of a local process is olsedr

In a distributed testing environment, a local tester irttra
with each process. If we are in a pure distributed testing set
ting, there is no global clock. We are currently studying un-
der which assumptions global conformance can be decided
by the conformance of every single process. Another pos-
sibility is to weaken the conformance relation to consider
a distributed architecture as it is in the case of dieco
framework of Hierons et al. [10] for multi-port IOTS.

Future technical studies include the question whether it
is possible to drop assumptions 1 and 2 under a bounded fair-
ness assumption, meaning that in a given configuration, all
the different events will eventually occur if the experirhen
is repeated a bounded number of times. However under such
an assumption, controllability of test cases must be edsure

define the quality oFin as

Q(Fin) £

min
CeN(Fin)

Q(0)

In Fig. 10 we can see that the quality of configurations
wherelr; is unfolded are smaller than those that unfbid
(as they contain more events). Therefore the quality of the
finite prefixes (and that of the test cases obtained from it)
does not depend on how many times we unfold transition2.
71, but on the number of times we unfdlc,.

1.

6 Conclusion and Future Work

We have presented a testing framework and a test generatiof
algorithm for true concurrency specifications of distrézlit
and concurrent systems. Our test selection criteria aexdbas
on the quiescent closure of finite prefixes of the unfolding of
the specification; they allow to select, among all possixé t
cases, those covering all paths of lengtbr those traversing
each basic behavior a certain number of times.

Let us point out that the testing approach we followed
in this article is mostly theoretical, since concurrencpas
easily observable at a global point of view. We defined the
notions of test case and execution of a test case from a global
point of control and observation, where concurrency is al- 7.
ways kept explicit. However, in practice, such global test
cases are not meant to be actually executed globally. They
would rather be projected onto the different processes to be

5.

6.

executed locally, in order to make the observation of con-g

currency possible. Our approach here is to study the testing

problem from a centralized point of view, as a basis to the -

distributed testing problem: the global conformance refat

we defined is the relation we want to still be able to test in g

a distributed way (with local control and observation), and
the global test cases are the basis for the constructiorsof di
tributed tests.

In practice, the global control and observation assump-
tion may not be satisfied and we can only observe the system

11. Claude Jard.

during their construction.

References

Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan.
Analysing unlinkability and anonymity using the applied piaal
lus. InIEEE Computer Security Foundations Symposipages
107-121. IEEE Computer Society, 2010.

Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Latvala,
and Viktor Schuppan. Linear encodings of bounded LTL model
checking.Logical Methods in Computer Scien@5), 2006.

. Javier Esparza, StefatdRer, and Walter Vogler. Animprovement

of McMillan’s unfolding algorithm. InTools and Algorithms for
Construction and Analysis of Systemslume 1055 ofLecture
Notes in Computer Sciengeages 87—106. Springer, 1996.

Alain Faivre, Christophe Gaston, Pascale Le Gall, and Assié Tou
Test purpose concretization through symbolic action refinement.
In Testing of Software and Communicating Systemisime 5047

of Lecture Notes in Computer Sciengages 184—-199. Springer,
2008.

Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia
Touil. Symbolic execution techniques for test purpose defini-
tion. In Testing of Software and Communicating Systemisime
3964 ofLecture Notes in Computer Scienpages 1-18. Springer,
2006.

Stefan Haar, Claude Jard, and Guy-Vincent Jourdan. Testing i
put/output partial order automata. Testing of Software and Com-
municating Systemsolume 4581 of_ecture Notes in Computer
Sciencepages 171-185. Springer, 2007.

Lex Heerink and Jan Tretmans. Refusal testing for classes of tran-
sition systems with inputs and outputs. Formal Description
Techniques for Distributed Systems and Communication Proto-
cols, volume 107 ofiFIP Conference Proceedingpages 23-38.
Chapman & Hall, 1997.

Matthew HennessyAlgebraic Theory of ProcesseMIT Press,
1988.

Olaf Henniger. On test case generation from asynchronously co
municating state machines. Testing of Communicating Systems
IFIP, pages 255-271. Springer, 1997.

Robert M. Hierons, Mercedes G. Merayo, and Manugéle¢. Im-
plementation relations for the distributed test architectur&est-

ing of Software and Communicating Systewatume 5047 of.ec-

ture Notes in Computer Sciengmges 200-215. Springer, 2008.
Synthesis of distributed testers from true-
concurrency models of reactive systerit§ormation & Software
Technology45(12):805-814, 2003.

14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Claude Jard and Thierrgrbn. TGV: theory, principles and al-
gorithms.International Journal on Software Tools for Technology
Transfer 7:297-315, 2005.

Thierry &ron. Symbolic model-based test selectidtlectronic
Notes in Theoretical Computer Scien2d0:167-184, 2009.

Victor Khomenko, Alex Kondratyev, Maciej Koutny, and \téal
Vogler. Merged processes: a new condensed representation of
Petri net behaviourActa Informatica 43(5):307—-330, 2006.

Moez Krichen and Stavros Tripakis. Conformance testingefalr
time systemsFormal Methods in System Desid3%(3):238-304,
2009.

Giegory Lestiennes and Marie-Claude Gaudel. Test d&syes
réactifs non eceptifs. Journal Euro@en des Sysmes Automa-
tises 39(1-2-3):255-270, 2005.

Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. iPetr
nets, event structures and domains, paiheoretical Computer
Science13:85-108, 1981.

Jan Peleska and Michael Siegel. From testing theory to fest dr
implementation. IfFormal Methods Europevolume 1051 of.ec-
ture Notes in Computer Sciengeges 538-556. Springer, 1996.
Herran Ponce de L@, Stefan Haar, and Delphine Longuet. Con-
formance relations for labeled event structures. Thsts and
Proofs volume 7305 of_ecture Notes in Computer Scienpages
83-98. Springer, 2012.

Herran Ponce de L@, Stefan Haar, and Delphine Longuet.
Unfolding-based test selection for concurrent conformance. In
International Conference on Testing Software and Systgois
ume 8254 ofLecture Notes in Computer Sciengages 98-113.
Springer, 2013.

Steve SchneiderConcurrent and Real Time Systems: The CSP
Approach John Wiley & Sons, Inc., New York, NY, USA, 1st
edition, 1999.

Roberto Segala. Quiescence, fairness, testing, and thon rudti
implementation.Information and Computatiqri38(2):194-210,
1997.

Jan Tretmans. Test generation with inputs, outputs and tiepeti
guiescenceSoftware - Concepts and Toplk7(3):103-120, 1996.
Andreas Ulrich and Hartmutdfig. Specification-based testing
of concurrent systems. IRormal Description Techniques for
Distributed Systems and Communication Protocaetdume 107

of IFIP Conference Proceedingpages 7-22. Chapman & Hall,
1998.

Gregor von Bochmann, Stefan Haar, Claude Jard, and Guy-
Vincent Jourdan. Testing systems specified as partial order input/
output automata. Ifesting of Software and Communicating Sys-
tems volume 5047 olecture Notes in Computer Scienpages
169-183. Springer, 2008.

Glynn Winskel. Petri nets, morphisms and compositionality. In
Applications and Theory in Petri Netsages 453477, 1985.

Herman Ponce de L@n et al.

