
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab.0000;00:1–34
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Model Based Testing for Concurrent Systems
with Labeled Event Structures

Herńan Ponce de Léon1∗ Stefan Haar1 and Delphine Longuet2

1INRIA and LSV,́Ecole Normale Suṕerieure de Cachan and CNRS, France
2Univ Paris-Sud, LRI UMR8623, Orsay, F-91405

SUMMARY

We propose a theoretical testing framework and a test generation algorithm for concurrent systems
specified with true concurrency models, such as Petri nets ornetworks of automata. The semantic model
of computation of such formalisms are labeled event structures, which allow to represent concurrency
explicitly. We introduce the notions of strong and weak concurrency: strongly concurrent events must be
concurrent in the implementation, while weakly concurrentones may eventually be ordered. Theioco type
conformance relations for sequential systems rely on the observation of sequences of actions and blockings,
thus they are not capable of capturing and exploiting concurrency of non sequential behaviors. We propose
an extension ofioco for labeled event structures, namedco-ioco, allowing to deal with strong and weak
concurrency. We extend the notions of test cases and test execution to labeled event structures, and give a
test generation algorithm building a complete test suite for co-ioco.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Model-based testing, true concurrency, conformance relation, event structures, strong
concurrency, weak concurrency

1. INTRODUCTION

Model-based Testing. One of the most popular formalisms studied in conformance testing is
that of labeled transition systems(LTS). A labeled transition system is a structure consisting of
states and transitions labeled with actions from one state to another. This formalism is usually used
for modeling the behavior of sequential processes and as a semantical model for various formal
languages such as CCS [1], CSP [2], SDL [3] and LOTOS [4].

Several testing theories have been defined for labeled transition systems [5, 6, 7, 8, 9, 10, 11].
A formal testing framework relies on the definition of a conformance relation which formalizes
the relation that the system under test (SUT) and its specification must verify. Depending on the
nature of the possible observations of the system under test, several conformance relations have
been defined for labeled transition systems. The relation oftrace preorder(trace inclusion) is based
on the observation of possible sequences of actions only. It was refined into thetesting preorder, that
requires not only the inclusion of the implementation traces in those of the specification, but also that
any action refused by the implementation should be refused by the specification [5, 12]. A practical
modification of the testing preorder was presented by Brinksma [7], whereit was proposed to base

∗Correspondence to: LSV, ENS de Cachan, 61 avenue du Président Wilson, 94235 CACHAN Cedex, France.
E-mail: ponce@lsv.ens-cachan.fr

Contract/grant sponsor: DIGITEO/DIM- LSC project TECSTES; contract/grant number: 2011-052D

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared usingstvrauth.cls [Version: 2010/05/13 v2.00]

2 H. PONCE DE LÉON, S. HAAR, D. LONGUET

the observations on the traces of the specification only, leading to a weakerconformance relation
called conf. A further refinement concerns the inclusion of quiescent traces as a conformance
relation [10]. Moreover, Tretmans proposed theioco relation [11], which refinesconf with the
observation of blockings (quiescence).

The ioco conformance relation is defined for input-output labeled transition systems which are
LTS where stimuli received from the environment (inputs) are distinguished from answers given
by the system (outputs). It relies on two kinds of observation: traces, that are sequences of inputs
and outputs, and quiescence, which is the observation of a blocking of thesystem (the system will
not produce outputs anymore or is waiting for an input from the environment to produce some).
A system under test conforms to its specification with respect toioco if after any trace of the
specification that can be executed on the system, the observable outputs and blockings of the system
are possible outputs and blockings in the specification.

The testing theory based on theioco conformance relation has now become a standard and is
used as a basis in several testing theories for extended state-based models. Let us mention here
the works on restrictive transition systems [13, 14], symbolic transition systems [15, 16], timed
automata [17, 18], and multi-port finite state machines [19].

Model-based Testing of Concurrent Systems. Systems composed of several concurrent
components are naturally modeled as anetwork of finite automata, a formal class of models
that can be captured equivalently bysafe Petri nets. Concurrency in a specification can arise for
different reasons. First, two events may be physically located on different components, and thus
be “naturally” independent of one another; this distribution is then part ofthe system construction.
Second, the specification may not care about the order in which two actionsare performedon the
same component, and thus leave the choice of their ordering to the implementation. Depending on
the nature of the concurrency specified in a given case, and thus on theintention of the specification,
the implementation relationshave to allow or disallow ordering of concurrent events.

Model-based testing of concurrent systems has been studied for a long time[20, 21, 22], however
it is most of the time studied in the context of interleaving semantics, or trace semantics, which
is known to suffer the state space explosion problem. While the passage to concurrent models has
been successfully performed in other fields of formal analysis such as model checking or diagnosis,
testinghas embraced concurrent models somewhat more recently.

Ulrich and König [23] propose a framework for testing concurrent systems specified by
communicating labeled transition systems. They define a concurrency model called behavior
machines that is an interleaving-free and finite description of concurrentand recursive behavior,
which is a sound model of the original specification. Their testing frameworkrelies on a
conformance relation defined by labeled partial order equivalence, and allows to design tests for
each component from a labeled partial order representing an executionof the behavior machine.

In another direction, Haar et al [24, 25] generalized the basic notions and techniques of I/O-
sequence based conformance testing on a generalized I/O-automaton model where partially ordered
patterns of input/output events were admitted as transition labels. An important practical benefit
of true-concurrency models here is an overall complexity reduction, despite the fact that checking
partial orders requires in general multiple passes through the same labeledtransition, so as to check
for presence/absence of specified order relations between input andoutput events. In fact, if the
system hasn parallel and interacting processes, the length of checking sequences increases by a
factor that is polynomial inn. At the same time, the overall size of the automaton model (in terms
of the number of its states and transitions) shrinks exponentially if the concurrency between the
processes is explicitly modeled. This feature indicates that with increasing size and distribution of
SUTs in practice, it is computationally wise to seek alternatives for the direct sequential modeling
approach. However, these models still force us to maintain a sequential automaton as the system’s
skeleton, and to include synchronization constraints (typically: that all events specified in the pattern
of a transition must be completed before any other transition can start), whichlimit both the
application domain and the benefits from concurrency modeling.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 3

The approach that we follow here, continuing our previous work [26, 27], proposes a
formal framework for testing concurrent systems from true-concurrency models in which no
synchronization on global states is required.

Weak vs. Strong Concurrency. As it is shown in Figure 1, concurrency can be implemented in
two different ways. Boxes represent processes, letters are actionsand a dependence between two
actions is shown by an arrow. The three actionsa, b andc are specified as concurrent in Spe (no
dependence between them), actionsa andc belonging to processP1 while b belongs to processP2.

In a distributed architecture, when two actions are specified as concurrent and belong to
different processes, they should be implemented as concurrent, in different processes: this situation
corresponds to the notion ofstrong concurrency, meaning that there should not be any kind of
dependence between these actions. In Figure 1, actionsa andb belong to different processes (i.e.
they are strongly concurrent) in Spe and are implemented in different processes in both Impl1 and
Impl2. In our previous work [27], concurrency is interpreted as strong concurrency, therefore the
conformance relation forces concurrent actions to be implemented in different processes.

However, in an early stage of specification, concurrency between events may be used as
underspecification. Actions belonging to the same component may be implementedin any order
in the same process (as it is the case ofa andc in Impl1) or the specification may still be refined
and this process implemented as several ones as it is the case ofP1 which is implemented asP ′

1

andP ′′
1 in Impl2. We capture this kind of underspecification withweak concurrency. As it is the

case of local trace languages [28], in one situation two actions might be concurrent while in another
situation they cannot be performed independently.

Spe

P1

a
c

P2

b

Impl1

P1

a

c

P2

b

Impl2

P ′′
1

P ′
1

a
c

P2

b

Figure 1. A specification of a system and two possible implementations.

We illustrate the need to make these two notions of concurrency live in the same model by
examples coming from the field of microcontroller design [29] and security protocols [30].

Example 1
Consider a ParSeq controller which manages two handshakesA = (reka,acka) and B =
(rekb,ackb) according to a set of Boolean variablesx1, x2, x3 provided by the environment as shown
in Figure 2. These variables are mutually exclusive (only one of them can be 1) and they decide
how the handshakes are handled. Ifx1 = 1, the handshake is initiated in parallel (concurrent events
A co B), while any other possible valuation of the variables initiates the handshakesin sequence
(A < B if x2 = 1 andB < A if x3 = 1). In this example eventsA andB would be specified as
weakly concurrent, but their actual order would depend on the values of the variables rather than on
an implementation choice. For more details about the controller see [29].

Example 2
When designing a security protocol, an important property, named unlinkability, is to hide the
information about the source of a message. An attacker that can identify messages as coming from
the same source can use this information and so threaten the privacy of the user. It has been shown
that the security protocol of the French RFID e-passport is linkable, therefore anyone carrying a
French e-passport can be physically traced [30]. Causality captureslinkability as two messages
coming from the same user need to be causally dependent. However, concurrency interpreted as
interleavings can not be used to model unlinkability because both possible interleavings relate the
messages as if they were causaly dependent, therefore they reveal theidentity of the user. This
property needs to be modeled by strong concurrency.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

4 H. PONCE DE LÉON, S. HAAR, D. LONGUET

ParSeq
controller

reqa

acka

reqb

ackb

x1

x2

x3

Figure 2. ParSeq controller interface.

Framework. We use a canonical semantic model for concurrent behavior,labeled event
structures, providing a unifying semantic framework for system models such as Petri nets,
networks of automata, communicating automata, or process algebras; we abstract away from the
particularities of system specification models, to focus entirely on behavioral relations.

The underlying mathematical structure for the system semantics is given byevent structuresin
the sense of Winskel et al [31]. Mathematically speaking, they are particular partially ordered sets,
in which order between two eventse ande′ indicates precedence, and where any two eventse and
e′ that arenot ordered may be either

• in conflict, meaning that in any evolution of the system in whiche occurs,e′ cannotoccur; or
• concurrent, in which case they may occur in the same system run, without a temporal ordering,

i.e. e may occur beforee′, aftere′, or simultaneously.

Event structures arise naturally under the partial order unfolding semantics for Petri nets [31], and
also as a natural semantics for process algebras (see e.g. the work of Langerak and Brinksma [32]).
The state reached after some execution is represented by aconfigurationof the event structure, that
is a conflict-free, history-closed set of events. The use of partial order semantics provides richer
information and finer system comparisons than the interleaved view.

Our Contributions. We proposed in previous work [26] an extension of theioco conformance
relation to labeled event structures, namedco-ioco, which takes concurrency explicitly into
account. In particular, it forces events that are specified as concurrent to remain concurrent in
the implementation under partial order semantics. We additionally dropped the input enabledness
assumption and enlarged the conformance relation with the observation of refusals [27]. In this
paper, we refine this conformance relation introducing the notions of strong and weak concurrency.
Events specified as strongly concurrent must remain concurrent in a correct implementation while
weakly concurrent events may be ordered. These two notions reflect the two usual interpretations
of concurrency in a specification, that are true-concurrency semantics and interleaving semantics.
These refinements lead to a new definition of theco-iococonformance relation.

The contributions of this paper are twofold. First, we define the notions of strong and weak
concurrency along with a new semantics for labeled event structures based on a notion of relaxed
executions. Second, we define a whole framework for testing concurrent systems from labeled
event structures. Besides the definition of aco-iococonformance relation handling strong and weak
concurrency, we define the notion of test case, we give sufficient properties for a test suite to be
sound (not rejecting correct systems) and exhaustive (not acceptingincorrect systems), and we
provide a test case generation algorithm that builds a complete (i.e. sound and exhaustive) test
suite. The paper is presented according to the following structure.

Structure of the Paper. In the next section, we will introduce several basic notions such as input
output labeled event structures(IOLES)and the new notions of strong and weak concurrency, along
with a novel partial order semantics for IOLES, that allows to “relax” concurrency. In Section 3, we
develop theobservationalframework for IOLES, introducing in particular the notions of quiescence
and refusals for partial order semantics. Section 4 is dedicated to the definition, discussion and
characterization of the input-output conformance relationco-ioco, refining theco-ioco relations

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 5

of our previous papers [26, 27]. Section 5 develops the definitions of test cases and test suites,
characterizing soundness, exhaustiveness and completeness of testsuites, while Section 6 proposes
an algorithm that builds a complete test suite, thus completing the contributions of the paper before
Section 7 concludes.

2. INPUT/OUTPUT LABELED EVENT STRUCTURES

2.1. Syntax

We shall be using event structures following Winskel et al [31] to describe the dynamic behavior
of a concurrent system. In this paper we will consider only prime event structures [33], a subset
of the original model which is sufficient to describe concurrent models (therefore we will simply
call them event structures), and we label their events with actions over a fixed alphabetL. As it
is common practice with reactive systems, we want to distinguish between the controllable actions
(inputs proposed by the environment) and the observable ones (outputs produced by the system),
leading toinput-output labeled event structures.

Definition 1 (Input/Output Labeled Event Structure)
An input/output labeled event structure (IOLES) over an alphabetL = LI ⊎ LO is a 4-tuple
E = (E,≤,#, λ) where

• E is a set of events,
• ≤ ⊆ E × E is a partial order (calledcausality) satisfying the property offinite causes, i.e.
∀e ∈ E : |{e′ ∈ E | e′ ≤ e}| < ∞,

• # ⊆ E × E is an irreflexive symmetric relation (calledconflict) satisfying the property of
conflict heredity, i.e.∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′,

• λ : E → L ∪ {τ} is a labeling mapping.

We denote the class of all input/output labeled event structures overL by IOLES(L).

We assume that there exists a unique minimal element (w.r.t≤), denoted and labeled by⊥,
which is unobservable. The special labelτ 6∈ L represents an unobservable (also called internal
or silent) action. Given an evente, its past is defined as[e] , {e′ ∈ E | e′ ≤ e}. The sets of input,
output and silent events are defined byEI , {e ∈ E | λ(e) ∈ LI}, E

O , {e ∈ E | λ(e) ∈ LO} and
Eτ , {e ∈ E | λ(e) = τ}. When it is clear from the context, we will refer to an event by its label.

Two given eventse, e′ ∈ E are said to beconcurrent(e co e′) iff neither e ≤ e′ nor e′ ≤ e nor
e # e′ hold. In this paper we split theco relation into two relationssco(strong concurrency) and
wco (weak concurrency), such thatco= sco⊎ wco.

Remark 1
The IOLES that we consider as the specification of the system is usually produced as the semantic
unfolding from a language such as Petri nets, hence the specifier should provide the information
about weak and strong concurrency as an annotation to the original specification.

The architecture of distributed systems allows to distinguish different components and there is
a way to distinguish to which component each concurrent action belongs. Therefore, we make the
following assumption.

Assumption 1
We will only consider systems in which concurrent events are labeled by different actions, i.e.
∀e, e′ ∈ E : e co e′ ⇒ λ(e) 6= λ(e′).

Example 3
Figure 3 shows a schematic travel agency that sells services to customers on behalf of two suppliers,
one selling both train and plane tickets and another one selling insurances. Its behavior can be
formally specified by the IOLESs presented in Figure 4, where causality and conflict are represented
by → and - - - respectively,? denotes input actions and! output ones. In this system, once the user

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

6 H. PONCE DE LÉON, S. HAAR, D. LONGUET

Figure 3. A travel agency example.

has logged in (?login), some data is sent to the server (!us data) and he can choose an insurance
(?insurance) and a train ticket (?train) or a plane ticket (?plane). If a plane ticket is chosen, its
price is sent to the user (!p price). If a train ticket is selected, the agency can internally decide (τ)
what price to propose: a first class (!t price1) or a second class one (!t price2). The insurance choice
is followed by its price (!ins price) and some extra data that is sent to the user (!ins data).

The data cannot be sent before the user logs in (?login ≤ !us data) and the selections for a ticket
and an insurance can be done concurrently (?train co ?insurance), but only one ticket can be
chosen (?train # ?plane). From the conflict heredity property, we have that only one ticket price
can be produced (!t price1 # !p price and!t price2 # !p price).

We consider strong concurrency only between the actions belonging to different suppliers: we do
not want the selection of tickets to influence the prices of the insurance forexample, thereforesco=
{?insurance, !ins price, !ins data} × {?train, τ, !t price1, !t price2, ?plane, !p price}. All pairs
of actions belonging to a single supplier (for tickets and insurance) are weakly concurrent
with the !us data action. In addition the actions!ins price and !ins data are also
weakly concurrent and we finally havewco= {(!ins data, !ins price)} ∪ ({!us data} ×
{?insurance, !ins price, !ins data, ?train, τ, !t price1, !t price2, ?plane, !p price}).

Immediate Conflict. Most of the specification languages allow some way to model choice in the
system. As conflict is inherited w.r.t causal dependency, a pair of eventsin conflict need not represent
a choice between these events. We can see that!t price1 and!p price are in conflict (by hierarchy),
but any computation that continues by!t price1, cannot continue by!p price: the conflict was solved
by the choice of?train instead of?plane, and this makes!p price impossible. When the system
makes a choice, we have a case of theimmediate conflictrelation in the following sense.

Definition 2 (Immediate Conflict)
Let E = (E,≤,#, λ) ∈ IOLES(L) ande1, e2 ∈ E. Eventse1 ande2 are said in immediate conflict,
written e1 # e2, iff

[e1]× [e2] ∩# = {(e1, e2)}

Prefix of an IOLES. We define here the notion of prefix that allows to restrict the behavior of
the system. As causality represents the events that should occur before agiven event, the past of an
evente that belongs to the prefix should also be part of the prefix.

Definition 3 (Prefix)
Let E = (E,≤,#, λ) ∈ IOLES(L). A prefix of E is an IOLESE ′ = (E′,≤′,#′, λ′) where

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 7

?login

⊥

?plane

!p price

?train

τ

!t price2 !t price1

?insurance

!ins price

!ins data

!us data

s

Figure 4. Input/output labeled event structure of a travel agency.

• E′ ⊆ E such that∀e ∈ E′ : [e] ⊆ E′,
• ≤′ = ≤ ∩ (E′ × E′),
• #′ = # ∩ (E′ × E′), and
• λ′ = λ|E′

Example 4
In Figure 5,s2 specifies the behavior of a travel agency that sells tickets, but not insurances, while
the agency ins3 only sells insurances. We can see thats2 ands3 are prefixes ofs.

2.2. Semantics

A computation state of an event structure is called aconfiguration; it is represented by the set of
events that have occurred thus far in the computation. If an event is present in a configuration, then
so are all the events on which this event causally depends (causal closure). Moreover, a configuration
obviously does not contain conflicting events (conflict freedom). This is captured by the following
standard definition [33].

Definition 4 (Configuration)
LetE = (E,≤,#, λ) ∈ IOLES(L). A configuration ofE is a non-empty set of eventsC ⊆ E where

• C is causally closed:e ∈ C ⇒ ∀e′ ≤ e : e′ ∈ C, and
• C is conflict-free:∀e, e′ ∈ C : ¬(e # e′).

A configurationC, equipped with the restriction of≤, yields a partially ordered set, whose
totally ordered extensions, or interleavings, describe possible sequential executions. Conversely,
every sequential execution of the system is an interleaving of a unique configuration of the system;
a configuration gives an equivalence class of possible interleavings. In this sense, configurations
representnon-sequential executions.

Note that we define, for technical convenience, all configurations to benon-empty; the initial
configuration ofE , containing only⊥ and denoted by⊥E , is contained in every configuration ofE .
We denote the set of all the configurations ofE by C(E).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

8 H. PONCE DE LÉON, S. HAAR, D. LONGUET

?login

⊥

?plane

!p price

?train

τ

!t price2 !t price1

!us data

s2

?login

⊥

?insurance

!ins price!ins data

!us data

s3

Figure 5. Two prefixes of the travel agency.

Example 5
In the IOLES of Figure 4, after the user has logged in, the selections can be made while his
information is sent to the server, i.e.{⊥, ?login, !us data, ?insurance, ?train} ∈ C(s), but a train
and a plane ticket cannot be selected in the same execution, i.e.?plane, ?train ∈ C ⇒ C 6∈ C(s).
The configuration{⊥, ?login, !us data, ?insurance, !ins price, !ins data, ?train, τ, !t price1} is
maximal (w.r.t⊆) as the remaining events are in conflict with the ones in the configuration.

LPOs and POMSETs. The definition of the notion of execution for an event structure is not
straightforward since it relies on the chosen semantics for concurrency[34]. Here, we have two
notions of concurrency, which impose partial orders and allow interleavings. We are interested
in testing both kinds of concurrency and therefore we want to keep concurrency explicit in the
executions.Labeled partial orderscan then be used to represent executions of such systems.

Definition 5 (Labeled partial order)
A labeled partial order over an alphabetL is a tuplelpo = (E,≤, λ), where

• E is a set of events,
• ≤ is a reflexive, antisymmetric, and transitive relation, and
• λ : E → L ∪ {τ} is a labeling mapping.

We denote the class of all labeled partial orders overL by LPO(L).

As we can only observe the ordering between the labels and not between the events, we should
consider partial orders respecting this order as equivalent. Hence twolabeled partial orders are
isomorphiciff there exists a bijective function that preserves ordering and labeling.

Definition 6 (Isomorphic LPOs)
Let lpo1 = (E1,≤1, λ1), lpo2 = (E2,≤2, λ2) ∈ LPO(L). A bijective functionf : E1 → E2 is an
isomorphismbetweenlpo1 andlpo2 iff

• ∀e, e′ ∈ E1 : e ≤1 e′ ⇔ f(e) ≤2 f(e′)
• ∀e ∈ E1 : λ1(e) = λ2(f(e))

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 9

Two labeled partial orderslpo1 andlpo2 are isomorphic if there exists an isomorphism between
them.

Definition 7 (Partially ordered multisets)
A partially ordered multiset(pomset) is the isomorphim class of some LPO. Any such class is
represented by one of its objects. We denote the class of all pomsets byPOMSET (L).

When it is clear from the context, we will use “·” to express causality between pomsets and “co” to
represent the pomset whose elements are unordered. The pomsetµ4 of Figure 6 can be represented
by ⊥ · ?login · !us data · ?insurance · (!ins price co !ins data).

As weak concurrency allows to order events, the selection of a ticket in thetravel agency can be
done after sending the data and thereforeµ1 andµ2 from Figure 6 should be treated as equal (it
is also the case withµ3, µ4, µ5 andµ6). For this reason, an execution of this specification has to
preserve the partial order semantics of the IOLES, up to adding order between weakly concurrent
events (while strongly concurrent events must remain concurrent).

Definition 8 (Relaxed concurrency)
Let µ1, µ2 ∈ POMSET (L), we have thatµ1 ⊑ µ2 iff there exist lpo1 = (E,≤µ1

, λ) ∈ µ1 and
lpo2 = (E,≤µ2

, λ) ∈ µ2 such that

• ≤µ1
⊆ ≤µ2

• sco1 = sco2

In other words,µ1 ⊑ µ2 if strong concurrency is preserved; while weakly concurrent eventsfrom
µ1 may be ordered by≤µ2

.

Example 6
We see in Figure 6 thatµ2 adds some ordering between weakly concurrent events!us data and
?train from µ1, but strong concurrency and causality are preserved, and therefore µ1 ⊑ µ2. The
same order is added fromµ3 in µ4, andµ5 adds an ordering between the weakly concurrent events
!ins price and !ins data. Since no other relations are changed,µ3 ⊑ µ4 andµ4 ⊑ µ5. As ⊑ is
transitive, we haveµ3 ⊑ µ5. In µ6, !us data is preceded by?insurance and thenµ3 ⊑ µ6.

As explained above, an execution of an event structure can be represented by a pomset, where the
same pomset can reflect different executions in which concurrency can be relaxed, leading to the
following notion ofrelaxed executions.

Definition 9 (Relaxed execution)
Let E = (E,≤,#, λ) ∈ IOLES(L), µ, µ′′ ∈ POMSET (L) andC,C ′, C ′′ ∈ C(E), we define

C
µ

−→ C ′ , ∃µ′ ⊑ µ, lpo = (Eµ′ ,≤µ′ , λµ′) ∈ µ′, A ⊆ E\C :
C ′ = C ∪A,A = Eµ′ ,≤ ∩ (A×A) = ≤µ′ andλ|A = λµ′

C
µ · µ′′

−→ C ′′ , ∃C ′ : C
µ

−→ C ′ andC ′ µ′′

−→ C ′′

C
µ

−→ , ∃C ′ : C
µ

−→ C ′

We say thatµ is a relaxed execution ofC if C
µ

−→.

From the definition above we get that wheneverC
µ

−→ andµ ⊑ µ′, we haveC
µ′

−→.

Example 7
In Figure 6 we can see thatµ1 andµ3 respect the structure ofs of Figure 4, and therefore both are
relaxed executions of it (⊥s

µ1

−→ and⊥s
µ3

−→). However, as seen earlier,µ1 ⊑ µ2, µ3 ⊑ µ4, µ3 ⊑ µ5

andµ3 ⊑ µ6; thereforeµ2, µ4, µ5 andµ6 are also relaxed executions ofs (⊥s
µ2

−→,⊥s
µ4

−→,⊥s
µ5

−→

and⊥s
µ6

−→). In the case ofµ6, we see that our semantics allows an execution where an output
(!us data) depends on an extra input (?insurance). However, we will see later that our conformance
relation prevents an output from depending on an extra input, even if these events are specified as a
weakly concurrent pair. We can conclude that the same structure can have several relaxed executions
where weakly concurrent events are ordered.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

10 H. PONCE DE LÉON, S. HAAR, D. LONGUET

?login

⊥

?train

τ

!t price1

!us data?insurance

µ1

?login

⊥

!us data

?train

τ

!t price1

?insurance

µ2

?login

⊥

?insurance

!ins price !ins data

!us data

µ3

?login

⊥

!us data

?insurance

!ins price !ins data

µ4

?login

⊥

!us data

?insurance

!ins price

!ins data

µ5

?login

⊥

?insurance

!ins price !ins data

!us data

µ6

Figure 6. Relaxed executions of the travel agency

3. OBSERVING EVENT STRUCTURES

The notion of conformance in a testing framework is based on the chosen notion of observation of
the system behavior. One of the most popular ways of defining the behavior of a system is in terms
of its traces(observable sequences of actions of the system). Phillips [8], Heerink and Tretmans [13]
and Lestiennes and Gaudel [14] propose conformance relations that inaddition considers the actions
that the systemrefuses. Finally, when there is a distinction between inputs and output actions, one
can differentiate between situations where the system is still processing someinformation from

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 11

those where the system cannot evolve without the interaction of the environment, usually called
quiescencefollowing Segala [10]. In this section, we define these three notions in the context of
labeled event structures before presenting theco-iococonformance relation in Section 4.

3.1. Traces

The labels inL represent the observable actions of a system; they model the interactions of the
system with its environment while internal actions are denoted by the special label τ 6∈ L. The
observable behavior can be captured by abstracting the internal actionsfrom the executions of the
system (which are pomset in our setting).

Definition 10 (τ -abstraction of a pomset)
Let µ, ω ∈ POMSET (L), we have thatabs(µ) = ω iff there existlpoµ = (Eµ,≤µ, λµ) ∈ µ and
lpoω = (Eω,≤ω, λω) ∈ ω such that

• Eω = {e ∈ Eµ | λµ(e) 6= τ}
• ≤ω = ≤µ ∩ (Eω × Eω)
• λω = λµ|Eω

Finally, anobservationof a configuration is theτ -abstraction of one of its executions.

Definition 11 (Observation)
Let E = (E,≤,#, λ) ∈ IOLES(L), ω ∈ POMSET (L) andC,C ′ ∈ C(E), we define

C
ω

=⇒ C ′ , ∃µ : C
µ

−→ C ′ andabs(µ) = ω

C
ω

=⇒ , ∃C ′ : C
ω

=⇒ C ′

We say thatω is an observation ofC if C ω
=⇒.

In the ioco theory,? and ! are used to denote input and output actions respectively. We extend
this notation and denote by?ω and !ω observations composed only of input and output actions
respectively.

We can now define the notion of traces and reachable configurations from a given configuration
by an observation. Our notion of trace is similar to the one of Ulrich and König [23] where a trace is
considered as a sequence of partial orders. The reachable configurations that we consider are those
that can be reached by abstracting the silent actions of an execution and only considering observable
ones. This notion is similar to the one of unobservable reach proposed by Genc and Lafortune [35].

Definition 12 (Traces and reachable configurations)
Let E ∈ IOLES(L), ω ∈ POMSET (L) andC,C ′ ∈ C(E), we define

• traces(E) , {ω ∈ POMSET (L) |⊥E
ω

=⇒}

• C after ω , {C ′ | C
ω

=⇒ C ′}

Example 8
Consider the pomsets of Figures 6 and 7. Clearly,abs(µ1) = ω1, and we saw in Example 7 that
⊥s

µ1

−→; therefore,⊥s
ω1=⇒. The same is true forµ3, µ6 andω3, ω6. Thusω1, ω3, ω6 ∈ traces(s).

The configuration reached ins after the observationsω3 andω6 is the same, i.e.(⊥s after ω3) =
(⊥s after ω6) = {{⊥, ?login, !us data, ?insurance, !ins price, !ins data}}. This example shows
that even if the way of observing executions are different (due to weakconcurrency), they all come
from the same structure and lead to the same configuration.

Our definition ofafter is general enough to handle nondeterminism in the computation, however
in this paper, for technical convenience, we will only consider specifications where exactly one
configuration can be reached after some observation. Such systems arecalleddeterministic.

Definition 13 (Deterministic IOLES)
Let E ∈ IOLES(L), we have

E is deterministic⇔ ∀ω ∈ traces(E), (⊥E after ω) is a singleton

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

12 H. PONCE DE LÉON, S. HAAR, D. LONGUET

?login

?train

!t price1

!us data?insurance

ω1

?login

?insurance

!ins price !ins data

!us data

ω3

?login

?insurance

!ins price !ins data

!us data

ω6

Figure 7. Traces of the travel agency

?login

⊥

?ticket

!price

?ticket

!price!price

?insurance

!ins price

!ins data

!us data

s4

Figure 8. A nondeterministic IOLES.

When the set of reachable configurations is a singleton{C} we will simply denote it byC.

Example 9
We can see froms4 in Figure 8 that the observation makes no distinction between the ticket choice,
i.e. two configurations can be reached from the initial configuration after observing?login · ?ticket,
and thens4 is nondeterministic.

In the ioco framework, the specification is determinized before the construction of testcases. As
the IOLES that we consider are usually produced as the semantic unfoldingof the specification,
we assume that determinization is done directly on the specification and the resulting IOLES is
deterministic.

Assumption 2
The specification of the system is deterministic, i.e.∀ω ∈ traces(s) : (⊥s after ω) is a singleton.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 13

3.2. Quiescence and Produced Outputs

Since the testing activity depends on the interaction between the tester and the system, such an
interaction becomes impossible if we allow the system to have infinitely many occurrences of silent
or output actions without input ones. Therefore we make the following assumption.

Assumption 3
We will only consider systems that cannot diverge by infinitely many occurrences of silent or output
actions, i.e.∀C ∈ C(E) : if C ∩ (EO ∪ Eτ) is infinite then so isC ∩ EI .

This assumption is classical in model-based testing frameworks, as it is necessary to be able to
identify the blockings of the system under test.

With reactive systems, we need to differentiate configurations where the system can still produce
some outputs, and those where the system cannot evolve without an input from the environment.
Such situations are captured by the notion of quiescence [10]. The observation of quiescence in such
configurations is usually implemented by timers. Jard and Jéron [36] present three different kinds of
quiescence:output quiescence: the system is waiting for an input from the environment,deadlock:
the system cannot evolve, andlivelock: the system diverges by an infinite sequence of silent actions.
Both output quiescence and deadlock are captured by the definition below, while livelock is not
possible by Assumption 3.

The observation of quiescence is usually made explicit by adding self loopslabeled by aδ action
on quiescent states, whereδ is considered as a new output action. But since event structures are
acyclic, we define theδ action not by loops, but rather semantically: theδ action does not represent
an event, and thus no new configuration is reached after observing it.

Definition 14 (Quiescence)
Let E ∈ IOLES(L) andC ∈ C(E), we have

C is quiescent⇔ ∀ !ω ∈ POMSET (Lo) : C 6
!ω
=⇒

We assume that we can observe quiescence by aδ action, i.e.C is quiescent iffC δ
=⇒.

Example 10
In the travel agency example, the configuration reached after logging in isnot quiescent as
there is an execution where the user’s data can be sent, i.e(⊥s after ?login) = {⊥, ?login} and

{⊥, ?login}
!us data
=⇒ , but the configuration reached after sending the user’s data is quiescent because

only input actions are enabled in all possible executions, i.e.(⊥s after (?login · !us data)) = {⊥

, ?login, !us data} and for everyω such that{⊥, ?login, !us data}
ω

=⇒, we haveEI
ω 6= ∅.

In the LTS framework, theproduced outputsof the systems are single elements of the alphabet of
outputs rather than sequences of them [11]. Consider a systems that produced!a followed by!b after
σ, then out(s after σ) = {!a} and out(s after (σ · !a)) = {!b} rather than out(s after σ) = {!a · !b}.
A first extension proposed by the authors [26] considers that the outputs produced by the system
in response to stimuli could be elementary actions as well as sets of concurrent actions. However,
here we need any set of outputs to be entirely produced by the system under test before we send a
new input; this is necessary to detect outputs depending on extra inputs. Infact, suppose one has
two concurrent outputsout1 andout2 depending on inputin1 and another inputin2 depending on
both outputs. Clearly, an implementation that acceptsin2 beforeout2 should not be considered as
correct, but ifin2 is sent too early to the system, we may not know if the occurrence ofout2 depends
or not onin2. For this reason, Definition 15 defines the expected outputs from a configuration as
the pomset of outputs leading to a quiescent configuration. Such a configuration always exists, and
is finite by Assumption 3.

However, conformance of output pomsets is not always captured by isomorphism. Consider again
the example presented in the paragraph above and considerout1 andout2 as weakly concurrent.
After in1 the system produces outputsout1 and out2 which can be observed concurrently or
in any order (due to the relaxed executions). We want to compare the produced outputs of the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

14 H. PONCE DE LÉON, S. HAAR, D. LONGUET

implementation with those of the specification, but as we allow the implementation to order
these outputs, these set can not be directly compared by set inclusion. Any produced output in
the implementation should refine some produced output in the specification (seenext section).
Here, bothout1 · out2 and out2 · out1 can be inferred fromout1 wco out2. We only consider
out1 wco out2, which is the “most abstract” pomset representing both orders, i.e. the minimal
pomset w.r.t.⊑, as it is sufficient to compare outputs w.r.t refinement.

Definition 15 (Produced outputs)
Let E ∈ IOLES(L) andC ∈ C(E), we define

out(C) , min
⊑

{!ω ∈ POMSET (Lo) | C
!ω
=⇒ C ′ ∧ C ′ δ

=⇒} ∪ {δ | C
δ

=⇒}

Example 11
The only output produced by the system of Figure 4 after logging in is the user’s data, i.e.
out(⊥s after ?login) = {!us data} and after this output, a quiescent configuration is reached,
then out(⊥s after (?login · !us data)) = {δ}. If a train ticket is chosen, different prices may
be produced, i.e. out(⊥s after (?login · !us data · ?train)) = {!t price1, !t price2}. The outputs
after selecting the insurance are weakly concurrent and can be observed in different ways
(concurrently or in any order), however we only consider the⊑-minimal outputs, and therefore
out(⊥s after (?login · !us data · ?insurance)) = {!ins price co !ins data}.

3.3. Refusals

The ioco theory assumes the input enabledness of the implementation, i.e. in any state of the
implementation, every input action is enabled. This assumption is made to avoid computation
interference [37] in the parallel composition between the implementation and the test cases.
However, as explained by Heerink [38] and Lestiennes and Gaudel [14], even if many realistic
systems can be modeled with such an assumption, there remains a significant portion of realistic
systems that cannot. An example of such a system is an automatic cash dispenser where the action
of introducing a card becomes (physically) unavailable after inserting a card, as the automatic cash
dispenser is not able to swallow more than one card at a time. Furthermore, thistheory proposes test
cases that are always capable of observing every output producedby the system, a not very realistic
situation in a distributed environment.

In order to overcome these difficulties, Heerink [38] distributes the points of control and
observation, and the input enabledness assumption is weakened by the following assumption: “if
an input action can be performed in a control point, all the inputs actions of that control point can
be performed”. Refused inputs in the implementation are made observable by aspecialξ-action (as
quiescence is observable by aδ action). Lestiennes and Gaudel [14] enrich the system model by
refusedtransitions and a set ofpossibleactions is defined in each state. Any possible input in a
given state of the specification should be possible in a correct implementation.

Our approach is closer to the one of Lestiennes and Gaudel; anypossible inputin a configuration
of the specification should also be possible in the implementation (or any input refused by the
implementation should be refused by the specification). This implies that we assume that there exists
a way to observe the refusal of an input by the implementation during testing. This assumption is
quite natural, for instance in the case of the cash dispenser which cannotaccept more than one card.
One can consider that the system under test would display an error message or a warning in case it
cannot handle an input the test sends.

In an observation, an input action may be preceded by an output that wasspecified to be weakly
concurrent as it is the case with!us data and ?train in ω2. Therefore?train should still be
considered as possible even if the!us data output has not been produced yet. This is similar in
remote testing [39] where communication between test cases and the SUT is asynchronous and a
new input can be sent even if an output that precedes it was not still produced.

The possible inputs of a configuration are those that are enabled or will beenabled after producing
some outputs. As in the case of produced outputs, we consider the set of⊑-minimal inputs.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 15

Definition 16 (Possible inputs)
Let E ∈ IOLES(L) andC ∈ C(E), we define

poss(C) , min
⊑

{?ω ∈ POMSET (Li) | C
?ω
=⇒ ∨∃!ω ∈ POMSET (Lo) : C

!ω
=⇒ C ′ ∧ C ′ ?ω

=⇒}

Example 12
Consider the IOLESs of Figure 4. The first possible input is the logging in, followed by the
selections of tickets and insurance. These selections are possible either alone or concurrently,
i.e. poss(⊥i1) = {?login, ?login · ?insurance, ?login · ?train, ?login · ?plane, ?login ·
(?insurance co ?train), ?login · (?insurance co ?plane)}.

In order to allow the observation of the possible inputs of the system under test, a configuration
where inputs are possible should not alternatively allow the production of outputs. As a matter of
fact, if an input and an output are in conflict in a given configuration, once the output is produced,
the input is not enabled anymore. Such configurations would prevent from observing the possible
inputs of the system under test. For this reason, we restrict the form of labeled event structures we
consider with the following assumption.

Assumption 4
We will only consider IOLES such that there is no immediate conflict between input and output
events, i.e.∀e ∈ EI , e′ ∈ EO : ¬(e # e′).

Note that a similar assumption was also made by Gaudel et al [14], where such specifications are
called IO-exclusive. Under assumption 4, no enabled input can bedisabledby the production of
outputs: to disable an input, someconflicting inputmust be made.

Proposition 1
Let E ∈ IOLES(L) such thatE satisfies Assumption 4. LetC,C ′ ∈ C(E) such that there exists

!ω ∈ POMSET (Lo), C
!ω
=⇒ C ′ andC ′ is quiescent. Then any possible input inC is a possible

input inC ′, i.e. poss(C) = poss(C ′).

Proof
Let us assume that?ω ∈ poss(C) for a non quiescent configurationC. We have then that either

C
?ω
=⇒, or we can reach fromC a quiescent configurationC ′ such thatC ′ ?ω

=⇒. The result is

immediate for the second case. If it is the case thatC
?ω
=⇒, let C ′′ be the quiescent configuration

reachable from it by some!ω, i.e.C !ω
=⇒ C ′′ andC ′′ is quiescent. We have two possible observations

?ω and !ω at the same configurationC, and hence its events must be in immediate conflict or
concurrent. By the assumption, we know they are concurrent (they arenot in immediate conflict)

and then they remain observable after some of them have been observed,i.e.C !ω
=⇒ C ′′ andC ′′ ?ω

=⇒.
Finally ?ω ∈ poss(C ′′).

We now have all the elements to define a conformance relation for IOLES thatis based on the
observation notions of traces, refusals and quiescence.

4. THE CONFORMANCE RELATION:co-ioco

The activity of testing relies crucially on the definition of aconformancerelation that specifies
which observed behaviors must be considered conforming, ornot conforming, to the specification.
Aceto et al [34] propose several testing equivalences depending in the chosen semantics for event
structures. The authors [26] propose two extensions for theioco conformance relation proposed by
Tretmans [40], one for the interleaving semantics and another for the partial order one. The input
enabledness assumption can be dropped and the conformance relation enlarged in order to observe
refusals [27]. Actions specified as concurrent must occur independently (on different processes) in
any conformant implementation. Here, since we refine the semantics of IOLESwith strong and

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

16 H. PONCE DE LÉON, S. HAAR, D. LONGUET

?login

⊥

!us data

?plane

!p price

?train

!t price2 !t price1

?insurance

!ins price

!ins data

i1

Figure 9. A correct implementation w.r.tco-iocoof the travel agency of Figure 4.

weak concurrency, we need to refine the conformance relationco-ioco in order to take these two
interpretations of concurrency into account.

Our conformance relation for labeled event structures can be informally described as follows.
The behavior of a correctco-ioco implementation after some observations (obtained from the
specification) should respect the following restrictions:

1. any output produced by the implementation should be produced by the specification;
2. if a quiescent configuration is reached in the implementation, this should alsobe the case in

the specification;
3. any time an input is possible in the specification, this should also be the case inthe

implementation;
4. strongly concurrent events are implemented concurrently, while weaklyconcurrent events

may be ordered.

Before the definition of the conformance relation itself, we need a few more technical definitions
in order to be able to compare the inputs and outputs of the system under test tothose of its
specification.

Concurrent Completeness. As two inputs may be weakly concurrent in the specification, we
want to accept an implementation where they are only implemented in one order. Suppose

there exists two weakly concurrent inputsin1, in2 such that⊥s
in1 co in2=⇒ , then poss(⊥s) =

{in1, in2, in1 co in2}. Now consider an implementation that orders them, e.g. poss(⊥i) =
{in1, in1 · in2}. We cannot compare the possible inputs of both systems w.r.t set inclusion because
we want inputs to be implemented inat leastone of the allowed orders.

We expect any pomset of possible inputs in the specification to be implemented either as such or
as one of its refinements. However, this is not enough. In the example presented in the paragraph
above there is no possible input of the implementation (in its initial configuration) that refinesin2.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 17

In addition, our definition of possible inputs accepts partial orders with somecausality as in the
case ofs where we have?login · (?insurance co?train) ∈ poss(⊥s). However, we may add some
order for a weakly concurrent output (as is the case of!us data in i1) and therefore we cannot find a
possible input in the implementation that refines one of the specification. For thisreason, we restrict
to concurrent complete setsof inputs.

Definition 17 (Concurrent Complete Set)
Letω ∈ POMSET (L) andC ∈ C(E), we say thatω is aconcurrent complete setin C iff any other
execution fromC (without causality) does not contain events that are concurrent to thoseof ω

cc(ω,C) ⇔ ω = max
⊆

{ω | C
ω

=⇒ ∧ ≤ω= ∅}

Example 13
Consideri1 from Figure 9. There,?insurance is possible after logging in and sending the data, i.e.

(⊥i1 after (?login · !us data))
?insurance

=⇒ . However this input is not a concurrent complete set as it

can be “extended” by concurrent events, i.e.(⊥i1 after (?login · !us data))
?insurance co ?train

=⇒ .

Now, possible inputs are checked in several steps: we first find a refinement for?login from the
initial configuration, and later a refinement for?insurance co ?train from {?login}.

As explained above, the possible inputs of the specification cannot be directly compared with
those of the implementation. We want any concurrent complete input of the specification without
causality to be implemented by one of its refinements (as⊑ is reflexive, the input can be
implemented as it is specified).

Definition 18 (Input refinement)
Let C,C ′ ∈ C(E) we define

poss(C) ≫+ poss(C ′) ⇔ ∀?ω ∈ poss(C) : (cc(?ω,C) ⇒ ∃?ω′ ∈ poss(C ′) : ω ⊑ ω′)

Analogously, outputs cannot be compared directly by set inclusion; we need every output
produced by the implementation to refine some output of the specification.

Definition 19 (Output abstraction)
Let C,C ′ ∈ C(E) we define

out(C) ≫− out(C ′) ⇔ ∀x ∈ out(C) : ∃x′ ∈ out(C ′) : x′ ⊑ x

Notice thatδ only refines itself, therefore ifδ ∈ out(C) and out(C) ≫− out(C ′) thenδ ∈ out(C ′).

The co-ioco Conformance Relation. Now requirements 1, 2, 3 and 4 can be formalized by the
following conformance relation.

Definition 20 (co-ioco)
Let i, s ∈ IOLES(L), then

i co-iocos ⇔ ∀ω ∈ traces(s) :
poss(⊥s after ω) ≫+ poss(⊥i after ω)

out(⊥i after ω) ≫− out(⊥s after ω)

Example 14(Order of Weakly Concurrent Events)
The implementationi1 of the travel agency proposed in Figure 9 orders some weakly concurrent
events. The outputs!ins price and!ins data are implemented sequentially instead of concurrently,
but the output produced (!ins price · !ins data) refines an output produced by the specification
(!ins price co !ins data). Some order is also added between inputs?insurance, ?train, ?plane and
output !us data. However, these inputs depend on the output, and therefore the produced outputs
in the implementation are those specified. Even if some order is added, by Proposition 1, every
possible input of the specification is implemented. We can conclude thati1 co-iocos.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

18 H. PONCE DE LÉON, S. HAAR, D. LONGUET

?login

⊥

?plane

!p price

?train

τ

!t price2 !t price1

?insurance

!ins price

!ins data

!us data

i2

Figure 10. Output depending on extra input.

?login

⊥

!us data

?plane

!p price

?train

!t price2 !t price1

?insurance

!ins price

!ins data

?boat !b price

i3

Figure 11. Extra conflicting inputs.

Events ?insurance and !us data are ordered in the opposite way in implementationi2 of
Figure 10 (?insurance ≤!us data). A quiescent configuration is reached after logging in, i.e.
out(⊥i2 after ?login) = {δ} while out(⊥s after ?login) = {!us data} and then¬(i2 co-iocos).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 19

We can conclude that whenever an input and an output are weakly concurrent, then if ordering
is added in a conformant implementation, the output should precede the input.

?login

⊥

!us data

?plane

!p price

?train

!t price2 !t price1

?insurance

!ins price

!ins data

?hotel !ho price

i4

Figure 12. Extra concurrent inputs.

Example 15(Extra Inputs)
The behaviors of the implementation and the specification are compared after some observations
are made. These observations are taken from the specification (they aretraces ofs in Figure 4),
therefore, there is no restriction for the implementation about how to react to unspecified inputs.
Figure 11 shows a possible implementationi3 that also allows the user to choose a boat ticket.
Even if this implementation may produce an extra output (!b price), this output is only produced
after the boat ticket has been chosen, but the behavior of the system after choosing a boat ticket
is not specified. Finally, we havei3 co-iocos. Figure 12 presents implementationi4 that allows
the user to concurrently chose for a hotel. We consider concurrent complete possible inputs only
in the specification; thus the?hotel action and its corresponding output are never tested. As every
concurrent complete possible input of the specification is refined by one of the implementations, we
can conclude thati4 co-iocos.

Example 16(Refused Inputs)
The conformance relation considers the input actions that the implementation mayrefuse.
Figure 13 presents two possible implementationsi5 and i6 of the travel agency. The one
on the left removes the possibility to choose an insurance, while the one on theright
removes the choice for a train ticket. In the specification, we have that poss(⊥s after ?login) =
{?insurance, ?train, ?plane, ?insurance co ?train, ?insurance co ?plane}, but ?insurance is
not part of any possible input ini5, i.e. poss(⊥i5 after ?login) = {?train, ?plane} and finally
¬(i5 co-iocos). The ?train action is neither part of a possible input ini6, i.e. poss(⊥i6

after ?login) = {?insurance, ?plane, ?insurance co ?plane} and then¬(i6 co-iocos).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

20 H. PONCE DE LÉON, S. HAAR, D. LONGUET

?login

⊥

!us data

?plane

!p price

?train

!t price2!t price1

i5

?login

⊥

!us data

?plane

!p price

?insurance

!ins price

!ins data

i6

Figure 13. Refused inputs.

Example 17(Extra/incomplete Outputs)
The second condition of the conformance relation establishes that all the outputs produced by
the implementation should be specified. Consider the implementationi7 presented in Figure
14: after choosing the plane ticket, the implementation can produce an output with the ticket
price, or an error message due to the fact that there are no tickets available, i.e. out(⊥i7

after (?login · !us data · ?plane)) = {!p price, !p full}, but !p full is not a possible output in
the specification, i.e.!p full 6∈ out(⊥s after (?login · !us data · ?plane)) = {!p price}, therefore
¬(i7 co-iocos). The conformance relation only considers “complete” outputs (those that lead to
a quiescent configuration), while incomplete outputs lead to non conformance. Implementationi7
also shows an example of this: after choosing the insurance, only its price isproduced, i.e. out(⊥i7

after (?login · !us data · ?insurance)) = {!ins price}. This output does not refine any produced
output of the specification, as some insurance data should also be produced (either concurrently or
in some order), i.e. out(⊥s after (?login · !us data · ?insurance)) = {!ins price co !ins data},
and again¬(i7 co-iocos).

Example 18(Extra Quiescence)
The second condition of the conformance relation stipulates thatabsenceof outputs can only
occur when it is specified. Figure 15 shows an implementationi8 that does not send the
user’s data after logging in, thus a quiescent configuration is reached after logging in, i.e.
out(⊥i8 after ?login) = {δ}, but this quiescence is not specified, i.e.δ 6∈ out(⊥s after ?login) =
{!us data}, and¬(i8 co-iocos).

Comparing the Conformance Relations. We present now a comparison between the previous
conformance relations [26, 27] and the one presented in this paper. Thefirst co-iococonformance
relation [26] allows two different semantics. Under interleaving semantics thisrelation boils down
to ioco while partial order semantics allows to distinguish true concurrency from interleavings.
The second notion of conformance [27] only considers partial order semantics: events specified as
concurrent should be implemented as such. In addition the input enabledness assumption of the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 21

?login

⊥

!us data

?plane

!p price !pl full

?train

!t price2!t price1

?insurance

!ins price

i7

Figure 14. Extra/Incomplete Outputs.

?login

⊥

?plane

!p price

?train

!t price2!t price1

?insurance

!ins price

!ins data

i8

Figure 15. Extra Quiescence.

implementation is dropped and we allow to test for refusals. Finally, as explained above, under
the definition ofco-iocowe give in this paper, implementations where events specified as weakly
concurrent are ordered are considered as correct.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

22 H. PONCE DE LÉON, S. HAAR, D. LONGUET

When every pair of concurrent event is specified as strongly concurrent (there are not weakly
concurrent events), theco-ioco relation presented in this paper boils down to the second
conformance relation [27]. In addition, if we assume that the implementation is input enabled, then
the first [26] and second conformance relation [27] (with partial ordersemantics) are equivalent.
Finally, when there is no concurrency at all (the system is sequential), thefirst relation [26] boil
down toioco. These results are summarized in the following table.

Assumptions Results
co= sco co-ioco= [27]

co= sco∧ input enabledness of the SUT co-ioco= [27] = [26]
co= sco∧ input enabledness of the SUT∧ co= ∅ co-ioco= [27] = [26] = ioco

5. A TESTING FRAMEWORK FOR LABELED EVENT STRUCTURES

In section 4 we have formally defined what it means for an implementation to conform
to its specification, and we have seen several examples of conforming andnon conforming
implementations. Now, we need a way to test this notion of conformance. In this section we define
the notions of test cases and test suites, as well as their interaction with the implementations and we
give sufficient conditions for detecting all and only incorrect implementations.

In order to formally reason about implementations, we make the testing assumptionthat the
implementation under test can be modeled by an IOLES.

5.1. Test Cases and Test Suites

A test caseis a specification of the tester’s behavior during an experiment carried out on the
system under test. In such an experiment, the tester serves as a kind of artificial environment of
the implementation. The output† actions are observed, but not controlled by the tester; however, the
tester does control the input ones. It follows that there should be no choices between them, i.e. the
next (set of concurrent) input(s) to be proposed should be unique, therefore noimmediate conflict
between inputsshould exist in a test case.

This property is not enough to avoid all choices in a test case: if we allow thetester to reach
more than one configuration after some observation and each of them enables different inputs, there
is still some (nondeterministic) choice for the tester about the next input to propose even if those
inputs are not in immediate conflict. We require thus determinism: the reached configuration after
some observation should be unique.

Finally, we require the experiment to finish, therefore the test case shouldbe finite.
We model the behavior of the tester by a deterministic event structure with a finiteset of events

and without immediate conflicts between its inputs.

Definition 21 (Test Case / Test Suite)
A test case is a input/output labeled event structuret = (Et,≤t,#t, λt) such that

1. t is deterministic,
2. (EI

t × EI
t) ∩#t = ∅,

3. Et is finite

A test suiteis a set of test cases.

Example 19
Figure 16 presents three event structures. The behavior oft1 is infinite which prevents it from being
a test case;t2 is not a test case either since there is an immediate conflict betweenin2 andin3. The
inputsin3 andin4 are in conflict int3, but this conflict is not immediate. In additionEt3 is finite
andt3 is deterministic, thereforet3 is a test case.

†When we refer to inputs/outputs, we refer to input or output from the point of view of the implementation. We do not
assume, as it is usual, that the test case is a “mirror” of the specification.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 23

in1

⊥

out2out1

in2

out3 out4

.

t1

⊥

in1

out1

in3in2

out2 out3

t2

⊥

in1

in2

out2out1

in4in3

t3

Figure 16.Left : an infinite event structure,Center: immediate conflict between inputs,Right: a test case

We are interested in the interaction between the test case and the implementation (called test
execution) in order to give averdict about the success or failure of the test w.r.t. the conformance
relation. Verdicts are usually modeled via a labeling function from the states ofthe test case to the
set{pass, fail}. Only leaves are labeled, and apassverdict can only be reached after observing
some output of the implementation (in this framework,δ is considered an output). One possibility
would be to label configurations with verdicts, but as there is no event labeled byδ, i.e. observing
δ does not lead to a new configuration, we need to model verdicts differently. As in the case of
quiescence, we do not define verdicts syntactically, but rather semantically.

5.2. Test Execution and Verdicts

The interaction between two systems is usually formalized by their parallel composition. This
composition assumes that both systems are always prepared to accept an output that the other
may produce. In the sequential setting, it is assumed that the implementation accepts any input the
tester can propose (input enabledness of the implementation). Analogously, the tester should be able
to synchronize with any output the implementation may produce. Constructing anevent structure
having such a property is almost impossible due to the fact that it should not only accept any output,
but also all the possible ways such an output could happen (concurrently/sequentially with other
outputs). We propose another approach to formalize the interaction between the implementation
and a test case.

Deadlocks of the parallel composition are used to give verdicts about the test run in theioco
framework. Such deadlocks are produced in the following situations:

1. the implementation proposes an output or aδ action that the test case cannot accept,
2. the test case proposes an input that the implementation cannot accept, or
3. the test case has nothing else to propose (it deadlocks).

The first two situations lead to afail verdict, and the last one to apassone. For obtaining such
verdicts, we will define the notion of blocking in the test execution.

After observing a trace, the test execution can block because of an output the implementation
produces for three reasons. First, if after such an observation the test case cannot accept that output.
Second, the test case can accept such output, but this is not the maximal output it can accept (the
reached configuration is not quiescent). Finally the test execution blocksif the implementation
reaches a quiescent configuration and the test case does not.

Such situations can be simplified to the observation of an element in the set of outputs produced
by the implementation that does not refine any output of the test case, i.e.∃x ∈ out(⊥i after ω) :
∀x′ ∈ out(⊥t after ω) : x′ 6⊑ x wherex ∈ POMSET (Lo) ∪ {δ}.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

24 H. PONCE DE LÉON, S. HAAR, D. LONGUET

?login

⊥

?plane

!p price

?insurance

!ins price !ins data

!us data

t4

?login

⊥

?train

!t price2!t price1

?insurance

!ins price !ins data

!us data

t5

Figure 17. Two test cases for the travel agency in Figure 4

Definition 22 (Blocking because of an output)
Let i, t ∈ IOLES(L) andω ∈ POMSET (L), we have

blocksO(i, t, ω) ⇔ out(⊥i after ω) 6≫− out(⊥t after ω)

Example 20
Consider the implementationi7, the test caset4 presented in Figure 17, and letω′

1 =
(?login · !us data · ?plane). We have that the test execution blocks afterω′

1 because the
implementation produces a!p full action (which leads to a quiescent configuration) and the test case
is not able to accept it, i.e.!p full ∈ out(⊥i7 after ω′

1), but ∀x ∈ out(⊥t4 after ω′
1) : x 6⊑ !p full,

and finally blocksO(i7, t4, ω′
1). If we considerω′

2 = (?login · !us data ·?insurance), the test
execution also blocks, because the!ins price action proposed by the implementation (leading
to a quiescent configuration) is enabled in the test case. However, the reached configuration
is not quiescent because!ins data is still enabled, i.e.!ins price ∈ out(⊥i7 after ω′

2),out(⊥t4

after ω′
2) = {!ins price co !ins data} and !ins price 6⊑ !ins price co !ins data. Finally

blocksO(i7, t4, ω′
2).

Blocking because of an output can also be caused by extra quiescence. Consider the
implementationi2 and the test caset4. We have that the test execution blocks after?login because
the implementation reaches a quiescent configuration, i.e.δ ∈ out(⊥i2 after ?login), but δ is not
observable in the test case, i.e.δ 6∈ out(⊥t4 after ?login), andblocksO(i2, t4, ?login). The same
holds fori8 and we haveblocksO(i8, t4, ?login).

The second blocking situation occurs when the test case proposes a concurrent complete set of
inputs that the implementation is not prepared to accept; but, as the implementation can add some
causality, we should also consider the inputs that will become enabled after producing some outputs,
i.e.∃?ω ∈ poss(⊥t after ω) : cc(?ω,⊥t after ω) ∧ ∀?ω′ ∈ poss(⊥i after ω) :?ω 6⊑ ?ω′.

Definition 23 (Blocking because of an input)
Let i, t ∈ IOLES(L) andω ∈ POMSET (L), we have

blocksI(i, t, ω) ⇔ poss(⊥t after ω) 6≫+ poss(⊥i after ω)

Example 21
Consider implementationi5 and test caset5 of Figure 17, the test execution blocks after logging
in because?insurance co ?train ∈ poss(⊥t5 after ?login), but the implementation is not able to
accept it (nor any of its refinements), i.e.∀?ω ∈ poss(⊥i5 after ?login) :?insurance co ?train 6⊑
?ω, andblocksI(i5, t5, ?login). If we consideri6 as the implementation, the test execution also

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 25

blocks because neither the?insurance co?train input action nor its refinements are possible in the
implementation andblocksI(i6, t5, ?login).

We can now define the verdict of the executions of a set of test cases witha given implementation.

Definition 24 (Failure of a test suite)
Let i be an implementation, andT a test suite, we have:

i fails T ⇔ ∃t ∈ T, ω ∈ traces(t) : blocksO(i, t, ω) ∨ blocksI(i, t, ω)

If the implementation does not fail the test suite, itpassesit, denoted byi passesT .

Example 22
Let T = {t4, t5} from Figure 17. We have seen in section 4 several situations that lead to thenon
conformance of an implementation. As seen in Example 20, the execution of the test caset4 with
the (non conforming) implementationsi2, i7, i8 leads to a blocking, so we havei2, i7, i8 fails T . We
saw in Example 21 that the test executions between the implementationsi5, i6 and the test caset5
block after logging in, therefore we also havei5, i6 fails T . We can conclude thatT is capable of
detecting the non conforming implementations presented in the last section. We can easily check
that the (correct) implementationsi1, i3, i4 passT .

5.3. Completeness of the Test Suite

We saw in Example 22 that all the possible situations seen in Section 4 that may leadto the
non conformance of the implementation are detected by the test suite{t4, t5}. When testing
implementations, we intend to reject all, and nothing but, non conformant implementations. A test
suite which rejects only non conformant implementations is calledsound, while a test suite that
accepts only conformant implementations is calledexhaustive. A test suite may not be sound if it
contains a test case which is too strict: for instance, a test case containing two weakly concurrent
events which would accept only implementations where these events are concurrent, thus rejecting
those ordering the events, even though they are correct w.r.tco-ioco. In other words, a sound test
suite does not produce false negatives. Conversely, a test suite will not be exhaustive if it is too loose
and accepts incorrect implementations. A sound and exhaustive test suite iscalledcomplete.

Definition 25 (Properties of test suites)
Let s be a specification andT a test suite, then

T is sound , ∀i : i fails T implies ¬(i co-iocos)
T is exhaustive , ∀i : i fails T if ¬(i co-iocos)
T is complete , ∀i : i fails T iff ¬(i co-iocos)

The following theorem gives sufficient conditions for a test suite to be sound.

Theorem1
Let s ∈ IOLES(L) andT a test suite such that

a) ∀t ∈ T : traces(t) ⊆ traces(s)
b) ∀t ∈ T, ω ∈ traces(t) : out(⊥s after ω) ⊆ out(⊥t after ω)
c) ∀t ∈ T, ω ∈ traces(t) : cc(?ω,⊥t after ω) ⇒ cc(?ω,⊥s after ω)

thenT is sound fors w.r.t co-ioco.

Notice that the trace inclusion required in a) ensures that any possible input in the test case is also
possible in the specification.

Proof

T is sound fors w.r.t. co-iocoiff for every implementationi that fails the test suite, we have that
it does not conform to the specification. We assumei fails T and by Definition 24 we have:

∃t ∈ T, ω ∈ traces(t) : blocksO(i, t, ω) ∨ blocksI(i, t, ω)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

26 H. PONCE DE LÉON, S. HAAR, D. LONGUET

and at least one of the following cases holds:

1. the test execution blocks afterω because of an output produced by the implementation:

∃ω ∈ traces(t) : blocksO(i, t, ω)
implies {∗ Definition 22∗}

∃ω ∈ traces(t) : out(⊥i after ω) 6≫− out(⊥t after ω)
implies {∗ Definition 19∗}

∃ω ∈ traces(t) : ∃x ∈ out(⊥i after ω) : ∀x′ ∈ out(⊥t after ω) : x′ 6⊑ x

implies {∗ Assumptions a) and b)∗}
∃ω ∈ traces(s) : ∃x ∈ out(⊥i after ω) : ∀x′ ∈ out(⊥s after ω) : x′ 6⊑ x

implies {∗ Definition 19∗}
∃ω ∈ traces(s) : out(⊥i after ω) 6≫− out(⊥s after ω)

implies {∗ Definition 20∗}
¬(i co-iocos)

2. the test execution blocks afterω because of an input proposed by the test case:

∃ω ∈ traces(t) : blocksI(i, t, ω)
implies {∗ Definition 23∗}

∃ω ∈ traces(t) : poss(⊥t after ω) 6≫+ poss(⊥i after ω)
implies {∗ Definition 18∗}

∃ω ∈ traces(t) : ∃?ω ∈ poss(⊥t after ω) :
cc(?ω,⊥t after ω) ∧ ∀?ω′ ∈ poss(⊥i after ω) : !ω 6⊑ !ω′

implies {∗ Assumptions a) and c)∗}
∃ω ∈ traces(s) : ∃?ω ∈ poss(⊥s after ω) :
cc(?ω,⊥s after ω) ∧ ∀?ω′ ∈ poss(⊥i after ω) : !ω 6⊑ !ω′

implies {∗ Definition 18∗}
∃ω ∈ traces(s) : poss(⊥s after ω) 6≫+ poss(⊥i after ω)

implies {∗ Definition 20∗}
¬(i co-iocos)

We can easily see that the test suite{t4, t5} proposed in Figure 17 satisfies the three properties of
Theorem 1 and thus is sound w.r.t the specifications.

The following theorem gives sufficient conditions for the test suite to be exhaustive.

Theorem2
Let s ∈ IOLES(L) andT a test suite such that

a) ∀ω ∈ traces(s) : ∃t ∈ T : ω ∈ traces(t)
b) ∀t ∈ T, ω ∈ traces(t) : out(⊥t after ω) ⊆ out(⊥s after ω)
c) ∀t ∈ T, ω ∈ traces(t) : cc(?ω,⊥s after ω) ⇒ cc(?ω,⊥t after ω)

thenT is exhaustive fors w.r.t co-ioco.

Proof
We need to prove that ifi does not conform tos theni fails T . We assume¬(i co-iocos), then at
least one of the following two cases holds:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 27

1. The implementation does not conform to the specification because an output produced by the
implementation does not refine any specified output:

∃ω ∈ traces(s) : out(⊥i after ω) 6≫− out(⊥s after ω)
implies {∗ Definition 19∗}

∃ω ∈ traces(s) : ∃x ∈ out(⊥i after ω) : ∀x′ ∈ out(⊥s after ω) : x′ 6⊑ x

implies {∗ Assumptions a) and b)∗}
∃t ∈ T, ω ∈ traces(t) : ∃x ∈ out(⊥i after ω) : ∀x′ ∈ out(⊥t after ω) : x′ 6⊑ x

implies {∗ Definition 19∗}
∃t ∈ T, ω ∈ traces(t) : out(⊥i after ω) 6≫− out(⊥t after ω)

implies {∗ Definition 22∗}
∃t ∈ T, ω ∈ traces(t) : blocksO(i, t, ω)

implies {∗ Definition 24∗}
i fails T

2. The implementation does not conform to the specification because an inputfrom the
specification is not possible in the implementation (neither its refinements):

∃ω ∈ traces(s) : poss(⊥s after ω) 6≫+ poss(⊥i after ω)
implies {∗ Definition 18∗}

∃ω ∈ traces(s) : ∃?ω ∈ poss(⊥s after ω) :
cc(?ω,⊥s after ω) ∧ ∀?ω′ ∈ poss(⊥i after ω) : !ω 6⊑ !ω′

implies {∗ by Assumption c) we can findt such that cc(?ω,⊥t after ω) and by
Assumption a)?ω ∈ poss(⊥t after ω) ∗}
∃t ∈ T, ω ∈ traces(t) : ∃?ω ∈ poss(⊥t after ω) :
cc(?ω,⊥t after ω) ∧ ∀?ω′ ∈ poss(⊥i after ω) : !ω 6⊑ !ω′

implies {∗ Definition 18∗}
∃t ∈ T, ω ∈ traces(t) : poss(⊥t after ω) 6≫+ poss(⊥i after ω)

implies {∗ Definition 23∗}
∃t ∈ T, ω ∈ traces(t) : blocksI(i, t, ω)

implies {∗ Definition 24∗}
i fails T

We can see that the test suite{t4, t5} from Figure 17 also satisfies the conditions of Theorem 2,
therefore it is exhaustive and thus complete.

While sufficient conditions for soundness and exhaustiveness of testsuites have been given, we
need more: in practice, only a finite number of test cases can be executed;hence we need a method to
select a finite set of relevant test cases covering as many behaviors aspossible (thus finding as many
anomalies as possible). The behavior of the system described by the specification consists usually
of infinite traces. However, in practice, these long traces can be considered as a sequence of (finite)
“basic” behaviors. Any “complex” behavior is built from such basic behaviors. A criterion allowing
to cover once each basic behavior described by the specification is presented by the authors [27]
using a proper notion of complete prefixes [41].

6. TEST DERIVATION

We have seen sufficient conditions to ensure the completeness of a test suite. In this section we will
explain how to construct a test suite that fulfills such conditions.

6.1. An Algorithm to Construct a Complete Test Suite

We now recall the algorithm to build a test suite in theioco setting [40] to explain the main
differences with our test derivation algorithm. In addition we prove that thetest suite obtained is
complete w.r.tco-iocoand analyze the complexity of our approach.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

28 H. PONCE DE LÉON, S. HAAR, D. LONGUET

Test Derivation for LTS. In the ioco theory, the behavior of a test case is described by a (finite)
tree with verdicts (pass/fail) in the leaves, where in each internal node either one specific input
action can occur (also any possible output is accepted), or every outputs and the special action
θ can occur. The special labelθ 6∈ L ∪ {δ} is used in a test case to detect quiescent states of an
implementation, so it can be thought of as the communicating counterpart of aδ-action.

The test cases are denoted using a process-algebraic notation: “;” denotes action prefix and “+”
denotes choice. Moreover, forS a set of states,S after a denotes the set of states which can be
reached from any state inS via actiona. LetS be a non-empty set of states, with initiallyS = {s0}.
Then a test caset is obtained fromS by a finite number of recursive applications of one of the
following three nondeterministic choices:

1. (* terminate the test case *)
t := pass

2. (* give a next input to the implementation *)
t := a; ta

+ {x; fail | x ∈ LO, x 6∈ out(S)}
+ {x; tx | x ∈ LO, x ∈ out(S)}

wherea ∈ LI such thatS after a 6= ∅, ta is obtained recursively by applying the algorithm
for S after a, and for eachx ∈ out(S), tx is obtained by recursively applying the algorithm
for the set of statesS after x.

3. (* check the next output of the implementation *)
t := {x; fail | x ∈ LO, x 6∈ out(S)}

+ {θ; fail | δ 6∈ out(S)}
+ {x; tx | x ∈ LO, x ∈ out(S)}
+ {θ; tθ | δ ∈ out(S)}

wheretx andtθ are obtained by recursively applying the algorithm forS after x andS after δ
respectively.

Test Derivation for IOLES. The basic idea of our algorithm is to divide the specification into
behaviors triggered by incompatible inputs, that are prefixes of the specification (with a particular
property that we call input choice free, to be defined below), and then tobuild test cases from finite
prefixes of these event structures.

We have explained in the previous section the reason to avoid immediate conflictbetween input
events in a test case. Hence we start by dividing the specification in prefixes in a way that any choice
between inputs is represented by one of those prefixes. We call such prefixesinput choice free.

Definition 26 (Input choice free IOLES)
Let E = (E,≤,#, λ) ∈ IOLES(L), we have

E is input choice free⇔ (EI × EI) ∩# = ∅

Algorithm 1 builds an input choice free IOLES by removing silent actions andresolving
immediate conflicts between inputs, while accepting several branches in caseof conflict between
outputs (note that “mixed” immediate conflicts between inputs and outputs have been ruled out by
Assumption 4) and conserving concurrency. At the end of the algorithm, all input conflicts have
been resolved in one way, following one fixed strategy of resolution of immediate input conflicts.
Such a strategy can be represented as a linearization of the causality relation that specifies in which
order the events are selected by the algorithm. In order to cover the other branches, the algorithm
must be run several times withdifferentconflict resolution schemes, i.e. different linearizations, to
obtain a test suite that represents every possible event in at least one test case. However, as it can be
seen in Section 6.3, the number of linearizations needed is bounded by the number of direct conflicts
between inputs.

Definition 27 (Linearization of a partial order)
LetE = (E,≤,#, λ) ∈ IOLES(L). A total orderR overE is a linearization of≤ if for all e, e′ ∈ E

we have thate ≤ e′ implieseRe′.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 29

Analogous to the non deterministic choice of the next input in the algorithm for LTSs (point 2.),
assume a linearization is selected non deterministically. The algorithm for LTSs builds the test case
that accepts any output the implementation may produce (points 2. and 3.) returning apassverdict
if the output was specified and afail one if not. Contrary to this, we build a test case that only
allow to accept those outputs that were specified. Finally, the algorithm for LTSs allows to chose for
termination (point 1.) while the termination of our algorithm is given by the finiteness of the IOLES
that is given as an input to the algorithm (see Theorem 3).

Given a deterministic specification that satisfies Assumption 4 and a linearizationof its causality
relation, Algorithm 1 constructs an input choice free prefix of the specification as can by seen in
Example 23. It is worth noticing that the algorithm does not terminate if the eventstructure is
infinite. However, as it can be seen in Theorem 3, the algorithm is only applied to finite IOLES. A
parameter can be added to stop the algorithm at a given depth of the specification, customized by
the user [27].

Algorithm 1 Calculate an input choice free prefix of a given event structure

Require: s = (E,≤,#, λ) ∈ IOLES(L) : ∀e ∈ EI
s , e

′ ∈ EO
s : ¬(e #s e

′) , a linearizationR of ≤
Ensure: An input choice free prefix ofs

1: Ep := ∅
2: Etemp := E

3: while Etemp 6= ∅ do
4: em := min

R
(Etemp) /* the minimum always exists asR is total and finite */

5: Etemp := Etemp \ {em}
6: if ({em} × EI

p) ∩# = ∅ ∧ (〈em〉\Eτ) ⊆ Ep ∧ λ(em) 6= τ then
7: /* the current eventem is not in conflict with any event of the prefix, it is not a silent event and its past (not

considering silent events) is already in the prefix */

8: Ep := Ep ∪ {em}
9: end if

10: end while
11: ≤p := ≤ ∩ (Ep × Ep)
12: #p := # ∩ (Ep × Ep)
13: λp := λ|Ep

14: return p = (Ep,≤p,#p, λp)

6.2. IICS set

As it is explained above, we need first to be sure that the collection of linearizations that we use
considers all resolutions of immediate input conflicts, i.e. is rich enough to provide, for any given
immediate input conflict, a pair of linearizations that reverses the order on that pair.

Definition 28
Fix E ∈ IOLES(L), and letL be a set of linearizations of≤. ThenL is animmediate input conflict
saturated set(or iics set) forE iff for all e1, e2 ∈ EI such thate1#e2, there existR1,R2 ∈ L such
thate1R1e2 ande2R2e1.

Proposition 2
Let L be an iics set forE ande ∈ E with λ(e) 6= τ . There existsR ∈ L such thate belongs to the
set of events of an IOLESp constructed by Algorithm 1 andR.

Proof
Let p be the IOLES constructed by a fix linearizationR1. Supposee is not in p; then either(i)
e ∈ EI and{e} × EI

p ∩# 6= ∅ or (ii) [e\Eτ] 6⊆ Ep. In case(i), there existse′ ∈ EI
p such thate#e′

ande′R1e. As L is an iics set, we know there existR2 ∈ L such thateR2e
′ and then we can use

R2 to constructp′ with e belonging to its events. If(ii) holds, then there existse′ ∈ [e] such that
{e′} × EI

p∩ 6= ∅, and the analysis is analogous to the one in(i).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

30 H. PONCE DE LÉON, S. HAAR, D. LONGUET

The following result shows how to construct a test case for the specification from an input choice
free prefix of it.

Proposition 3
Let p be any input choice free prefix ofs. If t is a finite prefix ofp, thent is a test case.

Proof
Let t be a finite prefix ofp. We need to prove thatt is deterministic, that there is no immediate
conflict between its input events and that it is finite.

1. Asp is input choice free, there is no immediate conflict between its input actions. This is also
the case int as it is its prefix.

2. Its finiteness is immediate from the hypothesis.
3. As the specification is deterministic, so it isp and thereforet.

Let PREF(s) be the set of all finite prefixes ofs, we show now that Algorithm 1 is general
enough to produce a complete test suite from it.

Theorem3
FromPREF(s) and a given iics setL for s, Algorithm 1 yields a complete test suiteT .

Proof
Soundness:By Theorem 1 we need to prove: (1) the traces of every test case are traces of the
specification; (2) the outputs following a trace of the test are at least thosespecified; (3) any
concurrent complete set of possible input in the test case is concurrentcomplete in the specification.
(1) Trace inclusion is immediate since the algorithm only removes silent actions and resolves
conflicts. (2) For a testt and a traceω ∈ traces(t), if an output in out(⊥s after ω) is not in
out(⊥t after ω), it means either that it is in conflict with an input int, which is impossible by
Assumption 4, or that its past is not already int, which is impossible sinceω is a trace oft.
(3) As inputs are considered as concurrent complete, if the test case has a concurrent complete
possible input that is not concurrent complete in the specification, then either a new input event was
introduced (which is not possible as the test case is a prefix of the specification) or because some
concurrency had been removed; but this is not possible as only conflicting inputs are removed.

Exhaustiveness:By Theorem 2 we need to prove: (1) every trace is represented in at least one test
case; (2) the test case does not produce outputs that are not specified; (3) concurrent complete set
of inputs of the specification remain as concurrent complete sets in the test case. (1) Clearly, for all
ω ∈ traces(s) there exists at least one prefixc ∈ PREF(s) such thatω ∈ traces(c). By Proposition 2
we can findR ∈ L such that this trace remains in the test case obtained by the algorithm. (2-3) The
inclusion of outputs and preservation of concurrent complete sets is immediatesince the algorithm
does not add events.

Example 23
Let R1 = ?login → !us data → ?insurance → !ins price → !ins data → ?plane → !p price →
?train → τ → !t price2 → !t price1 and R2 = ?login → !us data → ?insurance →
!ins price → !ins data → ?train → τ → !t price2 → !t price1 → ?plane → !p price two total
orders of the events ofs. BothR1 andR2 are linearizations of≤s and form an iics set ofs. The
input choice free prefixt4 can be obtained by the Algorithm 1 usingR1 while t5 is obtained with
R2. As s is finite, by Theorem 3 we have that{t4, t5} is a complete test suite.

6.3. Upper Bound for the Complexity of the Method

The complexity of constructing a complete test suite depends on the size of the iics setL used: for
a finite prefix of the system, we need one test case for each linearization inL. We present an upper
bound for the size ofL and discuss informally how to improve on it.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 31

e1

⊥

e3
e2 e4

e5
e6

e7

e8

s5

Figure 18. An IOLES with three inputs in immediate conflict

Consider linearizationsR1 and R3 = ?login → ?plane → !p price → ?train → τ →
!t price2 → !t price1 → ?insurance → !ins price → !ins data → !us data. We can easily see
that some events of them commute, however, Algorithm 1 constructst4 whichever of them we use.
We have seen that some commutations of events in the linearization produce different test cases (as it
is the case ofR2 andt5). The concept of partial commutation was introduced by Mazurkiewicz [42]
where he defines atrace as a congruence of a word (or sequence) modulo identities of the form
ab = ba for some pairs of letters.

Let Σ be a finite alphabet (its elements are called letters) andI ⊆ Σ× Σ a symmetric and
irreflexive relation calledindependenceor commutation. The complement ofI is called the
dependencerelationD. The relationI induces an equivalence relation≡I overΣ∗. Two wordsx
andy are equivalent (x ≡I y) if there exists a sequencez1, . . . , zk of words such thatx = z1, y = zk
and for all1 ≤ i ≤ k there exists wordsz′i, z

′′
i and lettersai, bi satisfying

zi = z′iaibiz
′′
i , zi+1 = z′ibiaiz

′′
i , and(ai, bi) ∈ I

Thus, two words are equivalent by≡I if one can be obtained from the other by successive
commutation of neighboring independent letters.

For a wordx ∈ Σ∗ the equivalence class ofx under≡I is defined as[x]I , {y ∈ Σ∗ | x ≡I y}.

Example 24
ConsiderΣ = {a, b, c, d} andI = {(a, d)(d, a)(b, c)(c, d)}, we have:

[baadcb]I = {baadcb, baadbc, badacb, badabc, bdaacb, bdaabc}

As explained above, several linearizations of the causality relation build thesame test case,
therefore they can be seen as equivalent under some relation and we only need one representative
for each class. It is shown by Rozenberg and Salomaa [43] that every(Mazurkiewicz’s) trace has
a unique normal form (every trace in the equivalence class has the same one) and an algorithm is
given to construct it.

We have seen that the order between concurrent events or output events in immediate conflict do
not change the test cases constructed by Algorithm 1, but immediate conflictbetween inputs and
causality does. We propose the following independence relation:

Is , (E × E)\(≤ ∪ (# ∩ EI × EI))

For constructing a test case, we can consider only the normal form of allthe possible linearizations
(one representative per equivalence class) and therefore the cardinality of the test suite is bounded
by the number of equivalence classes under≡Is .

Lemma 1
Let K = |# ∩ (EI × EI)|, then Algorithm 1 needs to be run only2K times to obtain a complete
test suite.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

32 H. PONCE DE LÉON, S. HAAR, D. LONGUET

Example 25
Consider systems5 from Figure 18 ande2, e3, e4 ∈ EI . The dependence relation contains all
the pairs of events that are related either by causality or input immediate conflict. Now consider
R =⊥ e1e2e8e3e6e4e5e7 andR′ =⊥ e1e8e2e5e3e6e4e7 two linearizations of≤s. The Foata normal
form of bothR andR′ is (⊥)(e1)(e2)(e3)(e4)(e5e6e7e8), meaning that the order ofe5, e6, e7, e8 is
not really important for constructing the test case. For any linearization of≤s5 , its normal form is
one of the followings:

R1 = (⊥)(e1)(e2)(e3)(e4)(e5e6e7e8) R2 = (⊥)(e1)(e2)(e4)(e3)(e5e6e7e8)

R3 = (⊥)(e1)(e3)(e2)(e4)(e5e6e7e8) R4 = (⊥)(e1)(e3)(e4)(e2)(e5e6e7e8)

R5 = (⊥)(e1)(e4)(e2)(e3)(e5e6e7e8) R6 = (⊥)(e1)(e4)(e3)(e2)(e5e6e7e8)

However, linearizationsR1 andR2 lead to the same test case (the same happens forR3,R4 and
R5,R6). This is due to the fact that once we add an input event to the test case, all the other inputs
that are in immediate conflict with it will not be added, and their order is irrelevant. In the example
above, linearizationsR1,R3 andR5 construct a complete test suite.

7. CONCLUSION AND FUTURE WORK

We have presented a formal framework for conformance testing overconcurrentsystems whose
behavior is given in the form of labeled event structures. We propose todistinguish weak and strong
concurrency in the specification. Along with the definition of the conformance relationco-ioco
designed for such specifications, we have defined test cases and testexecutions, and proposed a
test case generation algorithm able to produce a complete test suite. This continues our previous
work [26, 27].

Future work includes to handle non-determinism in the specification, and drop Assumption 4 that
avoids conflicts between inputs and outputs. One way to avoid making such assumptions would
be to assume a fair scheduler. Otherwise, controllability of test cases must be ensured during their
construction [36], and the linearizations that are needed to build the test cases should not only
reverse the order between conflicting inputs, but also between conflictinginputs and outputs.

All notions of this article are defined in terms of events structures, which is thesemantic model
for several formalisms. However, real specifications are usually given in one of thesegenerator
formalisms, such as Petri nets or networks of automata, rather than as event structures. Our approach
therefore needs to come on top of anunfoldingmechanism that generates event structure semantics.
An algorithm for building test cases is given by the authors [27] based onan unfolding algorithm.
An implementation of this algorithm and the one presented in this article is planned based on the
MOLE tool [44], which builds a complete finite prefix of the unfolding of a net.

Another important dimension to be explored isdistribution of observation and of testing. The
dioco and associated relations studied by Hierons et al. [19, 45] allow to link the conformance of
local observations to theglobal conformance of the SUT. There, the underlying specification is a
multi-port IOTS; by contrast, we shall be studying multi-component, concurrent systems with local
observation, and distributed test suites to be developed. In another line ofwork, Longuet [46] studies
different ways of globally and locally testing a distributed system specified with Message Sequence
Charts, by defining global and local conformance relations, for which exhaustive test sets are built.
Moreover, conditions under which local testing is equivalent to global testing are established under
trace semantics. We are currently working on a generalization of those ideas.

REFERENCES

1. Milner, R.: Communication and concurrency. PHI Series in computer science. Prentice Hall (1989)
2. Hoare, T.: Communicating Sequential Processes. Prentice-Hall (1985)
3. ITU-TS: Recommendation Z.100: Specification and Description Language (2002)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED EVENT STRUCTURES 33

4. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implementations and their tests. In:
Conformance testing methodologies and architectures for OSI protocols. IEEE Computer Society Press (1995)
468–479

5. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science34 (1984) 83–133
6. Abramsky, S.: Observation equivalence as a testing equivalence. Theoretical Computer Science53(1987) 225–241
7. Brinksma, E.: A theory for the derivation of tests. In: Protocol Specification, Testing and Verification VIII, North-

Holland (1988) 63–74
8. Phillips, I.: Refusal testing. Theoretical Computer Science50 (1987) 241–284
9. Langerak, R.: A testing theory for LOTOS using deadlock detection. In: Protocol Specification, Testing and

Verification IX, North-Holland (1990) 87–98
10. Segala, R.: Quiescence, fairness, testing, and the notion ofimplementation. Information and Computation138(2)

(1997) 194–210
11. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software - Concepts and Tools17(3)

(1996) 103–120
12. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica24(2) (1987) 211–237
13. Heerink, L., Tretmans, J.: Refusal testing for classes of transition systems with inputs and outputs. In: Formal

Techniques for Networked and Distributed Systems. Volume 107 of IFIP Conference Proceedings. (1997) 23–38
14. Lestiennes, G., Gaudel, M.C.: Test de systèmes ŕeactifs non ŕeceptifs. Journal Européen des Systèmes Automatiśes

39(1-2-3) (2005) 255–270
15. Faivre, A., Gaston, C., Le Gall, P., Touil, A.: Test purpose concretization through symbolic action refinement. In:

Testing of Software and Communicating Systems. Volume 5047 of Lecture Notes in Computer Science., Springer
(2008) 184–199

16. J́eron, T.: Symbolic model-based test selection. Electronic Notesin Theoretical Computer Science240 (2009)
167–184

17. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in System Design34(3)
(2009) 238–304

18. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-time systems using
UPPAAL. In: Formal Methods and Testing. Volume 4949 of Lecture Notes in Computer Science., Springer (2008)
77–117

19. Hierons, R.M., Merayo, M.G., Ńuñez, M.: Implementation relations for the distributed test architecture. In: Testing
of Software and Communicating Systems. Volume 5047 of Lecture Notes in Computer Science., Springer (2008)
200–215

20. Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)
21. Peleska, J., Siegel, M.: From testing theory to test driver implementation. In: Formal Methods Europe. Volume

1051 of Lecture Notes in Computer Science., Springer (1996) 538–556
22. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. 1st edn. John Wiley & Sons, Inc., New

York, NY, USA (1999)
23. Ulrich, A., König, H.: Specification-based testing of concurrent systems. In: Formal Techniques for Networked

and Distributed Systems. Volume 107 of IFIP Conference Proceedings. (1997) 7–22
24. von Bochmann, G., Haar, S., Jard, C., Jourdan, G.V.: Testing systems specified as partial order input/output

automata. In: Testing of Software and Communicating Systems. Volume5047 of Lecture Notes in Computer
Science., Springer (2008) 169–183

25. Haar, S., Jard, C., Jourdan, G.V.: Testing input/output partial order automata. In: Testing of Software and
Communicating Systems. Volume 4581 of Lecture Notes in Computer Science., Springer (2007) 171–185

26. Ponce de Léon, H., Haar, S., Longuet, D.: Conformance relations for labeled event structures. In: Tests and Proofs.
Volume 7305 of Lecture Notes in Computer Science., Springer (2012) 83–98

27. Ponce de Léon, H., Haar, S., Longuet, D.: Unfolding-based test selection for concurrent conformance. In:
International Conference on Testing Software and Systems. Lecture Notes in Computer Science, Springer (2013)
To appear.

28. Kuske, D., Morin, R.: Pomsets for local trace languages. Journal of Automata, Languages and Combinatorics7(2)
(2002) 187–224

29. Mokhov, A., Yakovlev, A.: Conditional partial order graphs: Model, synthesis, and application. IEEE Transactions
on Computers59(11) (2010) 1480–1493

30. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysingunlinkability and anonymity using the applied pi calculus.
In: Computer Security Foundations, IEEE Computer Society (2010) 107–121

31. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. Theoretical Computer
Science13 (1981) 85–108

32. Langerak, R., Brinksma, E.: A complete finite prefix for process algebra. In: Computer Aided Verification. Volume
1633 of Lecture Notes in Computer Science., Springer (1999) 184–195

33. Winskel, G.: Event structures. In: Advances in Petri Nets. Volume 255 of Lecture Notes in Computer Science.,
Springer (1986) 325–392

34. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures. In: Mathematical Models for the
Semantics of Parallelism. Volume 280 of Lecture Notes in ComputerScience., Springer (1986) 1–20

35. Genc, S., Lafortune, S.: Distributed diagnosis of discrete-event systems using petri nets. In: International
Conference on Applications and Theory of Petri Nets. Volume 2679 of Lecture Notes in Computer Science.,
Springer (2003) 316–336

36. Jard, C., J́eron, T.: TGV: theory, principles and algorithms. International Journal on Software Tools for Technology
Transfer7 (2005) 297–315

37. Xu, Y., Stevens, K.S.: Automatic synthesis of computation interference constraints for relative timing verification.
In: International Conference on Computer Design, IEEE (2009)16–22

38. Heerink, A.W.: Ins and Outs in Refusal Testing. PhD thesis, Universiteit Twente, Enschede (May 1998)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

34 H. PONCE DE LÉON, S. HAAR, D. LONGUET

39. Jard, C., J́eron, T., Tanguy, L., Viho, C.: Remote testing can be as powerful as local testing. In: Formal Methods
for Protocol Engineering and Distributed Systems. Volume 156 of IFIP Conference Proceedings., Kluwer (1999)
25–40

40. Tretmans, J.: Model based testing with labelled transition systems. In: Formal Methods and Testing. Volume 4949
of Lecture Notes in Computer Science., Springer (2008) 1–38

41. Esparza, J., R̈omer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. In: Tools and Algorithms
for Construction and Analysis of Systems. Volume 1055 of Lecture Notes in Computer Science., Springer (1996)
87–106

42. Diekert, V., Rozenberg, G., eds.: The Book of Traces. WorldScientific Publishing Co., Inc., River Edge, NJ, USA
(1995)

43. Rozenberg, G., Salomaa, A., eds.: Handbook of formal languages, vol. 3: beyond words. Springer-Verlag New
York, Inc., New York, NY, USA (1997)

44. Schwoon, S.: MOLE.http://www.lsv.ens-cachan.fr/ ˜ schwoon/tools/mole/
45. Hierons, R.M., Merayo, M.G., Ńuñez, M.: Implementation relations and test generation for systemswith distributed

interfaces. Distributed Computing25(1) (2012) 35–62
46. Longuet, D.: Global and local testing from message sequence charts. In: Symposium on Applied Computing,

Software Verification and Testing track, ACM (2012) 1332–1338

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(0000)
Prepared usingstvrauth.cls DOI: 10.1002/stvr

