SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Relial®000;00:1-34
Published online in Wiley InterScience (www.intersciendgkeyvcom). DOI: 10.1002/stvr

Model Based Testing for Concurrent Systems
with Labeled Event Structures

Hernan Ponce de Lan'* Stefan Haarand Delphine Longuét

1INRIA and LSVEcole Normale Sigrieure de Cachan and CNRS, France
2Univ Paris-Sud, LRI UMR8623, Orsay, F-91405

SUMMARY

We propose a theoretical testing framework and a test gemeralgorithm for concurrent systems
specified with true concurrency models, such as Petri netetworks of automata. The semantic model
of computation of such formalisms are labeled event strestuwhich allow to represent concurrency
explicitly. We introduce the notions of strong and weak agnency: strongly concurrent events must be
concurrent in the implementation, while weakly concurremes may eventually be ordered. Tibeo type
conformance relations for sequential systems rely on tkemhtion of sequences of actions and blockings,
thus they are not capable of capturing and exploiting caeogy of non sequential behaviors. We propose
an extension ofoco for labeled event structures, nameatiocq allowing to deal with strong and weak
concurrency. We extend the notions of test cases and testitéxe to labeled event structures, and give a
test generation algorithm building a complete test suitefsioca

Copyright(© 0000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: Model-based testing, true concurrency, conforoe relation, event structures, strong
concurrency, weak concurrency

1. INTRODUCTION

Model-based Testing. One of the most popular formalisms studied in conformance testing is
that of labeled transition system@&TS). A labeled transition system is a structure consisting of
states and transitions labeled with actions from one state to another. Thidisonmsausually used
for modeling the behavior of sequential processes and as a semanticall fiorodarious formal
languages such as CCS [1], CSP [2], SDL [3] and LOTOS [4].

Several testing theories have been defined for labeled transition sy&e6sr| 8, 9, 10, 11].
A formal testing framework relies on the definition of a conformance relatibithvformalizes
the relation that the system under test (SUT) and its specification must.\Befending on the
nature of the possible observations of the system under test, sevafatmmance relations have
been defined for labeled transition systems. The relatidraoé preorder(trace inclusion) is based
on the observation of possible sequences of actions only. It wasddfitethetesting preorderthat
requires not only the inclusion of the implementation traces in those of the spéioffi, but also that
any action refused by the implementation should be refused by the spedifigati®]. A practical
modification of the testing preorder was presented by Brinksma [7], wheses proposed to base

*Correspondence to: LSV, ENS de Cachan, 61 avenue d@sident Wilson, 94235 CACHAN Cedex, France.
E-mail: ponce@lsv.ens-cachan.fr

Contract/grant sponsor: DIGITEO/DIM- LSC project TECSTE&ntract/grant number: 2011-052D

Copyright@© 0000 John Wiley & Sons, Ltd.
Prepared usingstvrauth.cls [Version: 2010/05/13 v2.00]

2 H. PONCE DE LBON, S. HAAR, D. LONGUET

the observations on the traces of the specification only, leading to a weaki@rmance relation
called conf. A further refinement concerns the inclusion of quiescent traces amfarmance
relation [10]. Moreover, Tretmans proposed fbeo relation [11], which refinesonf with the
observation of blockings (quiescence).

Theioco conformance relation is defined for input-output labeled transition systdrichware
LTS where stimuli received from the environment (inputs) are distingdigtean answers given
by the system (outputs). It relies on two kinds of observation: tracesathasequences of inputs
and outputs, and quiescence, which is the observation of a blocking system (the system will
not produce outputs anymore or is waiting for an input from the envirohtieeproduce some).
A system under test conforms to its specification with respedbdo if after any trace of the
specification that can be executed on the system, the observable outpbteckings of the system
are possible outputs and blockings in the specification.

The testing theory based on tieo conformance relation has now become a standard and is
used as a basis in several testing theories for extended state-basdd. rhetlas mention here
the works on restrictive transition systems [13, 14], symbolic transition mgs{é5, 16], timed
automata [17, 18], and multi-port finite state machines [19].

Model-based Testing of Concurrent Systems. Systems composed of several concurrent
components are naturally modeled asiework of finite automataa formal class of models
that can be captured equivalently bgfe Petri netsConcurrency in a specification can arise for
different reasons. First, two events may be physically located on diffe@nmponents, and thus
be “naturally” independent of one another; this distribution is then patiegystem construction.
Second, the specification may not care about the order in which two aetiergerformedn the
same componenand thus leave the choice of their ordering to the implementation. Depending on
the nature of the concurrency specified in a given case, and thus imtethgon of the specification,
theimplementation relationbave to allow or disallow ordering of concurrent events.

Model-based testing of concurrent systems has been studied for a lon@@in24., 22], however
it is most of the time studied in the context of interleaving semantics, or trace siespjamhich
is known to suffer the state space explosion problem. While the passagedar@nt models has
been successfully performed in other fields of formal analysis such dslrleecking or diagnosis,
testinghas embraced concurrent models somewhat more recently.

Ulrich and Kbnig [23] propose a framework for testing concurrent systems spedifie
communicating labeled transition systems. They define a concurrency maltiedl dehavior
machines that is an interleaving-free and finite description of concuarahtrecursive behavior,
which is a sound model of the original specification. Their testing framewelles on a
conformance relation defined by labeled partial order equivalenckaldows to design tests for
each component from a labeled partial order representing an exeotitimmbehavior machine.

In another direction, Haar et al [24, 25] generalized the basic notindsechniques of 1/O-
sequence based conformance testing on a generalized I/O-automatdnmedepartially ordered
patterns of input/output events were admitted as transition labels. An importeiical benefit
of true-concurrency models here is an overall complexity reductiomitdethe fact that checking
partial orders requires in general multiple passes through the same l#laelgition, so as to check
for presence/absence of specified order relations between inpudutpdt events. In fact, if the
system has: parallel and interacting processes, the length of checking sequermceases by a
factor that is polynomial im. At the same time, the overall size of the automaton model (in terms
of the number of its states and transitions) shrinks exponentially if the camuyr between the
processes is explicitty modeled. This feature indicates that with increasmgusizdistribution of
SUTs in practice, it is computationally wise to seek alternatives for the diegetential modeling
approach. However, these models still force us to maintain a sequentialaotoas the system'’s
skeleton, and to include synchronization constraints (typically: that atitewpecified in the pattern
of a transition must be completed before any other transition can start), Whiithboth the
application domain and the benefits from concurrency modeling.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\WH STRUCTURES 3

The approach that we follow here, continuing our previous work [2B], Proposes a
formal framework for testing concurrent systems from true-conaggrenodels in which no
synchronization on global states is required.

Weak vs. Strong Concurrency. As it is shown in Figure 1, concurrency can be implemented in
two different ways. Boxes represent processes, letters are aeatona dependence between two
actions is shown by an arrow. The three actions andc are specified as concurrent in Spe (no
dependence between them), actiarsdc belonging to procesB; while b belongs to process;.

In a distributed architecture, when two actions are specified as contwuarel belong to
different processes, they should be implemented as concurrent, irediffrocesses: this situation
corresponds to the notion atrong concurrencymeaning that there should not be any kind of
dependence between these actions. In Figure 1, aciianslb belong to different processes (i.e.
they are strongly concurrent) in Spe and are implemented in differenégses in both Impland
Impl,. In our previous work [27], concurrency is interpreted as stromgrooency, therefore the
conformance relation forces concurrent actions to be implemented inediiffprocesses.

However, in an early stage of specification, concurrency betweenteveay be used as
underspecification. Actions belonging to the same component may be impleniersted order
in the same process (as it is the case aindc in Impl;) or the specification may still be refined
and this process implemented as several ones as it is the c&endfich is implemented a®;
and P;" in Impl,. We capture this kind of underspecification witleak concurrencyAs it is the
case of local trace languages [28], in one situation two actions might loeicent while in another
situation they cannot be performed independently.

a a (&)
/
@ @ Py’
P Py P Py

Pll Py

Spe Imply Impls
Figure 1. A specification of a system and two possible implgatéons.

We illustrate the need to make these two notions of concurrency live in the sacha imo
examples coming from the field of microcontroller design [29] and securdiopols [30].

Example 1

Consider aParSeq controller which manages two handshakes= (rek,,ack,) and B =
(rek,, ack,) according to a set of Boolean variables x», x5 provided by the environment as shown
in Figure 2. These variables are mutually exclusive (only one of them edi &nd they decide
how the handshakes are handled: lf= 1, the handshake is initiated in parallel (concurrent events
A co B), while any other possible valuation of the variables initiates the handsirakegjuence
(A< Bif ;s =1andB < A if z3 = 1). In this example eventd and B would be specified as
weakly concurrent, but their actual order would depend on the vafubs eariables rather than on
an implementation choice. For more details about the controller see [29].

Example 2

When designing a security protocol, an important property, named unliitikals to hide the
information about the source of a message. An attacker that can identifagessas coming from
the same source can use this information and so threaten the privacy skthé has been shown
that the security protocol of the French RFID e-passport is linkableefibiee anyone carrying a
French e-passport can be physically traced [30]. Causality capinkadility as two messages
coming from the same user need to be causally dependent. Howevenrremy interpreted as
interleavings can not be used to model unlinkability because both possibleaniags relate the
messages as if they were causaly dependent, therefore they revéderitity of the user. This
property needs to be modeled by strong concurrency.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

4 H. PONCE DE LBON, S. HAAR, D. LONGUET

r —— req,

ry — «— ack,
3 ParSeq
controller

req,

—— ack,

Figure 2. ParSeq controller interface.

Framework. We use a canonical semantic model for concurrent behalateled event
structures providing a unifying semantic framework for system models such as Pets, n
networks of automata, communicating automata, or process algebras; tnacthway from the
particularities of system specification models, to focus entirely on behavédasions.

The underlying mathematical structure for the system semantics is givemdny structuregn
the sense of Winskel et al [31]. Mathematically speaking, they are plantipartially ordered sets,
in which order between two evertsande’ indicates precedence, and where any two eveatsd
¢’ that arenot ordered may be either

¢ in conflict meaning that in any evolution of the system in whiobiccurs,c’ cannotoccur; or
e concurrenfin which case they may occur in the same system run, without a temporaharde
i.e.e may occur before’, aftere’, or simultaneously.

Event structures arise naturally under the partial order unfolding d@&rador Petri nets [31], and

also as a natural semantics for process algebras (see e.g. the wamgefrak and Brinksma [32]).
The state reached after some execution is representeddnyfigurationof the event structure, that
is a conflict-free, history-closed set of events. The use of parti@radmantics provides richer
information and finer system comparisons than the interleaved view.

Our Contributions. We proposed in previous work [26] an extension of ih& conformance
relation to labeled event structures, namemliocq which takes concurrency explicitly into
account. In particular, it forces events that are specified as camtwe remain concurrent in
the implementation under partial order semantics. We additionally dropped thieengbledness
assumption and enlarged the conformance relation with the observatiofuséle[27]. In this
paper, we refine this conformance relation introducing the notions ofgsaod weak concurrency.
Events specified as strongly concurrent must remain concurrent irrectonplementation while
weakly concurrent events may be ordered. These two notions refeetivthusual interpretations
of concurrency in a specification, that are true-concurrency sersaantiit interleaving semantics.
These refinements lead to a new definition of¢théococonformance relation.

The contributions of this paper are twofold. First, we define the notiongrohg and weak
concurrency along with a new semantics for labeled event structured basa notion of relaxed
executions. Second, we define a whole framework for testing comtusystems from labeled
event structures. Besides the definition @baiococonformance relation handling strong and weak
concurrency, we define the notion of test case, we give sufficiemtepties for a test suite to be
sound (not rejecting correct systems) and exhaustive (not accaptingect systems), and we
provide a test case generation algorithm that builds a complete (i.e. sodnexhaustive) test
suite. The paper is presented according to the following structure.

Structure of the Paper. In the next section, we will introduce several basic notions such as input
output labeled event structur@©LES)and the new notions of strong and weak concurrency, along
with a novel partial order semantics for IOLES, that allows to “relax” eorency. In Section 3, we
develop thebservationaframework for IOLES, introducing in particular the notions of quiescence
and refusals for partial order semantics. Section 4 is dedicated to thdéidefidiscussion and
characterization of the input-output conformance relatioriocq refining theco-ioco relations

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\WH STRUCTURES 5

of our previous papers [26, 27]. Section 5 develops the definitionssbfcieses and test suites,
characterizing soundness, exhaustiveness and completenessaftesstwhile Section 6 proposes
an algorithm that builds a complete test suite, thus completing the contributiores pépler before
Section 7 concludes.

2. INPUT/OUTPUT LABELED EVENT STRUCTURES

2.1. Syntax

We shall be using event structures following Winskel et al [31] to deedhe dynamic behavior
of a concurrent system. In this paper we will consider only prime eveuttstres [33], a subset
of the original model which is sufficient to describe concurrent modekrdtbre we will simply
call them event structures), and we label their events with actions oveed diphabet.. As it
is common practice with reactive systems, we want to distinguish between ttrelzdote actions
(inputs proposed by the environment) and the observable ones (outpdtgcpd by the system),
leading toinput-output labeled event structures

Definition 1 (Input/Output Labeled Event Structure)
An input/output labeled event structure (IOLES) over an alphdbet Lz W Lo is a 4-tuple
E = (E,<,#,) where

e F is a set of events,

e < C F x E is a partial order (calledausality satisfying the property dfinite causesi.e.
Vee E:|{ e E|e <e}| < oo,

e # C FE x FE is an irreflexive symmetric relation (callenbnflic) satisfying the property of
conflict heredityi.e.Ve,e',e’ e E:e# e Ne' < e’ = e # €,

e \: E— LU{r}is alabeling mapping.

We denote the class of all input/output labeled event structuresloheZ OLES(L).

We assume that there exists a unique minimal element (@W)r.denoted and labeled hy,
which is unobservable. The special labef L represents an unobservable (also called internal
or silent) action. Given an event its past is defined gg] £ {¢’ € E | ¢/ < e}. The sets of input,
output and silent events are definediy = {e € E | A(e) € Lz}, E® 2 {e € E | M(e) € Lo} and
ET™ 2 {e € E | Ae) = 7}. When it is clear from the context, we will refer to an event by its label.

Two given eventg, e’ € E are said to beoncurrent(e co ¢’) iff neithere < e’ nore’ < e nor
e # ¢’ hold. In this paper we split theo relation into two relationsco (strong concurrency) and
wco (weak concurrency), such thed = scow wco.

Remark 1

The IOLES that we consider as the specification of the system is usuatlyged as the semantic
unfolding from a language such as Petri nets, hence the specifiddgtrovide the information
about weak and strong concurrency as an annotation to the origircficgigon.

The architecture of distributed systems allows to distinguish different coemierand there is
a way to distinguish to which component each concurrent action belohgsefbre, we make the
following assumption.

Assumption 1
We will only consider systems in which concurrent events are labeled bgrafit actions, i.e.
Ve,e' € E:ecoe = Ae) # A(e).

Example 3

Figure 3 shows a schematic travel agency that sells services to custonfeisadf of two suppliers,

one selling both train and plane tickets and another one selling insuratedghlavior can be
formally specified by the IOLES presented in Figure 4, where causality and conflict are represented
by — and - - - respectively; denotes input actions atidutput ones. In this system, once the user

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

6 H. PONCE DE LBON, S. HAAR, D. LONGUET

INSURANCE

Légf. —
AGENCY V
USER INTERFACE /
TMEL TRAIN TICKET

S
E
=) ‘ R

— & d
= DI o e
Gy R
B = / S

\ PLANE TICKETS
[
RN Ljo

Figure 3. A travel agency example.

has logged in{login), some data is sent to the servirs(data) and he can choose an insurance
(?insurance) and a train ticket {train) or a plane ticket{plane). If a plane ticket is chosen, its
price is sent to the uselp(price). If a train ticket is selected, the agency can internally decidle (
what price to propose: afirst class pricel) or a second class onkg _(price2). The insurance choice
is followed by its price fns_price) and some extra data that is sent to the uses (data).

The data cannot be sent before the user log3liy{n < lus_data) and the selections for a ticket
and an insurance can be done concurreritlyain co ?insurance), but only one ticket can be
chosen {train # ?plane). From the conflict heredity property, we have that only one ticket price
can be producedi(pricel # !p_price and!t_price2 # !p_price).

We consider strong concurrency only between the actions belongindecedif suppliers: we do
not want the selection of tickets to influence the prices of the insuraneadonple, thereforsco=
{?insurance, lins_price,lins_data} x {?train, ,t_pricel,t_price2, ?plane,p_price}. All pairs
of actions belonging to a single supplier (for tickets and insurance) asklyvesoncurrent
with the lus_data action. In addition the actiondins_price and l!ins_data are also
weakly concurrent and we finally havevco= {(lins_data,lins_price)} U ({lus_data} x
{?insurance, lins_price, lins_data, Mtrain, T, 't _pricel, t_price2, ?plane, \p_price}).

Immediate Conflict. Most of the specification languages allow some way to model choice in the
system. As conflict is inherited w.r.t causal dependency, a pair of emectasflict need not represent

a choice between these events. We can seétthaicel and!p_price are in conflict (by hierarchy),

but any computation that continueslioypricel, cannot continue byp_price: the conflict was solved

by the choice of’train instead of?plane, and this make$p_price impossible. When the system
makes a choice, we have a case ofithmediate conflictelation in the following sense.

Definition 2 (Immediate Conflict)
Leté = (E,<,#,\) € TOLES(L) andey, e; € E. Eventse; ande; are said in immediate conflict,
writtene, # e, iff

[ex] x [ea] N # = {(e1, €2)}

Prefix of an IOLES. We define here the notion of prefix that allows to restrict the behavior of
the system. As causality represents the events that should occur bgfeea @&vent, the past of an
evente that belongs to the prefix should also be part of the prefix.

Definition 3 (Prefix)
LetE = (E,<,#,\) € ZOLES(L). A prefix of £ isan IOLESE’ = (E', <', #',\') where

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\WH STRUCTURES 7

Pinsurande——?logit———lus data

Figure 4. Input/output labeled event structure of a trageiney.

E’ C Esuchthat/e € E' : [e] C F,
< =<n(FE xFE),

=#nN(F x E'),and

N o= \gr

Example 4
In Figure 5,s, specifies the behavior of a travel agency that sells tickets, but notimses, while
the agency irs3 only sells insurances. We can see thaands; are prefixes of.

2.2. Semantics

A computation state of an event structure is callezbafiguration it is represented by the set of
events that have occurred thus far in the computation. If an event isrriesa configuration, then
so are all the events on which this event causally depends (causakglddareover, a configuration
obviously does not contain conflicting events (conflict freedom). Thigjswed by the following
standard definition [33].

Definition 4 (Configuration)
Let€ = (E,<,#,\) € ZOLES(L). A configuration of is a non-empty set of event§ C E where

e Ciscausallyclosedt € C = Ve’ <e: e € C,and
e (Cis conflict-freeve, e’ € C : =(e # ¢€').

A configurationC, equipped with the restriction of, yields a partially ordered set, whose
totally ordered extensions, or interleavings, describe possible seduerg@utions. Conversely,
every sequential execution of the system is an interleaving of a unigdige@tion of the system;
a configuration gives an equivalence class of possible interleavinghisl sense, configurations
represenhon-sequential executions

Note that we define, for technical convenience, all configurations todoeempty; the initial
configuration of¢, containing onlyL and denoted by ¢, is contained in every configuration &f
We denote the set of all the configurationsEdby C(E).

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

8 H. PONCE DE LBON, S. HAAR, D. LONGUET

L]

Plogit———lJus dath ?logi lus datd

S92 S3

Figure 5. Two prefixes of the travel agency.

Example 5

In the IOLES of Figure 4, after the user has logged in, the selections eanduae while his
information is sent to the server, i.£L, ?login, lus_data, ?insurance, ?train} € C(s), but a train
and a plane ticket cannot be selected in the same executiofyluee, ?train € C = C & C(s).
The configuration{_L, ?login, lus_data, ?insurance, lins_price, ins_data, Ttrain, 7, 't _pricel} is
maximal (w.r.tC) as the remaining events are in conflict with the ones in the configuration.

LPOs and POMSETs. The definition of the notion of execution for an event structure is not
straightforward since it relies on the chosen semantics for concurf@dgyHere, we have two
notions of concurrency, which impose partial orders and allow interlgavid/e are interested
in testing both kinds of concurrency and therefore we want to keepucarcy explicit in the
executionsLabeled partial ordergan then be used to represent executions of such systems.

Definition 5 (Labeled partial order)
A labeled partial order over an alphaldets a tuplelpo = (E, <, \), where

e [E'is a set of events,
e < is areflexive, antisymmetric, and transitive relation, and
e \: E— LU{r}is alabeling mapping.

We denote the class of all labeled partial orders dvby LPO(L).

As we can only observe the ordering between the labels and not betweeweahts, we should
consider partial orders respecting this order as equivalent. Hencéabeted partial orders are
isomorphiciff there exists a bijective function that preserves ordering and labeling.

Definition 6 (Isomorphic LPOSs)
Let lpo, = (E1, <1, A1), lpoy = (Fa,<9,A2) € LPO(L). A bijective functionf : E; — FE is an
isomorphismbetweenipo, andipo, iff

o Ve, cBy:e<ie & fle) <o f(€)
e Ve e By : A\(e) = Xa(f(e))

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\WH STRUCTURES 9

Two labeled partial order®o, andlipo, are isomorphic if there exists an isomorphism between
them.

Definition 7 (Partially ordered multisets)
A partially ordered multise{pomset) is the isomorphim class of some LPO. Any such class is
represented by one of its objects. We denote the class of all pomsBtOBYSET (L).

When itis clear from the context, we will usée to express causality between pomsets ardl to
represent the pomset whose elements are unordered. The ponasétigure 6 can be represented
by L - ?login - lus_data - ?insurance - (lins_price c0lins_data).

As weak concurrency allows to order events, the selection of a ticket imael agency can be
done after sending the data and therefereand o from Figure 6 should be treated as equal (it
is also the case witls, uq, s and ug). For this reason, an execution of this specification has to
preserve the partial order semantics of the IOLES, up to adding ortieede weakly concurrent
events (while strongly concurrent events must remain concurrent).

Definition 8 (Relaxed concurrency)
Let p1, e € POMSET (L), we have thatu, T po iff there existipo, = (E,<,,,\) € p1 and
lpoy = (E,<,,,\) € ue such that

® SM g Suz

® SCQ = SCG

In other wordsy; C s if Strong concurrency is preserved; while weakly concurrent evients
w1 may be ordered by, .

Example 6

We see in Figure 6 that, adds some ordering between weakly concurrent eventgata and
?train from uq, but strong concurrency and causality are preserved, and theyef@ p». The
same order is added fropy in 14, andus adds an ordering between the weakly concurrent events
lins_price andlins_data. Since no other relations are changed,C py and iy C pus. AS C s
transitive, we haves C ps. In pg, lus_data is preceded byinsurance and therus C pg.

As explained above, an execution of an event structure can beeeapddy a pomset, where the
same pomset can reflect different executions in which concurremcheaelaxed, leading to the
following notion ofrelaxed executions

Definition 9 (Relaxed execution)
LetE = (E,<,#,\) €e ZOLES(L), p, ' € POMSET (L) andC,C’,C" € C(£), we define

c o 2 3 Ty lpo = (B, <, M) € (!, AC E\C
C'=CUAA=Eu, <N (AxA) =<, ands = Ay

cr B er 2 500 4 o andor s o

c- 2 3¢.cH o

We say thay is a relaxed execution af if ¢ .

From the definition above we get that whenegier’s andy. C 1/, we haveC' .

Example 7

In Figure 6 we can see thag andus respect the structure efof Figure 4, and therefore both are
relaxed executions of itl(, % and L ,-~%). However, as seen earligr; T jo, p3 T pua, pi3 T i

and us C ue; thereforeus, 114, s andug are also relaxed executions QKLS%, J_Sﬁn IR

and L,-2%). In the case ofi;, we see that our semantics allows an execution where an output
(lus_data) depends on an extra inpttfsurance). However, we will see later that our conformance
relation prevents an output from depending on an extra input, even & gvesits are specified as a
weakly concurrent pair. We can conclude that the same structure easéweral relaxed executions
where weakly concurrent events are ordered.

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

10 H. PONCE DE LBON, S. HAAR, D. LONGUET

1
uE ?insurance— ?login
?insurance— ?login — lus_data lus_data
?train ?train
T T
It_pricel It_pricel
Bl K2
1L
1 ?login
1 ?login lus data 1
| |
?login — lus.data lus_data ?insurance ?login
| |
?insurance ?insurance lins_price ?insurance— !us_data
/NN / N\
lins_price lins_data lins_price lins_data lins_data lins_price lins_data

n3 4 M5 He

Figure 6. Relaxed executions of the travel agency

3. OBSERVING EVENT STRUCTURES

The notion of conformance in a testing framework is based on the chosien b observation of

the system behavior. One of the most popular ways of defining the beluddasystem is in terms

of its traces(observable sequences of actions of the system). Phillips [8], Heerthkratmans [13]

and Lestiennes and Gaudel [14] propose conformance relations Hddition considers the actions
that the systemefuses Finally, when there is a distinction between inputs and output actions, one
can differentiate between situations where the system is still processingisfarmaation from

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NTF STRUCTURES 11

those where the system cannot evolve without the interaction of the emargnusually called
guiescencdollowing Segala [10]. In this section, we define these three notions in thixtoof
labeled event structures before presentingcthvécoconformance relation in Section 4.

3.1. Traces

The labels inL represent the observable actions of a system; they model the interadtitives o
system with its environment while internal actions are denoted by the spelo#ldg L. The
observable behavior can be captured by abstracting the internal aitbomghe executions of the
system (which are pomset in our setting).

Definition 10 (r-abstraction of a pomset)
Let y,w € POMSET (L), we have thatbs(p) = w iff there existipo, = (E,, <,,\,) € p and
lpoy, = (Bw, <w,\y) € w such that
o Ey,={e€E,|Mue) #7}
o Swzguﬂ(EwXEw)
¢ Ao = Aupm,
Finally, anobservatiorof a configuration is the-abstraction of one of its executions.

Definition 11 (Observation)
LetE = (E,<,#,)\) € IOLES(L),w € POMSET (L) andC,C’ € C(£), we define

C ==’
C =

Ju: ¢ 5 ¢ andabs(p) = w
300 ==’

Y
Y

We say thatv is an observation of if C' =%

In theioco theory,? and! are used to denote input and output actions respectively. We extend
this notation and denote b} and!w observations composed only of input and output actions
respectively.

We can now define the notion of traces and reachable configurationsafigiven configuration
by an observation. Our notion of trace is similar to the one of Ulrich adii¢([23] where a trace is
considered as a sequence of partial orders. The reachable catifigs that we consider are those
that can be reached by abstracting the silent actions of an executionlgrabosidering observable
ones. This notion is similar to the one of unobservable reach proposedrxyddd Lafortune [35].

Definition 12 (Traces and reachable configurations)
Let€ e ZOLES(L),w € POMSET (L) andC,C’ € C(£), we define

o traces) 2 {w e POMSET(L) | Le =5}
o Cafterw= {C'|C =% C"}

Example 8
Consider the pomsets of Figures 6 and 7. Cleasdy(y;) = w1, and we saw in Example 7 that
1,5 therefore, L ,=2. The same is true fqis, 116 andws, ws. Thusw , ws, we € tracegs).

The configuration reached inafter the observations; andws is the same, i.g.L after w;) =
(L, after wg) = {{L, ?login, lus_data, Tinsurance, lins_price, lins_data}}. This example shows
that even if the way of observing executions are different (due to weag&urrency), they all come
from the same structure and lead to the same configuration.

Our definition ofafter is general enough to handle nondeterminism in the computation, however
in this paper, for technical convenience, we will only consider spetifica where exactly one
configuration can be reached after some observation. Such systecadl@deeterministic

Definition 13 (Deterministic IOLES)
Let€ € ZOLES(L), we have

€ is deterministics Vw € tracegf), (L¢ after w) is a singleton

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

12 H. PONCE DE LBON, S. HAAR, D. LONGUET

?insurance— ?login — lus data ?login — lus data ?login
| | |
?train ?insurance ?insurance— lus_data
| / N\ / N\
It_pricel lins_price lins_data lins_price lins_data
w1 w3 we

Figure 7. Traces of the travel agency

lins_price

!pric§

54

Figure 8. A nondeterministic IOLES.

When the set of reachable configurations is a singlét@hwe will simply denote it byC'.

Example 9

We can see from, in Figure 8 that the observation makes no distinction between the ticket choice,
i.e. two configurations can be reached from the initial configuration afeemwing?login - ?ticket,

and thens, is nondeterministic.

In theioco framework, the specification is determinized before the construction atdsset. As
the IOLES that we consider are usually produced as the semantic unfalflthg specification,
we assume that determinization is done directly on the specification and thénge$OLES is
deterministic.

Assumption 2
The specification of the system is deterministic, ¥.e.c tracess) : (L, after w) is a singleton.

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 13

3.2. Quiescence and Produced Outputs

Since the testing activity depends on the interaction between the tester angtida,ssuch an
interaction becomes impossible if we allow the system to have infinitely many ecoas of silent
or output actions without input ones. Therefore we make the followingragson.

Assumption 3
We will only consider systems that cannot diverge by infinitely many oecwes of silent or output
actions, i.eVC € C(€) : if C N (E® U E7) is infinite then so i€0' N EZ.

This assumption is classical in model-based testing frameworks, as it issaecés be able to
identify the blockings of the system under test.

With reactive systems, we need to differentiate configurations where skensgan still produce
some outputs, and those where the system cannot evolve without anrioputhfe environment.
Such situations are captured by the notion of quiescence [10]. Thevabea of quiescence in such
configurations is usually implemented by timers. Jard @ndrd[36] present three different kinds of
guiescenceoutput quiescencehe system is waiting for an input from the environmetgadlock
the system cannot evolve, aliklock the system diverges by an infinite sequence of silent actions.
Both output quiescence and deadlock are captured by the definition, belole livelock is not
possible by Assumption 3.

The observation of quiescence is usually made explicit by adding self labpked by & action
on quiescent states, whefds considered as a new output action. But since event structures are
acyclic, we define thé action not by loops, but rather semantically: thaction does not represent
an event, and thus no new configuration is reached after observing it.

Definition 14 (Quiescence)
Let€ € ZOLES(L) andC € C(€), we have

C'is quiescents V¥ lw € POMSET(L,) : C £

. s
We assume that we can observe quiescencedgcsion, i.e.C is quiescent ifilC —.

Example 10
In the travel agency example, the configuration reached after logging motiqquiescent as
there is an execution where the user’s data can be seritl j.after ?login) = {L, ?login} and

lus_data

{L1,%login} =", but the configuration reached after sending the user’s data is guidmmRuSse
only input actions are enabled in all possible executions(i.g.after (?login - lus_data)) = {L

, 2login, 'us_data} and for everyw such that{ L, ?login, lus_data} ==, we haveEZ # ().

In the LTS framework, theroduced outputsf the systems are single elements of the alphabet of
outputs rather than sequences of them [11]. Consider a sydtehproducedi: followed by!b after
o, then outs after o) = {la} and outs after (o - la)) = {!b} rather than oyt after o) = {la - !b}.

A first extension proposed by the authors [26] considers that the suppoduced by the system
in response to stimuli could be elementary actions as well as sets of cantcactions. However,
here we need any set of outputs to be entirely produced by the systamtestibefore we send a
new input; this is necessary to detect outputs depending on extra inptiget,lsuppose one has
two concurrent outputsut; andout, depending on inputn; and another inputn, depending on
both outputs. Clearly, an implementation that accepisbeforeout, should not be considered as
correct, but ifins is sent too early to the system, we may not know if the occurreneeteidepends
or not onin,. For this reason, Definition 15 defines the expected outputs from a ooatfign as
the pomset of outputs leading to a quiescent configuration. Such a aatibgualways exists, and
is finite by Assumption 3.

However, conformance of output pomsets is not always captured impiphism. Consider again
the example presented in the paragraph above and consitieand out, as weakly concurrent.
After in; the system produces outpuist; and outy which can be observed concurrently or
in any order (due to the relaxed executions). We want to compare theqaddutputs of the

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

14 H. PONCE DE LBON, S. HAAR, D. LONGUET

implementation with those of the specification, but as we allow the implementation to orde
these outputs, these set can not be directly compared by set inclusiprpréauced output in

the implementation should refine some produced output in the specificatiomggesection).
Here, bothout; - outs and outs - out; can be inferred fromvut; wco outs. We only consider
out; WCO outs, Which is the “most abstract” pomset representing both orders, i.e. the minimal
pomset w.r.tC, as it is sufficient to compare outputs w.r.t refinement.

Definition 15 (Produced outputs)
Let€ € TOLES(L) andC € C(E), we define

out(C) £ min{lw € POMSET(L,) | C 20 A0 = 0 {502y

Example 11

The only output produced by the system of Figure 4 after logging in is tlee'sudata, i.e.
out(_L; after ?login) = {lus_data} and after this output, a quiescent configuration is reached,
then ouf.L; after (?login - lus_data)) = {d}. If a train ticket is chosen, different prices may
be produced, i.e. o(it; after (?login - lus_data - Ttrain)) = {lt_pricel, lt_price2}. The outputs
after selecting the insurance are weakly concurrent and can bevetser different ways
(concurrently or in any order), however we only consider Ttheninimal outputs, and therefore
out(_L after (?login - lus_data - ?insurance)) = {lins_price colins_data}.

3.3. Refusals

The ioco theory assumes the input enabledness of the implementation, i.e. in any stag of th
implementation, every input action is enabled. This assumption is made to avoiditztiom
interference [37] in the parallel composition between the implementation and shedses.
However, as explained by Heerink [38] and Lestiennes and Gaudgl ¢ten if many realistic
systems can be modeled with such an assumption, there remains a signifitemt brealistic
systems that cannot. An example of such a system is an automatic cash elispeaise the action

of introducing a card becomes (physically) unavailable after insertingda aa the automatic cash
dispenser is not able to swallow more than one card at a time. Furthermotlgitrig proposes test
cases that are always capable of observing every output proydbd system, a not very realistic
situation in a distributed environment.

In order to overcome these difficulties, Heerink [38] distributes the poiftsoatrol and
observation, and the input enabledness assumption is weakened bylahénfp assumption: “if
an input action can be performed in a control point, all the inputs actionsabttntrol point can
be performed”. Refused inputs in the implementation are made observabkplegialé-action (as
quiescence is observable by action). Lestiennes and Gaudel [14] enrich the system model by
refusedtransitions and a set gfossibleactions is defined in each state. Any possible input in a
given state of the specification should be possible in a correct implementation.

Our approach is closer to the one of Lestiennes and Gaudepaasjble inputn a configuration
of the specification should also be possible in the implementation (or any infusedeby the
implementation should be refused by the specification). This implies that weashat there exists
a way to observe the refusal of an input by the implementation during testiig assumption is
quite natural, for instance in the case of the cash dispenser which Gaowept more than one card.
One can consider that the system under test would display an errorgaessawarning in case it
cannot handle an input the test sends.

In an observation, an input action may be preceded by an output thapeesdied to be weakly
concurrent as it is the case withs_data and 7train in we. Therefore?train should still be
considered as possible even if the_data output has not been produced yet. This is similar in
remote testing [39] where communication between test cases and the SUTdhrasyous and a
new input can be sent even if an output that precedes it was not stiliped.

The possible inputs of a configuration are those that are enabled or witldided after producing
some outputs. As in the case of produced outputs, we consider thelsehwfimal inputs.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 15

Definition 16 (Possible inputs)
Let€ € ZOLES(L) andC € C(€), we define

pos§C) £ min{?w € POMSET(Ly) | C 24 VAlw € POMSET (L,) : C =2 C' A € 25}

Example 12

Consider the IOLES of Figure 4. The first possible input is the logging in, followed by the
selections of tickets and insurance. These selections are possible ditheroa concurrently,
i.e. possl,;,)= {?login,?login - ?Tinsurance,?login - ?train,?login - ?plane,?login
(?insurance €O Ttrain), tlogin - (?insurance O ?plane)}.

In order to allow the observation of the possible inputs of the system urgteateonfiguration
where inputs are possible should not alternatively allow the productiontpiits. As a matter of
fact, if an input and an output are in conflict in a given configuratiorceahe output is produced,
the input is not enabled anymore. Such configurations would prevemt dbserving the possible
inputs of the system under test. For this reason, we restrict the formeléthbvent structures we
consider with the following assumption.

Assumption 4
We will only consider IOLES such that there is no immediate conflict betweeut iapd output
events, i.eVe € EZ ¢’ € B9 : =(e # ¢€').

Note that a similar assumption was also made by Gaudel et al [14], whdrasgecifications are
called 10-exclusive. Under assumption 4, no enabled input catidabledby the production of
outputs: to disable an input, soroenflicting inputmust be made.

Proposition 1
Let £ € ZOLES(L) such thate satisfies Assumption 4. Let, C’ € C(€) such that there exists

lw € POMSET (L,), C 22 0" andC” is quiescent. Then any possible inputdhis a possible
inputinC’, i.e. pos§C') = posgC’).

Proof
Let us assume thatw € posgC) for a non quiescent configuratiati. We have then that either

Tw

C =%, or we can reach front' a guiescent conflguratlod" such thatC’ =. The result is
immediate for the second case. If it is the case tiats, let C” be the quiescent configuration

reachable from it by sone, i.e.C 22 0" andC” is quiescent. We have two possible observations
?w andlw at the same configuratioff, and hence its events must be in immediate conflict or
concurrent. By the assumption, we know they are concurrent (theyatri@ immediate conflict)

7w,

and then they remain observable after some of them have been obsen@d ¢ andC” =%
Finally 7w € possC”). O

We now have all the elements to define a conformance relation for IOLESsthased on the
observation notions of traces, refusals and quiescence.

4. THE CONFORMANCE RELATION:co-ioco

The activity of testing relies crucially on the definition ofcanformancerelation that specifies
which observed behaviors must be considered conformingoioronforming, to the specification.
Aceto et al [34] propose several testing equivalences depending ithtteen semantics for event
structures. The authors [26] propose two extensions foioiteeconformance relation proposed by
Tretmans [40], one for the interleaving semantics and another for thelmadér one. The input
enabledness assumption can be dropped and the conformance rellrgeaédm order to observe
refusals [27]. Actions specified as concurrent must occur indegetlydon different processes) in
any conformant implementation. Here, since we refine the semantics of |@litEStrong and

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

16 H. PONCE DE LBON, S. HAAR, D. LONGUET

!p,pric§

11

Figure 9. A correct implementation w.co-iocoof the travel agency of Figure 4.

weak concurrency, we need to refine the conformance relatieincoin order to take these two
interpretations of concurrency into account.

Our conformance relation for labeled event structures can be informedigridbed as follows.
The behavior of a correato-ioco implementation after some observations (obtained from the
specification) should respect the following restrictions:

1. any output produced by the implementation should be produced by ttificsgteon;

2. if a quiescent configuration is reached in the implementation, this shoulbal$e case in
the specification;

3. any time an input is possible in the specification, this should also be the cabe in
implementation;

4. strongly concurrent events are implemented concurrently, while weakigurrent events
may be ordered.

Before the definition of the conformance relation itself, we need a few mohmial definitions
in order to be able to compare the inputs and outputs of the system under thskéoof its
specification.

Concurrent Completeness. As two inputs may be weakly concurrent in the specification, we
want to accept an implementation where they are only implemented in one orggyose

there exists two weakly concurrent inputs,,in, such thatL,""=2"2 then postL,) =
{iny,ing,in; €O ins}. Now consider an implementation that orders them, e.g. (pQ¥s=
{in1,in; - ing}. We cannot compare the possible inputs of both systems w.r.t set inclusiangee
we want inputs to be implementedan leastone of the allowed orders.

We expect any pomset of possible inputs in the specification to be implementedasitsuch or
as one of its refinements. However, this is not enough. In the examplenpeelsin the paragraph
above there is no possible input of the implementation (in its initial configuratiatyéfinesin,.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 17

In addition, our definition of possible inputs accepts partial orders with staunsality as in the
case ofs where we havélogin - (?insurance €0 ?train) € posg.L,). However, we may add some
order for a weakly concurrent output (as is the caseefiata in i,) and therefore we cannot find a
possible input in the implementation that refines one of the specification. Foe#sisn, we restrict
to concurrent complete sets inputs.

Definition 17 (Concurrent Complete Set)
Letw € POMSET (L) andC € C(€), we say thalv is aconcurrent complete sét C iff any other
execution fromC' (without causality) does not contain events that are concurrent to tfiase

cw,C) e w= mcax{w | C =% A <,=0}

Example 13
Consideri; from Figure 9. Therelinsurance is possible after logging in and sending the data, i.e.

Tinsurance

(L,, after (?login - lus_data)) =" . However this input is not a concurrent complete set as it
can be “extended” by concurrent events, {.&;, after (?login - lus_data)) © """ VL0 Train,

Now, possible inputs are checked in several steps: we first find @nedint for?login from the
initial configuration, and later a refinement fohsurance co ?train from {?login}.

As explained above, the possible inputs of the specification cannot helylicempared with
those of the implementation. We want any concurrent complete input of tlefisption without
causality to be implemented by one of its refinements {ass reflexive, the input can be
implemented as it is specified).

Definition 18 (Input refinement)
LetC,C’ € C(€) we define

posgC) > posgC’) & V7w € posgC) : (cc(?w,C) = 7' € pos§C’) : w C ')

Analogously, outputs cannot be compared directly by set inclusion; vee esery output
produced by the implementation to refine some output of the specification.

Definition 19 (Output abstraction)
LetC,C’" € C(€) we define

out(C') >~ out(C’) & Vz € out(C) : 32’ e out(C’) : ' C z

Notice that) only refines itself, therefore & € out(C') and ou{C') >~ out(C") thens € out(C”).

The co-ioco Conformance Relation. Now requirements 1, 2, 3 and 4 can be formalized by the
following conformance relation.

Definition 20 (co-ioco
Leti,s € ZOLES(L), then

1 C0-i0C0s & Vw € tracess) :
poss.L after w) > posg.L; after w)
out(L; after w) >~ out(L, after w)

Example 14Order of Weakly Concurrent Events)

The implementatiori; of the travel agency proposed in Figure 9 orders some weakly camturr
events. The outputsns_price andlins_data are implemented sequentially instead of concurrently,
but the output producedifs_price - lins_data) refines an output produced by the specification
(Yins_price colins_data). Some order is also added between inputsurance, ?train, ?plane and
output!us_data. However, these inputs depend on the output, and therefore the pbdutputs

in the implementation are those specified. Even if some order is added, bysRiap 1, every
possible input of the specification is implemented. We can concludeé;thatiocos.

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

18 H. PONCE DE LBON, S. HAAR, D. LONGUET

lins_daté——?insurande—login

lus_dat.

19

Figure 10. Output depending on extra input.

lins_price

!p,pric§

13

Figure 11. Extra conflicting inputs.

Events ?insurance and lus_data are ordered in the opposite way in implementatignof
Figure 10 Cinsurance <lus_data). A quiescent configuration is reached after logging in, i.e.
out(_L;, after ?login) = {5} while out L, after ?login) = {lus_data} and then—(iy co-iocos).

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 19

We can conclude that whenever an input and an output are weaklyrcent; then if ordering
is added in a conformant implementation, the output should precede the input.

L]

?hotd———{tho_price

!p,pric%

14

Figure 12. Extra concurrent inputs.

Example 15Extra Inputs)

The behaviors of the implementation and the specification are comparedafierabservations
are made. These observations are taken from the specification (thepnaee ofs in Figure 4),
therefore, there is no restriction for the implementation about how to reactsjpeqdified inputs.
Figure 11 shows a possible implementatigrthat also allows the user to choose a boat ticket.
Even if this implementation may produce an extra outpupfice), this output is only produced
after the boat ticket has been chosen, but the behavior of the sysentladosing a boat ticket
is not specified. Finally, we havg co-iocos. Figure 12 presents implementationthat allows
the user to concurrently chose for a hotel. We consider concurremplete possible inputs only
in the specification; thus th&hotel action and its corresponding output are never tested. As every
concurrent complete possible input of the specification is refined byfdhe anplementations, we
can conclude that, co-iocos.

Example 1§Refused Inputs)

The conformance relation considers the input actions that the implementationrefisme.
Figure 13 presents two possible implementatiapsand i of the travel agency. The one
on the left removes the possibility to choose an insurance, while the one omighie
removes the choice for a train ticket. In the specification, we have thaf_ppafter ?login) =
{?insurance, ?train, ?plane, 7insurance €O ?train, Tinsurance €O ?plane}, but ?insurance is
not part of any possible input i, i.e. poséL,. after ?login) = {?train, ?plane} and finally
—(i5 co-iocos). The ?train action is neither part of a possible input ig, i.e. pos§Ll;,
after ?login) = {?insurance, ?plane, Tinsurance €0 ?plane} and then-(ig CO-i0COs).

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

20 H. PONCE DE LBON, S. HAAR, D. LONGUET

!p,pric§ !p,pric§

Figure 13. Refused inputs.

Example 1{Extra/incomplete Outputs)

The second condition of the conformance relation establishes that all tpat®wproduced by
the implementation should be specified. Consider the implementatigresented in Figure
14: after choosing the plane ticket, the implementation can produce an ouithuthe ticket
price, or an error message due to the fact that there are no tickets bjailab oufL,,
after (?login - lus_data - ?plane)) = {Ip_price,!p_full}, but!lp_full is not a possible output in
the specification, i.dp_full & out(L, after (?login - lus_data - ?plane)) = {!p_price}, therefore
—(i7 co-iocos). The conformance relation only considers “complete” outputs (those thdttte
a quiescent configuration), while incomplete outputs lead to non confoemémplementatiori;
also shows an example of this: after choosing the insurance, only its ppoedaced, i.e. otL ;.
after (?login - lus_data - Tinsurance)) = {lins_price}. This output does not refine any produced
output of the specification, as some insurance data should also be gdo@ither concurrently or
in some order), i.e. out ; after (?login - lus_data - ?insurance)) = {lins_price co lins_data},
and again-(iy co-iocos).

Example 1§Extra Quiescence)

The second condition of the conformance relation stipulates ahaénceof outputs can only
occur when it is specified. Figure 15 shows an implementatjprihat does not send the
user's data after logging in, thus a quiescent configuration is reacfied lagging in, i.e.
out(_L;, after ?login) = {J}, but this quiescence is not specified, ez out(L, after ?login) =
{lus_data}, and—(ig CO-i0COs).

Comparing the Conformance Relations. We present how a comparison between the previous
conformance relations [26, 27] and the one presented in this papefir3te-iococonformance
relation [26] allows two different semantics. Under interleaving semanticsetzaton boils down

to ioco while partial order semantics allows to distinguish true concurrency fromléatgngs.
The second notion of conformance [27] only considers partial olpastics: events specified as
concurrent should be implemented as such. In addition the input enabedasumption of the

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 21

L]

Pinsurande

7

Figure 14. Extra/Incomplete Outputs.

i

Figure 15. Extra Quiescence.

implementation is dropped and we allow to test for refusals. Finally, as exglabeve, under
the definition ofco-iocowe give in this paper, implementations where events specified as weakly
concurrent are ordered are considered as correct.

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

22 H. PONCE DE LBON, S. HAAR, D. LONGUET

When every pair of concurrent event is specified as strongly coeuthere are not weakly
concurrent events), theo-ioco relation presented in this paper boils down to the second
conformance relation [27]. In addition, if we assume that the implementationus émabled, then
the first [26] and second conformance relation [27] (with partial osd#nantics) are equivalent.
Finally, when there is no concurrency at all (the system is sequentialjirsheelation [26] boil
down toioco. These results are summarized in the following table.

Assumptions Results
CO=SCO0 co-ioco= [27]
Co=ScoA input enabledness of the SUT co-ioco= [27] = [26]
co=scoA input enabledness of the SUTco= () | co-ioco=[27] =[26] =ioco

5. ATESTING FRAMEWORK FOR LABELED EVENT STRUCTURES

In section 4 we have formally defined what it means for an implementation tooronf
to its specification, and we have seen several examples of conformingi@ndonforming
implementations. Now, we need a way to test this notion of conformance. Ireittisis we define
the notions of test cases and test suites, as well as their interaction with theniempdéions and we
give sufficient conditions for detecting all and only incorrect implementation

In order to formally reason about implementations, we make the testing assurtigiothe
implementation under test can be modeled by an IOLES.

5.1. Test Cases and Test Suites

A test caseis a specification of the tester's behavior during an experiment carriedrothe
system under test. In such an experiment, the tester serves as a kintfi@alaenvironment of
the implementation. The outguactions are observed, but not controlled by the tester; however, the
tester does control the input ones. It follows that there should be rioeshbetween them, i.e. the
next (set of concurrent) input(s) to be proposed should be unigeeftre nammediate conflict
between inputshould exist in a test case.

This property is not enough to avoid all choices in a test case: if we allowester to reach
more than one configuration after some observation and each of thetesd#dterent inputs, there
is still some (nondeterministic) choice for the tester about the next input fwbpeoceven if those
inputs are not in immediate conflict. We require thus determinism: the reachéduration after
some observation should be unique.

Finally, we require the experiment to finish, therefore the test case shedidite.

We model the behavior of the tester by a deterministic event structure with adititd events
and without immediate conflicts between its inputs.

Definition 21 (Test Case / Test Suite)
A test case is a input/output labeled event structure(E;, <;, #:, \:) such that

1.tis determiniitic,
2. (EZ x Ehyn#, =10,
3. E, isfinite

A test suitds a set of test cases.

Example 19

Figure 16 presents three event structures. The behavigi®infinite which prevents it from being
a test case;, is not a test case either since there is an immediate conflict betwgemdins. The
inputsing andiny are in conflict ints, but this conflict is not immediate. In additidg, is finite
andts is deterministic, thereforg; is a test case.

fWhen we refer to inputs/outputs, we refer to input or outputiftbe point of view of the implementation. We do not
assume, as it is usual, that the test case is a “mirror” of the speitificat

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 23

31 (2 t3

Figure 16 Left: an infinite event structur&enter. immediate conflict between inpuiRjght: a test case

We are interested in the interaction between the test case and the implementaiteshtést
executiof in order to give averdictabout the success or failure of the test w.r.t. the conformance
relation. Verdicts are usually modeled via a labeling function from the statihe dést case to the
set{passfail }. Only leaves are labeled, andpassverdict can only be reached after observing
some output of the implementation (in this framewaftks considered an output). One possibility
would be to label configurations with verdicts, but as there is no evenelhly J, i.e. observing
0 does not lead to a new configuration, we need to model verdicts differéglin the case of
guiescence, we do not define verdicts syntactically, but rather senibntica

5.2. Test Execution and Verdicts

The interaction between two systems is usually formalized by their parallel itigoo This
composition assumes that both systems are always prepared to accappaintiat the other
may produce. In the sequential setting, it is assumed that the implementatigtseaeg input the
tester can propose (input enabledness of the implementation). Analogbeghster should be able
to synchronize with any output the implementation may produce. Constructiegesut structure
having such a property is almost impossible due to the fact that it shoulchlyohccept any output,
but also all the possible ways such an output could happen (contiufsequentially with other
outputs). We propose another approach to formalize the interaction bethveémplementation
and a test case.

Deadlocks of the parallel composition are used to give verdicts about sheute in theioco
framework. Such deadlocks are produced in the following situations:

1. the implementation proposes an output éreetion that the test case cannot accept,
2. the test case proposes an input that the implementation cannot accept, or
3. the test case has nothing else to propose (it deadlocks).

The first two situations lead to fail verdict, and the last one to@assone. For obtaining such
verdicts, we will define the notion of blocking in the test execution.

After observing a trace, the test execution can block because of antdhgimplementation
produces for three reasons. First, if after such an observation th@mssscannot accept that output.
Second, the test case can accept such output, but this is not the maximalibaan accept (the
reached configuration is not quiescent). Finally the test execution bibtke implementation
reaches a quiescent configuration and the test case does not.

Such situations can be simplified to the observation of an element in the sdpafsproduced
by the implementation that does not refine any output of the test casey iceout(L; after w) :
V' € out(L, after w) : =’ £ x wherex € POMSET (L,) U {6}.

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

24 H. PONCE DE LBON, S. HAAR, D. LONGUET

?insurange

!p,pric§ [tprice} - - - - - Jit_price? !ins,pric§

t4 t5

Figure 17. Two test cases for the travel agency in Figure 4

Definition 22 (Blocking because of an output)
Leti,t € ZOLES(L) andw € POMSET (L), we have

blocksp (i, t,w) < out(L, after w) %~ out(.L, after w)

Example 20

Consider the implementation;, the test caset, presented in Figure 17, and let; =
(?login - lus_data - 7plane). We have that the test execution blocks afi€r because the
implementation producedpa full action (which leads to a quiescent configuration) and the test case
is not able to accept it, i.ép_full € out(L, after w}), butVe € out(L,, after w}) : = IZ p_full,
and finally blocksp (i7, t4,w}). If we considerws = (?login - lus_data -?insurance), the test
execution also blocks, because tties_price action proposed by the implementation (leading
to a quiescent configuration) is enabled in the test case. However, dohet configuration
is not quiescent becauséns_data is still enabled, i.elins_price € out(L,, after wj),out(Ly,
after ws) = {lins_price co lins_data} and lins_price Z lins_price co lins_data. Finally
blockse (i7, ta,w}).

Blocking because of an output can also be caused by extra quiesc€posider the
implementation, and the test cagg. We have that the test execution blocks aftieryin because
the implementation reaches a quiescent configurationg keout(_L;, after ?login), butd is not
observable in the test case, id®eg out(L,, after ?login), andblockse (i, t4, ?login). The same
holds foris and we havdlockse (is, ta, ?login).

The second blocking situation occurs when the test case proposesiwareon complete set of
inputs that the implementation is not prepared to accept; but, as the implementatiaddcaome
causality, we should also consider the inputs that will become enabled @ftkrging some outputs,
i.e. 37w € posg.L; after w) : cc(?w, L; after w) A V7w’ € posg.L; after w) :7w £ 7w'.

Definition 23 (Blocking because of an input)
Leti,t € ZOLES(L) andw € POMSET (L), we have

blocksz(i,t,w) < poss_L; after w) %+ posg_L; after w)

Example 21

Consider implementatiofy and test case; of Figure 17, the test execution blocks after logging
in becaus&insurance co ?train € posg.L;, after ?login), but the implementation is not able to
accept it (nor any of its refinements), i¥¥w € posg.L;. after ?login) :?insurance €O ?train £

7w, andblocksz (i5, t5, ?login). If we considerig as the implementation, the test execution also

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 25

blocks because neither théisurance co ?train input action nor its refinements are possible in the
implementation andlocksz (i, t5, ?login).

We can now define the verdict of the executions of a set of test casea giithn implementation.

Definition 24 (Failure of a test suite)
Let: be an implementation, arid a test suite, we have:

ifails T < 3t € T,w € tracest) : blocksp (i,t,w) V blocksz (4, t, w)
If the implementation does not fail the test suitqaissest, denoted by passes'.

Example 22

Let T = {t4,t5} from Figure 17. We have seen in section 4 several situations that lead northe
conformance of an implementation. As seen in Example 20, the execution oftheaser, with
the (non conforming) implementations i-, is leads to a blocking, so we hawg i,, ig fails T. We
saw in Example 21 that the test executions between the implementationand the test casig
block after logging in, therefore we also haieig fails 7. We can conclude thaf is capable of
detecting the non conforming implementations presented in the last section.néasity check
that the (correct) implementations 3, i4 passT.

5.3. Completeness of the Test Suite

We saw in Example 22 that all the possible situations seen in Section 4 that mao |zl
non conformance of the implementation are detected by the test &uitg}. When testing
implementations, we intend to reject all, and nothing but, non conformant impletioaistaA test
suite which rejects only non conformant implementations is caftaehd while a test suite that
accepts only conformant implementations is cakletiaustiveA test suite may not be sound if it
contains a test case which is too strict: for instance, a test case contaimingeakly concurrent
events which would accept only implementations where these events argramicthus rejecting
those ordering the events, even though they are correctca-idca In other words, a sound test
suite does not produce false negatives. Conversely, a test suite ilik mahaustive if it is too loose
and accepts incorrect implementations. A sound and exhaustive test sailedcomplete

Definition 25 (Properties of test suites)
Let s be a specification andl a test suite, then

T is sound £ vi: ifailsT implies —(ico-iocos)
T is exhaustive 2 Vi: ifailsT if —(7 co-iocos)
Tiscomplete £ Vi: ifailsT iff —(i co-iocos)

The following theorem gives sufficient conditions for a test suite to bagou

Theorem1
Lets € ZOLES(L) andT a test suite such that

a) Vt € T : tracest) C trace$s)
b) Vt € T, w € trace$t) : out(_L; after w) C out(_L,; after w)
C) Vt € T,w € tracest) : cc(?w, L, after w) = cc(?w, L, after w)

thenT is sound fors w.r.t co-ioca

Notice that the trace inclusion required in a) ensures that any possibldrnrtpe test case is also
possible in the specification.

Proof

T is sound fors w.r.t. co-iocoiff for every implementationi that fails the test suite, we have that
it does not conform to the specification. We assurfals 7" and by Definition 24 we have:

Jt € T,w € tracest) : blocksp (i, t,w) Vv blocksz (i, t, w)

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

26 H. PONCE DE LEON, S. HAAR, D. LONGUET
and at least one of the following cases holds:

1. the test execution blocks aftetbecause of an output produced by the implementation:

Jw € tracest) : blocksey (i, t,w)
implies {x Definition 22x}

Jw € tracest) : out(L; after w) %~ out(.L, after w)
implies {x Definition 19x}

Jw € tracest) : Jx € out(L; after w) : Vo’ € out(L, afterw): o' £ =
implies {x Assumptions a) and)}

Jw € tracess) : 3z € out(_L; after w) : Vo' € out(L afterw) : o' IZ =
implies {x Definition 19x}

Jw € tracess) : out(L; after w) »~ out(_L, after w)
implies {x Definition 20«}

—(¢ co-iocos)

2. the test execution blocks aftetbecause of an input proposed by the test case:

Jw € tracest) : blocksz (i, t, w)
implies {x Definition 23x}

Jw € tracest) : posg_L, after w) »* posg.L; after w)
implies {x Definition 18x}

Jw € traces$t) : 37w € posg.L, after w) :

cc(?w, L, after w) AV?W' € posg.L; after w) : lw IZ 1w’
implies {x Assumptions a) and &)}

Jw € tracess) : 37w € posg.L; after w) :

cC(?w, L after w) A VIw' € posg.L; after w) : lw IZ I’
implies {* Definition 18x}

Jw € tracess) : poss L, after w) %+ posg.L; after w)
implies {x Definition 20x}

—(4 co-iocos)

We can easily see that the test syite ¢5 } proposed in Figure 17 satisfies the three properties of
Theorem 1 and thus is sound w.r.t the specification
The following theorem gives sufficient conditions for the test suite to baestive.

Theorem 2
Lets € ZOLES(L) andT a test suite such that

a) Yw € tracess) : 3t € T : w € tracest)
b) Vit € T, w € tracest) : out(_L; after w) C out(L after w)
C) Vt € T,w € tracest) : cc(w, L, after w) = cc(?w, L, after w)

thenT is exhaustive fos w.r.t co-ioca

Proof
We need to prove that if does not conform te then; fails 7. We assume (i co-iocos), then at
least one of the following two cases holds:

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 27

1. The implementation does not conform to the specification because an prgguced by the
implementation does not refine any specified output:

Jw € tracess) : out(L; after w) »~ out(_L, after w)
implies {x Definition 19x}

Jw € tracess) : Jx € out(L; after w) : Vo’ € out(L, afterw) : 2’ £ =
implies {x Assumptions a) and &)}

It € T,w € tracest) : 3o € out(L; after w) : Vz' € out(L, afterw) : 2/ £ =
implies {x Definition 19}

Jt € T,w € tracest) : out(_L; after w) %~ out(L, after w)
implies {x Definition 22x}

Jt € T,w € tracest) : blockspy (i, t,w)
implies {x Definition 24x}

i fails T

2. The implementation does not conform to the specification because an fioputthe
specification is not possible in the implementation (neither its refinements):

Jw € tracess) : posg.L, after w) % posg.L; after w)
implies {x Definition 18x}

Jw € tracess) : 37w € posg.L, after w) :

cc(?w, L, after w) AV’ € posg.L; after w) : lw IZ 1w’
implies {x by Assumption c) we can findsuch that c¢’w, L, after w) and by

Assumption ayw € posg_L, after w) %}

dt € T,w € traces$t) : 37w € posg.L, after w) :

cC(?w, L, after w) A V7w’ € poss.L; after w) : lw IZ I’
implies {x Definition 18x}

dt € T, w € tracest) : posg_L; after w) % posg.L; after w)
implies {x Definition 23x}

Jt € T,w € tracest) : blocksz (i, t, w)
implies {x Definition 24x}

ifails T

O

We can see that the test su{tq, t;} from Figure 17 also satisfies the conditions of Theorem 2,
therefore it is exhaustive and thus complete.

While sufficient conditions for soundness and exhaustiveness dcdugss have been given, we
need more: in practice, only a finite number of test cases can be exduened;we need a method to
select a finite set of relevant test cases covering as many behavpwssiisle (thus finding as many
anomalies as possible). The behavior of the system described by th#cggtiea consists usually
of infinite traces. However, in practice, these long traces can be coegdide a sequence of (finite)
“basic” behaviors. Any “complex” behavior is built from such basic&ébrs. A criterion allowing
to cover once each basic behavior described by the specification enfeddy the authors [27]
using a proper notion of complete prefixes [41].

6. TEST DERIVATION

We have seen sufficient conditions to ensure the completeness of ateslinsthis section we will
explain how to construct a test suite that fulfills such conditions.

6.1. An Algorithm to Construct a Complete Test Suite

We now recall the algorithm to build a test suite in tloeo setting [40] to explain the main
differences with our test derivation algorithm. In addition we prove thatekesuite obtained is
complete w.r.co-iocoand analyze the complexity of our approach.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

28 H. PONCE DE LBON, S. HAAR, D. LONGUET

Test Derivation for LTS. In theiocotheory, the behavior of a test case is described by a (finite)
tree with verdicts gasdfail) in the leaves, where in each internal node either one specific input
action can occur (also any possible output is accepted), or everytswpd the special action

6 can occur. The special labélg L U {6} is used in a test case to detect quiescent states of an
implementation, so it can be thought of as the communicating counterpastaction.

The test cases are denoted using a process-algebraic notatidanttes action prefix and+”
denotes choice. Moreover, for a set of states§ after a denotes the set of states which can be
reached from any state fivia actiona. Let S be a non-empty set of states, with initiay= {s¢}.

Then a test caseis obtained fromS by a finite number of recursive applications of one of the
following three nondeterministic choices:

1. (* terminate the test case *)

t := pass
2. (* give a next input to the implementation *)
t:= at,

+ {z;fail | z € Lo,z ¢ out(S)}

+ {z;t, | * € Lo,z € out(S)}
wherea € Lz such thatS after a # 0, t, is obtained recursively by applying the algorithm
for S after a, and for each: € out(S), ¢, is obtained by recursively applying the algorithm
for the set of stateS§ after x.

3. (* check the next output of the implementation *)

t:= {x;fail |z € Lo,z ¢ out(S)}

+ {0;fail | 0 £ out(S)}

+ {x;ty | * € Lo,z € out(S)}

+ {0ty | 6 € out(S)}
wheret,, andt, are obtained by recursively applying the algorithm$aafter « and.S after §
respectively.

Test Derivation for IOLES. The basic idea of our algorithm is to divide the specification into
behaviors triggered by incompatible inputs, that are prefixes of the sadigifi (with a particular
property that we call input choice free, to be defined below), and thbaikd test cases from finite
prefixes of these event structures.

We have explained in the previous section the reason to avoid immediate cbeflicten input
events in a test case. Hence we start by dividing the specification ingsdfia way that any choice
between inputs is represented by one of those prefixes. We call seittepinput choice free

Definition 26 (Input choice free IOLES)
LetE = (E,<,#,\) € ZOLES(L), we have

£ is input choice free= (ET x EX)N# =0

Algorithm 1 builds an input choice free IOLES by removing silent actions esgblving
immediate conflicts between inputs, while accepting several branches ifcegeflict between
outputs (note that “mixed” immediate conflicts between inputs and outputs hanertled out by
Assumption 4) and conserving concurrency. At the end of the algorithrmpait conflicts have
been resolved in one way, following one fixed strategy of resolution of inmtethput conflicts.
Such a strategy can be represented as a linearization of the causalitynrélatispecifies in which
order the events are selected by the algorithm. In order to cover the otverhies, the algorithm
must be run several times withifferentconflict resolution schemes, i.e. different linearizations, to
obtain a test suite that represents every possible event in at least brestsHowever, as it can be
seen in Section 6.3, the number of linearizations needed is bounded byrbemof direct conflicts
between inputs.

Definition 27 (Linearization of a partial order)
LetE = (E,<,#,\) € ZOLES(L). Atotal orderR overE is a linearization oK ifforall e,e’ € E
we have that < ¢’ implieseRe'.

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 29

Analogous to the non deterministic choice of the next input in the algorithmT8sL(point 2.),
assume a linearization is selected non deterministically. The algorithm for Liilgs the test case
that accepts any output the implementation may produce (points 2. and 3njngtapassverdict
if the output was specified andfail one if not. Contrary to this, we build a test case that only
allow to accept those outputs that were specified. Finally, the algorithnTfes kllows to chose for
termination (point 1.) while the termination of our algorithm is given by the finiteioéshe IOLES
that is given as an input to the algorithm (see Theorem 3).

Given a deterministic specification that satisfies Assumption 4 and a linearip&iisrcausality
relation, Algorithm 1 constructs an input choice free prefix of the spatific as can by seen in
Example 23. It is worth noticing that the algorithm does not terminate if the estemtture is
infinite. However, as it can be seen in Theorem 3, the algorithm is only applitinite IOLES. A
parameter can be added to stop the algorithm at a given depth of the stiegificustomized by
the user [27].

Algorithm 1 Calculate an input choice free prefix of a given event structure

Require: s = (E,<,#,)\) € ZOLES(L) : Ve € EZ,¢' € E9 : —(e #, ¢') , alinearizatiorR of <
Ensure: An input choice free prefix of
1. E,:=10
Eiemp = F
while Ey,, # 0 do
em = m%n(Etemp) /* the minimum always exists &R is total and finite */
Etemp = Etemp \iem}
if ({em} X EZ)N# =0 A ((em)\ET) C B, A Ae) # 7 then
/* the current even¢,,, is not in conflict with any event of the prefix, it is not a sileneat and its past (not
considering silent events) is already in the prefix */

Noa ~Awebd

8: E,:=E,U{en}
9: endif
10: end while

11: <), i= <N (B, x Ep)

12: #p =#0N (Ep X EP)

130 Ay = Alg,

14: return p = (Ep, <p, #ps \p)

6.2. lICS set

As it is explained above, we need first to be sure that the collection of irai@ns that we use
considers all resolutions of immediate input conflicts, i.e. is rich enough tadaofor any given
immediate input conflict, a pair of linearizations that reverses the order bpdfra

Definition 28

Fix £ € ZOLES(L), and letl be a set of linearizations &f. Then£ is animmediate input conflict
saturated setor iics set) for€ iff for all e;, e, € ET such thatk, #e,, there existR,, R, € £ such
thatelRleQ andegRgel.

Proposition 2
Let £ be an iics set fo€ ande € E with A(e) # 7. There existsk € £ such thak belongs to the
set of events of an IOLES constructed by Algorithm 1 an@&.

Proof

Let p be the IOLES constructed by a fix linearizati®h. Suppose: is not in p; then either(i)

e € BT and{e} x EZ N# # 0 or (ii) [e\E™] € E,. In case(i), there existe’ € EZ such thae #¢’
ande’Rie. As L is an iics set, we know there exi®, € £ such thateR,e’ and then we can use
R» to constructy’ with e belonging to its events. Ifi) holds, then there exists € [e] such that
{e'} x Egﬁ # (), and the analysis is analogous to the on@)in O

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

30 H. PONCE DE LBON, S. HAAR, D. LONGUET

The following result shows how to construct a test case for the spdmfidagom an input choice
free prefix of it.

Proposition 3
Let p be any input choice free prefix of If ¢ is a finite prefix ofp, thent is a test case.

Proof
Let ¢ be a finite prefix ofp. We need to prove thatis deterministic, that there is no immediate
conflict between its input events and that it is finite.

1. Aspisinput choice free, there is no immediate conflict between its input actiomnsisTéso
the case in as it is its prefix.

2. lts finiteness is immediate from the hypothesis.

3. As the specification is deterministic, so ipiand therefore.

O

Let PREF (s) be the set of all finite prefixes of we show now that Algorithm 1 is general
enough to produce a complete test suite from it.

Theorem3
FromPREF(s) and a given iics set for s, Algorithm 1 yields a complete test suife

Proof
SoundnessBy Theorem 1 we need to prove: (1) the traces of every test caseaaestof the
specification; (2) the outputs following a trace of the test are at least thwseafied; (3) any
concurrent complete set of possible input in the test case is concoomplete in the specification.
(1) Trace inclusion is immediate since the algorithm only removes silent actiahseaolves
conflicts. (2) For a test and a tracew € tracest), if an output in outl, after w) is not in
out(_L, after w), it means either that it is in conflict with an input in which is impossible by
Assumption 4, or that its past is not alreadytinwhich is impossible since is a trace oft.
(3) As inputs are considered as concurrent complete, if the test casa t@ncurrent complete
possible input that is not concurrent complete in the specification, them aittev input event was
introduced (which is not possible as the test case is a prefix of the sp#oificor because some
concurrency had been removed; but this is not possible as only congfliopats are removed.
Exhaustivenes®y Theorem 2 we need to prove: (1) every trace is represented irshblea test
case; (2) the test case does not produce outputs that are not shé8ifieoncurrent complete set
of inputs of the specification remain as concurrent complete sets in the $es{tpClearly, for all
w € tracess) there exists at least one prefixc PREF(s) such thaty € tracegc). By Proposition 2
we can findR € £ such that this trace remains in the test case obtained by the algorithm. (2-3) Th
inclusion of outputs and preservation of concurrent complete sets is immettieéethe algorithm
does not add events.

O
Example 23
Let Ry = ?login — lus_data — Tinsurance — lins_price — lins_data — Tplane — p_price —
Nrain — T — lt_price2 — lt_pricel and Ro = ?login — lus_data — Tinsurance —

lins_price — lins_data — Ttrain — 7 — t_price2 — lt_pricel — ?plane — p_price two total
orders of the events of Both’R1 andR, are linearizations oK, and form an iics set of. The
input choice free prefix, can be obtained by the Algorithm 1 usijl while t5 is obtained with
R2. As s is finite, by Theorem 3 we have thét, t5} is a complete test suite.

6.3. Upper Bound for the Complexity of the Method

The complexity of constructing a complete test suite depends on the size ofstlsetiitused: for
a finite prefix of the system, we need one test case for each linearizattor\ila present an upper
bound for the size of and discuss informally how to improve on it.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 31

Figure 18. An IOLES with three inputs in immediate conflict

Consider linearizationskR,; and Rz = 7login — 7plane — !p_price — ?train — 7 —
lt_price2 — t_pricel — Tinsurance — lins_price — lins_data — 'us_data. We can easily see
that some events of them commute, however, Algorithm 1 construgthichever of them we use.
We have seen that some commutations of events in the linearization prodecerditest cases (as it
is the case oR, andts). The concept of partial commutation was introduced by Mazurkiewick [42
where he defines tiace as a congruence of a word (or sequence) modulo identities of the form
ab = ba for some pairs of letters.

Let X be a finite alphabet (its elements are called letters) AadY x ¥ a symmetric and
irreflexive relation calledindependenceor commutation The complement off is called the
dependenceelation D. The relation/ induces an equivalence relatiey over ¥*. Two wordsz
andy are equivalentf =; y) if there exists a sequeneg, . . ., z; of words such that = z;,y = z
and for all1 < i < k there exists words,, 2!’ and letters:;, b; satisfying

17 71

zi = ziagbizl, 21 = zibja;z), and(a;, b;) € 1

Thus, two words are equivalent by; if one can be obtained from the other by successive

commutation of neighboring independent letters.
For a wordz € ¥* the equivalence class efunder=; is defined asr]; = {y € * | v =; y}.

Example 24
Considerx = {a, b, ¢,d} andI = {(a,d)(d, a)(b, c)(c,d)}, we have:

[baadcb]; = {baadcb, baadbe, badacb, badabe, bdaach, bdaabc}

As explained above, several linearizations of the causality relation buildahe test case,
therefore they can be seen as equivalent under some relation andyweeed one representative
for each class. It is shown by Rozenberg and Salomaa [43] that 8Mergurkiewicz's) trace has
a unique normal form (every trace in the equivalence class has the sehara an algorithm is
given to construct it.

We have seen that the order between concurrent events or outptd @aveénmediate conflict do
not change the test cases constructed by Algorithm 1, but immediate cbefeten inputs and
causality does. We propose the following independence relation:

I 2 (Ex E)\(SU#nE" x EY))

For constructing a test case, we can consider only the normal formtbéadbssible linearizations
(one representative per equivalence class) and therefore theatdydof the test suite is bounded
by the number of equivalence classes undegr.

Lemma 1l

Let K = |[# N (ET x ET)], then Algorithm 1 needs to be run ord§* times to obtain a complete
test suite.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

32 H. PONCE DE LBON, S. HAAR, D. LONGUET

Example 25

Consider systems; from Figure 18 anck,, es, e, € EZ. The dependence relation contains all
the pairs of events that are related either by causality or input immediate toNfiw consider
R =1 ejezesesegeseser aNdR' =L ejegesesesegeqer tWo linearizations ok ;. The Foata normal
form of bothR andR’ is (L)(e1)(e2)(es)(es)(eseseres), meaning that the order @f, eg, ez, es IS
not really important for constructing the test case. For any linearizatief, gfits normal form is
one of the followings:

R1 = (L)(e1)(ez)(es)(ea)(eseseres) Ra = (L)(e1)(e2)(es)(es)(eseceres)
Rs = (L)(e1)(es)(e2)(ea)(eseseres) Ra = (L)(e1)(es)(ea)(e2)(eseceres)
Rs = (L)(e1)(ea)(e2)(es)(eseseres) R = (L)(e1)(ea)(es)(e2)(eseseres)

However, linearization®, andR, lead to the same test case (the same happer;fdk, and
Rs,Re). This is due to the fact that once we add an input event to the test dabe, ather inputs
that are in immediate conflict with it will not be added, and their order is irreleva the example
above, linearization® 1, R3 andR 5 construct a complete test suite.

7. CONCLUSION AND FUTURE WORK

We have presented a formal framework for conformance testing anrzurrentsystems whose
behavior is given in the form of labeled event structures. We propadistinguish weak and strong
concurrency in the specification. Along with the definition of the conforreamtationco-ioco
designed for such specifications, we have defined test cases amcdestions, and proposed a
test case generation algorithm able to produce a complete test suite. Thisiesrour previous
work [26, 27].

Future work includes to handle non-determinism in the specification, apdidsumption 4 that
avoids conflicts between inputs and outputs. One way to avoid making ssemjpsons would
be to assume a fair scheduler. Otherwise, controllability of test cases mesishred during their
construction [36], and the linearizations that are needed to build the t&s$ chould not only
reverse the order between conflicting inputs, but also between conflispings and outputs.

All notions of this article are defined in terms of events structures, which isahmantic model
for several formalisms. However, real specifications are usuallyngiveone of theseyenerator
formalisms, such as Petri nets or networks of automata, rather than asteuetures. Our approach
therefore needs to come on top ofarfoldingmechanism that generates event structure semantics.
An algorithm for building test cases is given by the authors [27] baseghamfolding algorithm.
An implementation of this algorithm and the one presented in this article is plansed ba the
MOLE tool [44], which builds a complete finite prefix of the unfolding of a net.

Another important dimension to be exploreddistribution of observation and of testing. The
dioco and associated relations studied by Hierons et al. [19, 45] allow to link thi@oance of
local observations to thglobal conformance of the SUT. There, the underlying specification is a
multi-port IOTS; by contrast, we shall be studying multi-component, coratisystems with local
observation, and distributed test suites to be developed. In anotherlielgfLonguet [46] studies
different ways of globally and locally testing a distributed system specifitdMessage Sequence
Charts, by defining global and local conformance relations, for whiblaestive test sets are built.
Moreover, conditions under which local testing is equivalent to glob&ihteare established under
trace semantics. We are currently working on a generalization of those idea

REFERENCES

1. Milner, R.: Communication and concurrency. PHI Series imgoter science. Prentice Hall (1989)
2. Hoare, T.: Communicating Sequential Processes. Prentid¢198b)
3. ITU-TS: Recommendation Z.100: Specification and Descrifdt@anguage (2002)

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

~N O Ol

© 00

10.
11.

12.
13.

14.

15.

16.
17.
18.

19.

20.

21.

22.

23.

24,

25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.

MODEL BASED TESTING FOR CONCURRENT SYSTEMS WITH LABELED E\NEF STRUCTURES 33

. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifiegfitheir implementations and their tests. In:

Conformance testing methodologies and architectures for @$bqols. IEEE Computer Society Press (1995)
468-479

. De Nicola, R., Hennessy, M.: Testing equivalences for proseSggeoretical Computer Scien84(1984) 83-133
. Abramsky, S.: Observation equivalence as a testing equalérheoretical Computer Sciens®(1987) 225-241
. Brinksma, E.: A theory for the derivation of tests. In: Protdgpecification, Testing and Verification VIII, North-

Holland (1988) 63—-74

. Phillips, I.: Refusal testing. Theoretical Computer Scieb@€1987) 241-284
. Langerak, R.: A testing theory for LOTOS using deadlock cteia. In: Protocol Specification, Testing and

Verification 1X, North-Holland (1990) 87-98

Segala, R.: Quiescence, fairness, testing, and the notiorplefmentation. Information and Computatid882)
(1997) 194-210

Tretmans, J.: Test generation with inputs, outputs and tepejuiescence. Software - Concepts and TAg(8)
(1996) 103-120

De Nicola, R.: Extensional equivalences for transitionesyst Acta Informatic24(2) (1987) 211-237

Heerink, L., Tretmans, J.: Refusal testing for classes of transystems with inputs and outputs. In: Formal
Techniques for Networked and Distributed Systems. Volume 10FI&f Conference Proceedings. (1997) 23—38
Lestiennes, G., Gaudel, M.C.: Test de &ysts éactifs nonéceptifs. Journal Eur@en des Sysmes Automatiss
39(1-2-3) (2005) 255-270

Faivre, A., Gaston, C., Le Gall, P., Touil, A.: Test purposearetization through symbolic action refinement. In:
Testing of Software and Communicating Systems. Volume 5047 of teedtates in Computer Science., Springer
(2008) 184-199

Fron, T.. Symbolic model-based test selection. Electronic Niotd$heoretical Computer Scien@0 (2009)
167-184

Krichen, M., Tripakis, S.: Conformance testing for reaidisystems. Formal Methods in System De<s3¢(8)
(2009) 238-304

Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Paen, P., Skou, A.: Testing real-time systems using
UPPAAL. In: Formal Methods and Testing. Volume 4949 of Lectuogd¥ in Computer Science., Springer (2008)
77-117

Hierons, R.M., Merayo, M.G., ifiez, M.: Implementation relations for the distributed testieckure. In: Testing
of Software and Communicating Systems. Volume 5047 of LecturesNnt€omputer Science., Springer (2008)
200-215

Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)

Peleska, J., Siegel, M.: From testing theory to test drivelementation. In: Formal Methods Europe. Volume
1051 of Lecture Notes in Computer Science., Springer (1998)-556

Schneider, S.: Concurrent and Real Time Systems: The CSP#gprlst edn. John Wiley & Sons, Inc., New
York, NY, USA (1999)

Ulrich, A., Kdnig, H.: Specification-based testing of concurrent systems. dmm& Techniques for Networked
and Distributed Systems. Volume 107 of IFIP Conference Procged{h997) 7—22

von Bochmann, G., Haar, S., Jard, C., Jourdan, G.V.: Testisigrag specified as partial order input/output
automata. In: Testing of Software and Communicating Systems. Voh0d& of Lecture Notes in Computer
Science., Springer (2008) 169-183

Haar, S., Jard, C., Jourdan, G.V.: Testing input/outputigbasrder automata. In: Testing of Software and
Communicating Systems. Volume 4581 of Lecture Notes in Computen&ei, Springer (2007) 171-185

Ponce de L@n, H., Haar, S., Longuet, D.: Conformance relations forlledbevent structures. In: Tests and Proofs.
Volume 7305 of Lecture Notes in Computer Science., SpringgtZp83-98

Ponce de L&n, H., Haar, S., Longuet, D.: Unfolding-based test selectmncbncurrent conformance. In:
International Conference on Testing Software and Systemsuitgeblotes in Computer Science, Springer (2013)
To appear.

Kuske, D., Morin, R.: Pomsets for local trace languages. abofiutomata, Languages and Combinatoii(2)
(2002) 187-224

Mokhov, A., Yakovlev, A.: Conditional partial order gitas: Model, synthesis, and application. IEEE Transactions
on Computer$9(11) (2010) 1480-1493

Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysiaglinkability and anonymity using the applied pi calculus.
In: Computer Security Foundations, IEEE Computer Society@Q07-121

Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, evemicures and domains, part I. Theoretical Computer
Sciencel3(1981) 85-108

Langerak, R., Brinksma, E.: A complete finite prefix for pgscalgebra. In: Computer Aided Verification. Volume
1633 of Lecture Notes in Computer Science., Springer (19883195

Winskel, G.: Event structures. In: Advances in Petri Netdurvie 255 of Lecture Notes in Computer Science.,
Springer (1986) 325-392

Aceto, L., De Nicola, R., Fantechi, A.: Testing equivakesfor event structures. In: Mathematical Models for the
Semantics of Parallelism. Volume 280 of Lecture Notes in Com&tence., Springer (1986) 1-20

Genc, S., Lafortune, S.: Distributed diagnosis of diseegtnt systems using petri nets. In: International
Conference on Applications and Theory of Petri Nets. Volum&926f Lecture Notes in Computer Science.,
Springer (2003) 316-336

Jard, C.,&on, T.: TGV: theory, principles and algorithms. InternasibJournal on Software Tools for Technology
Transfer7 (2005) 297-315

Xu, Y., Stevens, K.S.: Automatic synthesis of computatioarfetence constraints for relative timing verification.
In: International Conference on Computer Design, IEEE (20@322

Heerink, A.W.: Ins and Outs in Refusal Testing. PhD thesisyéysiteit Twente, Enschede (May 1998)

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliaj0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

34 H. PONCE DE LBON, S. HAAR, D. LONGUET

39. Jard, C.,8ron, T., Tanguy, L., Viho, C.: Remote testing can be as powasfiocal testing. In: Formal Methods
for Protocol Engineering and Distributed Systems. Volume 156~ IConference Proceedings., Kluwer (1999)
25-40

40. Tretmans, J.: Model based testing with labelled transition sygstén: Formal Methods and Testing. Volume 4949
of Lecture Notes in Computer Science., Springer (2008) 1-38

41. Esparza, J.,&ner, S., Vogler, W.: An improvement of McMillan’s unfoldinggalrithm. In: Tools and Algorithms
for Construction and Analysis of Systems. Volume 1055 of Lectureedlmm Computer Science., Springer (1996)
87-106

42. Diekert, V., Rozenberg, G., eds.: The Book of Traces. Waciéntific Publishing Co., Inc., River Edge, NJ, USA
(1995)

43. Rozenberg, G., Salomaa, A., eds.: Handbook of formal layegyjavol. 3: beyond words. Springer-Verlag New
York, Inc., New York, NY, USA (1997)

44. Schwoon, S.: MOLEhttp://www.Isv.ens-cachan.fr/ ~ schwoon/tools/mole/

45. Hierons, R.M., Merayo, M.G.,Miez, M.: Implementation relations and test generation for sysiéthslistributed
interfaces. Distributed Computirgi(1) (2012) 35-62

46. Longuet, D.: Global and local testing from message sequerartéschin: Symposium on Applied Computing,
Software Verification and Testing track, ACM (2012) 1332-833

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Relia0000)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

