
Which Interaction Technique Works When?
Floating Palettes, Marking Menus and Toolglasses

support different task strategies

W endy E. Mackay
INRIA

Domaine de Voluceau -Rocquencourt, B.P. 105

78153 Le Chesnay Cedex, FRANCE

wendy.mackay@inria.fr

ABSTRACT
We conducted an experiment that compared three post-WIMP
interaction techniques: floating palettes, marking menus and
toolglasses, in a real-world Coloured Petri-Net editor,
CPN2000. We created six situations in which users performed
identical sets of actions with equally-complex nets, but with
different cognitive contexts. We found significant differences
in performance and preferences across interaction techniques.
When a user is in a "copy" context, floating palettes are more
efficient. If the user is problem solving, toolglasses or
marking menus are preferred. No single interaction technique i s
clearly superior: each has strengths in different contexts. Since
a single application must support different kinds of cognitive
tasks, interaction designers should consider integrating
multiple interaction techniques, rather than selecting only
one .

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information processing

General Terms Design, Experimentation, Human Factors

Keywords
Cognitive Context, Interaction Techniques, Floating Palettes,
Marking menus, Toolglasses, Coloured Petri Nets.

1. INTRODUCTION
Over the past decade, researchers have developed interaction
techniques that improve the original desktop metaphor [22]
and WIMP (windows, icons, menus, pointing) graphical user
interfaces. For example, Kurtenbach [15,16,17] tested
contextual marking menus and reported speeds of 3.5 times that
of traditional pull-down menus on specific tasks. Bier et al. [6]
developed two-handed toolglasses and Kabash et al. [13] found
them to be up to 40% faster than fixed palettes. Unfortunately,
despite their promise, we know little about how these
interaction techniques compare in real use. Commercial
applications rarely use them, partly because they are not
supported in standard interface toolkits.

The goals of this study were to compare three post-WIMP

interaction techniques in a real-world application and to
encourage software designers to consider using them in new
applications. We took advantage of a major redesign of a
Coloured Petri Net (CPN) [12] editor, Design/CPN, developed
by Aarhus University in the 1980’s, which uses traditional
WIMP interaction techniques. Although not a commercial
product, it is used by over 600 industrial and academic
organizations world-wide. The new CPN2000 editor, described
more fully in [1], incorporates the three interaction techniques:
floating palettes, marking menus and toolglasses.

Floating palettes contain
sets of command tools

represented by buttons. The user clicks on a tool in the palette
with the mouse and conceptually holds it in her hand. She can
then apply the command to one or more graphical objects on
the screen. For example, picking up the “create arc” tool
enables the user to create several arcs in a row.

Marking menus are circular,
contextual menus that appear when the
user clicks the right button of the mouse.
They are faster than pull-down menus
because it is easier for the human hand to
move in a given direction than to reach a
target at a given distance. They also

provide a smooth transition between novice and expert use,
because the menu does not appear if the gesture is executed
quickly. The user can move to any on-screen graphical object
and apply one or more commands in succession.

Toolglasses, like floating
palettes, contain a set of
command tools represented
by buttons. However, they
are semi-transparent and can

be moved with the user’s non-dominant hand. The user “clicks
through” the desired command onto the desired object with the
dominant hand. The user can rapidly shift focus between
commands and graphical objects on the screen. Note that this
interaction technique requires two input devices, in our case, a
trackball and a mouse, operated by the user's two hands.

As designers, we expected that one of these interaction
techniques would clearly stand out as 'best'. Instead, our field
studies and preliminary user tests showed that preferences for
particular interaction techniques appeared to vary according to
the kind of task and the user's current cognitive context. This
paper describes a controlled experiment to identify the
circumstances under which users prefer each technique.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Advanced Visual Interfaces AVI'02, May 22-24, 2002, Trento, Italy.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

1.1 Tasks reflect different cognitive contexts
As Suchman [23] points out, even goal-oriented tasks are
affected by the current work context. Users’ actions are
situated, influenced by the changing nature of the environment.
Green [10] describes the “cognitive dimensions of notations”
and classifies six generic activities: incrementation,
transcription, modification, exploratory design, searching,
and exploratory understanding. He argues against complex task
analyses as “lengthy to construct, require specialised
experience and in the end do not capture the labile nature of
everyday activities.” An alternative strategy is to construct
scenarios [18, 7] that reflect the subtleties of tasks in context.

We decided to informally test the three interaction techniques
above at a retreat for CPN developers. We created prototypes of
each and asked 12 CPN developers to use them to work through
scenarios based on our field studies of professional CPN
developers [11,19]. We had observed that users spent most of
their time copying nets already on paper (Green’s transcription
task) or modifying existing nets to meet new requirements.
They also (but rarely) created nets from scratch.

Note that we cannot distinguish these copying and modifying
tasks if we examine only the physical actions performed by the
user. They differ primarily in the user’s cognitive context: his
perception of the task and skill level. Copy tasks are almost
mechanical, requiring almost no content knowledge, whereas
modify tasks require problem-solving skills and a changing
focus as the user works through the components of the net.

Consider, for example, a developer editing a Colored Petri Net,
or directed graph (Fig. 1). Each net consists of graphical
objects with separate shapes and functions. Layout rules are
strict, e.g., arcs can only connect places (circles) to transitions
(rectangles) or vice versa, but not places to places.

Fig. 1: Simple Petri net with 3 places (circles), one
transition (rectangle) and four arcs.

If the user already knows the exact structure and layout of the
net to be edited, it is a copying task. The most efficient
strategy is usually to create all places first, then all transitions,
and then finally join them all with arcs. If the user must make
design decisions along the way, it becomes a problem-solving
or modify task. Although individual editing commands and the
resulting net may be identical, the user’s thought processes and
the optimal execution strategy differ. Here, the most efficient
strategy is to choose a place as a conceptual starting point,
then identify the related transitions and link them with arcs,
continuing logically until the new net is complete.

What does this imply for testing interaction techniques?
Simply that we cannot determine the efficacy of interaction
techniques one command at a time. Instead, we must examine
the sequences of commands performed by the user under
different cognitive conditions, if we are to determine which
interaction technique is truly more effective.

2. Method
This experiment compares the use of three interaction
techniques: floating palettes, marking menus and toolglasses,

under two task conditions: copying and modifying nets. We
used a 3x2 within-subjects Latin Square design in which each
subject was exposed to all six conditions, using a different net
for each interaction technique. In each condition, the subject
was given a scenario and asked to modify a net using a
particular interaction technique accordingly. All scenarios
involved creating a new subnet and modifying a set of
graphical attributes. The total number of actions for a correct
solution was held constant (20-22).

We created one copy scenario and one modify scenario for each
of the three nets. We then randomly assigned an interaction
technique to each pair of copy and modify scenarios for each
net. Each scenario began from the same starting state and
subjects were asked to change different, non-overlapping parts
of the original net in the copy and modify tasks. The
presentation order of nets and interaction techniques was
systematically varied and counterbalanced across subjects.

2.1.1 Subjects
Eighteen attendees from the 1999 International Workshop on
Practical use of Coloured Petri Nets volunteered to act as
subjects. Volunteers signed up for one-hour time slots, in
which three subjects were run simultaneously. Subjects all had
at least one year of either academic or industrial CPN
experience. Ages ranged from 20's to 50's; two were female and
sixteen were male. One subject was left-handed. Most subjects
had used floating palettes before; none had ever seen or heard of
marking menus or toolglasses. Ten subjects were external,
eight subjects were from the local CPN group.

2.1.2 Apparatus
The training/debriefing room contained three HP Kayak XW
PCs running Windows NT, equipped with a track-ball and a
mouse to support two-handed input. The experiment room
contained three identical PCs, organized in three separate work
areas, with an observer and a subject sitting side-by-side. A
video camera was available to tape any of the three work areas.

The software was a working prototype of the CPN 2000 editing
tool [1] with the ability to present a single interaction
technique (floating palettes, marking menus or toolglasses) or
all three together. Many other features were disabled during the
experiment, to simplify comparisons. Subjects’ keystrokes
were logged, providing a timed record of every command used
and every object manipulated. This data is sufficient to
completely reconstruct the entire session.

2.1.3 Scenarios
We asked a local CPN expert to help us create three test nets
that were equivalent in overall difficulty, complexity and in
number of graphical components. To ensure their equivalence,
we tested the nets and scenarios (over five iterations) with
other local CPN experts. The test nets were: Simple Protocol
Net (models sending packets over an unreliable network),
Distributed Database Net (models an algorithm for ensuring
consistency across a number of databases) and Resource
Allocation Net (models several processes competing for three
different resources). After the experiment, we checked whether
subjects treated the nets as equivalent. We ran a one-way
analysis of variance of changes, misses, duration and specific
editing commands. The lack of statistically-significant
differences on any measure (p<.001) indicated that the test nets
were indeed equivalent for subjects.

We developed six scenarios, two per net, in which users added a
new subnet (a set of circles, rectangles and lines) to an existing

net, and changed the graphical attributes (color or line
thickness) of specified graphical objects. Half of the scenarios
involved copying a net. The subject received a printed net with
hand-written annotations and was told to update the on-screen
version. A sample copy scenario read:

You were unable to go to the design meeting yesterday
afternoon, where they made a few changes to the
Resource Allocation Net. Your boss gave you her copy
of the net, with her notes on the changes to be made.
Please use the floating palette to update the net
accordingly.

The remaining scenarios involved modifying a net, requiring a
higher level of problem-solving and CPN knowledge. The
subject was asked to modify a new version of the same net
according to certain criteria. For example: Modify the Resource
Allocation net by creating a new process cycle that competes
for the resources R, S and T. (This is the same as adding a new
subnet of circles, rectangles and arcs.) The subject was then
asked to ensure that the net met the company’s style
guidelines, which required changing the color and line
thickness of specific graphical objects within the net.

2.2 Procedure
2.2.1 Training
Subjects arrived in a separate training room. After answering
various background questions, each subject was given
individual, but standardized training, conducted by one trainer.
Each subject began the experiment when deemed proficient,
defined as able to reliably create, delete and move graphical
objects and change graphical attributes, using each of the three
interaction techniques (usually after about 10 minutes total).

2.2.2 Experiment
In the experiment room, each subject was assigned to an
experimenter who provided standardized explanations of each
condition, ensured that the software presented the correct
conditions, recorded observations during each condition (with
a standard note-taking form), and asked for qualitative
impressions immediately after each condition.

C o n d i t i o n Interact ion
Technique

N e t Scenar io

Training All Train None
1 Marking Menu 2 Copy
2 Marking Menu 2 Modify
3 Floating Palette 3 Copy
4 Floating Palette 3 Modify
5 Toolglass 1 Copy
6 Toolglass 1 Modify

Test None None

Table 1: Example of experimental conditions for one subject.

The experiment consisted of six conditions in which each
subject was presented with three different nets and asked to
perform a copy and a modify scenario on each, using a different
interaction technique for each net. Different subjects
experienced different combinations of interaction techniques
and nets (Table 1), to control for order effects across nets and
interaction techniques. Subjects pressed a button to start each
condition; the experimenter pressed a button when the subject
had completed the scenario. We needed 18 subjects to present
all subjects with all combinations of nets, scenarios and
interaction techniques. Each condition has a unique code.
Scenarios are labeled A,B, nets are labeled 1,2,3 and

interaction techniques are indicated by their initials:
FP=floating palette, MM=marking menu and TG=toolglass.
For example, a condition with a marking menu, net 2 and the
copy scenario is: MM-2A.

2.2.3 Debriefing
One experimenter debriefed all subjects, using a standard
questionnaire. They were asked both overall preferences among
the interaction techniques and also the conditions under which
they preferred each technique: creating graphical objects
(circular places or rectangular transitions), creating arcs or
changing attributes. The experimenter debriefed each subject
on the purpose of the experiment, asked for additional
suggestions or comments and answered further questions.

2.3 Data Collection
In addition to the background and debriefing information
described earlier, we also recorded every user action, e.g.,
mouse clicks, during every condition. Data was also logged at
the command and object level, to facilitate analysis. Every
graphical object in each net was assigned a unique identifier.
We time-stamped every editing command and recorded the
object to which it referred, each object’s location, each
command's duration and the pauses between commands. This
data allowed us to fully reconstruct every condition for every
subject and visualize each user’s activity patterns (Fig. 2).

Subject 1
Condition TG-1B

actions
create

change attr.
delete

Fig. 2: Data visualization of subject 1, using a toolglass on
net 1 in a modify scenario.

Each small dot in the top row indicates a user action. This is a
timeline, which makes it easy to identify pauses and clusters of
activity. Each row illustrates specific activities: creating
objects, changing graphical attributes and deleting objects,
with symbols to indicate the specific graphical object. The
graphical section displays the original net in light gray and the
location and nature of the actions (black dots) and misses
(white dots) and edited parts of the net in black. This i s
interactive: the experimenter can explore the mapping between
symbols in the top rows and their location on the actual net.

The user’s pattern in Fig. 2 is clearly cyclic. He began by
changing several graphical attributes, then started creating a
subnet. He created a place, then a transition, then linked them
together with an arc. He then created two more transitions, and
deleted them. (This is an error: he appears to have mistakenly
created the transitions when he was trying to create an arc.) He

then continued with the correct arc, another arc, another
transition, two more arcs, a place and a final arc. These actions
correspond to the process CPN developers describe when they
design or modify a new subnet.

3. Results
The independent variables were: subject (18), task (copy or
modify), net (protocol, database, or resource), interaction
technique (floating palette, marking menu, or toolglass) and
condition order (6). We measured the following dependent
variables directly: duration (in milliseconds), total graphical
objects before and after each condition, all possible graphical
commands, (e.g., create-arc, change-color, move transition),
misses, sequences of commands and pauses. We also calculated
overall number of actions, number of objects created, deleted or
moved, number of uses of each type of command, short (3-6
sec.) and long (>7sec.) pauses and patterns of command use.

We defined misses as situations in which the subject tried but
was unable to complete a command. For both floating palettes
and toolglasses, a miss was defined as attempting to apply a
tool without reference to an object, e.g., clicking “delete” on
the background. For marking menus, a miss also involved
making a gesture that was not recognized, e.g., neither “up”
nor “left”. Because the algorithm for detecting gestures was
overly strict, some subjects had slightly higher levels of
misses with marking menus than with other interaction
techniques (F2,107=45.58, p<.0001). Despite this, misses were
not significantly more or less common across task scenarios
(F2,107=0.32, p>.726) or nets (F1,107=.066, p>.797). The
following analyses are based on accurate actions, with misses
removed, to avoid confounding the data.

Deletes were considered errors, since none were required in any
of the scenarios. (Some users “cleaned up” their nets by
deleting unwanted objects, others did not.) We found no
significant differences across techniques for any delete
commands (F2,107=. 2.606, p>.0786). The only significant
difference we found across task was that users deleted arcs
significantly more frequently in the modify scenario
(F1,107=6.342, p<.0133).

As expected, all three copy conditions were shorter,
(mean=197sec.) and their durations were not significantly
different from one and other. The more difficult modify
conditions lasted longer, between 5 to 6.5 minutes
(mean=345sec.). The difference between these two task
conditions was significant (F1,107=48.34, p<.0001). The logs
show that the time differences are due to pauses, probably as
subjects think about the next action, and not to increased use of
commands. Total actions were not significantly different
across the two task scenarios (F1,107=.562, p>.455) or across
interaction techniques (F2,107=.784, p>.459). The duration of
the conditions with respect to interaction technique were not
significantly different (F2,107=1.153, p>.320), indicating that
the techniques were equally efficient for solving the problems.

3.1.1 Interaction patterns
We were particularly interested in the effect of the task and the
interaction technique on the subject’s activity patterns.
Standard graphical user interfaces, with pull-down menus or
tool palettes, encourage the user to create all examples of a
particular graphical object at the same time, thus reducing the
cost of switching between commands. Our field studies (of the
old tool) showed that this was the most common practice:

creating all places first, then all the transitions, then all the
arcs to connect them. This is efficient when the layout i s
known in advance (as in the copy task), but not when trying to
solve a new problem. Working out a problem involves moving
through a cycle, creating one type of object, linking it with an
arc to another type of object and so on.

We generated two quantitative measures to compare these
action sequences. First, we looked at the detailed sequences of
actions and identified two categories: repetitive, i.e. all objects
of one type are created first, followed by all objects of a second
type, etc., and cyclic, i.e. objects are created in the order
expected in a CPN cycle. Fig. 3 shows the percentages of
repetitive action sequences for each task type, for each
interaction technique. Low percentages indicate a
correspondingly high cyclic interaction pattern.

Modify conditions were significantly more likely than copy
conditions (76% versus 43%) to show CPN cyclic patterns
(F1,107=13.782, p<.0003). Floating Palette conditions were
significantly less likely (25%) to support CPN cyclic patterns
than either Marking Menu (72%) or Toolglass (81%)
conditions [F2,107=17.30, p<0.0001]. The latter were not
significantly different from each other. Despite most subjects’
prior experience with floating palettes and established
repetitive-interaction work styles, only 60% of conditions
overall exhibited a cyclic pattern.

M
e

a
n(

R
e

p
e

at
)

.00

.25

.50

.75

.00

P M G FP MM G
opy odify

Fig. 3: Percentages of conditions using a repetitive interaction
pattern for task-interaction technique combinations.

We also looked for interaction effects among the scenarios and
interaction patterns and found that 100% of subjects, when
using a floating palette in copy scenario, exhibited the
repetitive-interaction pattern. 89% of subjects in the modify
conditions, using either toolglasses or marking menus,
exhibited the cyclic pattern. In the remaining conditions, the
task and technique appear to cancel each other out and were
statistically equivalent to each other: the floating palette in the
modify condition (50% cyclic) and marking menus (56%
cyclic) and toolglasses (72% cyclic) in copy condition.

A second measure of interaction patterns, which included all
actions, not just creation commands, calculated the average
number of switches among commands per condition. A low
score indicates a repetitive pattern, e.g., changing all colors at
the same time. A high score indicates a cyclic pattern,
suggesting that it is easier (because of the interaction
technique) or more desirable (because of the cognitive
requirements of the task) to switch commands more often.

As before, we found that different tasks and the interaction
technique had a strong impact on a user’s interaction pattern
(Fig. 4). Copy scenarios exhibit significantly more actions

before switching than modify scenarios (F1,107=28.23,
p<0.0001). Each interaction techniques is significantly
different from the others, with floating palettes (mean=3.3
commands before a shift) most likely to encourage repeatedly
using the same command and marking menus (mean=2.2) most
likely to encourage the opposite pattern, shifting among
commands (F2,107=10.958, p<0.0001).

0

1

2

3

4

FP MM TG

M
e

an
(a

ct
io

n
s/

to
ol

)

0

1

2

3

4

Copy Modify

Fig. 4: Average identical actions performed before switching to
another command, for tasks and interaction techniques.

The correlation between these two measures is high
(Spearman’s Rho = .54). The primary difference is the role of
marking menus and toolglasses. When we consider only
creation actions, as in the first measure, toolglasses are more
likely to support cyclic patterns. When all actions, including
changing attributes, deleting and moving, are considered
marking menus are more likely to exhibit the cyclic pattern.

Cyclic patterns more closely map how CPN developers think
about nets. Even though subjects had only about ten minutes
exposure to marking menu and toolglasses, and extensive
experience with techniques that support repetitive patterns, a
majority of subjects found the new interaction techniques as or
more efficient than those they habitually used.

3.2 Qualitative Measures
In general, copying tasks should be easier than modify tasks
and was evident in the qualitative data. Experimenters noted
that one third of the subjects had no problems with any of the
six conditions. (These were usually experts, with eight or more
years of CPN experience.) Approximately one third found the
problems challenging, but ultimately possible. One third of
the subjects had difficulty with some or all of the modify
scenarios. They had the least CPN experience, 1-3 years.

Seven of the 18 subjects preferred a single interaction
technique under most or all situations. Of these, two preferred
floating palettes, two preferred marking menus, and three
preferred toolglasses. All of those expressing a strong
preference for a single interaction technique were junior CPN
developers, with one to three years of experience.

Interact ion
Technique

Create
o b j e c t s

Create
arcs

Change
attr ibutes

Floating Palette 7 5 3
Marking Menu 7 8 0
Toolglass 4 3 12

No preference 0 2 3

Table 2: Interaction technique preferences by activity (n=18)

Table 2 shows which interaction techniques subjects preferred
when performing different specific actions. We distinguished
between creating new graphical objects (places and transitions)
and creating arcs, because the latter require connecting existing

objects on the screen and thus much finer motor control. We
also separated changing attributes of graphical objects, such as
changing the color or line thickness.

Table 3 presents which interaction techniques subjects
preferred for which scenario. At the debriefing, some subjects
stated that they preferred floating palettes for thinking tasks,
because they would normally think about the net and solve the
problem on paper first, then copy the objects onto the screen.
(Two subjects did this during the experiment.) These users
converted an otherwise “thinking” task into an on-line
copying task. Several experimenters commented that subjects
who were exposed to floating palettes first tended to use
toolglasses as if they were floating palettes and did not switch
commands often. Thus, these data likely understate the
differences between the copy and modify scenarios and between
floating palettes and toolglasses.

Interact ion
Technique

C o p y
s c e n a r i o

M o d i f y
s c e n a r i o

Floating Palette 6 3
Marking Menu 1 4
Toolglass 4 4

No preference 7 7

Table 3: Interaction technique preferences by scenario (n=18)

4. Conclusion
Our original goal was to identify which of a set of promising
new interaction techniques (floating palettes, marking menus
or toolglasses) would be the “best” for CPN2002, a new
Coloured Petri Net editor. We were convinced, both by the
literature and our own prototypes, that these techniques were
superior to traditional widgets: the problem was choosing one.
However, we found that the optimal interaction technique
varied according to the task at hand, the user's cognitive
context, as well as individual preferences.

In summary, floating palettes are command-oriented: this is the
most efficient technique when the user must repeatedly re-issue
the same command. Copying tasks, which allow the user to
issue similar commands together, are thus best served with
floating palettes. Marking menus are object-oriented: they are
most efficient when the task involves multiple commands with
respect to a single graphical object on the screen. Modification
tasks, which involve moving through an existing net on the
screen and making sets of changes to each object, are well
served by marking menus. Toolglasses involve rapid switching
between commands and graphical objects and are useful in tasks
that require the user to work through a set of activities that may
require a focus on either a new command or a new object.

Different users, either by prior experience or personality, may
also have strong individual preferences unrelated to the above.
Some users latch on to a particular technique and prefer it for
everything, regardless of task or context. Others express an
equally strong dislike for a particular interaction technique. In
this study, these likes and dislikes were spread evenly across
the three interaction techniques.

Interaction technique and cognitive context also affect each
other. A floating palettes' tendency to favor repetitive actions
can be offset if the user is problem-solving, as in the modify
scenario. Similarly, the marking menus' and toolglasses'
tendency to favor cyclic actions may be reduced if the user i s
simply copying. The interaction techniques offer other trade-
offs as well. Novice users may benefit when floating palettes

and toolglasses remain visible on the screen, as an on-going
reminder of possible actions, but this uses up valuable screen
real estate. Marking menus may require active effort on the part
of the user to identify the possible alternatives, but provide an
easy path from novice (when the menus are displayed) to expert
(where gesture alone suffices) use.

Design Implications: Clearly no single interaction technique i s
optimal in all circumstances for all users. We know from our
field studies that users can and do find themselves in both of the
cognitive contexts highlighted in this study, on a day-to-day
basis. How can a designer support these user requirements?

One strategy is to simply choose one interaction technique and
explicitly favor certain types of tasks over others. This is the
most common approach and may explain why some software
applications designed to support problem-solving tasks are
actually better suited for more mechanical copying tasks. This
approach is favored by [20], who argues against providing
multiple ways of accomplishing the same action and [9], who
cautions that performance is not necessarily better if users have
a variety of ways to accomplish their goals.

Another strategy would be to create special, intelligent agents
that detect what the user is trying to do and automatically
provide appropriate interaction techniques. However, it i s
difficult to see how the system could accurately detect the
changes between the copy and modify scenarios used here,
since the measurable sets of actions are identical. Unless very
accurate, such systems risk reducing the user’s productivity, as
he repeats commands to recover from system-induced errors.

We propose a third solution, which is to integrate these
techniques into a single interface, reducing the cost of access,
but not eliminating it. We recognize that integration poses a
complex design challenges and describe our own design
solution in [2,3]. Our strategy emphasizes providing flexible,
“ready-to-hand” access to each technique, by eliminating the
concept of a selection mode and keeping all objects always
accessible. Users can decide which techniques they prefer, under
which contexts. We are now working on how to include other
interaction techniques, e.g., gestural input [2], zoomable
interfaces [4,5], streams [8] and translucent patches [14].

Clearly, we have only scratched the surface of the issues
involved in comparing and combining new interaction
techniques. Although this study is based on a particular
application, we believe the implications extend to a variety of
graphical user interfaces. Our data suggest that novel
interaction techniques are effective, but their appropriateness
depends partially upon the user’s task. Researchers attempting
to compare interaction techniques cannot simply measure the
performance of individual commands. Users use patterns of
commands which are strongly influenced by the cognitive
context in which the task is being performed. The same set of
actions can be very different tasks from the user’s perspective,
and require different interaction techniques.

Similarly, interface developers must consider how different
techniques support these contexts of use. Rather than seeking a
single interaction technique for all circumstances, developers
should consider how to integrate complementary interaction
techniques, in a seamless way, within the interface.

5. Acknowledgments
Special thanks to Michel Beaudouin-Lafon, Anne Vinter
Ratzer, Paul Janacek, Katrine Ravn, Michael Lassen, Kasper
Lund, Peter Andersen, Mads Jensen, Kjeld Mortensen,

Stephanie Munck, Søren Christensen and Kurt Jensen, as well
as the Aarhus University CPN group and the participants of the
Workshop on Practical Use of Coloured Petri Nets.

6. REFERENCES
[1] Beaudouin-Lafon, M. & Lassen, H.M. (2000) The Architecture

and Implementation of CPN2000, A Post-WIMP Graphical
Application. In Proc. of UIST'00, San Diego, CA, November
2000, CHI Letters 2(2):181-190, ACM Press.

 [2] Beaudouin-Lafon, M. (2000) Instrumental Interaction: An
Interaction Model for Designing Post-WIMP User Interfaces. In
Proc. of CHI'00 the Hague, Netherlands, p.446-453, ACM Press.

[3] Beaudouin-Lafon, M. & Mackay, W.E. (2000) Reification, Poly-
morphism and Reuse: Three Principles for Designing Visual
Interfaces. In Proc.of AVI'00 (Palermo, Italy), ACM, p.102-109.

[4] Bederson, B. & Hollan, J. (1994). Pad++: A Zooming Graphical
Interface for Exploring Alternate Interface Physics. In Proc. of
UIST’94, ACM Press, p.17-26.

[5] Bederson, B., Hollan, J., Druin, A., Stewart, J., Rogers, D., &
Proft, D. (1994). Local Tools : an Alternative to Tool Palettes. In
Proc. of UIST’94, ACM Press. p.. 169-170.

[6] Bier, E., Stone, M., Pier, K., Buxton, W., & DeRose, T. (1993)
Toolglass and magic lenses: The see-through interface. In Proc.of
SIGGRAPH'93, pp. 73-80.

[7] Carroll, J. (1995) Scenario-based design. Envisioning work and
technology in system development. NY: Wiley & Sons.

[8] Fertig, S., Freeman, E. & Gelernter, D. (1996). LifeStreams: An
Alternative to the Desktop Metaphor. Video in CHI'96 Adjunct
Proceedings, p. 410-411.

[9] Hertzum, M., & Frøkjær, E. (1996). Browsing and Querying in
Online Documentation: A Study of User Interfaces and the
Interaction Process. ACM Transactions on Computer-Human
Interaction, 3(2), 136-161.

[10] Green, T. (2000). Instructions and Descriptions: Some cognitive
aspects of programming and similar activities. In Proc. of AVI'00,
Palermo, Italy, May 2000, ACM. pp. 21-28.

[11] Janecek, P., Ratzer, A. & Mackay, W. (1999) Petri Nets in Use:
Redesigning Design CPN. In Proc. 2nd Workshop Practical Use of
Coloured Petri Nets and Design/CPN. (K.Jensen, Ed.) p. 119-131.

[12] Jensen, K. (1997) Coloured Petri Nets: Basic Concepts (Vol. 1,
1992), Analysis Methods (Vol. 2, 1994), Practical Use (Vol. 3,
1997). Monographs in Theoretical Computer Science. Springer-
Verlag, 1992-97.

[13] Kabbash, P., Buxton, W. & Sellen, A. (1994) Two-handed input in
a compound task. In Proc. of CHI’94, ACM Press, p. 417-423.

[14] Kramer, A. (1996). Translucent Patches: Dissolving Windows. In
Proc. of UIST'96, ACM Press, p. 121-130.

[15] Kurtenbach, G. & Buxton, W. (1994). User Learning and
Performance with Marking Menus. In Proc.of CHI'94, ACM
Press, p.258-264.

[16] Kurtenbach, G., Fitzmaurice, G., Baudel, T. & Buxton. W. (1997).
The Design of a GUI Paradigm based on Tablets, Two-hands, and
Transparency. In Proc.of CHI'97, ACM Press, p.35-42.

[17] Kurtenbach, G., Fitzmaurice, G.W., Owen, R.N. & Baudel, T.
(1999). The Hotbox: efficient access to a large number of menu-
items. In Proc. of CHI’99 ACM Press, p.231-237.

[18] Mackay, W.E. & Bødker, S.(1994) Workshop: Scenario-Based
Design. In CHI'94 Conference Companion, Boston: ACM Press.

[19] Mackay, W.E., Ratzer, A., & Janecek, P. (2000) Video Artifacts
for Design: Bridging the Gap between Abstraction and Detail. In
Proc. DIS 2000, NY: August 2000, ACM, pp. 72-82.

[20] Raskin, J. (2000) The Humane Interface. NY: Addison-Wesley.

[21] Rubine, D. (1991). Specifying Gestures by Example. Proc. of
SIGGRAPH '91, ACM Press, p 329-337.

[22] Smith, D., Irby, C., Kimball, R., Verplank, B., & Harslem E.
(1982). Designing the Star User Interface. Byte, 7(4), p.242:282.

[23] Suchman, L. (1987). Plans and Situated Actions.
Cambridge, England: Cambridge University Press.

