
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Interactive Programming of Reactive Systems

Louis Mandel
1

Florence Plateau
2

Laboratoire de Recherche en Informatique
Univ. Paris-Sud 11, cnrs, Orsay F-91405

Inria Futurs, Orsay F-91893
Orsay, France

Abstract

ReactiveML is a synchronous reactive extension of the general purpose programming language OCaml. It
allows to program reactive systems such as video games or simulators.
This paper presents rmltop, the ReactiveML counterpart of the OCaml toplevel. This toplevel allows
a programmer to interactively write ReactiveML programs which are type-checked, compiled and loaded
on the fly. The user can then progressively run concurrent processes and observe the interactions between
them.
The main strength of rmltop is that all valid ReactiveML expressions are accepted in the toplevel with the
same semantics as in the compiler. This allows to use the ReactiveML toplevel as a debugger. Furthermore,
the interpreted code is as efficient as if it was compiled.
Moreover, a toplevel interpreter being itself a reactive system, another originality of rmltop is its own
implementation in ReactiveML which makes it relatively light.

Keywords: Reactive Programming, Prototyping, Debugging, Reactive Scripts.

1 Introduction

ReactiveML is a programming language dedicated to the implementation of in-

teractive systems as found in graphical user interfaces, video games or simulation

problems. ReactiveML is based on the synchronous reactive model of Frédéric

Boussinot [3] embedded in an ML language (here Objective Caml [14]). The syn-

chronous reactive model provides synchronous parallel composition and dynamic

features like dynamic creation of processes. ReactiveML is compiled into a purely

sequential OCaml code. Native-code or bytecode executables are then generated

by the OCaml compiler.

We propose here an interactive mode for ReactiveML in a way similar to the

interaction loop (or toplevel) of OCaml. In this mode, ReactiveML programs

can be defined and executed in an interactive manner. The toplevel (rmltop) reads

ReactiveML phrases on the standard input, compiles them and executes them.

Moreover it provides control directives to run a process, suspend the execution of

1 Email: louis.mandel@lri.fr
2 Email: florence.plateau@lri.fr

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:louis.mandel@lri.fr
mailto:florence.plateau@lri.fr

Mandel & Plateau

the running processes, execute only the next n reactions or resume the execution.

Those directives are directly launched in the toplevel. Additionally, the suspension

directive can be launched by processes. It allows to program an observer that

decides to suspend the execution when a certain condition is verified.

All these features make this execution mode a convenient tool for prototyping re-

active behaviors. Contrary to sequential programs, reactive programs continuously

interact with their environment. Modifying and programming the environment dur-

ing the execution of the system is thus useful for testing and debugging. It can also

help for teaching purposes: the interaction with the processes behaviors improves

the understanding of the reactive model.

The ReactiveML toplevel is also useful to study dynamic reconfiguration of re-

active programs. The addition of new processes during the execution can be used as

a basic element to build a framework for programming reconfigurable applications.

Icobjs [5,10], a graphical programming language based on the reactive model, is

an example of such a framework.

rmltop is included in the distribution of ReactiveML which is available at:

http://rml.inria.fr.

Any ReactiveML program accepted by the compiler can be executed in the

toplevel. Moreover, the execution is as efficient as the compiled version of the

program. The ReactiveML toplevel does not interpret programs. It compiles

them into bytecode and executes the bytecode.

The implementation of rmltop reuses the ReactiveML compiler. It has two

consequences: (1) the implementation is small (about 500 source lines of code)

and (2) the semantics of the two execution modes (the compiled mode and the

interactive mode) are the same by construction. Moreover, a toplevel interpreter

being itself a reactive system, one originality of rmltop is to be itself implemented

in ReactiveML, making its implementation relatively elegant.

The ReactiveML toplevel is based on the original idea of Reactive

Scripts [8] by Frédéric Boussinot and Laurent Hazard. Reactive Scripts is a

scripting language first built on ReactiveC [6] and Tcl-Tk. Then Jean-Ferdy

Susini proposed a new implementation [18] of this language based on Sugar-

Cubes [9] and Java. We will discuss the differences between our approach and

Reactive Scripts in Section 4.1.

In the following, we first present the use of rmltop in Section 2 through a

collection of examples. Section 3 describes its implementation. Section 4 is devoted

to a discussion and we conclude in Section 5.

2 Interactive Programming in ReactiveML

ReactiveML is an extension of OCaml 3 such that we can define data types and

functions like in OCaml. Moreover, it provides synchronous reactive processes as

functions that can be executed through several instants.

The body of a process mixes OCaml code with reactive constructs à la Esterel.

Programs can be composed in parallel (|| operator) and communication is based

3 The current implementation of ReactiveML does not support objects, labels, polymorphic variants and
functors.

2

http://rml.inria.fr

Mandel & Plateau

louis@machiavel> rmltop

ReactiveML version 1.06.07

Objective Caml version 3.10.1

signal s;;

val s : (’_a, ’_a list) event

val s : (’_a, ’_a list) Implem.Lco_ctrl_tree_record.event = <abstr>

let process p =

await s;

print_endline "Present";;

val p : unit process

val p : unit Implem.Lco_ctrl_tree_record.process = <fun>

#run p;;

emit s ();;

- : unit = ()

Present

Fig. 1. An rmltop session.

on broadcast with associated construct to emit signals (emit), test their presence

(present, await), etc.

Notice that contrary to Esterel, ReactiveML follows the Boussinot seman-

tics: the reaction to absence of signals is delayed. This restriction ensures that

programs are causal by construction (a signal cannot be present and absent during

an instant). In the following, we assume that the reader has some notions of the

OCaml language [14] and of synchronous programming [1]. We will not present the

ReactiveML language in details here, but only what is necessary for the following.

For more details on ReactiveML the reader can refer to [15,16].

2.1 First ReactiveML Session

An rmltop session is a succession of definitions (types, values, processes ...), exe-

cutions of directives and ReactiveML instantaneous expressions. An example of

session is given Fig. 1. It is launched by the rmltop command. The session begins

with the following line:

signal s;;

that declares a global signal s (the character # is the prompt). This declaration

is followed by two pieces of information given by the toplevel: (1) the type in-

ferred by the ReactiveML compiler for this declaration and (2) the type of the

corresponding OCaml code.

Next, we define a process p (introduced by the keyword process) that prints

Present when the signal s is emitted:

let process p =

await s;

print_endline "Present";;

3

Mandel & Plateau

Then an instance of p is executed by means of the #run directive (directives

begin with a # character):

#run p;;

The instance of p now runs in background and the control is returned to the user.

Finally the signal s is emitted in the reactive machine:

emit s ();;

Hence, the instance of the p process that is awaiting s reacts and the message

Present is printed.

The main directive of rmltop is #run. This directive executes the process given

as parameter. The directive #exec is derived from #run. It executes a reactive

expression. It is implemented as follows: #exec e;; ≡ #run (process e);;

2.2 A Complete Example

We illustrate the use of rmltop on the so-called n-body problem. The n-body

problem is the simulation of planets that obey the gravity laws of Newton. The

entire code and a video presentation are available at http://rml.inria.fr/slap08.

We first define the data type of planets.

type planet =

{ id : int;

mass : float;

pos : float * float * float;

speed : float * float * float; } ;;

We can notice here that we benefit from the expressiveness of OCaml data types.

We now declare some useful constants and functions like the gravitational con-

stant, the integration step and a function that creates a random speed value. The

random_speed function uses the Random module of the OCaml standard library.

let g = 6.67;;

val g : float

val g : float = 6.67

let dt = 0.1;;

val dt : float

val dt : float = 0.1

#let random_speed () =

((Random.float 100.0) -. 50.0,

(Random.float 100.0) -. 50.0,

(Random.float 100.0) -. 50.0)

;;

val random_speed : unit -> float * float * float

val random_speed : unit -> float * float * float = <fun>

Other pure OCaml functions are then defined but not detailed here. A global signal

env is declared. This signal will gather the positions of all the planets in a list.

4

http://rml.inria.fr/slap08

Mandel & Plateau

(a) An empty window (b) A planet (c) The sun and some other planets

Fig. 2. Screenshots of the window process.

signal env;;

val env : (’_a, ’_a list) event

val env : (’_a, ’_a list) Implem.Lco_ctrl_tree_record.event = <abstr>

The env signal has type (’_a, ’_a list) event where ’_a will be instantiated

with the type planet. It means that the values emitted on this signal must be of

type planet and the value associated to the signal has type planet list.

The signal env is then used for display by process window.

let process window =

Graphics.open_graph "";

Graphics.auto_synchronize false;

loop

await env (all) in update_display all

end ;;

val window : unit process

val window : unit Implem.Lco_ctrl_tree_record.process = <fun>

This process first initializes the graphical window and then enters into an

infinite loop. The behavior of the loop is the following. The expression

“await env (all) in ...” waits for the emission of the env signal, and binds

all to the value associated to env. Then, at the instant following the emission of

the signal, the body of await/in construct is executed. The update_display func-

tion uses the all value to draw all planets. Notice that there is no instantaneous

loop since the await/in expression takes at least one instant.

This process is then executed by writing:

#run window;;

Its effect is to open an empty OCaml graphics window (Fig 2(a)). Since the env

signal is not emitted, the window process is stuck on its await expression.

Now the behavior of a planet is given by:

let random_planet () = ... ;;

val random_planet : unit -> planet

val random_planet : unit -> planet = <fun>

let compute_pos p all = ... ;;

val compute_pos : planet -> planet list -> planet

val compute_pos : planet -> planet list -> planet = <fun>

5

Mandel & Plateau

let process planet =

let me = ref (random_planet()) in

loop

emit env !me;

await env (all) in

me := compute_pos !me all

end ;;

val planet : unit process

val planet : unit Implem.Lco_ctrl_tree_record.process = <fun>

The process planet uses two previously defined functions: (1) random_planet that

creates a new planet at a random position with a random speed and (2) compute_pos

that given a planet p and a list of planets all computes the new position of the

planet p submitted to the attraction of all other planets.

The process planet creates a new random planet and enters in an infinite rep-

etition of three parts. First it emits the position of the planet on the signal env to

communicate it to other planets. Then it waits for the value of this signal (the list

of all planets) which is available at the next instant. Finally, it uses this information

to compute the new position of the planet. To summarize, all the planets emit their

position on the signal env. It is used by the window process for display and by each

planet to compute its position at the next instant. We now run the process planet.

#run planet;;

It launches the planet process in background, in parallel with already running

processes (here window). It creates a new planet that appears on the graphical

window (Fig. 2(b)). As it is the unique body of the system, its trajectory is not

modified and it goes out of the window. We can run several times the planet

process to create other planets.

#run planet;;

#run planet;;

As the planets are of non null weights their trajectories are modified by the

interaction with the other ones, but they still go out of the window. Nevertheless,

as the value of the signal env is the list of the planets, we can verify that all created

planets are still running by observing the value of env. To observe the value of the

signal env in a stable state, we first use the #suspend directive. It asks for the

suspension of the simulation at the beginning of the next instant.

#suspend;;

Planets stop their movement. We can now observe the environment using the Re-

activeML pre operator.

pre env;;

- : bool = true

The evaluation of expression pre env returns the status (emitted or not) of signal

6

Mandel & Plateau

env at the preceding instant. pre can also be used to ask for the value of the signal:

pre ?env;;

- : planet list =

[{id = 1; mass = 1.;

pos = (25486.668, -30490.001, -3332.7650);

speed = (27.458270, -32.814312, -3.5462074)};

{id = 2; mass = 1.;

pos = (-17667.938, 18421.838, -12995.214);

speed = (-34.721283, 35.976223, -25.585873)};

{id = 3; mass = 1.;

pos = (-5691.3338, 8876.0819, 6907.2694);

speed = (-17.164963, 26.688011, 20.773542)}]

We can observe that it is indeed a list of three planets, and we can consult the

values of the different fields. Note that it is not possible to ask for the status or

the value of a signal at the current instant: it’s an intrinsic feature of the reactive

model.

When the execution is suspended, we can call another useful directive: the #step

directive. It executes one instant of the system.

#run planet;;

#step;;

pre ?env;;

- : planet list =

[{id = 1; mass = 1.;

pos = (25492.159, -30496.564, -3333.4747);

speed = (27.458270, -32.814312, -3.5462149)};

{id = 2; mass = 1.;

pos = (-17674.882, 18429.033, -13000.331);

speed = (-34.721283, 35.976220, -25.585873)};

{id = 3; mass = 1.;

pos = (-5694.7668, 8881.4195, 6911.4241);

speed = (-17.164961, 26.688011, 20.773546)};

{id = 4; mass = 1.;

pos = (-44.769087, -83.553279, -76.555396);

speed = (12.309124, -15.532798, 12.909834)}]

Here we run a new planet, then we execute one step of the system and we ask for

the env value. We can notice that a fourth planet has indeed been added to the

list, and the other ones have moved.

The directives #suspend and #step are helpful for debugging and understanding

reactive systems. Notice that the directive #step n is also available. It allows to

execute n instants of the system.

The directive #resume goes back to the sampled mode.

#resume;;

We now define a new process sun that creates a planet much heavier than the

7

Mandel & Plateau

other ones and which does not move:

let process sun =

let me =

{ id = 0;

mass = 30000.0;

pos = (0.0, 0.0, 0.0);

speed = (0.0, 0.0, 0.0) }

in

loop

emit env me;

pause

end ;;

val sun : unit process

val sun : unit Implem.Lco_ctrl_tree_record.process = <fun>

Its behavior is to make its position available to the planets by emitting it at

each instant on the env signal and to wait for the following instant.

If we run the sun process, a sun appears on the graphical window.

#run sun;;

#exec (for i = 1 to 50 dopar run planet done);;

To add several planets at the same time, we use the primitive #exec that allows

to launch a non-instantaneous ReactiveML expression. The expression we execute

here is a loop that runs 50 planets in parallel (for/dopar construct). We can observe

that each newly added planet is attracted by the sun and turns around it (Fig. 2(c)).

We now want to observe eclipses.

let eclipse { pos = (x, y, z) } =

abs_float x < 10. && abs_float y < 10. && z > 0.;;

val eclipse : planet -> bool

val eclipse : planet -> bool = <fun>

The boolean function eclipse takes a planet as argument and tests if it is in front

of the sun. We can test if at least a planet was at an eclipse position at the preceding

instant by evaluating the following expression:

List.exists eclipse (pre ?env);;

- : bool = false

It applies the exist function of the List module of OCaml to the planets envi-

ronment. The returned value is false, so there was no eclipse when the phrase has

been evaluated.

It would be very difficult to suspend by hand the simulation exactly when a

planet is in front of the sun, and tedious to execute the system step by step until an

eclipse occurs. Fortunately, the #suspend directive can be launched by processes.

We can thus define a process eclipse_observer that suspends the simulation if a

planet is at an eclipse position.

8

Mandel & Plateau

rmlc

machine

rmltop

controller
+ Directives

Ocaml

Rml
+ Directives

environment

ocaml toplevel

execution

Rml

Ocaml

Fig. 3. Structure of the implementation of the ReactiveML interactive mode.

let process eclipse_observer =

loop

await env (all) in

if List.exists eclipse all then #suspend

end;;

val eclipse_observer : unit process

val eclipse_observer : unit Implem.Lco_ctrl_tree_record.process = <fun>

#run eclipse_observer;;

As soon as we run the eclipse observer, each time an eclipse occurs, the simulation

is suspended.

The process eclipse_observer is a synchronous observer. It can observe dy-

namic properties without modifying the behavior of the system. The combination

of this feature with the possibility to suspend the simulation allows to set semantic

breakpoints. These breakpoints are defined by arbitrarily complex conditions ex-

pressed in the language itself. This is an original and powerful way to suspend the

execution of a program.

We have shown through this example of the n-body problem that the Reac-

tiveML toplevel is not only useful to understand a reactive system, but also to test

and debug it. We are now going to describe its implementation.

3 Implementation

The ReactiveML interactive mode consists of three parts: (1) a toplevel that

reads the source code to build the execution environment and record the directives,

(2) a reactive machine that evaluates processes launched by the #run directive and

(3) a controller that supervises the execution of the reactive machine with respect

to the other directives (#suspend, #resume and #step).

9

Mandel & Plateau

3.1 The Toplevel

As the ReactiveML language is compiled into OCaml, it is natural that the

ReactiveML toplevel uses the OCaml toplevel to execute compiled ReactiveML

phrases and dynamically builds an execution environment.

The structure of the implementation is presented Fig. 3. A Unix process rmltop

coordinates the parallel execution of a ReactiveML compiler rmlc and an OCaml

toplevel ocaml.

• The ReactiveML compiler runs in an interactive mode. ReactiveML phrases

are given as input to the rmlc compiler. The compiler returns the corresponding

OCaml code.

• The compiled code is then sent to the OCaml toplevel that executes it. This

execution builds an environment that contains the definition of the functions and

processes.

The reactive machine and its controller run in a separate thread of the OCaml

toplevel. This software architecture allows the reactive machine to share the en-

vironment of the OCaml toplevel. The communication between the two threads

is made through shared memory. So we use a lock Rmltop_global.mutex to pre-

vent data races. This lock is taken during the execution of ReactiveML phrases

(compiled into OCaml).

The execution of a directive sets a global reference in the execution environment.

The controller can then access the reference to treat the directive. There is one

reference by directive, defined in the module Rmltop_global. Let us now present

the reactive machine.

3.2 The Reactive Machine

The reactive machine executes the processes launched by the #run directive. It

is implemented by the function Rmltop_reactive_machine.rml_react that com-

putes the reaction of one instant of the machine.

val rml_react: unit Rmltop_global.rml_process list -> unit

It takes as argument a list of processes to execute in parallel with the processes

that are already running in the machine. This function is the interface between the

reactive machine and the controller.

The body of rml_react takes the lock Rmltop_global.mutex during its execu-

tion. It ensures that it is not executed in parallel with a ReactiveML phrase in

the toplevel.

3.3 The Reactive Machine Controller

The controller makes the reactive machine react: it controls when the machine

must compute a new instant. In particular, the controller interprets the following

directives: #suspend, #resume and #step.

As shown in [12], the control of the execution of a reactive program is itself a re-

active program. Thus, the control of the reactive machine can be programmed

10

Mandel & Plateau

suspend

1 2

resume

Fig. 4. machine controller automaton.

by a process written in ReactiveML. The core of the controller is a process

machine_controller. It determines when the reactive machine must compute a

new instant. It is composed of two modes : (1) the sampled mode and (2) the

step by step mode. It must switch from the first one to the second one when the

signal suspend is emitted, and from the second one to the first one when resume

is emitted. When the machine is in the second mode, if the signal step is emitted,

then a fix number of instants (given by the value associated to step) is computed.

This computation can be interrupted if the signal suspend is emitted.

let process sampled =

loop Rmltop_reactive_machine.rml_react(get_to_run()); pause end

let process step_by_step =

loop

await step(n) in

do

for i = 1 to n do

Rmltop_reactive_machine.rml_react(get_to_run()); pause

done

until suspend done

end

let process machine_controller =

loop

do run sampled until suspend done;

do run step_by_step until resume done

end

The process machine_controller implements the two states Moore automaton of

Fig. 4. The expression do e until s done executes its body (e) until signal s is

present. The first do/until is the first state, and the second do/until is the second

one. The condition to go from the first state to the second one is the presence of

signal suspend. Respectively, the condition to go from the second state to the first

one is the presence of signal resume. Let’s now detail the code of each state.

In the sampled mode, an infinite loop periodically calls the reaction function

of the machine. 4 In the step by step mode, each time the signal step is emitted

with the value n, n instants of the reactive machine are executed. The do/until

interrupts this sequence of reactions if the signal suspend is emitted.

The controller is also in charge of the translation of directives into ReactiveML

signals. We have seen in Section 3.1 that the reactive machine and the controller

4 The function get to run returns the list of processes to add to the machine and resets the list.

11

Mandel & Plateau

communicate through shared variables (suspend, resume and step) defined in the

Rml_global module. The controller monitors these global variables and emits the

corresponding signal when the status of a variable changes. This behavior is imple-

mented by the following generate_signals process.

let ref_to_sig ref s =

match !ref with

| None -> ()

| Some v -> ref := None; emit s v

let process generate_signals =

loop

Mutex.lock Rmltop_global.global_mutex;

ref_to_sig Rmltop_global.suspend suspend;

ref_to_sig Rmltop_global.resume resume;

ref_to_sig Rmltop_global.step step;

Mutex.unlock Rmltop_global.global_mutex;

pause;

end

Finally, the behavior of the controller is to execute the two processes

machine_controller and generate_signals in parallel.

let process controller = run machine_controller || run generate_signals

3.4 Conclusion

Due to the software architecture of rmltop, any valid ReactiveML expression is

accepted in the toplevel and has the same semantics and efficiency as the compiled

version. Indeed, the same ReactiveML compiler is used for the two versions of the

language and the OCaml toplevel is as efficient as the bytecode compiler. Moreover

this software architecture results in a light implementation.

4 Discussions

4.1 Related Works

First, we can remark that it is not possible to implement a reactive toplevel based on

the semantics of Esterel. In this model, processes cannot be dynamically added

to a running program because causality loops may appear when two expressions

are composed in parallel. For example, in the following expression, even if each

present expression is causal, the parallel composition of the two is not causal.

signal s1, s2 in

present s1 then emit s2 else ()

|| present s2 then () else emit s1

Here, with Esterel semantics, if we suppose that s1 is absent we can deduce that

it is emitted in the same instant. If we suppose that it is present, we can deduce

12

Mandel & Plateau

that it is not emitted. Hence, this program is absurd.

With ReactiveML semantics, if we suppose that s1 is absent then we can de-

duce that it will be emitted at the next instant: there is no causality loop. With the

reactive model of Boussinot, all programs are causal by construction. So, contrary

to Esterel, it is always possible to add a process to a running machine.

Reactive Scripts [8,18] is a scripting language based on the reactive model

and mixed with the Reactive Object Model [4]. It provides some powerful features

like freezing an object such that it can be serialized and migrate to another reactive

machine.

Reactive Scripts is implemented as “macros” that are expanded into another

reactive language (ReactiveC or SugarCubes) which is then interpreted. Con-

versely, ReactiveML has a language approach in which programs are typed and

compiled. It allows to define specific type systems and optimisations and provides

a more efficient implementation.

Another advantage of the ReactiveML toplevel is that it accepts as input the

whole ReactiveML language, whereas Reactive Scripts is less expressive than

ReactiveC and SugarCubes. It imposes some limitations on the host language.

4.2 Dynamic Reconfiguration

The combination of the reactive model with the ability to dynamically define and

add new processes provides good basic elements to study dynamic reconfiguration

of reactive systems. For example, it is easy to extend the ReactiveML toplevel

such that each process p launched by the #run (killable p) command can be

killed by the emission of its identifier on a kill signal.

let process killable p =

let id = gen_id () in print_endline ("["^(string_of_int id)^"]");

signal kill_me in

do

run p; emit kill_me

|| loop await kill(ids) in if List.mem id ids then emit kill_me end

until kill_me done;;

val killable : ’a process -> unit process

val killable :

’a Implem.Lco_ctrl_tree_record.process ->

unit Implem.Lco_ctrl_tree_record.process = <fun>

The killable process is a higher order process. It associates a fresh identifier to p

using the gen_id function and prints it such that the user can know it. Then

the body of the process executes p under the supervision of a kill_me signal:

the presence of this signal interrupts the execution. kill_me is emitted when the

identifier of the process belongs to the list of processes to kill (the value associated

to kill) or when the execution of p is terminated.

In a same way, it is for example possible to define a kind of icobj combinator that

automatically provides the possibility to suspend and resume a process (and only

this one), to add a process inside a running icobj, etc. A strength of ReactiveML

13

Mandel & Plateau

is polymorphism and higher order that allow to easily program such combinators.

Note that dynamic reconfiguration of reactive systems does not only consist

in modifying the behavior but also in modifying data types. For this aspect of

reconfiguration, ReactiveML does not provides any facilities. In particular, it is

not possible to change during the execution the type of a signal but this feature

ensures the type safety of the system.

4.3 Language Extension

The implementation of rmltop has highlighted an extension of the ReactiveML

language that should be interesting to consider.

To implement the communication between the OCaml toplevel and the con-

troller we had to use shared memory and a mutex. Moreover, the process

generate_signals had to do active waiting. Thus it would be interesting to have

asynchronous tasks.

We are currently working on an extension of ReactiveML with asynchronous

concurrent constructs based on the join-calculus [11] similar to the ones of Jo-

Caml [13]. With this extension, a function new_cell that creates a one place

buffer could be written as follows:

let new_cell () =

def state (_) & set(x) = state(Some x) & reply () to set

or state (Some x) & get() = state(None) & reply x to get in

spawn (state None);

(set, get)

val new_cell : (’a -> unit process, unit -> ’a process)

The body of the function contains a join-definition (def/in) that introduces three

channels (state, set and get). This join-definition is made of two reaction rules.

The first one defines the behavior of set: it updates the state of the buffer. The

second one defines the behavior of get: it returns the value contained in the buffer.

Notice that a call to get is blocked until the value on the state channel matches

the pattern Some x. The expression spawn (state None) initializes the state of

the buffer.

For example, this buffer can be used to communicate the value of #step directive

as follows:

let set_step, get_step = new_cell()

let process generate_step =

loop let n = run (get_step ()) in emit step n ; pause end

The work on this extension is related with some other language like Loft [7],

Fair Threads [17] or ULM [2].

5 Conclusion

We have presented rmltop, an interactive mode for the ReactiveML language.

It can be helpful to design and debug reactive systems and for teaching purposes.

14

Mandel & Plateau

It provides a way to execute a program in a sampled mode or step by step and to

dynamically modify the behavior of a system. An originality of this toplevel lies

in the fact that it is itself coded in ReactiveML. It results in a light and elegant

code, that could be even better if ReactiveML would provide asynchronous tasks.

This gives a good motivation to add such a feature to the ReactiveML language.

Acknowledgements

We would like to thank Jean-Ferdy Susini for motivating us in taking advantage

of the OCaml toplevel to implement rmltop, and Marc Pouzet for his conclusive

ideas of improvement. We also thank the referees for their useful comments.

References

[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The synchronous
languages twelve years later. Proceedings of the IEEE, Special issue on embedded systems, 91(1):64–83,
January 2003.

[2] Gérard Boudol. ULM: A core programming model for global computing. In Proceedings of the 13th
European Symposium on Programming (ESOP’2004), pages 234–248, 2004.

[3] F. Boussinot and R. de Simone. The SL synchronous language. Software Engineering, 22(4):256–266,
1996.

[4] F. Boussinot, G. Doumenc, and J-B Stefani. Reactive objects. Annales des Télécommunications,
51(9-10):459–473, 1996.

[5] F. Boussinot, J-F. Susini, F. Dang Tran, and L. Hazard. A reactive behavior framework for dynamic
virtual worlds. In Proceedings of the sixth international conference on 3D Web technology, 2001.

[6] Frédéric Boussinot. Reactive C: An extension of C to program reactive systems. Software Practice and
Experience, 21(4):401–428, April 1991.

[7] Frédéric Boussinot. Concurrent programming with Fair Threads: The LOFT language, 2003.

[8] Frédéric Boussinot and Laurent Hazard. Reactive scripts. In Proceedings of the Third International
Workshop on Real-Time Computing Systems Application (RTCSA’96), pages 267–274, 1996.

[9] Frédéric Boussinot and Jean-Ferdy Susini. The SugarCubes tool box : A reactive java framework.
Software Practice and Experience, 28(4):1531–1550, 1998.

[10] Christian Brunette. Construction et simulation graphiques de comportements: le modèle des Icobjs.
Thèse de doctorat, Université de Nice-Sophia Antipolis, 2004.

[11] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the join-calculus.
In Proceedings of Principles of programming languages (POPL’96), pages 372–385. ACM Press, 1996.

[12] Grégoire Hamon and Marc Pouzet. Un simulateur synchrone pour Lucid Synchrone. In Journées
Francophones des Langages Applicatifs (JFLA’99), Morzine-Avoriaz, February 1999. INRIA.

[13] JoCaml. http://jocaml.inria.fr.

[14] Xavier Leroy. The Objective Caml system release 3.10. Technical report, INRIA, 2007.

[15] Louis Mandel and Marc Pouzet. ReactiveML, a reactive extension to ML. In Proceedings of 7th
International conference on Principles and Practice of Declarative Programming (PPDP’05), 2005.

[16] Louis Mandel and Marc Pouzet. ReactiveML : un langage fonctionnel pour la programmation réactive.
Technique et Science Informatiques (TSI), 2007. Accepted for publication.

[17] Manuel Serrano, Frédéric Boussinot, and Bernard Serpette. Scheme Fair Threads. In Proceedings of
6th International conference on Principles and Practice of Declarative Programming (PPDP’04), 2004.

[18] Jean-Ferdy Susini. L’approche réactive au dessus de Java : sémantique et implémentation des
SugarCubes et de Junior. Thèse de doctorat, Ecole des Mines de Paris, 2001.

15

http://jocaml.inria.fr

	Introduction
	Interactive Programming in ReactiveML
	First ReactiveML Session
	A Complete Example

	Implementation
	The Toplevel
	The Reactive Machine
	The Reactive Machine Controller
	Conclusion

	Discussions
	Related Works
	Dynamic Reconfiguration
	Language Extension

	Conclusion
	References

