
appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
62

61
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Programming in JoCaml — Extended Version

Louis Mandel — Luc Maranget

N° 6261

Août 2007

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Programming in JoCaml — Extended Version

Louis Mandel , Luc Maranget

Thème COM — Systèmes communicants
Projets Moscova

Rapport de recherche n° 6261 — Août 2007 — 26 pages

Abstract: JoCaml is a language for concurrent and distributed program-
ming. We here present a non-trival distributed application written in JoCaml:
a ray tracer. Thereby, we show how to program the coordination of multiple
cooperating agents in a concise manner, in the spirit of functional programming.
We also adress the issue of agent failure.

Key-words: concurrency, distributed programming, programming language,
functional programming, join-calculus, ML

Programmer en JoCaml

Résumé : JoCaml est un langage pour la programmation concurrente et dis-
tribuée. Ici, nous décrivons une application conséquente écrite en JoCaml : un
lanceur de rayons. À l’occasion de cet exemple, nous montrons comment pro-
grammer de façon concise la coordination de multiples agents coopérants, dans
l’esprit de la programmation fonctionnelle. L’échec possible d’un agent est pris
en compte.

Mots-clés : concurrence, programmation distribuée, language de program-
mation, programmation fonctionnelle, join-calcul, ML

Programming in JoCaml 3

1 Introduction

Concurrency has always been a fact of life in the areas of system and network
programming. Networks now being standard, the interest for concurrency has
long shifted from specialists to ordinary programmers. Moreover, the ever grow-
ing availability of multi-core machines augments the population of those that
wish to have several computing “agents” to cooperate. However, as everyone
who has tried knows, writing a distributed application, one that runs on several
machines, is not an easy task.

The join-calculus [5] is a process calculus in the tradition of the π calcu-
lus [15]. The main purpose of such calculi is to describe concurrent and dis-
tributed systems; programming such systems is a different, although related,
issue. The issues are related because a good model offers suitable abstractions
that help programmers. To shorten the distance between model and program,
the join-calculus has been designed with implementation in mind. We will not
discuss this point on theoretical grounds, but rather on practical grounds. In-
deed, we are developing a programming language based upon the join-calculus.

Our language, JoCaml, is an extension of Objective Caml (OCaml) [11], a
popular dialect of ML. By choosing to extend an existing language, and not to
design one of our own, we first intend to minimize our work. We also intend to
benefit of functional programming, of pre-existing code base, and of a population
of programmers less reluctant towards innovation than the average.

In this work, we more illustrate the JoCaml language than the JoCaml system
(however, see Section 2), by showing how a middle-sized OCaml program can be
made into a JoCaml program (Sections 3–7) suited for execution on a network
of computers. We then conclude after a few performance figures.

The complete source for the program is available at http://jocaml.inria.
fr/pub/joex/JoCamlsRUs.tar.gz.

2 The new JoCaml

The new JoCaml system [14] is a re-implementation from scratch of the pre-
vious prototype [10]. The old JoCaml focussed on language expressiveness, by
providing all the features of the underlying process calculus. In particular, the
old system provides extensive support for the hierarchical location tree of the
join-calculus, which acts as a model for the migration of processes from one
computer to another. Implementing this feature has two consequences, which
both hinder compatibility with OCaml:

1. Code migration makes native code execution problematic1.

2. Code migration implies extending the byte-code machine and the link-
ing mechanism of OCaml, leading to serious incompatibilities at the bi-
nary level.

Besides, the extensive alterations performed over the version 1.07 of OCaml that
was taken as a starting point for developing JoCaml, made it very difficult to
follow the evolution of OCaml, of which current version is 3.10.

1The OCaml system does not provide just-in-time compilation

RR n° 6261

http://jocaml.inria.fr/pub/joex/JoCamlsRUs.tar.gz
http://jocaml.inria.fr/pub/joex/JoCamlsRUs.tar.gz

4 Mandel & Maranget

By contrast with the old system, the new JoCaml focusses on compatibility
with OCaml. Briefly, we proceed by altering the OCaml compiler from parsing
phase to first intermediate code generation, and by enriching the thread library
of OCaml with specific support. Compiler alteration is justified by specific typing
and pattern matching compilation [6, 13], which both need to be perform inside
the compiler. Compiler alteration is limited in the sense that we change or add
a few thousand lines in the compiler original source files, add a few source files,
and retain the OCaml formats for binary files. Moreover, the JoCaml compiler
produces compiled signatures files that are the same as the ones of OCaml, which
is of crucial importance to the simple versioning policy of OCaml.

Our focus over compatibility and limited alteration of OCaml, made us aban-
don the mobility features of the join-calculus. Nevertheless, there are useful
distributed programs that can be written without code mobility. Full compati-
bility with OCaml not only means that we can write such programs starting from
existing, sequential, source code in OCaml, but it also means that the existing
source code may call external libraries that need not be re-compiled.

3 An introduction to join-definitions

We first provide a “survival kit” introduction to the basic concept of the join-
calculus: the join-definition. The JoCaml tutorial [14] presents join-definitions
from a programming perspective in greater detail.

An OCaml program is a set of definitions. Definitions introduce, types, values
or functions. JoCaml extends OCaml with join-definitions. A join-definition is a
list of reactions rules that are processes guarded by join-patterns. A join-pattern
is a list of channel names with formal arguments. A guarded process is fired when
there are messages present on all the channels of its join-pattern. A typical
process is the parallel composition (operator “&”) of elementary processes.

In JoCaml there are two kind of channels: asynchronous and synchronous.
Asynchronous channels are the classical channels of the join-calculus. Message
sending on an asynchronous channel is an example of an elementary process.
Synchronous channels can engage in any kind of join-pattern but the guarded
process must send back a result to the emitter. In that aspect, sending a message
on a synchronous channel can be seen as a function call.

Let us now consider an example of a join-definition: a concurrent buffer
based on the two-lists implementation of functional FIFO queues.

def state(xs,ys) & put(x) = state(x::xs,ys) & reply () to put
or state(xs,y::ys) & get() = state(xs,ys) & reply y to get
or state(_::_ as xs,[]) & get() =
state([], List.rev xs) & reply get() to get

val put : ’_a -> unit

val state : (’_a list * ’_a list) Join.chan

val get : unit -> ’_a

Join-definitions are introduced by def, reaction rules are separated by or, and
the channel names in join-patterns are separated by “&”. The join-definition
above defines one asynchronous channel (state) and two synchronous channels
(put and get). Asynchronous channels have type τ Join.chan where τ is the
type of the message.

INRIA

Programming in JoCaml 5

The idea of this buffer is to store the FIFO queue (implemented by a pair of
lists) as a message on the channel state. By the organization of join-patterns,
which all include state, exclusive access to the internal state of the buffer is
granted to the callers of synchronous put and get.

The first join-pattern state(xs,ys) & put(x) is satisfied whenever there
are messages on both state and put. The behavior of the guarded process is
to perform two actions in parallel: (1) send a new message on state where the
value x is added to the list xs and (2) return the value () to the caller of put.

The second join-pattern state(xs,y::ys) & get() is satisfied when there
are messages on both state and put and that the message on state matches
the pattern (xs,y::ys). That is, the message is a pair whose second com-
ponent is a non-empty list. The process guarded by this join-pattern removes
one value from the buffer and returns it to the caller of get. The last join-
pattern state(_::_ as xs,[]) & get() is satisfied when there is a message
on get and a message on state that matches a pair whose first component is
an non-empty list and second component is an empty list. The correspond-
ing guarded process transfers elements from one end of the queue to the other
and performs get again. Notice that there is no join-pattern that satisfies
state([],[]) & get(). As a consequence, a call to get is blocked when the
buffer is empty.

To initialize the buffer, a message is sent on state. An expression that per-
forms such a sending is spawn state([],[]). The spawn construct executes
a process asynchronously. Syntactically, spawn lifts a process into an expres-
sion. It is to be noticed that processes and expressions are distinct syntactical
categories.

To be able to create several buffers, the previous definition is encapsulated
into a function create_buffer.

type ’a buffer = { put : ’a -> unit; get: unit -> ’a }

let create_buffer () =
. . . (* same definition of put/get/state as before *)

spawn state([],[]) ;
{put=put; get=get;}

val create_buffer : unit -> ’a buffer

A buffer is in fact a record, whose fields are the put and get synchronous
channels. That way, we make buffers first-class values and additionally hide the
internal channel state.

4 Organizing concurrent computations

We first present iterators (type enum) over the elements (type elt) of a collection
(type t) [4].

val start : t -> enum
val step : enum -> (elt * enum) option

The function start builds an enumerator from a structure of type t, while step
returns the first value built from an enumerator and the enumerator that builds
the next values. We illustrate the idea of iterators by an enumerator over an
integer interval.

RR n° 6261

6 Mandel & Maranget

type elt = int and t = int * int and enum = int * int
let start c = c
let step (n,m) = if n > m then None else Some (n,(n+1,m))

4.1 Concurrent iteration

We then define a channel par_iter that applies a function worker to all the
values produced by an enumerator, function calls being performed concurrently.

def par_iter (worker, enum) = match step enum with
| None -> 0
| Some (x,next) -> par_iter(worker, next) & begin worker x ; 0 end

val par_iter : ((elt -> unit) * enum) Join.chan

If step enum does not return a value, then there is nothing to do (0 is the
empty process). Otherwise, a recursive sending to par_iter and a call to
worker are performed concurrently. The construct worker x ; 0 lifts the ex-
pression worker x (of type unit) into a process.

An example of par_iter usage is to print the integers from 1 to 3 in un-
specified order:

let print x = print_char ’(’ ; print_int x ; print_char ’)’
let _ = spawn par_iter(print, start (1,3))

A possible output is: (2)(1)(3)2

To share parallel computations between several “agents”, we introduce the
notion of a pool of functions.

type ’a pool =
{ register: (’a -> unit) Join.chan; compute: ’a -> unit; }

let create_pool () =
def compute(x) & agent(worker) =
worker x ;
agent(worker) & reply () to compute in

{ register=agent; compute=compute; }

A pool exports two channels: register and compute. Viewed from caller side,
register is for offering computational power, whereas compute is for exploiting
computational power. The pool implementation matches computing agents and
exploiting agents with a straightforward join-pattern.

Internally, available computing agents are messages pending on channel agent.
Notice that several instances of a given worker agent cannot execute concur-
rently. Namely, a computation can start only when an agent is available, and
an agent engaged in a computation returns to available status only when the
computation (worker x) is over.

To illustrate the use of the pool, we introduce a second function to print
integers:

let print_bis x = print_char ’<’ ; print_int x ; print_char ’>’

Then, we create a pool and register the print and print_bis functions.
2Due to abundant concurrency, another possible output is ((2)1)(3).

INRIA

Programming in JoCaml 7

let pool = create_pool ()
let () = spawn (pool.register(print) & pool.register(print_bis))

Finally, by combining par_iter and the compute component of the pool, we
have the integer interval printed by two agents:

let () = spawn par_iter(pool.compute, start (1,3))

A possible output is (2)<1><3>. Due to concurrency of distinct agents, another
possible output is (<1>2<)3>.

4.2 Collecting the results of concurrent iteration

In the previous example, par_iter is an asynchronous channel. This clearly
expresses that it cannot be known when par_iter has finished its work. We
now wish not to perform side effects, as print does, but instead to collect
returned values.

More precisely, we aim at building a new kind of pool, with a “fold” function
that behaves as par_iter as regards concurrency, but additionally returns a
combination of results.

type (’a,’b) pool =
{ register: (elt -> ’a) Join.chan;
fold: t -> (’a -> ’b -> ’b) -> ’b -> ’b; }

Interface for exploiting the pool is the fold function that, with respect to the
previous par_iter, takes the combination function and an initial value for the
result as extra arguments, and returns a combined result of type ’b. Interface
for offering computational power is register as before, but now registered
functions return a result of type ’a.

The new pool is controlled by the following monitor, of which primary job
is to collect results.

type (’a,’b) monitor =
{ enter: unit -> unit; leave: ’a Join.chan;
wait: unit -> ’b; finished: unit Join.chan; }

let create_monitor combine init =
def state(n,r) & enter() = state(n+1,r) & reply () to enter
or state(n,r) & leave(v) = state(n-1,combine v r)
or state(0,r) & wait() & finished() = reply r to wait
in spawn state(0,init) ;
{ enter=enter ; leave=leave ; wait=wait; finished=finished ; }

val create_monitor : (’a -> ’b -> ’b) -> ’b -> (’a, ’b) monitor

A monitor provides four channels: enter, leave, finished and wait. Channel
enter (resp. leave) is used by the monitored pool (see below) to signal that
a new task starts (resp. ends). The monitored pool will send a message on
finished when iteration has came to an end. Finally, wait is a function that
returns the combination of all the results of the monitored tasks.

A monitor has an internal state of which first component n counts the number
of tasks being computed. This counter is updated with the channels enter and
leave. Additionally, the message on leave is a task result to be combined with

RR n° 6261

8 Mandel & Maranget

the second component r. The last join-pattern (state(0,r) & finished()
& wait()) states that when there are no more tasks, either active (state(0,_)),
or to be allocated (finished()), then the call to wait can be answered.

We now present the pool implementation:

let create_pool () =
def loop(monitor,enum) & agent(worker) = match step enum with
| Some(x, next) ->

monitor.enter() ;
loop(monitor,next) & call_worker(monitor, x, worker)

| None -> monitor.finished() & agent(worker)
and call_worker(monitor,x,worker) =

let v = worker(x) in monitor.leave(v) & agent(worker) in

let fold x combine init =
let monitor = create_monitor combine init in
spawn loop(monitor, start x) ;
monitor.wait () in

{ fold=fold ; register=agent ; }

Let us examine the definition of fold: it first creates a monitor, then starts the
iteration, and finally calls the wait function of the monitor.

The loop/agent definition is essentially a combination of the previous pool
implementation and of par_iter, with worker calls being put aside for clar-
ity (channel call_worker). The combination has the effect that various in-
stances of a given worker agent now execute in sequence, following iteration
order. Additionally, calls to the monitor are inserted at appropriate places.
A remarkable point is that we can be sure that all calls to monitor.enter
have been performed before the message on monitor.finished is sent. This
is almost obvious by considering that the recursive sending on loop is per-
formed only once the call monitor.enter() has returned, by the virtue of
the sequencing operator “;”. Moreover, the internal counter of the moni-
tor indeed counts active tasks: as “&” binds more tightly than “;”, the pro-
cess call_worker(monitor,x,worker) executes once monitor.enter() has re-
turned, and thus once the monitor counter has been incremented. Similarly, the
counter is decremented (by monitor.leave(v)) only once the worker has re-
turned.

The new pool is quite powerful, since it can serve as a meeting place between
several agents that offer computational power and several agents that exploit
it. Let us define the former agents and register them.

let double x = print x; 2*x and double_bis x = print_bis x; x+x
let pool = create_pool ()
let () = spawn (pool.register(double) & pool.register(double_bis))

Exploiting agents are two functions, with different combination behavior.

let sum x = pool.fold x (+) 0 and prod x = pool.fold x (*) 1

Finally all agents meet through the pool.

def echo(c,x) = print_char c ; print_int x ; print_char c ; 0
let () = spawn echo(’+’,sum(1,3)) & echo(’*’,prod(4,5))

A possible output is <1>(2)<4>(5)*80*<3>+12+.

INRIA

Programming in JoCaml 9

4.3 Distributed computations

In JoCaml, concurrent and distributed computations are based on the same
model: different programs (abstracted as sites) may communicate by the means
of channels. More precisely, site A may send messages on a channel of which
definition resides on another site B. In that situation, guarded processes execute
on site B. One practical problem in distributed applications is for the commu-
nicating partners, first to know one another, and then to have at least a few
channels in common. To solve the issue, JoCaml provides library calls to con-
nect sites and a name service, which basically is a repository for values (more
specifically channel names) indexed by plain strings.

As an example, this first program runs on machine A.

let pool = create_pool()
let () = Join.Ns.register Join.Ns.here "reg"
(pool.register: (int -> int) Join.chan)

let () = Join.Site.listen
(ADDR_INET (Join.Site.get_local_addr(), 12345))

let () = print_int (pool.fold (1,3) (+) 0)

This program creates a pool. Then, by calling Join.Ns.register, it stores the
channel pool.register associated to the name "reg" in the local name service
(Join.Ns.here). Then, Join.Site.listen starts to listen for connections on
the default Internet address of the local site (Join.Site.get_local_addr())
on port 12345. Finally, the program calls pool.fold. This call blocks, since no
computing agent has entered the pool yet.

To become such a computing agent, machine B runs the following program.

(* server_addr is the Internet address of A *)

let a_site = Join.Site.there (ADDR_INET(server_addr,12345))
let ns = Join.Ns.of_site a_site
let register = (Join.Ns.lookup ns "reg": (int -> int) Join.chan)
def double(x) =
print_char ’(’ ; print_int x ; print_char ’)’ ;
reply x+x to double

let () = spawn register(double)

Here, B first gets the site identity of the program running on A, with the function
Join.Site.there, and its name service with Join.Ns.of_site. Then, it re-
trieves the (synchronous) channel associated to the key "reg". The name service
is not type safe3. For instance, the type of Join.Ns.lookup is Join.Ns.t ->
string -> ’a. As a minimal precaution, we insert explicit type constraints.
Finally, B defines and registers the synchronous channel double. The effect
of A calling the registered double is the one of a remote function call. Hence,
console output is 12 on A and (1)(2)(3) on B.

Another issue deserves mention. The program of B above is not complete:
as spawn register(double) returns immediately, execution goes on. For the
program not to terminate by reaching its end, we deadlock it purposely.

let () = def dead() & lock() = reply () to dead in dead()

3A weakness of JoCaml, we agree.

RR n° 6261

10 Mandel & Maranget

But B is now blocked for ever, whereas a desirable behavior is for B to be
released when A does not need B anymore, or at least when the program running
on A terminates.

The function Join.Site.at_fail provides a convenient solution. It takes a
site A and a channel (of type unit Join.chan) as arguments, and returns ().
When it is detected that A has failed, then a message is sent on the channel.
Thus, we replace the code above by:

let () =
def wait() & release() = reply () to wait in
Join.Site.at_fail a_site release ;
wait()

5 Ray tracing and its parallelization

Ray tracing [21, 7] is a now classical technique for computing 2d-images from
3d-scenes. The general principle of ray tracing is to cast light rays from the
viewpoint of an observer into the scene. To render a scene as a w × h bitmap
image, one casts the w × h rays defined by the observer viewpoint and the
position of the w×h picture elements (pixels) of the image plane, which stands
in front of the observer. One then computes the intersection of this primary
ray with the scene. Reflections on object and the computation of illumination
imply casting more rays. The whole process involves much computation.

This simple introduction should be sufficient to grasp the basic structure
of a ray tracer. Our sequential ray tracer has not been written by us, but by
the team “Camls R’Us” as an entry [1] for the ICFP programming contest of
year 2000. Although written in three days, the program is of significant size
(1729 lines, disregarding comments and empty lines).

Scenes are represented internally as the following (OCaml) record type, a
field of module Scene.

type t =
{ file : string ; wid : int ; ht ; int ; obj : Obj.t ; ... }

In the type above, file is the name of the file where to save the image, wid and
ht are the image width and height respectively. The obj field holds the internal
representation of the scene. We omit some of the fields in the scene record,
such as the definition of lights, observer field of view, etc. Bitmap images are
Ppm images, a simple image format, where an image file basically is a sequence
of colors encoded as three eight-bits values.

In the original ray tracer, rendering operations are performed by the module
Render that exports only one function render, as shown by its interface file.

val render : Scene.t -> unit

Notice that Render.render returns () because it saves the bitmap it computes.
Let us assume a function Ray.render_pxl of type Scene.t -> int -> int ->
color that performs the casting of a primary ray and all subsequent operations,
finally returning the color4 of the pixel of the image plane of which coordinates

4color is the type of colors, in practice a color is an integer of which 24 bits are used.

INRIA

Programming in JoCaml 11

are given as arguments. Then, one easily writes Render.render by two nested
for loops.

let render sc =
let oc = open_out_bin sc.file in (* open output, ppm, file *)

Printf.fprintf oc "P6\n%d %d\n255\n" sc.wid sc.ht; (* Ppm header *)

for j = sc.ht - 1 downto 0 do
for i = 0 to sc.wid-1 do

let color = Ray.render_pxl sc i j in
ouput_color oc color

done
done ;
close_out oc

The problem statement of the contest [16] defines a language, Gml, for both
describing the scene and the rendering conditions. This specification naturally
impacts the design of the Camls’R Us ray tracer.

1. The Gml program is parsed.

2. The resulting abstract syntax tree is evaluated by an interpreter (mod-
ule Eval), with the following peculiarities:

(a) To execute the instruction render that commands producing an im-
age, the interpreter calls Render.render, all scene component being
retrieved from the interpreter stack. It is to be noticed that there
can be several render instructions in a given program.

(b) Other instructions are Constructive Solid Geometry operations, 3d-
transforms, arithmetics, if instructions, function calls, etc.

3. The ray tracer ends once the interpreter has returned.

Our strategy for distributed execution is straightforward: all programs in-
volved will execute the same Gml program, however they will react to the
render instruction differently. A distinguished program, the master, controls
the work of others. All other programs are slaves and they perform the render-
ing operations. For the master to distribute the work to the slaves, we need to
define an unit of work smaller than the image. We call this unit a subimage. A
simple choice for the subimage is a line (or several lines), since images are easily
encoded as arrays of lines. More precisely master and slaves behave as follows

RR n° 6261

12 Mandel & Maranget

Master

1. Parse the Gml file and make
the abstract syntax tree avail-
able to slaves.

2. Interpret the Gml program.
Instruction render starts the
concurrent process of allocat-
ing subimages to slaves and of
collecting their results. When
all subimages are present, the
image is saved.

3. End when all the images have
been saved.

Slave

1. Connect to the master, reg-
ister as a potential worker,
and retrieve the Gml abstract
syntax tree.

2. Interpret the Gml program.
Instruction render starts ac-
cepting subimages descrip-
tions from the master, com-
puting subimages, and send-
ing them back to the master.

3. End when the master is done.

Observe that master and slaves agree on the scenes because they execute the
same Gml program, Gml being a deterministic language.

Our design has the merit of simplicity: alterations to the original, sequential,
ray tracer are minimized. In particular, the source of the sequential ray tracer
includes the compilation unit Eval of which idealized code is as follows: a defi-
nition of the values of Gml (type value), a recursive function that implements
a stack-based interpreter (function eval), and a function that starts the evalu-
ation (function eval_program) — see Figure 1 for the original implementation
and signature file. The new implementation of Eval simply abstracts out mod-
ule Render, that is, it defines a functor — see Figure 2. Master and slave apply
the functor Eval.Make to different modules, RenderMaster and RenderSlave
respectively, yielding two different interpreters.

Another modification is worth signaling: as subimages are made of lines, we
separate the nested loops of the sequential render. The inner loop goes into
the Ray module, yielding a new Ray.render_line function of type Scene.t ->
int -> string that takes a scene and a line number as arguments, and that
returns a compact representation of the colors of the pixels in the line.

6 The Render modules

6.1 Master side

The iterator on scenes in defined in the Scene module. For simplicity we present
iteration by the line.

type elt = string * int and enum = string * int
let start sc = (sc.file, sc.ht-1)
let step (file,n) = if n < 0 then None else Some ((file,n),(file,(n-1)))

The master uses the fold pool of section 4.2, of which register function is
stored in the local name service.

let img_pool = create_pool ()
let () = Join.Ns.register Join.Ns.here "reg"
(img_pool.register : (Scene.elt -> int * string) Join.chan)

INRIA

Programming in JoCaml 13

Figure 1: Original source files for Eval

Implementation, file eval.ml

type value =
| . . .
| I of integer
| S of string
| O of Obj.t (* 3d object *)

| . . .

let rec eval env stack code = match code, stack with
| ...
(* Example of an instruction: integer addition *)

| Op_addi::code, I i2::I i1::stack -> eval env (I (i1+i2)::stack) code
(* Render instruction *)

| Op_render::code, S file::I ht::I wid::O obj::. . .::stack ->
let sc = { file=file ; wid=wid ; ht=ht ; obj=obj ; ... } in
Render.render sc ;
eval env stack code

| . . .

(* Entry point *)

let eval_program code = eval [] [] code

Interface, file eval.mli

val eval_program : Gml.tok list -> unit

Figure 2: New source files for Eval

Implementation, file eval.ml

module Make (Render : sig val render : Scene.t -> unit end) =
struct

· · · Original code · · ·
end

Interface, file eval.mli

module Make :
functor (Render : sig val render : Scene.t -> unit end) ->
sig val eval_program : Gml.tok list -> unit end

RR n° 6261

14 Mandel & Maranget

As specified by the type constraint above, remote workers return pairs of a line
number and of a line of pixels.

Finally, the following function commands the rendering of scene sc and saves
the resulting image.

let render_image sc =
let img = Array.create sc.ht "" in
let combine (n.line) = img.(n) <- line in
img_pool.fold combine () ;
save_image sc.file img

Notice that the combination function performs an update of the bitmap img.
It should be noticed that render_image above returns only when the image is
saved. We can then define RenderMaster.render as being render_image.

let render = render_image

As a consequence, all images are saved when the interpreter terminates and the
master can terminate.

In our implementation, we in fact save the image asynchronously, for disk
operations not to delay the interpreter. Termination of the master is then
controlled by a simple monitor (page 7) that counts images.

let monitor = create_monitor (fun () r -> 1+r) 0

let render_image sc =
monitor.enter () ;
let img = Array.create sc.ht "" in
let combine (n.line) = img.(n) <- line in
img_pool.fold combine () ;
spawn begin
save_image sc.file img ;
monitor.leave ()

end

The monitor is made public by the module RenderMaster, for the code after
the call to the interpreter to wait on it.

. . .
(* Call interpreter, gml is the abstract syntax tree *)

let module E = Eval.Make(RenderMaster) in
E.eval_program gml ;

(* Interpreter is over *)

let m = RenderMaster.monitor in
spawn m.finished() ;
let nimages = m.wait() in
Printf.eprintf "My slaves have computed %d images\n" nimages ;
exit 0

6.2 Slave side

A slave executes two tasks concurrently. It (1) interprets the Gml program so
as to build the scenes and (2) computes subimages on master demand. For the

INRIA

Programming in JoCaml 15

two agents to communicate, we introduce a suitable mapping from filenames
to scenes.

type (’a,’b) hashtbl = { find : ’a -> ’b; add : (’a * ’b) -> unit; }

let create_hashtbl () =
let t = Hashtbl.create 17 in
def state(blocked) & add(k,v) =
Hashtbl.add t k v ;
List.iter (fun release -> spawn release()) blocked ;
state([]) & reply () to add

or state(blocked) & find(k) =
let v = try Some (Hashtbl.find t k) with Not_found -> None in
match v with
| Some v -> state(blocked) & reply v to find
| None ->

def release() & wait() = reply () to wait in
state(release::blocked) & reply wait() ; find(k) to find in

spawn state([]) ;
{ find=find; add=add; }

let scenes = create_hashtbl ()

The code above is a wrapper of the (OCaml) hashtable t. There are two points
to notice. First, by very existence of state the internal hashtable t is pro-
tected against concurrent modification, as usual. Second, the synchronous chan-
nel find blocks when the table t does not associate any value to the key k, until
a value for k is added into the table. This block/release process implies a form
of communication between find and add operations. Such a communication is
by the means of the message that is pending over the internal channel state.

More precisely, the code of find first changes the interface to Hashtbl.find
“return value v or raise exception Not_found” into the new interface “return
Some v or return None”. In the first, successful, case the caller of find gets v
as a reply. In the second, failed, case the reply to find is delayed, by inserting
a call wait() before calling find again. The call to wait will return when a
message is sent on the asynchronous channel awake, which the code for add does.
A find operation is then attempted again. The coding is slightly inefficient, but
it suffices here. Namely, the pool of the master does not allow several concurrent
calls to find in a given slave. Thus the list blocked cannot hold more than one
element.

Actual subimage computations are performed by the following definition.

def compute_subimage (tag,n) =
let pxls = Ray.render_line (scenes.find tag) in
reply (n,pxls) to compute_subimage

Additionally, compute_subimage is registered into the pool of the master, we
omit the code which is the same as the one of section 4.3. Finally, RenderSlave.render
simply stores the scene at the intention of compute_subimage.

let render sc = scenes.add (sc.file,sc)

As regards termination, the simplest solution is for slaves to terminate when
the master does — see the end of section 4.3.

RR n° 6261

16 Mandel & Maranget

7 Failures

We claimed that local and remote message sendings were the same. Obviously
we over-simplified the issue: the remote site may crash or become unreachable.

7.1 Detected failures

In the case of our ray tracer, the remote message sending is a synchronous one,
i.e. is a remote function call, which is performed by call_worker (section 4.2).

. . .
and call_worker(monitor,x,worker) =

let v = worker(x) in monitor.leave(v) & agent(worker)
. . .

The definition of worker resides on a remote site. It the remote site fails and that
the failure is detected by the JoCaml runtime system, then the call to worker
will result in raising the exception Join.Exit and monitor.leave(v) will never
execute. As a very untimely consequence, the image will never be completed.

To correct this misbehavior, it suffices to re-issue a failed task, as performed
by the following, new, definition of call_worker.

. . .
or agent(worker) & compute(monitor,x) =
call_worker(monitor,x,worker)

and call_worker(monitor,x,worker) =
let v = try Some (worker(x)) with _ -> None in
match v with
| None -> compute(monitor,x)
| Some v -> monitor.leave(v) & agent(worker)

. . .

The re-issued task is made available to other agents by the means of a new
channel compute, and of a new, straightforward, join-pattern. Additionally the
worker that failed is forgotten about, since there is no agent(worker) process
when v is None.

Observe that all exceptions are caught, not only Join.Exit. Here, the
master/slave protocol does not rely on exceptions and we can thus consider
any exception to express a failure. This can occur in practice, for instance if the
remote site consumes all available memory (exception Out_of_memory), since
the JoCaml runtime system transmits exceptions.

7.2 Undetected failures

Unfortunately not all failures are detected. More concretely, we cannot assume
that worker(x) will always either return a value or raise an exception. To solve
the problem, we keep a record of all active tasks i.e. of all tasks that are being
computed. Then, near the end of image computation, we re-issue active tasks
until the image is completed.

This technique requires a new kind of monitor, of which join-definition is
as follows.

INRIA

Programming in JoCaml 17

def state(next_id, active, r) & enter(x) =
state(next_id+1, (next_id,x)::active, r) &
reply next_id to enter

or state(next_id, active, r) & leave(id,v) =
if List.mem_assoc id active then

let active’= List.remove_assoc id active in
state(next_id, active’, combine v r)

else state(next_id, active, r)
or state(next_id, [], r) & wait() & finished() =

state(next_id, [], r) & reply r to wait
(* New channels: is_active and get_active *)

or state(next_id, active, r) & is_active(id) =
state(next_id, active, r) &
reply List.mem_assoc id active to is_active

or state(next_id, active, r) & get_active() =
state(next_id, active, r) & reply active to get_active

The code above is a refinement of the previous monitor (page 7). The message
on state is now a triple, of an identifier (next_id, an integer), of a mapping
from identifiers to task descriptions (active, an association list of which keys
are identifiers), and of a partial result (r, as before). Identifiers permit the safe
identification of task descriptions. They can be avoided when we are sure that
tasks descriptions are pairwise distinct, which need not be the case with general
enumerators.

The new monitor exports two additional synchronous channels: is_active,
a predicate to test if a given task is active, and get_active that returns the list
of active tasks. The guarded processes for these new channels are straightfor-
ward (List.mem_assoc is from the OCaml library and has obvious semantics).
The exported channels enter, leave, finished and wait are still here, with a
few changes. Channel enter now takes a task description x as argument and
returns a fresh identifier next_id. The counter increment performed by the
previous monitor is now replaced by adding (next_id,x) to the internal asso-
ciation list. Channel leave now takes an identifier id as an extra argument,
which it uses to remove the completed task from the list of active tasks (by call-
ing the library function List.remove_assoc). Notice that, as a given task can
now be computed by several slaves, we take some care not to combine the result
of a given task more than once. Finally the reaction rule for wait undergoes a
small, but important, change: the message on state is re-emitted. Otherwise,
subsequent calls to is_active would block.

The pool is also modified. The crucial modification regards re-issuing tasks
when iteration has came to an end.

def loop(monitor,enum) & agent(worker) =
match step enum with
| Some(x, next) ->

let id = monitor.enter(x) in
loop(monitor,next) & call_worker(monitor, id, x, worker)

| None -> do_again(monitor) & agent(worker)

When iteration is over (step enum returns None), a message on the internal
channel do_again is sent. The worker that has not been called is also released.

RR n° 6261

18 Mandel & Maranget

The guarded process for do_again is in charge of retrieving active tasks from
the monitor.

or do_again(monitor) & agent(worker) =
begin match monitor.get_active() with
| [] -> monitor.finished()
| xs -> again(monitor,xs)
end & agent(worker)

The synchronization on agent(...) above is not necessary. Nevertheless, it is
clearly a good idea to wait for at least one slave to be available before re-issuing
active tasks. The available slave is not used yet and the message on agent is
re-emitted. If there are no active tasks left, (get_active() returns the empty
list), then the pool informs the monitor that it will not allocate any additional
task (by monitor.finished()). In fact, from all calls to enter being performed
before do_again is called for the first time, it can be deduced that the image
is now complete. Hence the join-pattern for wait in the monitor could have
avoided testing that active is empty.

If there are some active tasks left, then channel again is in charge of re-
allocating them to available slaves.

or again(monitor,(id,x)::xs) & agent(worker) =
again(monitor,xs) &
if monitor.is_active(id) then
call_worker(monitor,id,x,worker)

else agent(worker)
or again(monitor,[]) = do_again(monitor)

The code above basically scans the list of active task. However, before calling
call_worker5, a last check is made. Indeed it can be that the task id has been
completed while again was scanning the list. Observe that when the scanning
is over (join-pattern again(...,[])), then do_again is called again, resulting
in another re-allocation of active tasks to slaves, if there still are active tasks.

It may seem that our solution is a waste of processing power. However, if
we compute one image only, there is little waste. Having n slaves computing
the same subimage is not less efficient than having one slave computing the
subimage and n− 1 slaves being idle, up to communication costs. Furthermore,
it can be more efficient on an heterogeneous network. If a slow slave is allocated
a task at the end of the image, then other slaves will be allocated the same task
quickly. As a result, image completion is delayed by the fastest amongst the
slaves that are working on the last subimages.

If there are several images to compute, one can lower the amount of useless
work by having the master to control the rendering of several images at a time.
Namely, remember that the fold pool of section 4.2 can manage several exploiting
agents. So as to control several images concurrently, we need change the function
render of the module RenderMaster. The new definition of render simply
stores the freshly computed scene in an instance of the buffer of section 3.

let buffer = create_buffer ()

let render sc = buffer.put sc

5We omit the code, it is almost the same as in the previous section.

INRIA

Programming in JoCaml 19

An exploiting agents is a simple asynchronous channel definition that repeatedly
calls the function render_image of page 14.

def render_images() =
render_image (buffer.get()) ;
render_images()

It remains to start several such agents, how many depending on some user
setting amax.

let () =
for _k = 1 to amax do

spawn render_images()
done

An alternative is unconstrained concurrency: an exploiting agent is spawned as
soon as an image is available.

def render_images() =
let sc = buffer.get() in
spawn begin render_image (sc) ; 0 end ;
render_images()

let () = spawn render_images()

Notice that, with respect to the previous definition of render_images, the func-
tion render_image is called asynchronously. Now, we have three versions of
RenderMaster.render, that respectively control the rendering of one image at
a time, of at most amax images at a time, and of as many images as possible at a
time. Preliminary experiments show that setting amax to be 2 or 3 is a reason-
able choice. However, we list all these possibilities to demonstrate the flexibility
of JoCaml. In particular, master termination is controlled by the same counting
monitor (see page 14) in all cases.

8 Results

The performance of parallel programs is best illustrated by speedup measures.
Speedup is the ratio of sequential execution time by parallel execution time. By
sequential, we here mean the sequential ray tracer, not the concurrent ray tracer
with one slave running. Of course, the measured times are wall-clock time. So
as to minimize noise, any data we present is the median of three measures.

We perform most of our experiments on a cluster machine, the machine
has 11 nodes, each node being a 2 × 2GHz AMD-64 bi-processor. Each node
has 6 Gb of physical memory and the nodes are connected by a fast Gigabit
dedicated network. Our main experiment consists in running two instances of
the slave program on 1, 2, . . . , 11 nodes, yielding 2, 4, . . . , 22 participating
slaves. Expressing speedup as a function of the number of slaves involved here
makes sense, since cluster nodes are identical.

We also perform the additional experiment of running one slave per processor
on 111 processors from the students computer lab at École polytechnique — we
use 68 machines, some of which are bi-processors. The machines involved are of
various CPU model and memory size, but all are rather modern. By contrast

RR n° 6261

20 Mandel & Maranget

with the cluster, speedup as a function of the number of slaves involved does not
make sense on such an heterogeneous network. Instead, we introduce processing
power, a crude estimate computed by considering running times for a small
image. We take one processor of the cluster as a base (1.0), cluster power is
thus 22.0, while the local network power is about 80.0. Network conditions are
standard for such a local network. All machines involved run Linux of one kind
or another.

In all experiments, we run the master program on a distinct, “front-end”,
machine, from which we launch the slave programs on the other machines by
the means of ssh. More precisely, we start slaves in advance and measure the
running time of the master.

We perform two sets of experiments, “urchin” (U) and “Sierpinski” (S) —
see Appendix A. In both experiments, inputs to the ray tracer are scenes of
identical structure and increasing complexity. By contrast, rendering parame-
ters do not change: images are of size 1000 × 1000, the subimage unit is the
default setting of one line, and adaptive antialiasing [21] is enabled, yielding
between 2 and 27 primary rays per pixel.

Figure 3: Stylized sea urchin.

Speedups

0
4
8

12
16
20
24

0 2 4 6 8 10 12 14 16 18 20 22 24

Sp
ee

du
p

Number of processors

”U8”

3
3

3
3

3
3

3
3

3
3

33
”U11”

+ + +
+ +

+ +
+ +

+
+

Running times,
in seconds

Seq x22 x111

U8 768 35 20.3
U11 9120 416 127

Experiments U yield excellent results: here, we basically achieve linear
speedup on the cluster (left of Figure 3). To provide an idea of the concrete
benefits of concurrency, we also give some execution times (columns “Seq” and
“x22” at the right of Figure 3). For instance, in the case of U11, image produc-
tion time is reduced from more of 2 hours and a half to less then 7 minutes. It
is still possible to go faster by using the local network (column “x111”), with a
better result for the most difficult test U11.

Indeed, we here achieve a speedup of 71.8, which is surprisingly good, con-
sidering that the estimated processing power the network is 80.0 and that some
of the machines involved are not idle at the time we use them. We shall thus
assume that experiment U11 somehow validates our crude estimate of process-
ing power. Namely, the (relatively) poor performance of U8 originates in the
important setup times we observe while 111 slaves attempt their first connection
to the master. The setup of ssh tunnels may partly explain this delay, but we
cannot reject the hypothesis of a master overflow here.

We think that the good performance of experiment U stems from two main
factors.

INRIA

Programming in JoCaml 21

1. Rendering operations account for the vast majority of computations, al-
most the totality. They literally dwarf other operations which, by contrast,
are executed sequentially by the master (parsing and image saving) or are
executed once by every slave (scene building).

2. The subimage unit of one line is adequate.

(a) It is large enough. That is, due to scene complexity and antialiasing,
most of the 1000 lines computed represent sufficient work for messag-
ing and task management costs to remain unnoticed. In particular,
by observing instantaneous CPU load, we had the confirmation that
slaves are seldom idle because they are waiting for the master to
allocate a subimage to them.

(b) It is small enough. Obviously, dividing the images into 1000 subim-
ages to be computed by no more than 22 (or even 111) slaves allows
a distribution of tasks that adapts well to varying task complexity
and slave load. Besides, near the end, image completion is delayed
by no more than a small fraction of the total work to be performed.

Figure 4: Decaying Sierpinski cube

Speedups

0
4
8

12
16
20
24

0 2 4 6 8 10 12 14 16 18 20 22 24

Sp
ee

du
p

Number of processors

”S1”

3
3

3
3 3 3 3 3 3 3 3

3
”S2”

+
+

+
+

+
+

+ + + + ++
”S3”

2
2

2
2

2
2

2
2

2
2

2

2
”S4”

×
×

×
× × ×

× × × × ×

×
”S5”

4 4 4 4 4 4 4 4 4 4 44

Running times,
in seconds

Seq x22 x111

S1 7.2 0.86 – a

S2 36.6 1.95 – a

S3 190 9.10 10.9
S4 759 40.6 32.05
S5 2620 204 262

aUnstable results

Our second series (Figure 4) illustrates some of the limitations inherent
to concurrent ray tracing. Series S includes simple scenes (S1 is made of
a few cubes) and scenes that takes time to compute (S5 is made of almost
580, 000 cubes).

Experiments S1 and S2 are here for completeness, there is little point in
attempting to compute such simple images faster than 7 s and 36 s. However,
we achieve decent speedups, at least for S2. As regards the other experiments,
significant sequential running times make relevant the idea of distributed exe-
cution. And indeed, we achieve good speedups on the cluster for experiments
S3 and S4. However, the most demanding S5 experiment yields poor speedups.
Those are easily explained once one knows that the sequential ray tracer starts
to cast rays after about 100 s of computing time, which is mostly devoted
to the interpretation of the Gml program. About 100 s is a small fraction
(3.8%) of the sequential running time of 2620 s, but a significant fraction of

RR n° 6261

22 Mandel & Maranget

204 s. More precisely, we can approximate the expected speedup for N slaves
as N/(0.038 × N + 0.962) (Amdahl’s law). For N = 22 we have a theoretical
speedup of 12.2, which is rather close to the observed speedup of 12.8.

Experiments S on the local network are not very rewarding. In particu-
lar, computing image S5 on the local network of 111 processors is actually
slower than on the cluster. Here also, poor performance originates from non-
parallelized work dominating parallelized work, but on a more dramatic scale.
Direct measures showed us that slaves engage in computing subimages no sooner
than 200 s after they start. The expected delay inferred from processing powers
should be about 140–160 s. Obviously, the computers at École polytechnique
are not as fast as we expect them to be, perhaps due to significant memory
traffic. Furthermore, about 20 processors are so slow that they do not take
any part to the concurrent computation. This is mostly due to the presence of
other users6.

In spite of those unfavorable results, we claim to have demonstrated the ef-
ficiency of our concurrent ray tracer. Namely, for complex images of reasonable
memory footprint and building time, we achieve dramatic speedups. Addition-
ally, in a less favorable situation, we still make a decent profit out of the cluster.

9 Related works and conclusion

We are not computer graphics specialists and cannot claim that our work is a
contribution to the study of parallel ray tracing. The survey [17] cites the hu-
morous quote that “the more experience the writer of the parallel algorithm has
in sequential algorithms, the less parallelism that algorithm is likely to exhibit”.
Thus, as novices, we are likely to discover a lot of parallelism.

Rather, our contribution resides in the design and implementation of a con-
current language. Since the pioneering languages of the eighties (e.g. [9]) there
have been many such languages. We restrict our attention to recent works that
are close to ours as regards design and availability. We directly compare with
Cω [3] that extends C] with join-definitions. In numerous aspects, the Cω de-
sign and development effort is similar to ours. Some differences exist though,
most of which reflect the differences in the language extended. For instance, C]

being an object language, channels appear as methods of the objects that de-
fine the join-patterns (called chords). This often leads to a natural and concise
style, more than our technique of explicitly bundling channels in records. As
to JoCaml, OCaml being a functional language, JoCaml offers pattern-matching
of channel arguments, a feature that we use in several occasions here. Another
extension inspired by the join-calculus is Join Java [20]. Finally, It is to be
noticed that the principles of the join-calculus also inspire recent concurrency
libraries: Joins [19] for .net, and Boost.Join [12] for C++. On the one hand
such libraries provide an easier approach to the high-level abstractions of the
join-calculus than the linguistic approach, both on the psychic (no need to try
a new language) and technical level (no need to install a new compiler). On
the other hand, they offer less static checks and integrated features, such as
convenient syntax.

A recent extension of (standard) ML is Alice [18]. As regards distributed
programming, Alice component model allows one program to transmit a module

6Other causes are possible though: in one case, the machine was over-heating. . .

INRIA

Programming in JoCaml 23

to another in a type-safe manner, and for the the receiver to link the received
module in a controlled manner. This comes in sharp contrast with our type-less
name server, and with our renunciation of code migration. As regards the basic
concurrency primitives, Alice relies on explicit threads and support for data-
flow synchronization. Scala is a language in its own right, not an extension,
which is both object-oriented and functional. Support for concurrency in Scala
is library based and using actors as the basic abstraction is encouraged [8]. The
language Erlang [2] primarily targets the concurrent and distributed systems of
the telecommunications industry. Its model for concurrency is reminiscent of
actors, with provisions for fault tolerance; while its functional core language is
rather simple. Erlang is being used for industrial developments of important size.

Clearly, there is a steady trend in programming language design: mature
implementations are released that offer serious support for concurrency and
distribution. The systems we have cited are based upon a variety of models.
It certainly does not belong to us to claim that the join-calculus is the best
amongst those models. Rather, we hope that our presentation of JoCaml at
work demonstrate its elegance and expressive power.

References

[1] Sébastien Ailleret, Pascal Cuoq, Damien Doligez, Robert Harley, Fabrice
Le Fessant, Xavier Leroy, and Alan Schmitt. Camls’R Us. Second prize
at ICFP Programming contest, http://caml.inria.fr/pub/old_caml_
site/icfp00-contest/, 2000.

[2] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-
current Programming in ERLANG. Prentice-Hall, 1996. 2nd edition.

[3] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency
abstractions for C]. ACM Transactions on Programming Languages and
Systems, 26(5):769–804, 2004.

[4] Jean-Christophe Filliâtre. Backtracking iterators. In ACM SIGPLAN
Workshop on ML, Portland, Oregon, September 2006.

[5] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract
machine and the join-calculus. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’96),
pages 372–385, 1996.

[6] Cédric Fournet, Luc Maranget, Cosimo Laneve, and Didier Rémy. Im-
plicit typing à la ML for the join-calculus. In Proceedings of the 8th Inter-
national Conference on Concurrency Theory (CONCUR’97), LNCS 1243,
pages 196–212, 1997.

[7] Andrew S. Glassner. An Introduction to Ray Tracing. Mogan Kaufmann,
1989.

[8] Philipp Haller and Martin Odersky. Event-based programming without
inversion of control. In Proceedings of the Joint Modular Languages Con-
ference, 2006.

RR n° 6261

http://caml.inria.fr/pub/old_caml_site/icfp00-contest/
http://caml.inria.fr/pub/old_caml_site/icfp00-contest/

24 Mandel & Maranget

[9] INMOS Ltd. OCCAM Programming Manual. Printice-Hall, 1984.

[10] Fabrice Le Fessant. The JoCaml system. Software and documentation
available at http://moscova.inria.fr/oldjocaml/index.shtml, 1998.

[11] Leroy X. et al. The Objective Caml Language (version 3.10). Software and
documentation, available at http://caml.inria.fr, 2007.

[12] Yigong Liu. Join — an asynchronous concurrency library. Software and
documentation available at http://channel.sourceforge.net/boost_
join/libs/join/doc/boost_join_design.html, 2007.

[13] Qin Ma and Luc Maranget. Compiling pattern matching in join-patterns.
In Proceedings of the Fifteenth International Conference on Concurrency
Theory (CONCUR’04), LNCS 3170, pages 417–431, London, UK, 2004.

[14] Louis Mandel and Luc Maranget. The JoCaml system. Software and doc-
umentation available at http://jocaml.inria.fr/, 2007.

[15] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, parts I and II. Information and Computation, 100:1–40 and
41–77, 1992.

[16] Greg Morrisett and John Reppy. The third annual icfp programming con-
test. http://www.cs.cornell.edu/icfp/, 2000.

[17] Erik Reinhard, Alan Chalmers, and Frederik W. Jansen. Overview of par-
allel photo-realistic graphics. In Proceedings of Eurographics’98, 1998.

[18] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus,
and Gert Smolka. Alice Through the Looking Glass, volume 5 of Trends in
Functional Programming, pages 79–96. Intellect Books, Bristol, UK, ISBN
1-84150144-1, Munich, Germany, February 2006.

[19] Claudio Russo. The joins concurrency library. In Proceedings of Ninth
International Symposium on Practical Aspects of Declarative Languages
(PADL’07), 2007.

[20] G. Steward von Itzstein. Introduction of High Level Concurrency Semantics
in Object Oriented Language. PhD thesis, University of South Australia,
2005.

[21] Turner Whitted. An improved illumination model for shaded display. Com-
munications of the ACM, 23:343–349, 1980.

A Scenes used during experiments

A.1 Urchin

The scenes in experiments U are made of small cylinders arranged into a spheric
shape, yielding a stylized sea urchin — see the first image of Figure 5. At order n,
there are 2n cylinders. The “urchin” scenes achieve a reasonably high level of
complexity in rendering, since there are many intersections to compute, still at
a moderate price in memory and scene building time.

INRIA

http://moscova.inria.fr/oldjocaml/index.shtml
http://caml.inria.fr
http://channel.sourceforge.net/boost_join/libs/join/doc/boost_join_design.html
http://channel.sourceforge.net/boost_join/libs/join/doc/boost_join_design.html
http://jocaml.inria.fr/
http://www.cs.cornell.edu/icfp/

Programming in JoCaml 25

Figure 5: Images “urchin (8)” and “Sierpinski (3)”

RR n° 6261

26 Mandel & Maranget

A.2 Decaying Sierpinski cube

The scenes in experiments S are decaying Sierpinski cubes of increasing order
— see the second image of Figure 5. The Sierpinski cube of order n normally
contains 20n small cubes. In our “decaying” version we erase 2 sub-elements
out of 7 at every induction step, and apply pseudo-random rotation and scaling
As a result, we obtain a slightly chaotic image made of approximatively 14.2n

elementary cube.

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	The new JoCaml
	An introduction to join-definitions
	Organizing concurrent computations
	Concurrent iteration
	Collecting the results of concurrent iteration
	Distributed computations

	Ray tracing and its parallelization
	The +Render+ modules
	Master side
	Slave side

	Failures
	Detected failures
	Undetected failures

	Results
	Related works and conclusion
	Scenes used during experiments
	Urchin
	Decaying Sierpinski cube

