
Constrained Types – Future Directions

Vijay Saraswat1, David Cunningham1, Liana Hadarean2, Louis Mandel3,4, Avraham
Shinnar1, and Olivier Tardieu1

1 IBM TJ Watson Research Center
2 New York University

3 Laboratoire de Recherche en Informatique, Universite Paris-Sud 11
4 Laboratoire dInformatique de l’Ecole Normale Superieure, INRIA

Abstract. The use of constraints in types is quite natural. Yet, integrating con-
straint based types into the heart of a modern, statically typed, object-oriented
programming language is quite tricky. Over the last five years we have designed
and implemented the constrained types framework [16, 23] in the programming
language X10 [5]. In this paper we review the conceptual design, the practical
implementation issues, and the many new questions that are raised. We expect the
pursuit of these questions to be a profitable area of future work.

Keywords: Constraints, Programming Languages, Types, Constraint Program-
ming, Constrained Types

1 Introduction

The use of constraints in types is quite natural.
Consider a high performance programming language (such as X10 [5]) intended

for use in scale-out parallel computations. Given the centrality of arrays to parallel
programming, it makes sense for such a language to support arrays of different ranks. For
instance an array of rank 3 needs three indices to access an underlying member – hence
it is clearly an error to use one index. It makes sense, therefore, to capture information
about the rank of the array in the type of the variable, so it can be statically checked.
Thus we should be able to write a type of the form Array[Int]{self.rank==3} to isolate
those arrays of integers that are such that their rank takes on the value 3. Clearly, to
write reusable code, we should be able to assert that arrray has rank m where m is some
immutable variable in the environment. Thus we would be able to assert that a copy

method takes an argument a of type Array[Int] and another argument b of the same
shape, i.e. of type Array[Int]{self.rank==a.rank}. Thus types may be associated with
constraints – boolean valued expressions in a fixed vocabulary of operations that refer to
variables whose value is fixed but unknown at the time of processing. Type checking
then involves checking entailment relations between some constraints: an expression of
type T=Array[Int]{c} should be assignable to a variable of type S=Array[Int]{d} if and
only if every value of type T is also of type S, i.e. if and only if d entails c as a constraint.
Thus type-checking reduces to constraint-solving.

These simple intuitions lay behind the introduction of constrained types in X10 [16,
23]. However, modern statically type-checked, object-oriented languages such as X10



2 Constraints in Programming Languages

have sophisticated type systems at the heart of their design. Extending such a system
with constraints to yield a language that is very powerful and at the same time usable
has turned out to be a complicated task.

In this paper we relate our practical experience in designing and implementing
constrained types in X10, and discuss many directions for future work that have opened
up.

The rest of this paper is as follows. Section 2 discusses the basic design of constrained
types. Section 3 highlights some of the power of constrained types by showing how
ownership types can be built on top. Section 4 discusses several directions for work for
constrained types.

In each section, as appropriate, we highlight research questions for further study.

2 Constrained types

The simplest example of an an X10 type is a class, struct or interface name, e.g. String.
X10 also permits generic types, i.e. types such as Array[Int] that take types as argu-
ments.

A constrained type is of the form T{c} where T is a type, and c is a constraint, defined
over an underlying constraint system C . For now we focus on the constraint system
implemented in X10 2.2.3 [5]. This permits the expression of constraints of the form
t==t and t !=t (and their conjunctions), where the constraint terms t are built from
(immutable) variables v or through the selection of (immutable) fields, t.f. In c the
special variable self may be used to represent the object whose type is being defined5

For example:

– Int{self==0} is the type of the constant 0 (one reads it as: the type of all Ints that
are equal to 0)

– Score{self !=null} is the type of all Score (non-null) objects
– Matrix[T]{self.I==self.J} is the type of all square matrices over T
– Matrix[T]{self.I==a.I,self.J==b.J} is the type of all matrices whose Ith dimen-

sion is the same as the Ith dimension of a, and whose Jth dimension is the same as
the jth dimension of b. Here, a and b must name (mmutable) local variables visible
at this point in the code.

Constrained types can be used wherever types can be used. In a language such as
X10, a strongly typed, object-oriented programming language in the tradition of Java,
this means constrained types are integrated in an absolutely fundamental place in the
language design. Constrained types can be used as types of method parameters, local
variables, fields, as return types of methods, as supertypes in an extends clause, and
as an interface type in an implements clause, in instanceof tests, and in casts (in as

operations).
For instance, one can declare the signature of a matrix multiply method so that it

captures invariants about the shape of the matrices involved:

5 Thus one should think of c as implicitly defining the function (self:T):Boolean=>c that
picks out a subset of T.



Constrained Types – Future Directions 3

class Matrix[T](I:Int,J:Int) {
...
def mult(a:Matrix[T]{self.I==J}):Matrix[T]{self.I==I,self.J==a.J)
{
...

}

Additionally, X10 permits class constructors to specify a return type. Thus a particular
constructor may specify that it produces values whose return type is stronger than just
the type associated with the name of the class/struct of the constructor.

X10 also permits a constraint, the class invariant, to be associated with a class or
struct. It is an error for the return type of a constructor to not entail the class invariant.
Since a type can only refer to immutable fields, and all immutable fields have a value
at the time the constructor returns, this is enough to guarantee that an object that is an
instance of a class C satisfies the invariant for C.

Similary, X10 permits a constraint, the method guard, to be associated with a method
definition. Invocations of this method can only succeed if the constraint is entailed at the
site of the invocation (with the actuals substituted for the formals).

Constrained types can be verbose. X10 programmers may therefore define and use
typedefs. For instance:

type Rail[T] = Array[T]{self.rank==1,self.zeroBased,self.rect};

permits the programmer to simply write Rail[Int] and have it stand for the type
array[Int] with the restriction that its rank must be 1, that the array must be defined
over a region that starts with the index 0, that the region must be rectangular (i.e. of the
form m..n, for some integers m and n). Typedefs such as Rail[T] are used extensively in
X10 code.

2.1 Type checking

In principle, types are checked at compile-time. This means the compiler must verify
that if an expression e is to be assigned to a variable v, then the type of e is a subtype of
the type of v.

The subtype relation on constrained types translates to an entailment relation on
constraints: T{c1} is a subtype of T{c2} if c1 entails c2. This means that to statically
check programs involving constrained type a compiler needs access to a solver that can
answer questions of entailment and consistency involving constraints generated from the
program text. In these queries any program variable is represented as a symbolic variable
with an unkown value (but of the type of the variable).

Only certain fields called properties can be accessed through the variable self.
Properties are immutable instance fields of classes and structs that are declared in a
special way. The X10 2.2 type system has the restriction that the types of properties
have to be “simpler” than the class/struct on which they are defined, so that no cycles
are allowed in the graph with classes/structs as nodes and an edge from S to T if S has a
property of type T. This permits constraints to be solved efficiently.



4 Constraints in Programming Languages

Localized type inference In order to avoid having the programmer write explicit
types everywhere, X10 supports localized type-inference. In an immutable variable
declaration, val x=e;, type of the variable x may be elided, it is inferred to be the type of
the initializer e. Types must always be provided for parameters of methods or functions,
and for mutable variables. Similarly, the return type of methods may be elided. It is taken
to be the computed upper bound of the types of expressions in return statements in the
body of the method. The computed upper bound of a set of types T{c1}, . . . , T{cn} is the
strongest type that entailed by each of c1, . . . , cn.

Localized type inference often infers surprisingly precise types for variables. For
instance given the code

class List(n:Int) {
...
def rev():List{self.n==this.n}=...;

}

def m() {
val l = new List(10);
val x = l.rev().n;
Console.OUT.println("x=" + x);

}

the compiler will actually infer that x is of type Intself==l.n. Therefore, it is advisable
for programmers to omit the types of initialized immutable variables, and let the compiler
propagate the information.

However, we found that surprisingly programmers sometimes wanted to specify
explicit type information (e.g. to help with readability of the code). Therefore we have
introduced a partial type specification construct in X10. The programmer can write the
code as:

val x <: Int = l.rev().n;

The type of x will be inferred as usual by the compiler. However the compiler now also
has the obligation to check that this type is at least as strong as the bound provided by
the programmer (viz, Int).

Thus the programmer can get both the benefits of precise type tracking in the compiler
and the benefit of actual textual representation of (an approximation of) the type.

Dynamic type-checking There are occasions in which it makes sense for the compiler
to generate dynamic tests for constrained types instead of static checks. It may be the
case that the programmer is simply prototyping code and does not wish to provide extra
book-keeping in terms of constraints on all types.

Consider for example:

public static def main(args:Array[String]) {
val N = args.size > 1 ? Int.parseInt(args(0)): 10;
Console.OUT.println("fib("+N+ "= " + fib(N));

}



Constrained Types – Future Directions 5

Here the programmer implicitly assumes that args is an array of rank 1, and would
therefore be surprised to find a compiler error complaining that args(0) is not well
typed.6

We have found that programmers new to X10 (e.g. Java programmers) are constantly
surprised by this. This experience encouraged us to introduce a dynamic checking feature,
and turn it on by default. Under dynamic checking, if a compilation were to fail because
a value of type T{c} could not be established to be of type T{d}, but it could possibly
be of this type (i.e. c and d are mutually consistent) then code is generated to check
dynamically that this value is of type T{d}.7 At the end of compilation, the compiler
prints out how many such dynamic checks it inserted. If the programmer turns on a
verbose check compiler flag, then the compiler prints out what condition it was not able
to establish. The programmer can set a compiler flag to turn static checking on.

Thus the methodology we suggest to new X10 programmers is: compile your code
using dynamic checking (the default settings on the compiler support this) and fix errors
to get it running. When you are ready to performance tune your program, ensure that you
remove the dynamic checks by strengthening types in the program as necessary. Verify
by turning static checking on.

3 Application: Ownership Types as Constrained Types

Contrained types are a very powerful extension of the Java type system. Several ad hoc
type systems introduced in the literature for object oriented languages can be described
as variants of constrained types.

Here we ilustrate the basic methodology with ownership types [6, 7]. These type
were introduced to capture some reasoning about relationships between objects on the
heap.

Our basic approach is to change the root of the object hierarchy to include an owner

property. At runtime the owner property can either hold the value null meaning that
there is no owner, or some other object. Since properties are immutable, the owner must
have existed before the object in question was constructed, which forces the graph of
object ownership to be acyclic. Since each object has at most one owner, the shape of the
graph is a forest (with each root having owner==null. Using a “ghost” property allows
the owner property to be elided at runtime, but this means dynamic casts may not involve
ownership types since the required information is no longer available.

Statically, various forms of ownership types can be written. Table 1 compares some
X10 types with equivalents in other system (blank means the type is not expressible).

In addition, guards on method declarations can mention object owners, e.g., to say
that two parameters p1 and p2 have the same owner, while not specifying what the owner
actually is. This would be written with the following guard annotation: {p1.owner ==

p2.owner}

6 The array library is written with so that the array index operation that takes one argument can
be called only on an array whose static type asserts that it has rank 1. This way no code needs
to be generated to dynamically check this property.

7 If it is known that the check will always fail at run-time, the compiler will still fail the code at
compile-time.



6 Constraints in Programming Languages

X10 Ownership Types Universe Types informal description
C C< > any C Owner is unknown
C{owner==this} C<this> rep C Owner is me
C{owner==this.owner} C<x> peer C Same owner as me
C{owner==tmp} C<tmp> Owner is some final

variable in scope
C{owner!=null} Object is not the root

of a hierarchy
List[C{owner==this}] List<C<this>> List<rep C> List of objects owned

by me
Table 1. X10 ownership types and their equivalents

Here is an example of a simple linked list using constraint-based ownership types in
X10:

class OwnedObject(owner:Any) {
public def this (o:Any) : OwnedObject{self.owner==o} {property(o);}

}

type Node[T](o:Any)=Node[T]{self.owner==o};
class Node[T] extends OwnedObject {

// All nodes in the list have the same owner
public var nxt: Node[T] (owner);
cargo:T;
// Creating a node in this
public def this (o:Any, cargo:T) :Node[T](o) {

super(o);
this.cargo = cargo;

}
}

class List[T] extends OwnedObject {
public var begin: Node[T](this);
public def this (owner:Any) {super(owner);}
public def prepend(cargo: T) {

val old_begin = begin;
begin = new Node[T](this, cargo);
begin.nxt = old_begin;

}
public def iterateOver (func:(T) => void) {

for (var n:Node[T](this)=begin ; n!=null ; n=n.nxt) {
func(n.cargo);

}
}

}

val mylist = new List[String](null);
mylist.prepend("foo");



Constrained Types – Future Directions 7

mylist.prepend("bar");
mylist.iterateOver((o:String)=>{Console.OUT.println(o);});

Note that so far this is a “pure” ownership type system, in that the only static
enforcement is that the ownership annotations are correct. This can be useful by itself but
it is more useful to further restrict the program using extra restrictions on the types. This
allows the guarantee of owners-as-dominators, a restriction on object aliasing that can
help with static verification, program analysis, and accelerated garbage collection. In X10
one would require that all types are sufficiently constrained that they entail self.owner
is reachable by chasing the owner properties from this. This rule would be implemented
with a compiler plugin, but would benefit considerably through expressing owners with
constraints, and using the compilers existing ability to reason about constrained types to
implement its logic.

Another possible extension is for static reasoning about locks, e.g. static race safety
[4, 8] or the implementation of atomic sections using locks. In such a system, the
ownership relationship is assumed to be the same as the guarded-by relationship. I.e. the
owner of a given object is locked to protect the shared mutable state of that object. Thus,
the locking discipline is known by the type checker, which can then ensure that shared
memory accesses are protected by appropriate locks (or insert appropriate locking).

Note also that some ownership types consider the owner field to be too heavy an
overhead to pay on every object. Thus they erase ownership types at runtime. Using a
“ghost” property, a constrained type system can also expose this same tradeoff.

Finally, multiple owner properties in an X10 class can be used to expose multiple
simultaneous ownership hierarchies.

4 Directions for work on constrained types

With the basic type-checker integration framework in place in the compiler, the crucial
next step is to integrate richer constraint systems into the type-checker.

4.1 Integration of richer constraint systems

The X10 compiler can be extended by plugging in a richer constraint systems. Constraint
domains of practical interest include Boolean Algebras, Presburger Arithmetic, Tuples,
Bit-vectors etc. Recall that verifying that T{c1} is a subtype of T{c2} translates into
checking that c1 entails c2. Therefore type-checking types with richer constraints requires
the compiler to rely on solvers specialized for all of the above mentioned domains and
their combinations.

The recent progress over the past several years in the field of Satisfiability Modulo
Theories (SMT) makes the use of off-the-shelf SMT solvers an attractive option. The
growing community around SMT solvers has lead to standardization around a common
input format [2]. SMT solvers can efficiently decide the satisfiabilty of formulas over
fragments of first-order logic plus certain standard theories, such as equality with uninter-
preted functions, integer and real arithmetic, bit-vectors, arrays, inductive data-types and
others. While SMT solvers rely on very effcient, usually complete decision procedures



8 Constraints in Programming Languages

for deciding ground formulas, most SMT solvers are incomplete and do not guarantee
termination in the quantified case.

We instrumented the X10 compiler to discharge the subtyping entailment checks in
SMT-LIB v2.0 [2] format and we used various external SMT solvers (CVC4[1], CVC3[3],
Z3[10]). We started with simple constraints involving only conjunctions of equalities and
disequalities and field and method access. We modeled field and method access using
uninterpreted function symbols, and object references as Integers. For example the field
dereference a.f where the field f is of Boolean type would be represented by the term
f(a), where f is an uninterpreted function symbol of type Integer => Boolean. We
chose to model object references as Integers to respect X10’s language semantics with
(Java-like) reference based equality. Using integers also guarantees that there can be
an unbounded number of objects of each class. An alternative we considered was to
model references as uninterpreted sorts. However, this requires adding axioms to ensure
that the sort has an unbounded number of elements. Consider the following formula:
∀x : S∀y : S.x = y. The formula is satisfiable in an interpretation where the sort S has
only one element.

We found that the SMT solvers we tried (CVC4, CVC3, Z3) struggled with handling
seemingly simple constraints involving quantified formulas over equality and uninterpred
functions. The difficulty seems to stem from the nature of the type inference process in
the X10 programming language which results in the generation of quantified constraints.
Consider for example the typing rules for field instantation and method invocation (for a
full set of typing rules see [16]):

Γ ` e : S Γ,z : S ` z has f : T
Γ ` e.f : T{∃z : S.self== z.f}

(T −FIELD)

The T-FIELD rule uses existential quantification to project out the receiver e whose
value is not known at runtime by replacing it by existentially quantified variable z of type
S. The rule infers the type of e.f to be T {∃ z:S. self == z.f }. The T-INVK rule
works similarly by projecting out the receiver as well as the arguments to the method
call. Infering the most specific type requires existentially projecting out local variables.
Thus the resulting constraints are of the form ∀x̄∃ȳ c.

Assuming that the field f is of type Integer, checking that the resulting constraint
is valid yields the following SMT formula ∀sel f : Integer∃z : Integer.sel f = f (z). The
constraint essentially says that f is a surjective function on the Integers. All the SMT
solvers we have tried return unknown for this query. We believe this is due to the
unbounded nature of the query.

Quantifier reasoning in SMT solvers has been a long-standing challenge. Most mod-
ern solvers employ one of the two techniques to reason about quantifiers. To prove the
formula unsatisfiable they use heuristic instantiation (instantiating universal quantifiers to
find a counter-example [9]). To prove the formula satifisable solvers attempt to construct
an interpretation that satisifes the formula [11] (in a manner akin to model checking).
The first technique would not apply to the above formula as it is satisfiable. The second
technique fails because the interpretation of f required to satisfy the formula requires
knowing the value of an infinite sets of points of f .



Constrained Types – Future Directions 9

Note that in the special case when c is a conjunction of equalities and disequalities,
the validity of the formula ∀x̄∃ȳ c can easily be checked using a congruence closure
algorithm (this is exactly what the current implementation of X10 does).

Although SMT solvers have been used as backends to extended static checking tools,
this issue did not seem to arise before. We believe this is due to the fact the constraints we
generate come from type inference and not type checking. Future research opportunities
include: (i) optimizing SMT solvers for these type of constraints generated as part
of the type inference process, perhaps leading to new quantifier decision procedures
optimized to handle such constraints; (ii) using domain specific knowledge to simplify
the constraints and eliminate the existential quantifiers (if possible) before discharging
them to an external solver.

Question: Can SMT solvers be used effectively in X10 type checking? If not, how
should they be extended to deal with X10 type checking?

4.2 Type inference

The X10 type checker even extended to do return type inference, or inference of type
parameters implements a form of “forward” reasoning. For instance, the validity of a
method call depends on the argument types not the other way around. But often the
opposite information flow would make sense as well, which we now discuss.

Let’s start with a flawed method declaration.

def arrayRead(a:Array, i:Int) = a(i);

In this example, the array access a(i) does not type check because the operator (Int)
on array is only applicable to arrays of rank 1. The following is correct.

def arrayRead(a:Array, i:Int){a.rank==1} = a(i);

While the X10 compiler is perfectly capable of rejecting the first method declaration,
from a practical standpoint, this might not be the right decision. Indeed, the programmer
may have intended to call this method only with arrays of rank 1, even if s/he failed to
capture this intent with the right guard. To support such use, the X10 compiler supports
a compilation mode where, instead of rejecting the program up front, it inserts a run-
time check (cast) to ensure the array has rank 1, thus preserving type soundness (see
Section 2.1)

However an ever better fix would be to infer the missing guard a.rank==1 and check
that the program augmented with this constraint type checks (possibly inferring futher
constraints in cascade). In essence rather than checking entailment relations—such as
those generated by a method call—we can take advantage of these entailment relations
to generate extra constraints for the enclosing method —when an entailment relation
does not hold for the source program as is.

The logical foundation for such “backward” information flow is constraint abduction
[15, 14, 12, 13]. Given formulas A and C, find formula B such that A,B ` C. Here A
represents what we already know from the context, C what we need for the program
artifact to type check and B is the additional constraint we are looking for.

In the above example A is the empty formula and C is a.rank==1 so there is an obvious
ideal solution where B is identical to C. Abduction in general is a subtle operation, and
such constraint inference has limits. For instance, consider program:



10 Constraints in Programming Languages

def assertIsZero(v:Int){v==0} {}

def m(b:Boolean, x:Int, y:Int) {
val z = b ? x : y;
assertIsZero(z);

}

Here we could infer the guard b==true,x==0 or b==false,y==0 or else x==0,y==0

hence probably should do neither (in the absence of additional information).
An interesting special case of constraint inference is when we can infer, say, the

constraint c in type T{c} such that T{c} is a singleton type. Consider for example:

def dup(a:Rail[Int], b:Rail[Int]) {
copy(a,b);

}
abstract def copy(a:Rail[Int], b:Rail[Int]{self.length==a.length});

In this example we can infer the guard v==0 hence we can derive not only the type of
v from the code, but also its value. It therefore makes sense to extend the language with
holes and use constraint inference to infer the missing values.

type List(n:Int)=List{self.n==n};
class List(n:Int) {

def dup(L:List(n)):void {
...
}

}
def m(l:List) {

val x <:Int = ?;
val y = new List(x); //2
l.dup(y); //3
return y;

}

From line 2 the compiler will infer the type of y is List{self.n==x}. From line 3 the
compiler will realize that for the program to type-check, it must be the case that the
constraint y.n==l.n must be entailed. In order to ensure that the program type-checks,
the compiler will then abduce the constraint codex==l.n.8 Thus the compiler has actually
inferred an initializer for x, viz. l.len.

Thus the constraint inference engine may be used as a synthesis tool to generate
fragments of code left unspecified, that is, support program sketching [21, 22, 20]. Note
that unlike sketching, the programmer does not have to provide a separate specification
for the hole. The only information used by the value synthesis algorithm is that the
program is intended to correctly type-check.

It is straightforward to add implicit annotations on top of such a mechanism (cf [17]).
Question: How does abductive constraint inference for constrained types relate to

Scala’s support for implicit types?

8 This in conjunction with y.n==x entails y.n==l.n.



Constrained Types – Future Directions 11

4.3 Additional questions

Declarative debugging of type checking failures X10 standard libraries (e.g. for arrays,
and their associated data-structures, regions, points, distributions) extensively use con-
strained types. In case of a type-check error induced by a failure of constraint entailment,
the X10 compiler needs to provide some indication of why the type-check failed, but not
necessarily overwhelm the programmer with unrelated constraint information.

This problem is complicated by the pervasive use of type inference in X10. The
reason that a type check fails at a particular point in the body of the method may have to
do with incomplete information associated with the type of any of the variables visible at
that point. Each of these variables may have had their type inferred based on initialization
expressions whose type may be erroneous because the types of the method calls they
contain may be errorneous (because they were explicitly specified or inferred to be less
precise than desired).

Question: Is it possible to devise a declarative debugging methodology [19] to help
the programmer debug a type checking problem?

4.4 Flow sensitive types

The X10 compiler does not perform any flow sensitive computation of the type context.
That is, the compiler is unaware of the semantics of conditionals. If the test of an if
then else statement implies some constraint about the immutable variables visible at that
point in the code, then it would be sound for the compiler to assume this constraint when
inferring types of variables in the then part of the code (and conversely for the else part).

Liquid Types ([18]) offers an interesting approach to combine flow sensitive depen-
dent types with predicate abstraction.

Question: How does one develop the ideas of Liquid Types within the X10 type
system?

4.5 Constraint-based type-state

Strom and Yemini developed the idea of type-state, i.e. heap dependent types. Consider
a file for instance. Certain operations on a file are available only when the file has been
opened. Many operations are not available when the file has been closed. Thus changes
to the heap can affect the operations available on an object.

Question: How does one develop heap-sensitive constrained types?

5 Conclusion

Acknowledgements. We gratefully acknowledge extensive discussions with past and
current collaborators on constraint-based types – Nathaniel Nystrom, Igor Peshansky,
David Grove, Joel Galenson, Vijay Ganesh.



12 Constraints in Programming Languages

References

1. C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli. CVC4. In Computer Aided Verification, pages 171–177. Springer, 2011.

2. C. Barrett, A. Stump, and C. Tinelli. The smt-lib standard: Version 2.0. In Proceedings
of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, England),
volume 13, 2010.

3. C. Barrett and C. Tinelli. Cvc3. In Computer Aided Verification, pages 298–302. Springer,
2007.

4. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: preventing data
races and deadlocks. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 211–230, New
York, NY, USA, 2002. ACM Press.

5. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. SIGPLAN
Not., 40(10):519–538, Oct. 2005.

6. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
Proceedings of the 13th Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA-98), volume 33 of ACM SIGPLAN Notices, pages 48–64, New
York, Oct. 1998. ACM Press.

7. D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, P. Müller, and A. Summers.
Universe Types for Topology and Encapsulation. 5382:72–112, 2008.

8. D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types for Race Safety. In
VAMP 07, pages 20–51, September 2007.

9. L. De Moura and N. Bjørner. Efficient e-matching for smt solvers. Automated Deduction–
CADE-21, pages 183–198, 2007.

10. L. De Moura and N. Bjrner. Z3: An efficient SMT solver. Tools and Algorithms for the
Construction and Analysis of Systems, page 337340, 2008.

11. Y. Ge and L. De Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In Computer Aided Verification, pages 306–320. Springer, 2009.

12. M. Maher. Heyting domains for constraint abduction. In Proceedings of the 19th Australian
joint conference on Artificial Intelligence: advances in Artificial Intelligence, AI’06, pages
9–18, Berlin, Heidelberg, 2006. Springer-Verlag.

13. M. Maher and G. Huang. On computing constraint abduction answers. In Proceedings of
the 15th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR ’08, pages 421–435, Berlin, Heidelberg, 2008. Springer-Verlag.

14. M. J. Maher. Abduction of linear arithmetic constraints. In Proceedings of the 21st interna-
tional conference on Logic Programming, ICLP’05, pages 174–188, Berlin, Heidelberg, 2005.
Springer-Verlag.

15. M. J. Maher. Herbrand constraint abduction. In 20th IEEE Symposium on Logic in Computer
Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings, pages 397–406. IEEE
Computer Society, 2005.

16. N. Nystrom, V. Saraswat, J. Palsberg, and C. Grothoff. Constrained types for object-oriented
languages. In Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented pro-
gramming systems languages and applications, OOPSLA ’08, pages 457–474, New York,
NY, USA, 2008. ACM.

17. B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits. SIGPLAN
Not., 45(10):341–360, 2010.

18. P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and implementation, PLDI ’08, pages
159–169, New York, NY, USA, 2008. ACM.



Constrained Types – Future Directions 13

19. E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA, 1983.
20. A. Solar Lezama. Program synthesis by sketching. Technical Report UCB/EECS-2008-176,

EECS Department, University of California, Berkeley, Dec 2008.
21. A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu. Programming by sketching for bit-

streaming programs. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’05, pages 281–294, New York, NY, USA, 2005.
ACM.

22. A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial sketching
for finite programs. In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, ASPLOS-XII, pages 404–415,
New York, NY, USA, 2006. ACM.

23. O. Tardieu, N. Nystrom, I. Peshansky, and V. Saraswat. Constrained Kinds. In Proceedings of
the 27th ACM SIGPLAN conference on Object-oriented programming systems languages and
applications, OOPSLA ’12, New York, NY, USA, 2012. ACM.


