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ABSTRACT

Adaptive Operator Selection (AOS) turns the impacts of
the applications of variation operators into Operator Selec-
tion through a Credit Assignment mechanism. However,
most Credit Assignment make direct use of the fitness gain
between parent and offspring. A first issue is that the Op-
erator Selection that uses such Credit Assignment is likely
to be highly dependent on the a priori unknown bounds of
the fitness function. Additionally, those bounds are likely to
change along evolution, as fitness gains tend to get smaller
as convergence occurs. Furthermore, and maybe more im-
portantly, a fitness-based credit assignment forbid any in-
variance by monotonous transformation of the fitness that
is a source of robustness for comparison-based Evolutionary
Algorithms. In this context, this paper proposes two new
Credit Assignment mechanisms, one inspired by the Area
Under the Curve paradigm, and the other close to the Sum
of Ranks. Using fitness improvement as raw reward, and
directly coupled to a Multi-Armed Bandit Operator Selec-
tion Rule, the resulting AOS obtain very good performances
on both the OneMax problem and some artificial scenarios,
while demonstrating their robustness with respect to hyper-
parameter and fitness transformations. Furthermore, using
fitness ranks as raw reward results in a fully comparison-
based AOS with reasonable performances.
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1. INTRODUCTION

Invariance is an ubiquitous concept of science. From Lavoi-
sier’s first statement of the mass/energy equivalence to Ein-
stein relativity principles, conservation laws have been one
basis of many scientific theories, and invariances generally
lead to conservation laws. Mathematically speaking, invari-
ances with respect to some transformations allow the math-
ematician to generalize properties from one object to the
whole class of objects that is generated by the transforma-
tions. For instance, distances are invariant under orthogonal
transformations, and this lead to Euclidian geometry.

In the realm of Evolutionary Computation, the impor-
tance of invariance has been stressed, too. Some Evolution-
ary Algorithms, for instance, are invariant under monotonous
transformations of the fitness function, by the of comparison-
based selection mechanisms (e.g., deterministic, rank-based,
or tournament selection). Whereas this is known in practice
to add robustness to the algorithm (e.g. protection against
super-individuals that would quickly invade the population
in case of proportional selection), it also leads to theoretical
results that immediately apply to any comparison-based al-
gorithm (evolutionary or not) [12]. The best possible conse-
quence of invariances within the EC community is illustrated
by the success of CMA-ES algorithm [14]: CMA-ES is not
only comparison-based, and hence invariant by monotonous
transformations of the fitness function, but also invariant
under orthogonal transformations of the search space, and as
a consequence performs similarly on a given function and on
all its rotated versions, outperforming most of its challengers
on non-separable functions during the BBOB workshop at
GECCO 2009*. Such invariance also allowed its author to
come up with a very robust setting for the CMA-ES internal
parameters [14]. But apart from this notable exception in
the continuous case, parameter tuning is known to be one of
the main drawbacks of EAs, as no theoretical guideline ex-
ists to help the practitioner, and because all great successes
of EAs have demonstrated that different problems require
different parameters even for the same algorithm.

This paper is concerned with the possible invariance prop-
erties of Adaptive Operator Selection (AOS) in the frame-
work of EAs. AOS deals with the on-line choice among
available variation operators during an Evolutionary run,
and involves a selection mechanism that uses statistics on
raw rewards that have been gathered after previous applica-
tions of these operators. Most AOS methods proposed up to
now use as reward, or as part of the reward, the fitness im-
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provement, i.e. the progress in fitness of the offspring com-
pared to its parents. This raises several issues: on the one
hand, fitness-dependent reward needs to be scaled anew for
each problem whose fitness range is not known, and this af-
fects the tuning of the meta-parameters of the AOS method.
Secondly, in any case, the fitness gains generally decrease as
evolution proceeds, and no static tuning can handle properly
the complete range of fitness gains along an evolutionary
run. And thirdly, the robustness of the algorithm result-
ing from its eventual invariance with respect to monotonous
transformations of the fitness cannot hold any more.

In order to address those issues, new Credit Assignment
mechanisms are proposed, that rely as less as possible on
actual fitness values. One way to achieve this, as done for the
selection mechanisms, is to ground the credit assignment on
the relative ranking of the raw rewards with respect to one-
another. Furthermore, using fitness ranks as raw rewards
results in a true comparison-based AOS mechanism.

The paper is organized in the following way. Section 2
presents a brief overview of the state-of-the-art of AOS tech-
niques, and discusses them from the point of view of invari-
ance properties and meta-parameter setting. Building on
those observations, Section 3 proposes two Credit Assign-
ment mechanisms that only use ranks of impact measures.
When coupled with an impact measure directly based on the
rank of the newborn offspring in the population, the result-
ing AOS schemes achieve complete invariance with respect
to monotonous transformations of the fitness. Section 4 de-
tails the experimental validation of the proposed methods
on the OneMax toy problem with respect to transformations
of the fitness function, and on artificial scenarios for com-
parison with other existing AOS. Section 5 discusses some
further research that is opened by this work, and the paper
ends with the conclusions in Section 6.

2. ADAPTIVE OPERATOR SELECTION

This paper is concerned with the on-line adaptation of
the parameters of an EA, aka adaptive parameter control in
the literature [7, 8], and will not discuss any off-line setting,
aka parameter tuning. One strong argument for on-line pa-
rameter control is that, as the algorithm proceeds from a
global (early) exploration of the landscape to a more fo-
cused, exploitation-like behavior, the parameters should be
continuously adjusted according to the current needs of the
search. It has been empirically and theoretically demon-
strated that different values of parameters might be optimal
at different stages of the search process (see [8, p.21] and
references therein). For example, usually a fixed applica-
tion rate is defined by the user for each variation operator,
what is always sub-optimal, as in fact, following the same ra-
tionale, exploration-like operators (e.g. n-points crossover)
should be favored in the initial stages of the search, while
more exploitation-like operators should be used in the later
stages.

Amongst parameter control methods, 3 categories are usu-
ally distinguished [8]: deterministic control follows some
pre-defined deterministic rules, and thus de facto amounts
to off-line setting of such rule; self-adaptive techniques rely
on random modifications of the parameters, by letting evo-
lution itself control their values “for free”, however requiring
the exploration of both the search space of the variables and
that of the parameter values; adaptive methods modify the
parameter values based on the informations given by the

search itself, i.e., it monitors some particular properties of
the evolutionary process and use changes in these properties
as an input signal to change the parameter values.

Included in this latter category, Adaptive Operator Se-
lection (AOS) aims at autonomously selecting which of the
available variation operators should be applied at a given
time, based on the history of the current search. Following
[11], we shall distinguish two phases, the Credit Assignment
mechanism, that is used to turn the observed impact of the
application of a given operator into a reward, and the Oper-
ator Selection Rule, that actually selects one operator from
the rewards gathered by each operators in the past.

2.1 Credit Assignment

Starting from Davis’ seminal work [6], several approaches
have been proposed for Credit Assignment, differing in the
way the impact of an operator is measured, which operator
the reward will be awarded to, and how the rewards are
accumulated along time for each operator, to be used by the
next Operator Selection Rule.

Most methods use as raw reward some fitness improve-
ment of the newborn offspring compared to a base individ-
ual, that might be (i) its parent [18, 22, 2, 9, 11], (ii) the
current best in the population [6], (iii) or the median indi-
vidual of the current population [17]. If no improvement is
achieved, usually a null reward is assigned to the operator.
A recent proposal, in the case of highly multimodal prob-
lems, aggregated the fitness gain and the variation of some
measure of diversity, in a mechanism termed Compass [19].
Because this paper is concerned with robustness against fit-
ness transformations, that has no relationship with any mea-
sure of diversity, such approach will not be considered here.
However, all results of the present paper could be applied
in turn to the fitness-based part of the Compass Credit As-
signment.

With respect to which operators to assign the credit to,
most previous works cited above only consider the operator
that generated the newborn offspring. Some authors, how-
ever, propose to assign credit to the operators used to gener-
ate the ancestors of the current individual (e.g., using some
bucket brigade-like algorithm [6, 17]), based on the claim
that the existence of efficient parents is indeed as impor-
tant as the creation of improved offspring. Others, however,
more recent work suggested that rewarding the ancestors’
operators sometimes degrades the results [2].

Finally, the Credit Assignment transforms, for each op-
erator, the raw reward into the actual reward that will be
used by the Operator Selection Rule to choose one operator
for next offspring generation. The existing approaches here
differ in the statistics that are considered in order to com-
pute such reward. Most methods only consider the most
recent operator application. Others use the average of the
raw rewards achieved over a few applications of the oper-
ators. More recently, initialized in [23], the use of the ex-
treme value (statistical outlier) over a few applications was
proposed, based on the idea that highly beneficial but rare
events might be better to the search than regular but smaller
improvements. The reported comparative results with other
Credit Assignment mechanisms show the superiority of this
approach, over a set of continuous benchmark problems [23],
and in the GA context [9, 11].

2.2 Operator Selection Rules



Most Operator Selection Rule rules attach an empirical
quality to each operator, and two families of such Operator
Selection Rule are considered in this paper. The probability-
based methods Probability Matching (PM) [13, 18, 2] and
Adaptive Pursuit (AP) [20, 21] use the empirical qualities
to update operator probabilities?, and then use those prob-
abilities to select an operator by roulette wheel. The bandit-
based methods (Multi-Armed Bandit (MAB), Dynamic Multi-
Armed Bandit (DMAB) [5, 9, 10, 11] use variants of the
Multi-Armed bandit paradigms [1] to deterministically choose
one operator from the empirical quality (termed empirical
reward in the bandit terminology).

2.2.1 Probability-based Operator Selection

Both PM and AP methods compute the empirical quality
of operator i, noted p, ,, using some relaxation factor o €
]0,1]): if operator i is applied and receives reward 7y, its
quality is updated by the following formula

ﬁi,t+1 =(1- a)ﬁi,t +ar; (1)

From thereon, the most common and straightforward way
of doing Operator Selection Rule is the PM method [13, 18,
2] that computes from the empirical qualities the probabil-
ities of applying each operator, with the constraint that no
probability can be lower than a user-defined minimal value
Pmin. In particular, because all probabilities sum up to one,
the maximum value of the probability of any operator is
Pmaz = 1 — K % pmin) if there are K available operators.
This badly impacts the performances of the method [20, 9].
The formal update of operator selection probability s; ¢+ from
empirical quality reads

_ Pitg1
Sitt1 = Pmin + (1 — K *pmm)KiA (2)
Z]‘:l Pjt+1

Originally proposed for learning automata, the AP (AP)
[20, 21] is an Operator Selection Rule technique that partly
addresses this drawback by implementing a winner-takes-
all strategy from the quality measure: the operator with
maximum empirical quality is applied, and its probability
is moved toward pma. while those of all other operators are
decreased equally so that the sum remains 1:

-k

i = argmaz{p; ,,i=1... K}
Six 41 = Si*t + B (Dmaz — Si* t) , (3)
Sit+1 =sit+ 0 (pmin — Si,t) , for 4 #4*

Though it also relies on a user-defined lower bound pmin
to maintain a minimal level of exploration, another user-
defined parameter, 3, is used to control the greediness of
the strategy, i.e., how fast the probability of selecting the
current best will converge to pmas. while all the others will
80 t0 Pmin. AP thus obtains better results than PM in most,
if not all, reported works [21, 10, 11].

2.2.2 Bandit-based Operator Selection

Bandit algorithms have been proposed to solve the Ezplo-
ration vs. Ezploitation (EVE) dilemma in a general context.
When facing k independent arms, with unknown boolean
reward distribution, the Upper Confidence Bound (UCB)
strategy, proposed by Auer et al. [1], provides guarantees

2Methods that recompute those probabilities from scratch
from the most recent rewards [17, 22] will not be considered
here.

of asymptotic optimality in terms of cumulated reward, be-
ing phrased as “Optimism in front of the Unknown”. The
empirical quality is the actual average of past rewards, and
confidence bounds are computed, based on passed frequency
of use of the arm. Next arm to pull is the one with the high-
est possible value within those bounds. Within AOS, each
operator is considered as an arm, and the reward is the one
that is provided by the Credit Assignment. At given time t,
denote n;,; the number of times the i-th arm has been tried.
The update of the empirical reward can be written as [5]

= (1 - i)ﬁi,t +

Nt Nt

iﬁz‘,t+1 Tt (4)

and the adapted UCB formula reads

. 2log N,
B+ Cy/ 7& . (5)
Nt

where C is a user-defined constant needed to account for
the range of the rewards: in the original UCB, rewards are
either 0 or 1, and empirical reward lies in [0,1]. However,
the scale of the rewards is unknown in the AOS framework,
and careful tuning of C' is required [10, 11].

Furthermore, the original UCB framework is static, i.e.,
it is assumed that the reward distribution of all arms re-
mains the same all along the experiment. This is obviously
not the case, and the original MAB algorithm, though it
theoretically keeps exploring all arms, will asymptotically
take far too much time to detect something has changed
in the distributions. This motivated the design of the Dy-
namic Multi-Armed Bandit algorithm [15], that adds to the
original MAB the Page-Hinkley change detection statistical
test [16]: when this test triggers, the Multi-Armed Bandit
is restarted from scratch.

Formally, the PH test works as follows, where 7; denotes
the average reward over the last ¢ steps, and e; the difference
between the instant and average reward, plus some small
tolerance d. Considering the random variable m; = >} e,
the PH test is triggered when the difference between M; =
max;<: |m;| and |me| is greater than some user-specified
threshold ~:

T = %22:1 T3 er = (Tt — 7+ 015) me = Z::l
Return (max;=1..+{|mi|} — |m¢| > )
(6)
Parameter v controls the sensitivity of the test, and thus the
rate of false alarms.

2.3 Robustness and Invariance Properties

When considering the AOS mechanisms described above
(PM, AP, MAB, and DMAB) with respect to their robust-
ness under transformations of the fitness functions, two as-
pects have to be distinguished.

First, all those techniques use as reward some fitness im-
provement of the newborn offspring with respect to its par-
ent (but it could also be with respect to any individual, or
average in the population). This already implies an invari-
ance with respect to translations of the fitness (i.e., F —
F + a for some real value a). This is obvious, but for in-
stance not even the case with the standard roulette-wheel
selection of classical GAs.

Looking further, a more important difference can be seen
between PM and AP on the one side, and the bandit-based



algorithms on the other side. Both PM and AP are invariant
by linear scaling of the fitness function (i.e., F — a x F for
some real value a > 0). They are, however, not invariant
under general monotonous transformation of the fitness, as
the actual value of the fitness gains may greatly vary with
such a transformation, possibly resulting in very different
behavior of the AOS. Ideally, this should be compensated
by the learning parameter o — though in practice the same
settings are generally used. Experimental results presented
in Section 4.3 will shed more light on this.

On the other hand, for all MAB-based AOS mechanisms
[5, 9], the actual value of the fitness gains are directly used
in the UCB formula (5). It can be of course argued that any
linear transformation of the fitness can be easily compen-
sated by an equivalent transformation of the scaling constant
C. Indeed — but then C plays two radically different roles
here: accounting for the scale of the fitness, and tuning the
balance between exploitation and exploration. This makes
it a very sensitive parameter. Furthermore, for the DMAB
AOS, the additional parameter ~ is also very sensitive, and
very dependent on actual reward values.

In order to try to alleviate this issue, a normalization
done “on-the-fly” according to the highest reward recently
received was later proposed in [11], but did not seem to
improve the results. Indeed, as the normalization factor
depends on the region of the landscape that is currently be-
ing explored, the same gain might have different weights in
the update of the empirical estimates throughout the search
process. These issues lead to extremely problem-dependent
meta-parameter for the bandit-based AOS.

The rest of the paper is devoted to propose alternative
AOS mechanisms to avoid the drawbacks discussed above.

3. IMPROVING ROBUSTNESS OF MAB AOS

This Section will present two variants of the MAB-based
AOS that address the issues about robustness with respect
to fitness transformations listed above. First, two original
Credit Assignment are proposed, using only the ranks of
the raw rewards measuring the recent impacts of the oper-
ators, i.e., the fitness improvements for all AOS considered
here. In order to go further toward complete invariance un-
der monotonous transformation of the fitness, a rank-based
measure of impact (raw reward) is then argued.

3.1 Credit Assignment from Reward Ranks

The first modification proposed here aims at removing
the dependency of the MAB AOS with respect to the actual
scaling of the fitness function, or, equivalently, the double
role of parameter C' in UCB formula (5) discussed in Section
2.3. To this aim, the idea is to replace the statistics made
on the raw rewards values (i.e., fitness improvement), by
statistics made on their ranks.

A sliding window of size W is used to store the impacts
of the previous W applications of operators. However, a
major difference with the windows used in previous studies
[9, 11] is that here the results of all operator applications
are stored in the same window, whereas in [9, 11], there was
one window per operator. EAch slot in the windows thus
contain here one fitness improvement and the operator that
was responsible for this improvement.

Two approaches are then proposed to compute some re-
ward from the ranked impact measures.

The Sum of Ranks method assigns some rank-value to

each position in the window. Initial setting assigned rank-
value W — 1 to the highest position in the sorted list, W — 2
to next one, ..., and more generally, rank-value W — r to
the 7" position. The credit for each operator is then com-
puted by summing up the rank-values of all positions that
correspond to its own application. However, it soon turned
out that one additional parameter was needed, to allow for
some memory decay, and possibly increase the influence of
the top-ranked operators. Let D €]0,1] be the decay fac-
tor. Then position 7 in the window is assigned rank-value
D" (W —r).

The AUC method borrows the idea of the Area Under
the Curve, that is used as a criterion in some Machine Lean-
ing applications to compare binary classifications rules [4].
Computing the reward of a given operator amounts to go
down the sorted list, and drawing, starting from the origin,
the Receiving Operator Curve by adding a vertical segment
each time the operator under scrutiny is found in the list,
and an horizontal segment for all other operators. The Area
Under the Curve is then normalized in such a way that it
would be 1 if the target operator had occupied all top posi-
tion in the list.

Figure 1 illustrates this (without decay in this case, for
the sake of clearness) for a sample situation involving 2 op-
erators, + and - respectively, and where the sorted list would
be something like (+ - + + - - [- - +] + - - +), with [- - 4]
meaning that those 3 positions have the same raw reward,
leading to the diagonal line between points (3 3) and (5 4)
(dotted lines are spaced by 1). The AUC reward is the grey
area, normalized such that the total rectangle, here of area
7 x 6 has area 1. The ROC is the solid line, upper bound of
this area. In case of decay, each segment of the ROC would
have a length of size D" (W — r), the dotted lines would be
moved accordingly, and the normalization would of course
change in consequence, in order to keep the total AUC 1.

Figure 1: Sample computation of AUC reward.

However, it turned out that using either quantities (Sum-
of-Ranks or Area Under the Curve) as a reward to be fed in
one of the Operator Selection Rule described in Section 2.2
was not efficient at all, probably because those quantities are
already statistics over some time window that are computed
for all operators as soon as one is applied. On the other
hand, using those quantities as empirical rewards directly in
the UCB formula (5) proved successful. The resulting AOS
mechanisms are called respectively Sum of Rank Bandit (SR~
B) and AUC-Bandit (AUC-B).

3.2 Comparison-Based Raw Reward



Both SR-B and AUC-B AOSs are invariant with respect
to linear fitness scaling, and behave similarly to PM and
AP when facing some fitness transformation. Nevertheless,
because the raw rewards that are used here are actual values
of fitness improvements, some monotonous transformation
will indeed modify the ranking of such values, and hence
the outcome of the whole algorithm.

However, regarded as Credit Assignments, both have been
designed in order to compute a reward based on a ranked
list — namely, the ranks of the fitness improvements brought
by the operators. Replacing the fitness improvements by the
raw fitnesses of the newborn offspring, those Credit Assign-
ment allow us to compute a reward that is fully comparison-
based, as only sorting some fitness values is required.

These two AOS will be termed F-SR-B and F-AUC-B re-
spectively. Note that they are identical to SR-B and AUC-B
respectively when run on artificial scenarios, because these
scenarios assume a known reward. Hence experiments with
artificial scenarios will only involve SR-B and AUC-B (Sec-
tion 4.4). However, when used on an actual optimization
problem (e.g., the OneMax problem in Section 4.3), both
SR-B (resp. AUC-B) and F-SR-B (resp. F-AUC-B) should
be distinguished.

4. EXPERIMENTAL RESULTS

This Section details some experimental validation of the
proposed AUC-based and Sum-of-Ranks-based approaches.
Because it was one motivation of the present work, their
behavior with respect to transformation of the fitness will
be compared to that of previously proposed AOS, and on
the well-controlled experimental benchmark offered by the
OneMax problem [9]. Then, more extensive comparisons
will be performed on artificial scenarios, as proposed in [21,
5].

4.1 Scenarios

The well-known OneMax problem, aka the “drosophila
of EC”, has already been used to assess the performance
of probability-based and bandit-based AOS [9, 10]. As in
these works, the 10000-bits problem is considered, and the
available variation operators are mutation operators, rang-
ing from the standard bit-flip operator (every bit is flipped
with probability 1/N) to the b-bit mutations (flipping ex-
actly b randomly chosen bits) with b = 1,3,5. Two scenar-
ios are used, the first one using only the 1— and 5 — bits
mutations, and the second one with the 4 listed mutations.
The EA is a (14 50) — EA, i.e., one parent gives birth to
50 offspring by mutation, and the best of the 51 individuals
becomes the parent of next generation. The performance
is given by the number of generations needed to reach the
optimum: even with 10000 bits, this is a very easy problem
and any decent parameter setting will reach the optimum
value. However, despite being far from any real-world situ-
ation, this problem offers a completely known and mastered
experimental testbed, e.g., the optimal strategy for operator
choice is completely known [9].

Artificial Scenarios are another popular setting to com-
pare AOS, initiated with Thierens’ original benchmark [20].
A set of 5 “operators” have prescribed reward distribution,
that varies along successive epochs (AT time steps). Dur-
ing every epoch, the operator reward is uniformly drawn in

some interval: [4, 6] for the current best operator, [3,5] for
the second best, and so forth, until [0, 2] for the worst oper-
ator (since these intervals overlap, the second best operator
occasionally gets better rewards than the best one, etc). At
the end of every epoch, the reward distributions are per-
muted, using pre-defined permutations®. The performance
associated to an Adaptive Operator Selection is the cumula-
tive reward obtained during this sequence of 10 epochs.

Within this benchmark, thereafter referred to as Uniform,
an operator always gets some positive reward. Still, in an
actual evolutionary context, an operator would most often
bring no improvement at all (after the first generations),
thus providing the Adaptive Operator Selection with no in-
formation whatsoever. For this reason, two variants of the
Uniform benchmark respectively referred to as Boolean and
Outlier, have been proposed in [5].

In the Boolean scenario, the best operator gets a reward of
10 with probability 50% (and 0 otherwise); it thus has same
reward expectation as in the Uniform scenario, though with
a much higher variance. The second best operator gets a
reward of 10 with probability 40% and 0 otherwise, and so
forth, until the worst operator, getting a reward of 10 with
probability 10% and 0 otherwise. In this scenario, operators
only differ by their probability of getting a non-null reward;
the reward takes the same value in all cases.

Quite the contrary, in the Outlier scenario all operators
get a non-null reward with same probability (10%); the dif-
ference lies in the reward value, set to 50 for the best oper-
ator, 40 for the second best and so forth. While the reward
expectation is still the same as in the Uniform benchmark,
the Adaptive Operator Selection is provided with much less
information (only 10% of the trials produce some informa-
tion) and the reward variance is much higher than in the
previous Boolean scenario.

The Adaptive Operator Selection ability to match the dy-
namics of evolution is assessed by varying the length of the
epoch, set to AT = 200 (respectively AT = 2000) for fast
(resp. slow) dynamics. As the reward expectation of the
best operator is 5 in all scenarios, the maximal cumulative
reward is 10,000 in the fast case and 100,000 in the slow one
(5 x 10 x AT).

4.2 Hyper-Parameter Setting

Heuristic H-P Range Comments

All previous CA X{Abs,Nor},Av{Abs,Nor} Credit Assignment
All w {10, 50, 100, 500} Window size
AUC, SR D {.1,.3,.5,.7,.9,1} Decay factor
AP, PM Prmin  10;.05;.1;.2} Min. prob.

AP, PM o {.1,.3,.6,.9} Adaptation rate
AP B {.1,.3,.6,.9} Learning rate
DMAB(PH)  ~ Range(C), {250, 500, 1000}  PH threshold
All bandit c {{1,5}.10{—4<5i<2}y Scaling factor

Table 1: AOS Hyper-parameters and value range

As previously mentioned, every Credit Assignment and
Operator Selection Rule has some hyper-parameters that
need to be set by the user. They are recalled in Table 1,
together with the different discrete values that were tested.
Indeed, in order to promote a fair comparison between all

3These permutations are: 41203 — 01234 — 24301 —
12043 — 41230 — 31420 — 04213 — 23104 — 14302 —
40213. More precisely, the best operator in the first epoch
is the op4, which becomes the worst one in the second epoch.
The best operator in the second epoch is opg, which was the
fourth one in the first epoch.



competing AOS, all the results presented here were obtained
using the best configuration for each technique among the
ones that can be obtained from these ranges. However,
rather than a full factorial Design Of Experiment, a Rac-
ing procedure was used, as advocated in [11]. The basic
idea of Racing, introduced in the field of Evolutionary Com-
putation in [3], is to start running some standard Design
Of Experiment, but to stop wasting time testing parameter
configurations that are statistically proved to be, at their
best, worse than the best configuration to-date. Friedman
race (F-Race) is used here, with confidence level 95% as ad-
vocated in [3], the elimination of unpromising runs starts
after 11 runs, and the racing is stopped as soon as a sin-
gle configuration remains, or after 50 runs of the remaining
configurations have been run. The criterion used for its sta-
tistical test, applied with a confidence level of 95%, is the
minimization of the number of generations needed to reach
the optimal solution in the case of the OneMax and related
functions, and the maximization of the cumulative reward
for the artificial scenarios.

Let us make a few remarks about Table 1. First, the first
parameter in this has not been described yet: the Credit As-
signment for all methods from earlier work (PM, AP, MAB,
and DMAB). As in [11], the actual reward that the AOS
computes from the raw reward (the fitness improvement in
the OneMax scenario, the pre-defined reward in the artificial
scenarios) can be either the Average or the Extreme (Avg or
X in Table 1) of all Absolute or Normalized values (Abs or
Nor in the table) taken over the sliding time window of size
W. In fact, independent Racing have been performed for the
4 Credit Assignment variants. Also note that 14 values are
tested for the C' parameter for all bandit-based techniques
(i.e., all except PM and AP), even though it does not have
exactly the same meaning for MAB and DMAB than for the
new approaches proposed here, as discussed in Section 2.3.
In summary, and due to the 4 values of Credit Assignment,
the number of different candidate parameter configurations
that were tried in the Racing for the different techniques
ranges from 4 x 64 for PM and 4 x 256 for AP to 4 x 56
for MAB and 4 x 952 for DMAB, due to the high uncer-
tainty (and high sensitivity) of the Page Hinkley parameter
~. For the newly proposed techniques, 'only’ 336 configura-
tions needed to be tested (even when trying out all 14 values
for C).

4.3 Robustness Results

A first series of experiments was conducted regarding the
robustness of the different AOS with respect to some non-
linear transformations of the fitness, as discussed in Section
2.3. Every AOS discussed in this paper was run on the
OneMax problem, and the Racing procedure described in
above Section 4.2 was used to find out the best parameter
configuration. Then this best parameter configuration was
used on different transformations of the OneMax fitness F,
namely log(F), exp(F), and F2.

Complete results can be found on Table 4.3. Those re-
sults confirm the a priori discussion of Section 2.3: PM and
AP are indeed much less sensitive to such nonlinear trans-
formations of the fitness. Nevertheless, their performance is
slightly degraded by these transformations. Because One-
Max is a very easy problem, it remains of good quality,
but running a complete Racing for XAbs AP using exp(F)
results in a completely different optimal setting. In fact,

the optimal setting for F (W = 500, Pmnin = 0, a = 0.9,
B = 0.1) is killed in the first elimination round during the
Racing with exp(F), and the winner of the race exp(F) sets
W =100 and 8 = 0.9: because the exp(F) function varies
much faster than the original F, the probabilities need to
be adjusted much more rapidly. Such result clearly demon-
strates that the non-invariance under nonlinear transforma-
tion could eventually cause some serious loss of efficiency for
more difficult problems.

Table 2: Analysis of invariance w.r.t the OneMax
function (F = ) n) and 3 monotonous transforma-
tions of it: log(F), exp(F) and (F)®. The results
on the transformed functions are omitted; Avg(all)
shows the average performance over 50 runs on all
the 4 functions. (max —min) shows the performance
difference between the best and the worst average
for the given technique.

| (max — min) [ Avg(all) [ F=>n [ AQOS tech. ‘
95 51204258 50881252 AUC-B
62 51524+ 263 51124 284 SR-B
133 5199+ 285 5139+ 232 XNor AP
256 52984 274 | 5173+ 252 XAbs AP
105 54074 448 53744 471 XNor PM
144 5438+ 436 5364+ 354 XAbs PM
0 5499+ 309 | 5499+ 312 F-SR-B
230 5673+ 420 56311417 XNor MAB
0 61474+ 458 | 6147+ 462 F-AUC-B
2099 6367+ 1416 | 5096+ 240 | XAbs DMAB
6144 6627+ 3601 | 5090+ 236 | XNor DMAB
8267 11263+£3811 | 83224652 XAbs MAB

4.4 Results on Artificial Scenarios

A second set of experiments was done to analyze the
agility of the two newly proposed AOS combinations (AUC-
B and SR-B) to adapt to different situations, compared to
three existent ones (DMAB, MAB and AP). The PM tech-
nique was neglected here due to its constant very low perfor-
mance. Table 3 presents the complete results of such analy-
sis on the 3 artificial scenarios described in Section 4.1, with
2 different epoch lengths AT, 200 and 2000. Three different

types of information are shown for each technique/problem/epoch

length. The first line shows the best configuration found
by the F-Race for the given scenario/epoch, including the
Credit Assignment method for DMAB, MAB, and AP as
discussed in Section 4.2 (A and B denote a and 3 respec-
tively). Note that different values of the Credit Assignment
were found in the optimal setting, justifying that it being
viewed as an hyper-parameter. The second line displays the
rate of selection of the best operator, and the third line, the
cumulative reward gathered during the run, the two latter
measures being averaged over 50 runs. Since the main moti-
vation for the proposal of the new AOS schemes is to have a
higher robustness w.r.t. their hyper-parameters in different
cases, even with some cost in terms of performance, both the
unsigned Wilcoxon rank sum, and the Kolmogorov-Smirnov
non-parametric tests were used to assess the performance of
the new mechanisms.

The AUC-B method was able to improve over the perfor-
mance of AP in 5 out of 6 cases, being significantly better
in 4 of them, and equivalent in the other two. Compared



Table 3: Empirical comparison on the Artificial Scenarios.

For each of the analyzed techniques, on each

problem and epoch length (AT), the first line shows the best configuration found by the F-Race; the second
line shows the rate at which the given AOS scheme was able to select the best operator; while the last
line shows the achieved cumulative reward. Both empirical measures are averaged over 50 runs, with the

confidence interval being also shown.

[ Problem [ AT ] AUC-B [ SR-B [ DMAB [ MAB [ AP ]
C.1D1.0W50 C.1D0.5W50 XAbs C.5G5W10 XNor C.5W10 XAbs P.05A.9B.9W10
200 79.0 £ 2.1 68.9 £ 3.7 A 91.3 £ 0.7 69.8 £56 A0 707 £27 A e
Uniform 8937 £ 83 8469 £ 92 9570.63 £ 40.5384 8907.81 + 141.655 8625.88 + 85.3378
C.1D1.0W100 C.1D0.5W100 XAbs C.5G10W10 XAbs C5W10 XAbs P.05A.9B.9W10
2000 93.6 £ 0.3 909 £ 1.1 A 98.9 £ 0.1 91.7 02 A e 789+ 04 A0
96763 £ 149 95501 + 234 99491.7 + 78.6411 96657.9 + 99.0754 89560.4 + 153.668
C.0001D1.0W50 C.5D0.7W50 AvgAbs C1G5W10 AvgAbs C5W10 AvgAbs P.05A.9B.6W10
200 47.6 £ 8.8 364 +£83 A 483 £ 64 A0 45.7 £ 6.2 Ao 45.0 £ 5.0 A0
Boolean 8055 + 406 7477 £ 353 8121.6 £ 264.902 7921.4 £+ 312.691 7870.6 = 271.138
C.0005D1.0W100 | C.5D0.IW50 | AvgAbs C5G250W10 | AvgAbs C10W10 AvgNor POA.3B.9W10
2000 76.4 £ 5.1 66.4 £ 5.4 A 81.3 £ 3.1 784 +24 Ao 484+ 136 A e
92172 + 1538 87256 + 1321 93327.2 + 1120.9 91478.8 + 1036.54 85802.8 + 4244.44
C1D0.5W50 C1D0.5W100 XAbs C25G.1W50 XAbs C50W50 XAbs P.05A.9B.6W50
200 379 £ 6.3 375+ 73 A 39.0£ 9720 368 £11.3 Ao 408 £ 7240
Outlier 7303 £ 679 7223 + 625 7561.8 £ 635.201 7366.6 = 582.814 7449.2 £+ 641.07
C.5D0.7W100 C.5D0.IW100 | XAbs C50G500W50 XAbs C1I00W50 XAbs P.05A.9B.IW50
2000 72.8 £ 4.9 72.3 £ 6.3 A 76.1 £ 6.0 81.2 £ 24 70.6 = 3.1 A0
89210 £ 2527 89094 £ 2853 91621.8 £ 2672.81 92118.8 £+ 1982.15 86595 £+ 2035.29

A indicates that the cumulative reward achieved by the AUC-B over 50 runs is significantly better than the one achieved by the
given technique, according to the Kolmogorov-Smirnov and/or the Wilcoxon signed-rank test at a = 0.05.

A indicates that the same cumulative reward of AUC-B is statistically equivalent to the one achieved by the given technique.

e and o, respectively, show the same information concerning the performance of the SR-B.

to the MAB AOS, it is significantly better or equivalent in
5 of the cases. Finally, it is statistically equivalent to the
DMAB in only two of the test cases. Indeed, the DMAB
method has been demonstrated to achieve very high perfor-
mances [9, 10, 11], but the price to pay for this is a very
expensive tuning stage (3800 configurations for the Racing,
see Section 4.2) with very sensitive parameters. Concerning
the SR-B approach, its performances are globally a bit worse
than those of the AUC-B. However, given the high number
of statistically equivalent results, and some better results
found with both new techniques in these very different sit-
uations, it becomes clear that the goal of this work, i.e.,
improving the robustness of the bandit-based approaches
while not losing too much in terms of performance, can be
considered achieved.

5. DISCUSSION AND FURTHER WORK

One might see as a drawback the 3 hyper-parameters that
still need to be tuned for these rank-based AOS schemes (the
scaling factor C, the decay factor D and the window size W).
Although an off-line tuning technique as the F-Race might
still be very helpful, given the mentioned (and expected)
robustness, a much cheaper solution than that proposed in
Section 4.2 can be used, insomuch that less configurations
in fact need to be tried in the Racing procedure. As al-
ready discussed in Section 2.3, and mentioned in Section 4.2,
hyper-parameter C' only has to tune the balance between
exploitation and exploration. Thus only an order of magni-
tude seems to be needed. Furthermore, the precise value of
the decay parameter D does not seem to matter much, as
long as it allows to distinguish between two very different
situations, one with linear decay (D = 1) and one with rel-
atively fast decay (e.g., D = 0.5). Finally, the window size
W can probably be limited to fewer values. And indeed, in

all scenarios presented in this paper (Section 4.1), as well
as in many others not presented here due to space limita-
tion, at least one of the 16 configurations corresponding to
D € {0.5,1.0};C € {0.01,0.1,1,10}; and W € {50,100}
was found to perform statistically equivalently to the best
configuration found by the F-Race.

Going even further, one interpretation of hyper-parameter
W is that it triggers the memory decay of the AOS mech-
anism: large W will imply very conservative operator se-
lection, unlikely to change rapidly, whereas short values will
result in a very quick forgetting of the past. Nevertheless, its
effect is tightly coupled with that of the decay D, that bal-
ances between favoring the more “extreme” operators (small
D will greatly favor the first ranked operators), and the more
“average” ones (D = 1 will give a linear decay in the weight
of the rewards in the window, so all the rewards “matter”
somehow, thus favoring the ones that have been efficient
often, even if generating only a small fitness improvement).
Whereas small values of W will tend to hide any influence of
D, asmall D with a large W will be similar to the Extreme-
based Credit Assignment advocated in [9]. Those parame-
ters should be set together, and, if available, based on some
knowledge about the fitness landscape . .. which means that
they should be made adaptive, as it is unlikely that the same
setting can be optimal from the beginning to the end of the
search. This will be the topic of further work.

Another important issue regards the fully comparison-
based variants introduced in Section 3.2: their performances
are worse on the OneMax problem than the best variants of
the other techniques, though rather surprisingly, SR-B per-
forms significantly better than AUC-B, and almost as good
as PM. Analyzing deeply the results, and in particular look-
ing at the frequency of use of all operators comparing it
to the optimal strategy [9, 10] shows surprising instabilities
in areas where one operators clearly dominates the others.



Tracking and suppressing such strange behaviors, hopefully
raising the performances of those AOS algorithms, is a path
to be explored.

6. CONCLUSION

This paper has proposed two new Credit Assignment meth-
ods in order to address the weaknesses of previous AOS
(most particularly bandit-based AOS) regarding the robust-
ness with respect to fitness transformations and, accord-
ingly, hyper-parameter setting. Their output is directly
used as empirical reward within a bandit-based Operator
Selection Rule, and the resulting AOS perform achieve their
promises: the performances of the AUC-B AOS are only
outperformed by those of the the highly efficient but highly
sensitive to hyper-parameter tuning (and to fitness trans-
formations) DMAB, and are better than most previously
proposed AOS methods, on both the OneMax problem and
some artificial scenarios.

Furthermore, because they rely only on the ranks of the
raw rewards awarded to operators, those original AOS are
more robust than other methods with respect to their own
hyper-parameters, and only a small set of configurations of
those hyper-parameter need to be explored when no infor-
mation is available about the fitness landscape.

Finally, they have been coupled to pure comparison-based
raw reward — the rank of the newborn offspring in the current
sliding window of offspring, thus building a truly comparison-
based AOS. Though the performances of F-SR-B are still
behind those of other AOS on the OneMax problem, their
complete invariance with respect to monotonous transfor-
mations of the fitness make them a good basis for the devel-
opment of future parameter-less AOS.
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