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ABSTRACT
Most surrogate approaches to multi-objective optimization
build a surrogate model for each objective. The models for
the objectives can then be used in different ways: inside
a classical Evolutionary Multiobjective Optimization Algo-
rithm (EMOA) in lieu of the actual objectives, without mod-
ifying the underlying EMOA; or to filter out points that
the models predict as uninteresting. In contrast, the pro-
posed approach aims at building a global surrogate model
defined on the decision space and tightly characterizing the
current Pareto set and the dominated region, in order to
speed up the evolution progress toward the true Pareto set.
This surrogate model is specified by combining a One-class
SVM (to characterize the dominated points) and a Regres-
sion SVM (to clamp the Pareto front on a single value).
The resulting surrogate model is then used within state-
of-the-art EMOAs to pre-screen the individuals generated
by application of standard variation operators, significantly
reducing the number of evaluations of the actual objective
functions on classical benchmarks problems.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligen-
ceProblem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Multiobjective Optimization, Surrogate Models, Support Vec-
tor Machine

1. INTRODUCTION
In the classical optimization framework, surrogate approa-

ches (aka Surface Response Methods) have been proposed
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decades ago to deal with computationally expensive objec-
tive functions, and decrease the overall optimization cost.
Surrogate optimization proceeds by building an approxima-
tion of the objective function, referred to as surrogate model
or meta-model; the optimization algorithm then uses the
meta-model in lieu of the actual objective function. Of
course, the meta-model must be regularly updated as the
search proceeds and new information about the search space
is gathered; considering an inaccurate meta-model for long
would mislead the search and miss the optima of the actual
objective function.

Surrogate methods have received a particular attention in
the realm of Evolutionary Algorithms (EAs), all the more
so as EAs are known to require a high number of objective
function computations (see e.g. [10] for a survey of sur-
rogate evolutionary optimization). Several types of meta-
models have been used (quadratic models, neural networks,
Regression Support Vector Machines, kriging or Gaussian
Processes). Meta-models can aim at either a global approx-
imation of the objective function, or a local one, focusing
on the neighborhood of the best current individuals. The
meta-model can be used to replace the objective function
for a given number of generations; it can be used to gen-
erate new individuals (the optima of the meta-model) from
scratch; and it can also be used to filter out unpromising
offspring. A key issue in surrogate evolutionary optimiza-
tion is how and when the meta-model is updated. The exact
objective function can be computed for the top-ranked in-
dividuals in each generation, or the individuals with best
Expected Improvement after the kriging meta-model. The
update can proceed by revising the model (e.g., a Neural
Net), or relearning it from scratch (e.g., a Support Vector
Machine (SVM)).

Unsurprisingly, Evolutionary Multi-Objective (EMO) al-
gorithms facing even more severe computational issues than
single-objective optimization, the use of meta-models has
been intensively investigated in the EMO literature (see
[12] for a comprehensive survey). Most approaches carry
over the single-objective surrogate approach, learning one
meta-model for each objective and embedding the meta-
models within a standard EMO with little modification [18],
or within a memetic algorithm for local seach improvement
[?]. Meta-models can also be used to rank and filter out
offspring (pre-screening mode), according to Pareto-related
indicators like the hypervolume [7], or a weighted sum of the
objectives, or a goal-oriented direction. Lastly, meta-models
can be used within interactive multiobjective optimization
like aspiration level methods.



Surrogate approaches generally consider the decision space,
i.e. a meta-model associates some approximate objective in-
formation to any individual. A notable exception [19] con-
siders the objective space and characterizes the region of the
objective space which has already been visited. The ratio-
nale for this approach, based on One-Class SVM [15], is that
the envelope of the visited region excludes the Pareto front.
Unfortunately, the Pareto front in the objective space does
not tell much about the Pareto set (in decision space1), and
can hardly be used to guide the EMO search.

The presented work aims at building a global surrogate
model in decision space, characterizing whether an individ-
ual belongs to i/ the current Pareto set; or ii/ the domi-
nated region; or iii/ the rest of the decision space (not yet
visited, and containing the true Pareto set). This surrogate
model, providing an aggregated perspective on all objective
functions simultaneously, is used to guide the search in the
vicinity of the current Pareto set, and speed up the popu-
lation move toward the true Pareto set. This Aggregated
Surrogate Model (ASM) is constructed by combining ideas
from Regression and One-class SVMs.

Section 2 describes the formulation and the resolution of
the ASM model. Section 3 gives an overview of the EMO
algorithm using ASM, referred to as Pareto-SVM. Section
4 analyzes the experimental validation of Pareto-SVM on
different classical benchmark functions. Finally, Section 5
discusses our contributions and concludes the paper.

2. PARETO SUPPORT VECTOR MACHINE
This section describes the Aggregated Surrogate Model

(ASM), formalizes the constraints it should satisfy and de-
tails the ASM resolution. Due to space limitations, we as-
sume the reader’s familiarity with the Support Vector Ma-
chines principles [17].

2.1 Rationale and Assumption
The goal of the present approach is to build a single surro-

gate model in the decision space, usable to drive the popu-
lation toward the true Pareto set. This surrogate model will
be learned from i/ points belonging to the current Pareto
set, and ii/ dominated points.

At a given time during the run of an EMOA, the relative
position of the Pareto set and the dominated points can be
schematically depicted as follows. The situation might be
simple in the objective space (Fig. 1.(a)), with the true
Pareto front and the dominated region located on the two
opposite sides of the current Pareto front. It can be much
more intricate in the decision space; Fig. 1.(b) illustrates
the case where the true Pareto set (respectively the domi-
nated region) lies within (resp. outside) the convex hull of
the current Pareto set. Further, the Pareto set can include
many disjoint regions in the decision space. The assumption
made in this paper is that the Pareto region includes a small
number of connected components; note that this assumption
holds for most classical MOO benchmarks, (e.g. IHR1, see
Fig. 3 (c) and (d)).

Expectedly, the ASM model discriminates the Pareto set
and the dominated region. However, a binary classification
approach is ill-suited, in the sense that it would not give

1Except in specific problems where the Pareto front in the
objective space corresponds to a set of rectangles in the de-
cision space.

any precise indication about where the true Pareto set is
located. More generally, the Pareto set (true or current) and
the dominated points cannot be handled in a symmetrical
way: dominated points span over a subspace whereas the
Pareto set should better be viewed as a manifold.

It thus comes to map all Pareto points onto a single value
ρ (up to some tolerance ǫ); meanwhile, the dominated points
would be mapped onto the half space ] −∞, ρ − ǫ[. Such a
mapping might actually provide useful indications: expect-
edly, points mapped onto the half space [ρ + ǫ, +∞[ would
belong to the yet unexplored region, which is bound to con-
tain the true Pareto set, and these points could thus be
considered promising.

The above constraints on the ASM mapping can be ex-
pressed by combining the SVM-regression formulation [16]
(mapping each point x onto some target value f(x) up to
some tolerance ǫ) and the One-class SVM [15], mapping a
set of points onto a connected interval and thus characteriz-
ing the support of the underlying sample distribution. The
main difference is that the target value ρ associated to the
Pareto points is free in the ASM problem.

2.2 Lagrangian formulation
Let X ⊂ IRd denote the search (decision) space and let

x1 . . . xm denote points in X, with x1 . . . xℓ being Pareto
points and xℓ+1, . . . , xm being dominated points. The sought
ASM mapping, noted F (F : X 7→ IR), is finally subject to
m + ℓ constraints: for each xi, 1 ≤ i ≤ ℓ, F(xi) must belong
to [ρ − ǫ, ρ + ǫ] and for each xi, ℓ < i ≤ m, F(xj) must be
less than ρ− ǫ.

2.2.1 The primal problem
Using the kernel trick2, mapping F will be defined as a

linear function w w.r.t. some feature space Φ(X):

F(x) = < w, Φ(x) >

Then, introducing the usual slack variables ξ(∗) (with nota-

tions borrowed from [16], ξ(∗) represents the (m + ℓ)-vector
made of (ξup

i )i∈[1,ℓ], (ξlow
i )i∈[1,ℓ], and (ξup

i )i∈[ℓ+1,m]), and
given positive constants C and ǫ, the primal problem is:

Minimize
{w, ξ(∗), ρ}

1

2
||w||2 +C

ℓ
X

i=1

(ξup
i + ξ

low
i )+C

m
X

i=ℓ+1

ξ
up
i + ρ (1)

subject to

< w, Φ(xi) >≤ ρ + ǫ + ξ
up
i (i = 1 . . . ℓ) (2)

< w, Φ(xi) >≥ ρ− ǫ− ξ
low
i (i = 1 . . . ℓ) (3)

< w, Φ(xi) >≤ ρ− ǫ + ξ
up
i (i = ℓ + 1 . . . m) (4)

ξ
up
i ≥ 0 (i = 1 . . . ℓ) (5)

ξ
low
i ≥ 0 (i = 1 . . . ℓ) (6)

ξ
up
i ≥ 0 (i = ℓ + 1 . . . m) (7)

Introducing the non-negative Lagrangian multipliers α
(∗)
i

and β
(∗)
i for each above constraint respectively (where (∗)

2The SVM approach, initially aimed at finding linear func-
tions, only computes scalar products of sample points. The
so-called kernel trick supports the extension to non-linear
functional spaces: the search space X is mapped onto a
more expressive space referred to as feature space Φ(X),
where the scalar product < Φ(x), Φ(x′) >= K(x, x′) can be
calculated without computing explicitly Φ(x) or Φ(x′).
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Figure 1: A schematic view of the Pareto front, depicting dominated points (white), current Pareto (grey)
and new Pareto (black) respectively in objective and decision space.

is either (up) or (low)), the Lagrangian is:

L(w, ρ, ξ
(∗)

, α
(∗)

, β
(∗)) =

1

2
||w||2

+C
Pℓ

i=1(ξ
up
i + ξlow

i ) + C
Pm

i=ℓ+1 ξ
up
i + ρ

−
Pℓ

i=1 α
up
i (ρ + ǫ + ξ

up
i − < w, Φ(xi) >)

−
Pℓ

i=1 αlow
i (< w, Φ(xi) > −ρ + ǫ + ξlow

i )
−

Pm

i=ℓ+1 α
up
i (ρ− ǫ + ξ

up
i − < w, Φ(xi) >)

−
Pℓ

i=1 β
up
i ξ

up
i

−
Pℓ

i=1 βlow
i ξlow

i

−
Pm

i=ℓ+1 β
up
i ξ

up
i

Computing the KKT conditions leads to:

∂L

∂w
= w +

ℓ
X

i=1

(αup
i − α

low
i )Φ(xi) +

m
X

i=ℓ+1

α
up
i Φ(xi) = 0 (8)

∂L

∂ρ
= 1−

ℓ
X

i=1

(αup
i − α

low
i )−

m
X

i=ℓ+1

α
up
i = 0 (9)

∂L

∂ξ
up
i

= C − α
up
i − β

up
i = 0 (10)

∂L

∂ξlow
i

= C − α
low
i − β

low
i = 0 (11)

∂L

∂ξ
up
i

= C − α
up
i − β

up
i = 0 (12)

Therefore, at the saddle point we have:

w =
ℓ

X

i=1

α
low
i Φ(xi)−

m
X

i=1

α
up
i Φ(xj) (13)

1 =
m

X

i=1

α
up
i −

ℓ
X

i=1

α
low
i (14)

C = α
up
i + β

up
i = α

low
i + β

low
i (15)

Reporting these equalities, the Lagrangian becomes:

L(w, ρ, ξ, α, β) = −
1

2
||w||2 − ǫ

„

2
ℓ

X

i=1

α
up
i − 1

«

Eliminating the β(∗) thanks to Eq. (15), the dual problem

to solve in (α(∗)) is:
Maximize

eL(α(∗)) = −
1

2
||w||2 − ǫ

„

2
ℓ

X

i=1

α
up
i − 1

«

(16)

subject to

m
X

i=1

α
up
i −

ℓ
X

i=1

α
low
i = 1 (17)

0 ≤ α
(∗)
i ≤ C (18)

2.2.2 Solving the dual problem
Following [16], the idea is to iterate exact resolutions of

the maximization problem by varying only two of the α’s
multipliers. Thanks to the sum constraint (Eq. (14) or
(17)), one of the α variables can be eliminated. As the
resulting function, now depending on a single variable, is
quadratic, its optimization can be solved analytically. It
remains to choose the pair of α indices; this choice has a large
impact on the overall computational cost for large regression
problems, and several heuristics have been proposed [8]. It
turns out that the best results in our problem were obtained
for a uniform selection of the α indices.

For the sake of completeness, but due to space limita-
tions, the detailed derivation of the solution, that has to
distinguish all possible cases between Pareto and dominated
points, is temporarily anonymously available at http://

sites.google.com/site/paretosvm/.

3. PARETO-SVM FILTER ALGORITHM
This section describes the use of the ASM meta-model

for Evolutionary Multi-Objective Optimization, defining the
Pareto-SVM algorithm.

3.1 Discussion
As mentioned earlier, surrogate (multi-objective) optimiza-

tion most commonly proceeds by replacing the objective
function with the surrogate model, computing the true ob-
jective on carefully selected points, and updating the model



from time to time using recently evaluated individuals as
examples.

The situation here is different as i/ the optimization prob-
lem is a multi-objective one; ii/ the presented approach in-
volves the single surrogate ASM model. The most natu-
ral idea, optimizing directly the ASM model, raises the fol-
lowing two issues. Firstly, the true Pareto set expectedly
lies away from the dominated points and beyond the cur-
rent Pareto set; the ASM would thus be used to explore
yet unexplored regions, i.e. for extrapolation. In contrast,
single-objective surrogate models are mostly used for inter-
polation, except perhaps during the very first generations.
Secondly and more importantly, identifying the Pareto set
critically relies on the population diversity. While all indi-
viduals in the current Pareto set are equally mapped on the
same ρ value, some will be more equal than others, in the
sense that they will get a higher ASM value. Optimizing ex
abrupto the ASM model would thus favor some regions of
the Pareto set and hinder the population diversity.

For these reasons, the ASM model will be used to im-
plement a filter-based approach [14, 7]. Next subsections
respectively outline the full algorithm, and describe the two
specific modules of the Pareto-SVM algorithm, the surro-
gate model update and its use within informed operators.

3.2 The algorithm
The general description of an MOEA (Algorithm 1) is

based on the usual parent-selection / variation / survival se-
lection loop, with optionally some archive maintenance (line
5), as many popular MOEAs need to maintain some archive
of the non-dominated individuals encountered during the
search [3]. Note that line 4 describes both the parental se-
lection and the application of the variation operators (im-
plicitly including any choice among multiple operators for
instance).

The Pareto-SVM algorithm is described similarly in Al-
gorithm 2. The main differences are the model update (line
5) and the call to the informed operators (line 6) that re-
places the standard call to variation operators, with the sur-
rogate model FSV M as additional argument. Note that, at
this level, the maintenance of the archive is limited to adding
to it all newborn offspring (line 7). Actual update, including
the ASM update, takes place every Klearn generations (line
4).

3.3 Model Update
The procedure for updating the model is given in Algo-

rithm 3. When entering the update procedure, the archive
is made of the archive at the end of the previous update,
augmented by all newborn offspring (line 7 of Algorithm 2).
The possible duplicates are removed (line 1). In most cases
(depending on Klearn and the number of offspring generated
per generation, the size of the archive will increase far too
much to make it possible to efficiently apply the Pareto-
SVM learning. Furthermore, pruning the archive should
not be done solely based on Pareto dominance, as in most
standard MOEAs, where only the best Pareto points are
of interest. The idea is to keep in the archive points that
will ensure a good coverage of the complete dominated re-
gion that has been visited in the past, to make sure that
the ASM will label these regions as ’dominated’. Borrowing
ideas from PESA [?], the objective space will be divided reg-
ularly into Narchive boxes, and only one point will be kept

Algorithm 1 Standard MOEA

1: Archive ← ∅
2: Pop ← MOEA.Init()
3: while NOT Stopping Criterion do
4: Offspring ← VarOp(ParentSelect(Pop))
5: UpdateArchive(Pop,Offspring)
6: Pop ← SurvivalSelect(Pop,Offspring)
7: return Pop.BestIndividual

in each box. The boxes are computed in lines 2 and 3, the
points are put in their respective boxes in line 5, and all
boxes are pruned (line 7), keeping either a uniformly chosen
point among the non-dominated points of the box if any,
or a uniformly chosen point in the box. The training data
for the Pareto-SVM learning is made of one point per box
(line 8), plus the current population (that is likely to contain
non-dominated points). It is then pruned from duplicates,
and sorted using non-dominated sort to distinguish between
Pareto and dominated points (line 11) before be passed on
to the Pareto-SVM learning algorithm that returns the sur-
rogate model to the main algorithm (line 12).

3.4 Informed Operators
The basic idea used here is that of informed operators

[14]. When a variation operator is called, it generates a given
number of pre-children. The value of the surrogate model for
all these pre-children is computed, and the operator returns
the best one according to those surrogate values. However,
the particular multi-objective context raises an additional
issue here: a better surrogate value does not imply a smaller
distance from the Pareto set. Indeed, because of the errors
in the surrogate model, and because of the ǫ tolerance in the
formulation (see Section 2), a child that is far from its parent
can have a better ASM value than its parent while being
nevertheless farthest from the Pareto front than some other
points lying on the current Pareto front – and preliminary
experiments confirmed that. In order to minimize such risk,
the choice of which offspring to keep is based on the ASM
gain with respect to the closest point in the current Pareto
set.

A more formal description is given in Algorithm 4, that
describes how all offspring are generated from the current
parent population. For each offspring to be generated (outer
loop, lines 2 to 12), a variation operator is eventually chosen
(line 3) if more than one are available, depending on the
type of MOEA. It is then applied Ninform times (line 6).
For each such pre-offspring, the nearest point from current
non-dominated parents is sought (line 7), and depending on
the improvement of the surrogate model F with respect to
this parent, the pre-offspring is kept or not (9).

4. EXPERIMENTAL RESULTS

4.1 Experimental Settings
Two state-of-the-art EMOA were chosen from literature:

(λ+µ)−S-NSGA-2 [3, 5] and µ× (1+λ)-MO-CMA-ES [9].
Both algorithms use the hypervolume indicator as second-
level sorting criterion to rank individuals on the same level
of non-dominance. Population size is µ=100 for both algo-
rithms, and offspring population sizes are λ=100 and µ ×
(λ = 1) respectively. All reported results are based on 50



Algorithm 2 Pareto-SVM

1: Archive ← ∅
2: Pop ← MOEA.Init()
3: while NOT Stopping Criterion do
4: if #generation ≡ 0 [Klearn] then
5: FSV M = UpdateModel(Archive, Pop)

// every Klearn generation
6: Offspring ← InfOp(ParentSelect(Pop), FSV M )
7: Archive ← Archive ∪ Offspring
8: Pop ← SurvivalSelect(Pop, Offspring)
9: return Pop.BestIndividual

Algorithm 3 UpdateModel(Archive, Pop)

1: EliminateDuplicates(Archive)
2: ComputeObjectiveBounds(Archive)
3: PartitionObjectiveSpace(NArchive)
4: for all P ∈ Archive do
5: FindBox(P) // Assign P to the box it belongs to
6: for all Boxes B do
7: Ind[B] ← Random(NonDominated(B))

// Select one point per box
8: Archive ←

S

B Ind[B] // at most NArchive points
9: TrainingData ← Archive ∪ Pop

10: EliminateDuplicates(TrainingData)
11: NonDominatedSort(TrainingData)
12: return Pareto-SVM(Training Data) // returns FSV M

Algorithm 4 InfOp(Parents, F )

Require: OP(s) // variation operator(s)
1: Offspring ← ∅
2: for iOff = 1 to RequiredSize do
3: Choose variation operator Op // Eventually
4: GainBest ← 0
5: for i = 1 to Ninform do
6: Ind ← Op(Parents)
7: IndPop ← NearestNeighbor(Ind,ND-Parents)
8: Gain ← F (IndPop) - F (Ind)
9: if Gain > GainBest then

10: GainBest ← Gain
11: Best ← Ind
12: Offspring ← Offspring ∪ {Best}
13: return Offspring

independent trials with at most 100000 fitness evaluations.
The results of the original and SVM-informed versions

of algorithms are compared on the widely used ZDT1:3-6
[21] and their rotated variants IHR1:3-6 [9]. For ZDT1-3
problems, dimension is 30, while it is set to 10 for all other
problems. Note that the optimal Pareto front of all ZDT
problems lies on the boundary of the decision space. Hence,
in order to prevent the exploitation of this specificity by
MO-CMA-ES, its penalization term is set to α = 1 instead
of the original 10−4 [9].

The specific parameters of Pareto-SVM were calibrated
by preliminary experiments. Klearn was set to 10. The
widely used Radial Basis Functions (RBF) was chosen as
a kernel for Pareto-SVM . The choice of σ was made by
computing the average distance Davr of all points in train-
ing set, and, for ZDT problems σ = 2Davr, C = 10, while
for IHR problems σ = Davr, C = 100. For all problems

Narchive = 400, and ǫ = 10−5. Pareto-SVM model opti-
mization was stopped after 300000 choices of indices pairs.
The CPU cost of one Pareto-SVM learning on ZDT1 is
then approximately 0.5 – 1.0 sec. on a 2.26 GHz processor.

The SVM-informed versions of MOEAs was developed as
described in Algorithm 2. To generate i-th pre-child in
SVM-informed version of MO-CMA-ES the global mutation

step size can be additively changed : σ
′

i = σi exp(−d+2dk) ,
where d = 0.7 and k is uniformly distributed in [0, 1].

4.2 Performance Measures
Many ways of measuring the performance of MOO algo-

rithms have been proposed. This study uses Pareto-compliant
quality indicators as recommended in [13]. The widely used
hypervolume indicator was chosen for comparison of MOEAs
which in fact use hypervolume indicator as second sorting
criterion.

Let P be an approximation of Pareto front with |P | =
µ. Let P ∗ be the approximating µ-optimal distribution of
optimal Pareto points [2]. The error of the Pareto front
approximation is defined by ∆H(P ∗, P ) = IH(P ∗)− IH(P ).

4.3 Results Analysis
Two sets of experiments have been conducted to validate

the proposed approach. The goal of the first experiments is
to empirically evaluate the accuracy of the Pareto-SVM

model. The second set of experiments investigates the effect
of using Pareto-SVM within existing MOEAs on different
benchmark functions.

In order to evaluate its accuracy on ZDT1 and IHR1 prob-
lem, the Pareto-SVM model was optimized using specific
training data: 20000 points were generated at a given dis-
tance from the (known) nearly-optimal Pareto points, and
non-dominated sorting was applied to rank those points,
leading to fronts P0 (the closest from true Pareto), P1, . . .

Figure 3 illustrates the result distribution of Fsvm values
for training and test data in decision and objective space.
The dominated and Pareto points of training data were P80

and P100 non-dominated fronts respectively. To evaluate
the distribution of Fsvm in new regions, several fronts with
smaller indices were used. Figure 3 shows that indeed, for
all k, Fsvm(Pk) > Fsvm(Pk+20) on average.

Although, the values of Fsvm of training Pareto points lie
in a small tube constrained by ǫ, the new Pareto front may
be non-linear as we can see for IHR1 problem. This be-
havior is quite normal when we deal with difficult problems
and may lead to premature convergence if we use very selec-
tive Fsvm -based filter. Indeed, high Fsvm -based selection
pressure may accelerate the exploration of the perspective
regions of Pareto front with loss of diversity. Pareto-SVM

Filter deals with the acceleration of the convergence of the
EMOA and not with the diversity, therefore it may be in-
efficient in approximation of the µ-optimal distribution of
nearly-optimal Pareto points.

The first experiments with SVM-informed MOEAs show
that Pareto-SVM indeed allows to accelerate both S-NSGA-
2 and MO-CMA-ES on most problems. Figure 2 shows the
on-line behavior of the algorithms for ZDT1 and IHR1.

The optimal Pareto front of ZDT1 problem is linear and
lies on the boundary of the decision space. Therefore, the
dominated points often lie in the center of decision space,
while Pareto points goes toward the boundary. In this case



the solution of Pareto-SVM learning is fairly simple: the
One-Class SVM for dominated points covers the center of
decision space, and small subspace of Pareto points are cov-
ered by Regression with a given ǫ value.

SVM-informed S-NSGA-2 works nearly 1.5 times faster
with p = 2 and more than 2 times faster with p = 10 than
original version in the sense of minimization of ∆H value
and number of function evaluations. The value ∆H = 0.001
for ZDT problems corresponds to the situation when all
points are non-dominated and only the diversity of points
makes small difference of ∆H value.

The IHR problems are rotated variants of ZDT problems,
therefore they are non-separable and significantly more dif-
ficult for the MOEAs with operators which use separabil-
ity. The Pareto set of IHR1 for a given rotation matrix is
shown on Figure 3-a). The MO-CMA-ES inherits invariance
properties from the CMA-ES, therefore it is also efficient on
these rotated problems, while S-NSGA-2 can approximate
only small part of optimal Pareto front which corresponds
to the center of decision space.

The variance of results on ZDT1 problem is small because
this problem is very simple for surrogate modeling and even
if some premature convergence initially leads to sample only
a small part of the Pareto set, the algorithm quickly explores
the rest of the set thanks to separability. On rotated IHR1
problem, such quick moving is difficult, hence the higher
variance of results which corresponds to slowly moving along
the Pareto front. A high selection pressure also accelerates
this effect.

Both MO-CMA-ES and S-NSGA-2 approximate only small
part of Pareto front in first generations, but in contrast to
S-NSGA-2, MO-CMA-ES can gradually approximate the
whole front. This can be seen clearly on Figure 2-b, wit-
nessed by the flat line between 10000 and 40000 evaluations.
In this case, Pareto-SVM model helps MO-CMA-ES to
converge faster to the Pareto front, but can not give any
preference to the extreme points which in fact help to move
along the Pareto front.

This observation sustains the idea that quality indicators
should probably be taken in account during the Pareto-

SVM learning. The hypervolume contribution as an addi-
tional information may be useful, especially because the ex-
treme points will have the highest importance. Also, hyper-
volume or Epsilon indicators are very attractive for many-
objective optimization, when most points are non-dominated.

Finally, Table 1 shows the comparative results of all orig-
inal and SVM-informed MOEAs. Different target values for
∆H have been set, and the number of evaluation needed to
reach those values are reported - normalized by the smallest
value of the table (recalled on line “Best” on top). Hence
a 1 indicates the best result, and 2 for instance indicates
that this algorithm needed twice the number of evaluations
of the best algorithm to reach this value of ∆H.

In general, the results are similar in the sense that in-
creasing the selection pressure leads to the faster conver-
gence. However, increasing the number of pre-children can
also lead to premature convergence, like for MO-CMA-ES
on IHR problems with p = 10. This happens because the
filter prefers the points which are possibly better than their
parents according to Fsvmtough they might be farther from
the true Pareto front than other parents. The comparison
of the pre-children with the closest parent in decision space
(Algorithm 4, line 7) decreases this impact of this drawback,

but more efficient strategy should be used. One option could
be to compare all pre-children of all parents together, and
select µ of them according to the diversity and the closeness
to the parents in decision space. This topic will be addressed
in future work.

5. DISCUSSION AND CONCLUSION
This paper has introduced the first surrogate model that

is truly multi-objective: a single model defined on the deci-
sion space gives an aggregated perspective on the position
of any point with respect to the current Pareto set and the
dominated region. This aggregated surrogate model, ASM,
enables to guide the offspring generation and speeds up the
population move toward the true Pareto set. Built by com-
bining One-class and regression SVMs and thanks to the
kernel trick, ASM can be learned efficiently in non-linear
functional spaces. It is conjectured that this model should
be able to track non-linear Pareto sets, and the presented
results on a few benchmark functions validate this idea.

Further work should of course push further such vali-
dation, and make a thorough comparison of the proposed
Pareto-SVM approach with standard surrogate multi-objec-
tive approaches, building one surrogate model per objective.
A main limitation of such approaches is to require precise
surrogate models (in order to preserve the dominance rela-
tionship), which raises some difficulties for instance in noisy
environments. On the opposite, Pareto-SVM does not
need a high precision as long as dominated points are sep-
arated from the current Pareto set. Moreover, parameter ǫ

could be tuned to account for the amount of noise in the
objectives, in case such information is available.

Further work will investigate how to extend Pareto-SVM

by taking into account the hypervolume indicator, already
mentioned in Section 4.3. Optimizing the hypervolume does
lead to the Pareto set; building a surrogate model estimating
the hypervolume contribution therefore appears to be very
relevant. On the other hand, the hypervolume contribution
depends on all other points in the population, possibly lead-
ing to an unstable and ill-conditioned regression problem.

Another perspective for further study concerns the ASM
learning problem. This constrained optimization problem
happens to be over-constrained; in such cases, it results in
a poor generalization error of the ASM (visible e.g. from
its error on the rest of the Pareto archive). This problem
was fixed using an additional k factor, replacing ρ by kρ in
Equation3 (1). The best k value in the sense of the ASM
generalization error was determined for each problem using
one preliminary trial, leading to k = 1 for ZDT problems and
k = −1 for IHR problems. On-going work aims at under-
standing this phenomenon, and relating it to the underlying
structure of the multi-objective problem.
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Table 1: Median number of function evaluations to
reach ∆Htarget values, normalized by Best

ZDT1

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 1100 3000 5300 7900 45700

S-NSGA-2 1.6 2 2 2.3 1

S-NSGA-2 p=2 1.2 1.5 1.4 1.5 1.3
S-NSGA-2 p=10 1 1 1 1 .
MO-CMA-ES 16.5 14.5 12.3 11.2 .
MO-CMA-ES p=2 6.9 8.5 8.4 7.9 .
MO-CMA-ES p=10 6.9 9.4 9.5 10.3 .

ZDT2

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 1400 4900 6800 8600 34300

S-NSGA-2 1.8 1.5 1.8 2.3 1.2
S-NSGA-2 p=2 1.2 1 1.2 1.4 1

S-NSGA-2 p=10 1 1 1 1 .
MO-CMA-ES 14.7 9.2 9.7 10.3 .
MO-CMA-ES p=2 5.5 6 6.9 7.4 .
MO-CMA-ES p=10 5 . . . .

ZDT3

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 1300 3500 7100 10200 15400

S-NSGA-2 1.4 1.9 1.6 1.9 2.1
S-NSGA-2 p=2 1.1 1.3 1.1 1.2 1.3
S-NSGA-2 p=10 1 1 1 1 1

MO-CMA-ES 15.7 13.3 9.5 8.8 .
MO-CMA-ES p=2 6.2 9.8 9.1 7.9 .
MO-CMA-ES p=10 12.3 19.8 . . .

ZDT6

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 2900 6700 12400 25500 .

S-NSGA-2 1.8 1.8 1.6 1.3 .
S-NSGA-2 p=2 1.2 1.3 1.1 1 .
S-NSGA-2 p=10 1 1 1 1.1 .
MO-CMA-ES 6.6 6.7 5.3 3.4 .
MO-CMA-ES p=2 2.6 4.4 3.8 2.5 .
MO-CMA-ES p=10 3.7 6.4 5.2 3.4 .

IHR1

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 500 2800 36300 41800 50900

S-NSGA-2 1.6 1 . . .
S-NSGA-2 p=2 1.2 1 . . .
S-NSGA-2 p=10 1 1.1 . . .
MO-CMA-ES 8.4 4.7 1.1 1.1 1.2
MO-CMA-ES p=2 4.8 2.1 1 1 1

MO-CMA-ES p=10 9.4 4.3 1.3 1.2 .
IHR2

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 1800 10100 19900 45400 .

S-NSGA-2 1.1 2.3 4 . .
S-NSGA-2 p=2 1 3.2 3.4 . .
S-NSGA-2 p=10 1.3 4.8 3.1 . .
MO-CMA-ES 5.2 1.8 1.4 1.1 .
MO-CMA-ES p=2 2.4 1 1 1 .
MO-CMA-ES p=10 5.7 1.8 1.5 . .

IHR3

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 900 11500 36300 54200 .

S-NSGA-2 1.3 . . . .
S-NSGA-2 p=2 1 . . . .
S-NSGA-2 p=10 1 . . . .
MO-CMA-ES 8.5 1.6 1.1 1 .
MO-CMA-ES p=2 5.8 1 1 1.1 .
MO-CMA-ES p=10 11 . . . .

IHR6

∆Htarget 1 0.1 0.01 1e-3 1e-4
Best 5700 14500 . . .

S-NSGA-2 15.8 . . . .
S-NSGA-2 p=2 11.3 . . . .
S-NSGA-2 p=10 . . . . .
MO-CMA-ES 1.6 1.4 . . .
MO-CMA-ES p=2 1 1 . . .
MO-CMA-ES p=10 1.9 . . . .


