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Problem Statement
Continuous Domain Search/Optimization

The problem
Minimize a fitness function (objective function, loss
function) in continuous domain

f : S ⊆ Rn → R,

in the Black Box scenario (direct search)

f(x)x

Hypotheses
domain specific knowledge only used within the black box
gradients are not available
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Problem Statement
Continuous Domain Search/Optimization

The problem
Minimize a fitness function (objective function, loss
function) in continuous domain

f : S ⊆ Rn → R,

in the Black Box scenario (direct search)

f(x)x

Typical Examples
shape optimization (e.g. using CFD) curve fitting, airfoils

model calibration biological, physical

parameter identification controller, plants, images
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Optimization techniques

Numerical methods
Applied Mathematicians Long history

Heavily rely on theoretical convergence proofs

but
Requires regularity numerical gradient?

Numerical pitfalls

Bio-inspired algorithms

Computer Scientists mostly from AI field

Recent trendy methods but divided!

but
Computationally heavy
No convergence proof well, almost – see later
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This talk

Goal
Empirical comparison
on some artificial testbed
illustrating typical difficulties of continuous optimization
between

some bio-inspired algorithms
and some (one!) deterministic optimization method(s)

in the back-box scenario
without specific intensive parameter tuning
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The algorithms

Bio-inspired Optimization Algorithms

Darwinian Artificial Evolution
Repeat (Parent selection – Variation – Survival selection)

Preselection: Results of CEC’05 Challenge

Particle Swarm Optimization Eberhart & Kennedy, 95

Perturb particle velocity → best and local best
Update best and local best

Differential Evolution Rainer and Storn, 95

Add difference vector(s)
Uniform crossover with proba. 1− CR
Keep best of parent and offspring

Covariance Matrix Adaptation-ES Hansen & Ostermeier, 96

Gaussian mutation + Update mutation parameters
Keep λ

2 best of λ offspring
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The algorithms

BFGS

Gradient-based methods{
xt+1 = xt − ρtdt

ρt = Argminρ{F(xt − ρdt)} Line search

Choice of dt, the descent direction?

BFGS: a Quasi-Newton method

Maintain an approximation Ĥt of the Hessian of f

Solve for dt

Ĥtdt = ∇f (xt)

Compute xt+1 and update Ĥt → Ĥt+1

Converges if quadratic approximation of F holds
around the optimum

Reliable and robust on quadratic functions!
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What makes a problem hard?

Non-convexity
invalidates most of deterministic theory

Ruggedness
non-smooth, discontinuous, noisy

Multimodality presence of local optima

Dimensionality line search is ’trivial’
The magnifiscence of high dimensionality

Ill-conditioning

Non-separability
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Ruggedness

Monotonous transformation invariance

Monotonous transformations

∑
x2

i

√√∑
x2

i

(∑
x2

i
)2

Invariance
Comparison-based algorithms PSO, DE, CMA-ES, . . .
are invariant w.r.t. monotonous transformations
Gradient-based methods BFGS, . . .
are not
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Ruggedness

Multimodality

Bio-inspired algorithms
are global search algorithms
but performance on multi-modal problems depends on
population size

BFGS
has no population :-)
but starting point is crucial on multimodal functions
Replace population by multiple restarts

from uniformly distributed points
or from the perturbed final point of previous trial

the Hessian is anyway reset to In
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Ill-Conditionning

Ill-Conditionning

The Condition Number (CN) of a positive-definite matrix H is the ratio of
its largest and smallest eigenvalues

If f is quadratic, f (x) = xTHx), the CN of f is that of its Hessian H

More generally, the CN of f is that of its Hessian wherever it is defined.

Graphically, ill-conditioned means “squeezed” lines of equal function value
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Issue: The gradient does not point toward the minimum . . .
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Ill-Conditionning

A priori discussion

Bio-inspired algorithms

PSO and DE: population can point toward the minimum
CMA-ES: covariance matrix can take longer to learn

BFGS
Numerical gradient can raise numerical problems
Hessian matrix can take longer to learn
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Non-separability

Separability

Definition (Separable Problem)

A function f is separable if

arg min
(x1,...,xn)

f (x1, . . . , xn) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xn

f (. . . , xn)
)

solve n independent 1D optimization problems

Example: Additively decomposable
functions

f (x1, . . . , xn) =
n∑

i=1

fi(xi)

e.g. Rastrigin function
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Non-separability

Designing Non-Separable Problems

Rotating the coordinate system

f : x 7→ f (x) separable
f : x 7→ f (Rx) non-separable R rotation matrix

Hansen, Ostermeier, & Gawelczyk, 95; Salomon, 96
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Non-separability

Rotational invariance

Bio-inspired algorithms

PSO: is not rotational invariant see next slide

DE: Crossover is not rotational invariant
Rotational invariance iff CR = 1

CMA-ES: is rotational invariant

BFGS
Numerical gradient can raise numerical problems

Added to ill-conditionning effects
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Non-separability

PSO and rotational invariance

. A sample swarm Same swarm, rotated

V j
i (t+1) = V j

i (t)+ c1 U j
i (0, 1)(pj

i − xj
i(t))︸ ︷︷ ︸

approach the "previous" best

+ c2 Ũ j
i (0, 1)(gj

i − xj
i(t))︸ ︷︷ ︸

approach the "global" best
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Non-separability

PSO and rotational invariance

. A sample swarm Same swarm, rotated
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i (0, 1)(gj

i − xj
i(t))︸ ︷︷ ︸

approach the "global" best



Optimization Problem difficulties Implementations Experiments and results Conclusion

1 Continuous optimization and stochastic search

2 Problem difficulties

3 Implementations and parameter settings
Algorithm implementations
Tuning DE

4 Experiments and results

5 Conclusion



Optimization Problem difficulties Implementations Experiments and results Conclusion

Algorithm implementations

The algorithms

’Default’ implementations
DE: Matlab code from
http://www.icsi.berkeley.edu/̃ storn/code.html

Not really giving default parameters

PSO: Std PSO 2006, C code from
http://www.particleswarm.info/Standard_PSO_2006.c

Remark: C code 6= Matlab code here

CMA-ES: Matlab code from
http://www.bionik.tu-berlin.de/user/niko/
BFGS: Matlab built-in implementation widely blindely used
using numerical gradient
+ multiple restarts local or global
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Tuning DE

The problem with DE

Control parameters

NP, F, CR, Stopping Criterion . . .

and strategy to generate difference vector

Perturb random or best
Number of difference vectors 1 or 2

Slightly mutate perturbation
All of the above :-)

from public Matlab code

1 DE/rand/1 the basic algorithm
2 DE/local-to-best/1
3 DE/best/1 with jitter
4 DE/rand/1 with per-vector-dither F = rand(F, 1)
5 DE/rand/1 with global-dither ∗

6 either-or-algorithm
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Tuning DE

DE tuning

Experimental conditions

Rotated ellipsoid, cond.
number = 104

Dimension = 10

Stop when felli < 10−6

Design of Experiments

6 variants

F = {0.3, 0.5, 0.7, 0.9}
CR = {0.3, 0.5, 0.7, 0.9}
NP = {3, 5, 10} × dim

3 runs per setting :-(

864 runs
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Tuning DE

DE Experimental Setting and Discussion

Couldn’t decide among 2 variants:

DE2
Strategy 2
F = 0.8

CR = 1.0

NP = 10× dim

DE5
Strategy 5
F = 0.4

CR = 1.0

NP = 10× dim

Discussion
DE2 very close to ’recommended’ parameters
Except CR = 0.9, but
Rotational invariance iff CR = 1 ≡ no crossover
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Experimental conditions

The parameters

Common Parameters
Default parameters except for DE

MaxEval = 107

Fitness tolerance = 10−9

Domain: [−20, 80]d Optimum not at the center

21 runs in each case except BFGS when little success

Population size

Standard values: for n = 10, 20, 40

PSO: 10 + floor(2
√

n) 16, 18, 22

CMA-ES: 4 + floor(3 ln n) 10, 12, 15

DE: 10 ∗ n 100, 200, 400
To be increased for multi-modal functions e.g. Rastrigin
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Experimental conditions

The testbed

Test functions
Ellipsoid function quadratic

both separable and rotated
for different condition number

Rosenbrock function almost unimodal
both original (non-separable) and rotated

for different condition number

Rastrigin function highly multi-modal
both separable and rotated

DiffPow convex, but ’flat’√√
Ellipsoid and

√√
DiffPow unimodal, but non-convex
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Outputs and Performance measures

Comparisons
from CEC 2005 challenge on continuous optimization

Goals
Find the best possible fitness value
At minimal cost Number of function evaluations

Statistical Measures
Must take into account both precision and cost
Usual averages and standard deviations of fitness values
irrelevant to assess precision
Issue: need to impose for obvious practical reasons

precision threshold on fitness
maximum number of iterations
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Outputs and Performance measures

SP1 measure

SP1 – Success Performance “one”
Average required effort for success

SP1 =
avg # evaluations

proportion successful runs

Effort to reach a given precision on the fitness (success)
Same number of total fitness evaluations to allow
comparisons
Estimated after a fixed number of runs

High (unknown) variance in the case of few successes

Could also be estimated after a fixed number of successes
Would allow to control the variance

A single value, insufficient alone anyway
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Outputs and Performance measures

Cumulative distributions

Cope with both fitness threshold and bound on # evaluations
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Outputs and Performance measures

Dynamic Behaviors

Median, best, worse, 25-, 75-percentiles
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All runs of 2 settings Zoom on the best setting

Comparing DE2 and DE5 on Rosenbrock(1000), dim=20
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Results

Ellipsoid

felli(x) =
∑n

i=1 10α i−1
n−1 x2

i = xTHellix

Helli =

0B@ 1 0 · · ·
. . .

· · · 0 10α

1CA
convex, separable
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cond(Helli) = cond(Hrot
elli) = 10α

α = 1, . . . , 10
α = 6 ≡ axis ratio of 103, typical for real-world problem
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Results

Separable Ellipsoid function

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10
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Results

Separable Ellipsoid function

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 20
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Results

Separable Ellipsoid function

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40
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Results

Rotated Ellipsoid function

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10
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Results

Rotated Ellipsoid function

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 20
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Results

Rotated Ellipsoid function

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40
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Results

Separable Ellipsoid function

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40
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Results

Ellipsoid: Discussion

Bio-inspired algorithms

Separable case: PSO and DE insensitive to conditionning
. . . but PSO rapidly fails to solve the rotated version
. . . while CMA-ES and DE (CR = 1) are rotation invariant
DE scales poorly with dimension
d2.5 compared to d1.5 for PSO and CMA-ES and BFGS

. . . vs BFGS
BFGS fails to solve ill-conditionned cases
Matlab message: Roundoff error is stalling convergence

Line search couldn’t find an acceptable point in the current search direction

CMA-ES only 7 times slower
on quadratic functions!
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Results

Rosenbrock function (Banana)

frosen(x) =
∑n−1

i=1

[
(1− xi)2 + 10α(xi+1 − x2

i )
2
]

Non-separable, but . . .
also ran rotated version

α = 2, classical Rosenbrock function
α = 1, . . . , 108

Multi-modal for dimension > 3 −3 −2 −1 0 1 2 3
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Results

Rosenbrock functions

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10
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Results

Rosenbrock functions

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 20
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Results

Rosenbrock functions

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40
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Results

Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS – α 1

3

10
4

10
5

10
6

10
7

10

0

10

20

30

40

50

60

70

80

90

100

Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 1, default size , eval max 10000000

evaluation number

%
ru

n

−10

10
−9

10

0

10

20

30

40

50

60

70

80

90

100

Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 1, default size , eval max 10000000

fitness value

%
ru

n

% success
vs

# eval to reach success threshold (= 10−9)

% success
vs

fitness value reached before max eval (= 107)



Optimization Problem difficulties Implementations Experiments and results Conclusion

Results

Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS – α 10
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Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS – α 100

4

10
5

10
6

10
7

10

0

10

20

30

40

50

60

70

80

90

100

Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 100, default size , eval max 10000000
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Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 100, default size , eval max 10000000

fitness value
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# eval to reach success threshold (= 10−9)
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vs

fitness value reached before max eval (= 107)
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Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS – α 300
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Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 300, default size , eval max 10000000
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Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 300, default size , eval max 10000000

fitness value

%
ru

n

% success
vs

# eval to reach success threshold (= 10−9)
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Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS – α 1000
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Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 1000, default size , eval max 10000000
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Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 1000, default size , eval max 10000000

fitness value
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Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS – α 10000
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Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 10000, default size , eval max 10000000
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Rosenbrock : 21 trials, dimension 40, tol 1.000E−09, alpha 10000, default size , eval max 10000000
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Rosenbrock: Discussion

Bio-inspired algorithms

PSO sensitive to non-separability
DE still scales badly with dimension

. . . vs BFGS
Numerical premature convergence on ill-condition
problems
Both local and global restarts improve the results
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Rastrigin function

frast(x) = 10n +
∑n

i=1 x2
i − 10 cos(2πxi)

separable
multi-modal
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Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 10
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Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 16
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Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 30
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Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 100
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Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 300
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Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 1000
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Rastrigin: dimension 10, NP = 1000
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Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 10
Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 10, default size , eval max 10000000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 10, default size , eval max 10000000
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Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 16
Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 16, default size , eval max 10000000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 16, default size , eval max 10000000
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Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 30
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 30, default size , eval max 10000000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 30, default size , eval max 10000000
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Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 100
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 100, default size , eval max 10000000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 100, default size , eval max 10000000
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Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 300
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 300, default size , eval max 10000000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 300, default size , eval max 10000000
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Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 1000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 1000, default size , eval max 10000000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 1000, default size , eval max 10000000
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Rastrigin: Discussion

Bio-inspired algorithms
Increasing population size improves the results

Optimal size is algorithm-dependent

CMA-ES and PSO solve separable case
PSO about 100 times slower

Only CMA-ES solves the rotated Rastrigin reliably
requires popSize ≥ 300

. . . vs BFGS
Gets stuck in local optima
Whatever the restart strategies

No numerical premature convergence
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Away from “quadraticity“

Non-linear scaling invariance

Comparison-based algorithms are insensitive to
monotonous transformations True for DE, PSO and all ESs

BFGS is not and convergence results do depend on convexity

Other test functions
Simple transformation of ellispoid

fSSE(x) =
√√

felli(x)

The DiffPow function and
√√

DiffPow

fDiffPow(x) =
∑

(|xi|2+(10∗i))
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DiffPow – SP1 vs Fitness Values

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10
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PSO NP=10 sqrt(diffPow)
CMAES sqrt(diffPow)
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Sqrt and DiffPow: Discussion

Bio-inspired algorithms
Invariant as expected!

PSO performs best DiffPow is separable

. . . vs BFGS

Worse on
√√

Ellipsoid than on Ellispoid

Better on
√√

DiffPow than on DiffPow
’closer’ to quadraticity?

Premature numerical convergence for high CN . . .
fixed by the ”local restart“ strategy
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1 Continuous optimization and stochastic search

2 Problem difficulties

3 Implementations and parameter settings

4 Experiments and results
Experimental conditions
Outputs and Performance measures
Results

5 Conclusion
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Further work

What is missing?
The algorithms

Other deterministic methods e.g. Scilab procedures
PCX crossover operator Specific Evolution Engine

The testbed
Noisy functions
Constrained functions

The statistics
Confidence bounds for SP1 and other precision/cost
measures

Real-world functions
Which ones ???
Do complete experiments
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Summary

Bio-inspired algorithms

All are monotonous-transformation invariant
PSO very good . . . only on separable (easy) functions
DE poorly scales up with the dimension

Sensitive to non-separability when CR < 1

CMA-ES is a clear best choice
Redo experiments with parameter-less restart version

BFGS
Optimal choice for quasi-quadratic functions
but can suffer from numerical premature convergence for
high condition number
Even with restart procedures, fails on multimodal problem

dim 10 only here

All codes and results available at http://tao.lri.fr When the paper
is written :-)
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The coming of age

The message to our Applied Maths colleagues

Bio-inspired vs BFGS
CMA-ES only 7 times slower than BFGS

on (quasi-)quadratic functions.
but

is less hindered by high conditionning,
is monotonous-transformation invariant,
is a global search method!

Moreover,
Theoretical results are catching up

Linear convergence for SA-ES Auger, 05
with bound on the CV speed
On-going work for CMA-ES
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