Bio-inspired Continuous Optimization: The Coming of Age

Anne Auger Nikolaus Hansen Nikolas Mauny Raymond Ros Marc Schoenauer

TAO Team, INRIA Futurs, FRANCE http://tao.lri.fr First.Last@inria.fr

CEC 2007, Singapore, September 27., 2007

Problem Statement Continuous Domain Search/Optimization

The problem

Optimization

 Minimize a fitness function (objective function, loss function) in continuous domain

$$f: \mathcal{S} \subseteq \mathbb{R}^n \to \mathbb{R}$$
,

in the Black Box scenario (direct search)

Hypotheses

- domain specific knowledge only used within the black box
- gradients are not available

The problem

Optimization

 Minimize a fitness function (objective function, loss) function) in continuous domain

$$f: \mathcal{S} \subseteq \mathbb{R}^n \to \mathbb{R},$$

in the Black Box scenario (direct search)

Typical Examples

shape optimization (e.g. using CFD)

curve fitting, airfoils biological, physical

model calibration

parameter identification

controller, plants, images

0000000

Conclusion
o ooo

Optimization techniques

Numerical methods

- Applied Mathematicians
- Heavily rely on theoretical convergence proofs

but

Optimization

- Requires regularity
- Numerical pitfalls

numerical gradient?

Long history

Bio-inspired algorithms

- Computer Scientists
- Recent trendy methods

mostly from AI field

but divided!

but

- Computationally heavy
- No convergence proof

well, almost - see later

This talk

Goal

- Empirical comparison
- on some artificial testbed
- illustrating typical difficulties of continuous optimization
- between
 - some bio-inspired algorithms
 - and some (one!) deterministic optimization method(s)
- in the back-box scenario

without specific intensive parameter tuning

- Problem difficulties
- Ruggedness
- **III-Conditionning**
- Non-separability
- Implementations and parameter settings
 - Algorithm implementations
 - Tuning DE
- Experiments and results
 - Experimental conditions
 - Outputs and Performance measures
 - Results
- Conclusion
 - Further work
 - Conclusions

The algorithms

Bio-inspired Optimization Algorithms

Darwinian Artificial Evolution

Repeat (Parent selection – Variation – Survival selection)

Preselection: Results of CEC'05 Challenge

Particle Swarm Optimization

Eberhart & Kennedy, 95

- Perturb particle velocity → best and local best
- Update best and local best

Differential Evolution

Rainer and Storn, 95

with proba. 1 - CR

- Add difference vector(s)
- Uniform crossover

Keep best of parent and offspring

- Covariance Matrix Adaptation-ES Hansen & Ostermeier, 96
 - Gaussian mutation + Update mutation parameters
 - Keep $\frac{\lambda}{2}$ best of λ offspring

BFGS

Gradient-based methods

$$\left\{ \begin{array}{l} x_{t+1} = x_t - \rho_t d_t \\ \rho_t = Argmin_\rho \{\mathcal{F}(x_t - \rho d_t)\} \end{array} \right. \label{eq:search}$$
 Line search

Choice of d_t , the descent direction?

BFGS: a Quasi-Newton method

- Maintain an approximation \hat{H}_t of the Hessian of f
- Solve for d_t

$$\hat{H}_t d_t = \nabla f(x_t)$$

- Compute x_{t+1} and update $\hat{H}_t \rightarrow \hat{H}_{t+1}$
- Converges if quadratic approximation of F holds around the optimum
- Reliable and robust

on quadratic functions!

- Problem difficulties
 - Ruggedness
 - III-Conditionning
 - Non-separability

What makes a problem hard?

Optimization

- Non-convexity
 invalidates most of deterministic theory
 - Ruggedness non-smooth, discontinuous, noisy
 - Multimodality presence of local optima
- Dimensionality line search is 'trivial'
 The magnifiscence of high dimensionality
- Ill-conditioning
- Non-separability

Monotonous transformation invariance

Invariance

- Comparison-based algorithms PSO, DE, CMA-ES, ... are invariant w.r.t. monotonous transformations
- Gradient-based methods are not

BFGS, ...

Multimodality

Bio-inspired algorithms

- are global search algorithms
- but performance on multi-modal problems depends on population size

BFGS

- has no population :-)
- but starting point is crucial
 on multimodal functions
- Replace population by multiple restarts
 - from uniformly distributed points
 - or from the perturbed final point of previous trial

the Hessian is anyway reset to I_n

III-Conditionning

Optimization

III-Conditionning

- The Condition Number (CN) of a positive-definite matrix H is the ratio of its largest and smallest eigenvalues
- If f is quadratic, $f(x) = x^T H x$, the CN of f is that of its Hessian H
- More generally, the CN of f is that of its Hessian wherever it is defined.

Graphically, ill-conditioned means "squeezed" lines of equal function value

Issue: The gradient does not point toward the minimum ...

A priori discussion

Bio-inspired algorithms

- PSO and DE: population can point toward the minimum
- CMA-ES: covariance matrix can take longer to learn

BFGS

- Numerical gradient can raise numerical problems
- Hessian matrix can take longer to learn

Separability

Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

solve *n* independent 1D optimization problems

Example: Additively decomposable functions

$$f(x_1,\ldots,x_n)=\sum_{i=1}^n f_i(x_i)$$

e.g. Rastrigin function

Non-separability

Optimization

Designing Non-Separable Problems

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $f: x \mapsto f(\mathbf{R}x)$ non-separable

R rotation matrix

Hansen, Ostermeier, & Gawelczyk, 95; Salomon, 96

Non-separability

Rotational invariance

Bio-inspired algorithms

PSO: is not rotational invariant

see next slide

DE: Crossover is not rotational invariant

Rotational invariance iff CR = 1

CMA-ES: is rotational invariant

BFGS

 Numerical gradient can raise numerical problems Added to ill-conditionning effects

PSO and rotational invariance

A sample swarm

Same swarm, rotated

$$V_i^j(t+1) = V_i^j(t) + \underbrace{c_1 \, \mathcal{U}_i^j(0,1) (p_i^j - x_i^j(t))}_{\text{approach the "previous" best}} + \underbrace{c_2 \, \tilde{\mathcal{U}}_i^j(0,1) (g_i^j - x_i^j(t))}_{\text{approach the "global" best}}$$

PSO and rotational invariance

Same swarm, rotated

$$V_i^j(t+1) = V_i^j(t) + \underbrace{c_1 \, \mathcal{U}_i^j(0,1) (p_i^j - x_i^j(t))}_{\text{approach the "previous" best}} + \underbrace{c_2 \, \tilde{\mathcal{U}}_i^j(0,1) (g_i^j - x_i^j(t))}_{\text{approach the "global" best}}$$

PSO and rotational invariance

$$V_i^j(t+1) = V_i^j(t) + \underbrace{c_1 \, \mathcal{U}_i^j(0,1) (p_i^j - x_i^j(t))}_{\text{approach the "previous" best}} + \underbrace{c_2 \, \tilde{\mathcal{U}}_i^j(0,1) (g_i^j - x_i^j(t))}_{\text{approach the "global" best}}$$

PSO and rotational invariance

$$V_i^j(t+1) = V_i^j(t) + \underbrace{c_1 \, \mathcal{U}_i^j(0,1) (p_i^j - x_i^j(t))}_{\text{approach the "previous" best}} + \underbrace{c_2 \, \tilde{\mathcal{U}}_i^j(0,1) (g_i^j - x_i^j(t))}_{\text{approach the "global" best}}$$

- Problem difficulties
- Implementations and parameter settings
 - Algorithm implementations
 - Tuning DE
- Experiments and results
- Conclusion

The algorithms

'Default' implementations

- DE: Matlab code from http://www.icsi.berkeley.edu/~storn/code.html Not really giving default parameters
- PSO: Std PSO 2006, C code from http://www.particleswarm.info/Standard PSO 2006.c Remark: C code \neq Matlab code here
- CMA-ES: Matlab code from http://www.bionik.tu-berlin.de/user/niko/
- BFGS: Matlab built-in implementation widely blindely used using numerical gradient + multiple restarts local or global

Tuning DE

The problem with DE

Control parameters

- NP, F, CR, Stopping Criterion . . .
- and strategy to generate difference vector
 - Perturb random or best
 - Number of difference vectors
 - Slightly mutate perturbation
 - All of the above :-)

from public Matlab code

- DE/rand/1
- DE/local-to-best/1
- OE/best/1 with jitter
- DE/rand/1 with per-vector-dither
- DE/rand/1 with global-dither *
- either-or-algorithm

1 or 2

the basic algorithm

F = rand(F, 1)

DE tuning

Experimental conditions

- Rotated ellipsoid, cond. number = 10^4
- Dimension = 10
- Stop when $f_{elli} < 10^{-6}$

Design of Experiments

- 6 variants
- $F = \{0.3, 0.5, 0.7, 0.9\}$
- $CR = \{0.3, 0.5, 0.7, 0.9\}$
- $NP = \{3, 5, 10\} \times dim$
- 3 runs per setting :-(

864 runs

Poor DOE, yet totally unrealistic for RWA

DE Experimental Setting and Discussion

Couldn't decide among 2 variants:

DE₂

- Strategy 2
- F = 0.8
- CR = 1.0
- \bullet NP = 10 × dim

DE₅

- Strategy 5
- F = 0.4
- CR = 1.0
- \bullet NP = 10 × dim

Discussion

- DE2 very close to 'recommended' parameters
- Except CR = 0.9, but
- Rotational invariance iff CR = 1

- 1 Continuous optimization and stochastic search
- 2 Problem difficulties
- Implementations and parameter settings
- Experiments and results
 - Experimental conditions
 - Outputs and Performance measures
 - Results
- 5 Conclusion

The parameters

Common Parameters

- Default parameters
- MaxEval = 10^7
- Fitness tolerance = 10^{-9}
- Domain: $[-20, 80]^d$
- 21 runs in each case

except for DE

Optimum not at the center

except BFGS when little success

Population size

Standard values:

for n = 10, 20, 40

• PSO: $10 + floor(2\sqrt{n})$ 16, 18, 22

• CMA-ES: $4 + floor(3 \ln n)$ 10, 12, 15

• DE: 10 * n 100, 200, 400

To be increased for multi-modal functions

The testbed

Optimization

Test functions

Ellipsoid function

both separable and rotated for different condition number

Rosenbrock function

both original (non-separable) and rotated for different condition number

Rastrigin function

highly multi-modal

both separable and rotated

convex, but 'flat'

- DiffPow
- $\sqrt{\mathsf{Ellipsoid}}$ and $\sqrt{\sqrt{\mathsf{DiffPow}}}$

unimodal, but non-convex

Outputs and Performance measures

Comparisons

from CEC 2005 challenge on continuous optimization

Goals

- Find the best possible fitness value
- At minimal cost
 Number of function evaluations

Statistical Measures

- Must take into account both precision and cost
- Usual averages and standard deviations of fitness values irrelevant to assess precision
- Issue: need to impose for obvious practical reasons
 - precision threshold on fitness
 - maximum number of iterations

SP1 measure

Optimization

SP1 - Success Performance "one"

Average required effort for success

$$SP1 = \frac{\text{avg \# evaluations}}{\text{proportion successful runs}}$$

- Effort to reach a given precision on the fitness (success)
- Same number of total fitness evaluations to allow comparisons
- Estimated after a fixed number of runs High (unknown) variance in the case of few successes
- Could also be estimated after a fixed number of successes Would allow to control the variance

Cumulative distributions

Cope with both fitness threshold and bound on # evaluations

Rosenbrock function, dim 40, cond. 1000

Dynamic Behaviors

Median, best, worse, 25-, 75-percentiles

Comparing DE2 and DE5 on Rosenbrock(1000), dim=20

Ellipsoid

Optimization

$$f_{\text{elli}}(x) = \sum_{i=1}^{n} 10^{\alpha \frac{i-1}{n-1}} x_i^2 = x^T H_{\text{elli}} x$$

$$H_{\text{elli}} = \begin{pmatrix} 1 & 0 & \cdots \\ & \ddots & \\ \cdots & 0 & 10^{\alpha} \end{pmatrix}$$

$$\text{convex, separable}$$

$$\begin{array}{c} \bullet \ f_{\rm elli}^{\rm rot}(x) = f_{\rm elli}({\color{red}R}x) = x^T H_{\rm elli}^{\rm rot} x \\ {\color{red}R} \ {\rm random\ rotation} \\ {\color{red}H_{\rm elli}^{\rm rot} = {\color{red}R}^T H_{\rm elli} {\color{red}R}} \\ {\color{red}{\rm convex,\ non-separable}} \end{array}$$

 $\alpha = 1, \ldots, 10$

 $\alpha = 6 \equiv$ axis ratio of 10^3 , typical for real-world problem

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10

Ellipsoid dimension 10, 21 trials, tolerance 1e-09, eval max 1e+07

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 20

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40

Ellipsoid dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10

Ellipsoid dimension 10, 21 trials, tolerance 1e-09, eval max 1e+07

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 20

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40

Ellipsoid dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40

Ellipsoid dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

Ellipsoid: Discussion

Bio-inspired algorithms

- Separable case: PSO and DE insensitive to conditionning
- ... but PSO rapidly fails to solve the rotated version
- ullet ... while CMA-ES and DE (CR = 1) are rotation invariant
- DE scales poorly with dimension $d^{2.5}$ compared to $d^{1.5}$ for PSO and CMA-ES and BFGS

... vs BFGS

BFGS fails to solve ill-conditionned cases
 Matlab message:

Roundoff error is stalling convergence

Line search couldn't find an acceptable point in the current search direction

CMA-ES only 7 times slower

on quadratic functions!

Rosenbrock function (Banana)

$$f_{\text{rosen}}(x) = \sum_{i=1}^{n-1} \left[(1-x_i)^2 + 10^{\alpha} (x_{i+1} - x_i^2)^2 \right]$$

- Non-separable, but . . . also ran rotated version
- \bullet $\alpha = 2$, classical Rosenbrock function

$$\alpha = 1, \dots, 10^8$$

Multi-modal for dimension > 3

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10

dimension 10, 21 trials, tolerance 1e-09, eval max 1e+07

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 20

dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

Rosenbrock functions

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 40

dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

Optimization

Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and **BFGS** – α 1

% success # eval to reach success threshold (= 10^{-9})

PSO, DE2, DE5, CMA-ES, and **BFGS** – α 10

 $$\rm ws$ success $$\rm vs$$ # eval to reach success threshold (= $10^{-9})$

PSO, DE2, DE5, CMA-ES, and **BFGS** – α 100

 $$\rm ws$ success $$\rm vs$$ # eval to reach success threshold (= $10^{-9})$

Rosenbrock function – Dim 40 – Cumulative distributions

PSO, **DE2**, **DE5**, **CMA-ES**, and **BFGS** – α 300

% success # eval to reach success threshold (= 10^{-9})

Optimization

Rosenbrock function – Dim 40 – Cumulative distributions

PSO, **DE2**, **DE5**, **CMA-ES**, and **BFGS** – α 1000

% success # eval to reach success threshold (= 10^{-9})

Optimization

Rosenbrock function – Dim 40 – Cumulative distributions

PSO, DE2, DE5, CMA-ES, and **BFGS** – α 10000

% success # eval to reach success threshold (= 10^{-9})

Rosenbrock: Discussion

Bio-inspired algorithms

- PSO sensitive to non-separability
- DE still scales badly with dimension

... vs BFGS

- Numerical premature convergence on ill-condition problems
- Both local and global restarts improve the results

Optimization

Rastrigin function

$$f_{\text{rast}}(x) = 10n + \sum_{i=1}^{n} x_i^2 - 10 \cos(2\pi x_i)$$

- separable
- multi-modal

$$f_{\rm rast}^{\rm rot}(x) = f_{\rm rast}(\mathbf{R}x)$$

- R random rotation
- non-separable
- multimodal

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 10

Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 16

Function Value To Reach

Results

Rastrigin function - SP1 vs fitness value

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 30

Function Value To Reach

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 100

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 300

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 1000

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 10

Rastrigin: 21 trials, dimension 10, tol 1.000E-09, alpha 10, default size, eval max 10000000

Conclusion

evaluation number

% success # eval to reach success threshold (= 10^{-9})

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 16

Rastrigin: 21 trials, dimension 10, tol 1.000E-09, alpha 16, default size, eval max 10000000

Conclusion

evaluation number

\$%\$ success \$\$vs\$ # eval to reach success threshold (= 10^{-9})

Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 30

% success # eval to reach success threshold (= 10^{-9})

Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 100

% success # eval to reach success threshold (= 10^{-9})

Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 300

% success # eval to reach success threshold (= 10^{-9})

Rastrigin function - Cumulative distributions

PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 1000

% success # eval to reach success threshold (= 10^{-9})

Rastrigin: Discussion

Bio-inspired algorithms

- Increasing population size improves the results Optimal size is algorithm-dependent
- CMA-ES and PSO solve separable case

PSO about 100 times slower

Only CMA-ES solves the rotated Rastrigin reliably

requires popSize > 300

...vs BFGS

- Gets stuck in local optima
- Whatever the restart strategies

No numerical premature convergence

Away from "quadraticity"

Non-linear scaling invariance

- Comparison-based algorithms are insensitive to monotonous transformations True for DE, PSO and all ESs
- BFGS is not and convergence results do depend on convexity

Other test functions

Simple transformation of ellispoid

$$f_{\text{SSE}}(x) = \sqrt{\sqrt{f_{\text{elli}}(x)}}$$

The DiffPow function

and
$$\sqrt{\sqrt{DiffPow}}$$

$$f_{\text{DiffPow}}(x) = \sum (|x_i|^{2+(10*i)})$$

PSO, DE2, DE5, CMA-ES, and BFGS - Dimension 10

Sum of diff. powers: dimension 10

Sqrt and DiffPow: Discussion

Bio-inspired algorithms

- Invariant
- PSO performs best

as expected!

DiffPow is separable

...vs BFGS

- ullet Worse on $\sqrt{\sqrt{ ext{Ellipsoid}}}$ than on Ellispoid
- Better on $\sqrt{\sqrt{\text{DiffPow}}}$ than on DiffPow

'closer' to quadraticity?

 Premature numerical convergence for high CN . . . fixed by the "local restart" strategy

- 1 Continuous optimization and stochastic search
- Problem difficulties
- Implementations and parameter settings
- Experiments and results
 - Experimental conditions
 - Outputs and Performance measures
 - Results
- Conclusion

Further work

Optimization

What is missing?

- The algorithms
 - Other deterministic methods
 - PCX crossover operator

e.g. Scilab procedures Specific Evolution Engine

- The testbed
 - Noisy functions
 - Constrained functions
- The statistics
 - Confidence bounds for SP1 and other precision/cost measures
- Real-world functions
 - Which ones ???
 - Do complete experiments

Bio-inspired algorithms

- All are monotonous-transformation invariant
- PSO very good . . . only on separable (easy) functions
- DE poorly scales up with the dimension

Sensitive to non-separability when CR < 1

CMA-ES is a clear best choice

Redo experiments with parameter-less restart version

BFGS

- Optimal choice for quasi-quadratic functions
- but can suffer from numerical premature convergence for high condition number
- Even with restart procedures, fails on multimodal problem dim 10 only here

The coming of age

The message to our Applied Maths colleagues

Bio-inspired vs BFGS

CMA-ES only 7 times slower than BFGS

but

on (quasi-)quadratic functions.

- is less hindered by high conditionning,
- is monotonous-transformation invariant.
- is a global search method!

Moreover.

- Theoretical results are catching up
 - Linear convergence for SA-ES with bound on the CV speed
 - On-going work for CMA-ES

Auger, 05