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Résumé de la thése

Un probléme d’optimisation non linéaire continu peut étre formulé comme suit : Etant
donné une fonction f : R? — R, appelée fonction objectif, le but est de chercher, dans un
espace contenant une ou plusieurs parties ouvertes de RY, le vecteur (soit d paramétres)
qui maximise (ou minimise) la fonction f.

Dans cette thése, on s’intéresse a ’optimisation non linéaire continue par des méthodes
appelées Stratégies d’Evolution (SE), algorithmes évolutionnaires dédiés a I'optimisation
sur un espace continu. Les SE ont montré leur efficacité pratique pour la résolution de
problémes d’optimisation réels. Cependant les SE, comme I’ensemble des algorithmes
évolutionnaires, ne sont pas basés sur les premiers principes, mais adaptés d’'une imita-
tion des principes de I’évolution naturelle, la survie des individus les plus adaptés. Dans
une premiére partie de cette thése, on étudie théoriquement et numériquement la con-
vergence des SE, en particulier dans le cadre de l'optimisation des fonctions objectifs
bruitées. On montre par exemple que des niveaux assez élevés du bruit peuvent entrainer
la non-convergence de 1’algorithme. Les expressions des vitesses de convergence sont en-
suite établies théoriquement. Les cas de convergence et de divergence sont distingués
théoriquement et numériquement.

La seconde partie traite une application & un probléme réel en génie chimique, I'identification
de paramétres pour le systéme de la chromatographie analytique. L’approche évolution-
naire est comparée a une méthode déterministe basée sur le calcul du gradient numérique.
L’approche évolutionnaire est plus robuste sur ce cas d’étude spécifique.
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Introduction (In French)

Les problémes d’optimisation sont trés fréquents dans I'industrie comme dans différents
domaines de la recherche. L’optimisation non linéaire continue s’intéresse aux problémes
ou la fonction a optimiser, appelée fonction objectif, ou fitness, est définie sur un espace
d’état continu de dimension d, ¢.a.d., f : R? — R, et n’est pas linéaire. Le but est donc,
de chercher d paramétres réels qui maximisent (ou minimisent) une fonction f.

Pour résoudre les problémes d’optimisation, plusieurs méthodes ont été développées.
La plupart de ces méthodes sont itératives, et générent, a I'itération n, une (ou plusieurs)
nouvelle(s) solution(s) soit de maniére déterministe, soit de maniére stochastique en échan-
tillonnant une distribution de probabilité. Ces méthodes peuvent étre donc classées en
deux grandes familles : méthodes de recherche déterministe et méthodes de recherche
stochastique.

Dans les problémes réels d’optimisation, le processus de recherche de la (ou des) so-
lution(s) optimale(s) peut s’avérer difficile. Les fonctions objectifs peuvent étre non con-
vexes, irréguliéres, bruitées, multimodales, mal conditionnées, non séparables ... Les con-
traintes sur ’espace de recherche peuvent aussi rendre la recherche encore plus difficile.
Enfin, la difficulté du probléme d’optimisation croit également avec la dimension d de
I’espace de recherche.

Certaines études empiriques [122, 55, 82, 106, 9] comparant les méthodes d’optimisation
et en particulier les méthodes de recherche stochastique aux méthodes de recherche déter-
ministe donnent un avantage aux méthodes de recherche stochastique quand les fonctions
objectifs sont de plus en plus complexes a optimiser, i.e., quand les fonctions objectifs sont
plutét non-convexes, multi-modales, trés mal conditionnées, non séparables, ou bruitées.
En particulier, dans le cadre de 'optimisation de fonctions bruitées, qui constitue la ma-
jeure partie de cette thése, les études empiriques [106, 9] montrent que les méthodes de
recherche stochastique appelées Stratégies d’Evolution (SE) sont plus robustes face au
bruit que les méthodes déterministes.

Les Stratégies d’Evolution sont des algorithmes évolutionnaires dédiés a I'optimisation
continue. Ils ont montré leur efficacité pratique pour la résolution de problémes d’optimisation
réels [51, 43, 22, 104, 142]. Cependant les SE, comme I'’ensemble des algorithmes évolution-
naires, ne sont pas basés sur les premiers principes, mais sont le fruit d’'une imitation des
principes de I’évolution naturelle (la survie et la reproduction des individus les plus adap-
tés). La méthode “état de I’art” en optimisation évolutionnaire continue aujourd’hui est la
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méthode CMA-ES, ou Covariance Matriz Adaptation-Evolution Strategy, introduite par
N. Hansen et A. Ostermeier au milieu des années 90 |61, 59, 56|. Des études empiriques
ont montré que CMA-ES est efficace et robuste face aux problémes non séparables et
mal conditionnés [61, 59, 82|, mais est également efficace pour résoudre les problémes
multimodaux [56, 82|. D’autres études empiriques [61, 56, 55, 62| comparant CMA-ES
a d’autres méthodes populaires de recherche stochastique ainsi qu’a la méthode BFGS,
méthode de recherche déterministe trés utilisée, ont montré une grande compétitivité de

CMA-ES.

Dans cette thése, on s’intéresse a 'optimisation non linéaire continue par Stratégies
d’Evolution. La thése comprend deux parties: la premiére est consacrée a des études
théoriques et numériques concernant la convergence de Stratégies d’Evolution plus simples
que CMA-ES, algorithmes qui sont les seuls & avoir été étudiés d’un point de vue théorique
pour le moment. Dans cette partie, on s’intéresse en particulier a 'optimisation des
fonctions quadratiques bruitées. La seconde partie traite une application & un probléme
réel en génie chimique, l'identification des paramétres de la loi de comportement (ou
fonction isotherme) pour le systéme de la chromatographie analytique.

1 Etude théorique et numérique

1.1 Etat de ’art et contexte

Les premiéres études théoriques des Stratégies d’Evolution ont été des études asympto-
tiques par rapport a la dimension de ’espace de recherche (d — +o0) [25, 114]. Les
premiéres études théoriques établies en dimension finie sont celles de Francois et Bien-
venue [27] et de Auger [13, 17]. Il est ainsi aujourd’hui démontré |13, 17, 27| que la
convergence de Stratégies d’Evolution adaptant leur pas de recherche a chaque itération
est (log-)linéaire (i.e. le logarithme de la distance séparant la solution de 'optimum tend
linéairement vers —oo en fonction du nombre d’itérations). Ce résultat est valable pour
toute fonction qui s’écrit sous la forme g(||z||?) ou g est une fonction strictement crois-
sante. Pour des classes de fonctions bruitées (que I'on écrira sous la forme ||z||*(1 + N)
ou ||z||(1 +N), N étant une variable aléatoire modélisant le bruit), les études les plus
poussées sont celles de Arnold et Beyer [5, 7, 8, 24, 25|, études asymptotiques ici encore
par rapport a la dimension d de I’espace de recherche.

La partie théorique de cette thése concerne l'étude de la convergence des Stratégies
d’Evolution, pour Poptimisation de fonctions, non bruitées et bruitées.

1.2 Contributions

Notre apport dans cette thése est résumé dans les points suivants :



1. FEtude théorique et numérique

Optimisation des fonctions non bruitées (Résultats publiés dans [77]) :

Dans le contexte décrit ci-dessus, nous démontrons :

1) Une convergence log-linéaire d’'un algorithme “artificiel” de type ES! appelé scale-
invariant (1 + 1)-ES, dans lequel le pas de recherche a chaque itération est proportionnel
a la distance qui sépare la solution courante de I'optimum (résultat similaire a ce qui a
été prouvé dans [13, 17, 27| pour I'algorithme appelé (1, \)-ES).

2) L'optimalité en terme de vitesse de convergence du scale-invariant (1 4+ 1)-ES. Ce
résultat confirme le résultat montré dans [17] pour I'algorithme (1, A)-ES.

Cette étude est présentée dans le chapitre 2.

Optimisation des fonctions bruitées (Résultats incluant ceux publiés dans [76])

Nous étudions le comportement des stratégies scale-invariant (1 + 1)-ES (chapitre 3) et
scale-invariant (1, A)-ES (chapitre 4) lors de la minimisation de fonctions bruitées. Nous
montrons:

e Pour l'algorithme scale-invariant (1 4 1)-ES : les fonctions bruitées sont ici modé-
lisées sous la forme [|z||?(1 4+ N). La convergence montrée auparavant [77] pour les
fonctions non bruitées n’est plus valable lorsque le niveau de bruit est suffisamment
élevé pour que des valeurs négatives de la fonction objectif puissent étre générées.
Si la probabilité de I'événement (N < —1) est strictement positive, algorithme ne
converge pas (si le bruit est Gaussien) et diverge (si le bruit est minoré). Pour des
distributions de bruit qui ne permettent de générer que des valeurs positives de la
fonction objectif, 'algorithme converge toujours.

Pour les fonctions objectifs qui s’écrivent sous la forme (||z||*+a)(14+N) avec a > 0,
I’algorithme converge si les valeurs des fonctions objectifs générées ne peuveut étre
que positives. S’il y a une probabilité strictement positive que des valeurs négatives
de la fonction objectif soient générées, I’algorithme ne converge pas. Nous comparons
aussi nos résultats aux résultats obtenus dans [8| qui semblent en contradiction avec
les résultats que nous avons obtenus.

Dans une autre partie de cette étude, nous établissons théoriquement les expressions
des vitesses de convergence (ou divergence) de l'algorithme lors de la minimisation
des fonctions objectifs de la forme ||z]|?(1 + N). Les vitesses de convergence (ou
divergence) obtenues peuvent étre calculées numériquement. Pour des vitesses de
convergence non nulles, le comportement de 1’algorithme est log-linéaire.

e Pour 'algorithme scale-invariant (1, \)-ES : les fonctions bruitées sont ici modélisées
sous la forme ||z||(1 + N'). Le comportement log-linéaire (convergence/divergence)
est prouvé théoriquement. Les cas de divergence ou convergence de 1’algorithme, en
fonction du niveau de bruit et du pas de mutation, sont distingués théoriquement
(lorsque d — +00) et numériquement (pour d < +o0c). Nous montrons que les
vitesses de convergence varient presque linéairement avec l'inverse de la dimension

acronyme ES se rapporte a l'appellation anglophone pour les Stratégies d’Evolution: Evolution
Strategies
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de 'espace de recherche. Cette étude prouve rigoureusement que certaines approx-
imations faites (lorsque d tend vers I'infini) dans [8] sont justifiées.

1.3 Outils mathématiques utilisés

Nous avons essentiellement utilisé dans notre étude des outils de la théorie de probabil-
ité, tels que le Lemme de Borel-Cantelli, pour prouver la convergence presque stire des
algorithmes étudiés. Nous avons aussi eu recours aux différentes lois des grands nombres
relatives aux variables aléatoires orthogonales [93] ou aux chaines de Markov [97| pour
étudier la stabilité des suites associées aux algorithmes étudiés.

2 Application (Résultats publiés dans |[78])

La seconde partie de la thése est constituée du chapitre 5. Elle s’attaque a un probléme
d’ingénierie réel. Le but est d’identifier les paramétres de la fonction isotherme, loi de
comportement du processus de chromatographie utilisé en génie chimique. L’approche
utilisée pour résoudre ce probléme d’identification est de le poser sous la forme d’un prob-
leme d’optimisation. Pour résoudre le probléme d’optimisation paramétrique ainsi obtenu,
nous avons utilisé I'état de 1’art en Stratégies d’Evolution, I’algorithme CMA-ES. La ver-
sion de I'algorithme utilisé est celle décrite dans [16]. Ce probléme a déja été traité par
des méthodes a base de descente de gradient dans |73, 74|. Nous avons testé I'approche
évolutionnaire sur 'ensemble des donnés réelles publiées dans |73]. La comparaison de
notre approche a celle du gradient numérique [73] a révélé que 1) L’algorithme CMA-ES
converge toujours vers le méme point indépendamment du point de départ (contraire-
ment au gradient). 2) Les meilleures valeurs de la fonction objectif ont été trouvées par
CMA-ES pour deux configurations expérimentales. En particulier CMA-ES est capable
d’optimiser les 6 paramétres simultanément, alors que I'utilisation de I'algorithme & base
de gradient a nécessité de fixer certaines valeurs de 2 des paramétres a partir de données
expérimentales. Une autre remarque est que les temps de calcul entre CMA-ES et la
méthodes & base de gradient sont comparables, alors qu’il est en général considéré que
les méthodes déterministes sont nettement plus rapides que les méthodes stochastiques a
base de population de solutions.

Note : la thése est rédigée en anglais.



Summary of contributions

Optimization problems are frequently encountered in all domains of science and engineer-
ing. They are of particular relevance in industry. They include tasks such as scheduling,
shape optimization, model calibration, and parameter identification. The goal of an op-
timization problem is to find the optimum (or the optima) of a real-valued function f
defined on some search space €2, subset of the d-dimensional space R?. Many methods
have been developped to solve continuous optimization problems. They can be broadly
categorized in two classes: deterministic and stochastic search methods.
Among stochastic search methods, the so-called Evolution Strategies (ES) have demon-
strated their efficiency in solving real-world optimization problems. This motivates the
general context of this thesis, continuous optimization using ES.

The work presented in this document can be divided into two parts: The first part
deals with a theoretical and numerical study of some basic ES algorithms; The second
part is devoted to an application that is tackled using the CMA-ES method.

1 Part 1: Theoretical and numerical study

This part is concerned with the theoretical and numerical study of the optimization, using
ES, of objective functions having a unique global optimum. Therefore, this work can be
classified as belonging to the studies of local convergence. The search space € is supposed
to be unconstrained (Q = R?). We are interested in isotropic ES, i.e., ES where no search
direction is preferred. We investigate the optimization of the following objective functions,
that have been widely investigated in previous theoretical studies about ES:

e the so-called spherical functions, that can be written as g(]|z||?), where g is a strictly
increasing function and ||z|| denotes the norm of vector € R?, and

e noisy objective functions, that are modelized as ||z||*(1 + ) or ||z||(1+N'), where
N is a random variable representing the noise.

The unique global optimum of spherical functions is (0,...,0) € R% Note that for noisy
objective functions, the goal is to reach the optimum of the non-noisy part of the objective
function, i.e., (0,...,0). Our theoretical contributions in this thesis lies in Chapters 1, 2
and 3 and can be summarized as follows:
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1.1 Optimization of non noisy functions (Results in [77]) :

In Chapter 2, we investigate the (14+1)-ES, and in particular the (14 1)-scale-invariant-ES
in which the 'radius of the search’, or step-size, is, at each iteration, proportional to the
distance between the current solution and the optimum. We rigorously prove:

1. A log-linear convergence of the simplest ES, called scale-invariant (1 4 1)-ES, when
minimizing spherical functions. A log-linear convergence means that the logarithm
of the distance to the optimum converges linearly to —oo as a function of the number
of iterations.

2. The optimality (regarding the convergence speed) of the (14 1)-ES algorithm using
the artificial scale-invariant rule when minimizing spherical functions. Moreover,
optimal convergence rates are numerically derived as a function of the search space
dimension.

1.2 Optimization of noisy functions (A part of the results has
been appeared in [76])

Noisy objective functions are important to study, as real objective functions are usually
noisy. Noisy spherical functions investigated here are of particular interest as the ran-
domness of their noisy part can cover a wide range of irregular real objective functions.
We investigate the scale-invariant (1+1)-ES (Chapter 3) and the so-called scale-invariant
(1, \)-ES (Chapter 4) for the minimization of noisy objective functions. More precisely:

e For the scale-invariant (14+1)-ES, noisy objective functions are modelized as ||z||*(1+
N). The main result is that the convergence that has been already shown in [77]
for non noisy objective functions does not always hold for noisy objective functions.
If the noise level is such that negative objective functions values can be sampled
with a striclty positive probability, the algorithm does not converge (if the noise
is Gaussian) and diverges (if the noise is lower bounded). Furthermore, for noise
distributions that only sample positive fitness values, the algorithm converges. We
prove also that the same results hold for a more general class of noisy objective
functions that can be written as (||z||*> + a)(1 + N) with a > 0. Our results are
compared with those in [8], with which they seem contradictory. In this study, we
also theoretically derive the convergence (or divergence) rates of the algorithm min-
imizing noisy objective functions written as ||z||*(1 + N'). Moreover, we show that
the convergence (or divergence) rates can be computed numerically. For convergence
(or divergence) rates which are not equal to zero, the behavior of the algorithm is
log-linear.

e For the scale-invariant (1, \)-ES, the noisy objective functions that are investigated
can be written as ||z||/(1 + ). The log-linear behavior (convergence/divergence)
is theoretically proven. The convergence and divergence cases are distiguished as
a function of the noise level and the so-called 'normalized step-size mutation’ (a
parameter of the algorithm), theoretically (when d goes to infinity) and numerically

10
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(for d < +00). We show that convergence rates vary almost linearly with the
inverse of the dimension of the search space. Moreover, we theoretically prove that
the approximations used in [8] for the infinite dimension study are reliable.

2 Part 2: Application (Results in |[78])

The application part of this thesis is presented in Chapter 7. We investigate the resolution
of a real-world problem encountered by chemical engineers. The goal is the identification
of the parameters of the isotherm function governing the chromatography process. The
approach used in order to solve this problem is to turn the identification problem into an
optimization problem. One of the difficulties of the resulting optimization problem is that
the relative search space is implicitely constrained. The resulting parametric optimization
problem is tackled using the state-of-the-art in Evolution Strategies, the so-called CMA-
ES (Covariance Matrix Adaptation-Evolution Strategy) introduced by N. Hansen and A.
Ostermeier [57, 59, 61]|. The version of this algorithm used here is that of [16]. This iden-
tification problem had already been addressed using gradient-based approaches |74, 73|.
We perform the identification using the real-world data set provided in [73]: this allows us
to compare our results with those of the gradient based approach. The comparison reveals
that our approach is more efficient than the numerical gradient approach. More precisely,
1) The CMA-ES algorithm always converges to the same solution, independently of the
starting point: this was not the case for the gradient approach. 2) Better objective values
can be found by CMA-ES for two different experimental configurations. In particular,
CMA-ES is able to handle the full problem and identifiy the 6 parameters, whereas the
gradient approach doesn’t work unless the values of 2 of the parameters are manually
fixed (to experimental values). Finally, both approaches have very similar computation
times, which is a rather unusual finding, as it is well known that deterministic methods
are generally much more faster than population based stochastic methods.

The last part of the document is a general conclusion that summarizes the results
obtained, also giving perspectives of possible future work.

11
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Chapter 1

Non linear continuous optimization

Optimization is a recurrent task mostly investigated by Engineers, Applied Mathemati-
cians, and Computer Scientists. We are here interested in continuous minimization 2
problems that can be formally formulated as follows:

{Mlnlmlze f(z), (11)
x e

where f : Q +— R is the objective function defined on some open subset  of R? and is
assumed to be non linear.

Real-world continuous optimization problems are everywhere. For instance, they include
shape optimization of e.g. airfoils in aeronautic industry, model calibration frequently
encountered in biological or physical domains, and parameter identification in the context
of inverse problems.

This work focuses more particularly on the black box scenario, where the only available
information about the objective function is the values it takes on any input from R¢.
In particular, no gradient nor Hessian information can be obtained (except of course
through numerical computation from function values). Hence we will only consider zeroth
order methods, that only use function values. In order to solve real-world continuous
optimization problems, many iterative methods have been developed. These methods can
be broadly classified in two categories, relatively to the method they use to explore the
search space: Deterministic and randomized search methods.

In the following of this Chapter, we will briefly survey both deterministic and randomized
search methods operating on unconstrained search spaces (i.e., Q = R%).

1.1 Deterministic search methods for non linear con-
tinuous optimization

The most widely used deterministic search methods have been reviewed in [108, 80, 85, 29|
where convergence results are given. In the following, we give a presentation of some of

2Without loss of generality, the minimization of a real valued function f is equivalent to the maxi-
mization of —f.
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Chapter 1. Non linear continuous optimization

the most popular deterministic search methods.

1.1.1 Gradient based methods

Gradient based methods refers to methods which use the explicit value of the gradient of
the objective function at a given location. These methods have been originally inspired
from the approximating Taylor formula of a sufficiently smooth function. They have been
designed to work well at least on the convex quadratic functions. These methods are
descent methods in the sense that the newly generated point at each iteration has always
a better objective function value than the previous one. More precisely, let X,, be the
solution at an iteration n. The new point X,,;; is generated as follows:
XnJrl = Xn + tndrm (1 2)
t, = arg min,o{ f (X, +td,)}

where d,, is the descent direction and ¢,, the descent step.

The descent step t,, is determined by some line search method (such as rules of Wolfe,
Goldstein and Price, Armijo [29]).

A natural idea for the choice of the descent direction d,, is to choose the opposite
of the gradient at the current location, i.e., d, = —V(f(X,)). However, better choices
can be made: In the conjugate gradient methods, the successive descent directions d,
satisfy the recurrence relation d,,1 = —V(f(X,11)) + W%.
for example [103]|) that the conjugate gradient method theoretically converges in at
most d iterations when minimizing convex quadratic functions. Another choice for the
descent direction d, is —H;'V(f(X,)) where H, is (an approximation of) the Hessian
matrix in the current solution. Gradient methods using such a descent direction are called
Quasi-Newton Methods. The state of the art of these methods is the so-called Broyden-
Fletcher-Goldfarb-Shanno algorithm (BFGS).

A drawback of all gradient based methods, however, is that they are local methods: be-
cause the objective function value decreases at each iteration, the search is stuck in the
first encountered local optima.

It is shown (see

Note that even in the black box scenario where no derivative information is available,
it is useful to consider gradient based methods:

e [fthe objective function is smooth and its values can be computed with full precision,
finite-differences can be used to obtain estimates of the derivative that are accurate
enough to be used as gradients in a gradient based method, such as the implicit
filtering method described in Section 1.1.2.

e Many popular search software (e.g., within Matlab) used numerical gradient, and
it is hence mandatory to compare the results of any newly proposed optimization
method to those of gradient-based methods, even if using numerical gradient, in
order to assess their performances.
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1.1. Deterministic search methods for non linear continuous optimization

1.1.2 Deterministic direct search methods

Deterministic direct search methods first appeared in the 1950’s and early 1960’s with
the growing use of computer to fit experimental data. The name direct search was intro-
duced in 1961 by Hooke and Jeeves. These methods do not use the explicit expression
of the gradient to generate new solutions. In the following, we present some widely used
deterministic direct search methods.

Derivative-free pattern search methods

The direct Pattern Search algorithm of Hooke and Jeeves [65] is one of the earliest deter-
ministic search methods that does not make use of derivatives. The generic pattern search
algorithm [39] calculates objective function values of the current pattern and tries to find
a minimizer. Let X,, denotes the solution at the iteration n. The Hooke and Jeeves algo-
rithm is a member of the so-called Generalized Pattern Search algorithms (GPS) which
seeks for a lower value of the objective function by sampling points in the search space in
a fixed set (or pattern) around the current point. Sampled points build the set £, which
is defined as follows

L,={reR?; v =X, £ A%, ic{l,. .. d} (1.3)

where A,, > 0 is the pattern size which represents the search step, e’ is the i"* unit vector,
and s = (s1,...,5q4) € R? is a fixed parameter that can be used to take into account the
different scales of the parameters to optimize. If the algorithm finds a new minimum,
then it changes the center of the pattern and iterates. If all the values on the pattern
fail to produce a decrease, then the search step or pattern size is reduced by half, i.e.,
Api = %. The search continues until the search step A, gets sufficiently small, thus
ensuring convergence to a local minimum. Performance is increased by reusing pattern
values as the pattern center moves. Convergence analysis of GPS algorithm minimizing
smooth objective functions have been performed by Torczon [139] and Audet and Dennis

11].

Simplex methods

The first simplex based direct search method was proposed by Spendley, Hext and Himsworth
in 1962 [129]. In 1965, the original method was developed by Nelder and Mead [105]. The
method evolves a convex hull of d + 1 points in R, where the points satisfy the non-
degeneracy condition that the volume of the hull is nonzero. At every iteration, the worst
vertex is replaced by a new vertex using reflection, expansion or contraction. In the case
where this fails, a shrink step is carried out. Thus, this method only ensures improvement
of the objective function value in the sequence of worst vertexes, but it is the sequence of
best vertexes that ultimately is of interest.

It has been theoretically and numerically shown that the Nelder-Mead simplex algorithm
can fail in practice. Mc Kinnon [96] constructed a family of strictly convex objective func-
tions in R? for which he demonstrated that the Nelder-Mead algorithm fails to converge to
a stationary point, i.e., on which the gradient equals 0. In Mckinnon examples, simplexes
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converge to a straight line that it is orthogonal to the steepest descent direction. In [146],
there is a discussion of the limitations, disadvantages, successes and developments of the
Nelder-Mead algorithm.

To overcome the shortcomings of the Nelder-Mead algorithm, Torczon [138] proposed
the so-called multi-directional search, which is also a simplex-based strategy. It has the
property that shrinks occur for any number of variables, provided that the level sets
of the objective function are bounded. In [138|, Torczon gives a convergence proof for
the mutli-directional search and performs empirical tests including the multi-directional
search, Nelder and Mead algorithm and a quasi-Newton method. She showed that the
multi-directional search is robust whereas the Nelder-Mead algorithm is not, and that
multi-directional search can handle higher dimension problems and claimed that the
multi-directional search may be useful for optimizing noisy objective functions. How-
ever, the multi-directional search also has some limits. In fact, the empirical study that
has been performed in |9] demonstrates that the performance of the multi-directional
search markedly degrades with increasing search space dimensions, and it is stated that,
in the presence of noise, “...the multi-directional search method never stagnates but
rather diverges if the noise strength is too high”.

Quadratic approximation methods

These methods rely on an interpolation or an approximation of the objective function
with a quadratic function (). The approximation is supposed to be reliable on a region of
the search space called the trust region. A quadratic function @ has d = £(d + 1)(d + 2)

independent coefficients, that may be defined by the interpolation conditions on d points
of R%:
Qz') = f(a"), i=1,...,d (1.4)

The points z* should have the property that, if Eq. 1.4 is written as a system of linear
equations in terms of the coefficients (), the matrix of the system should be non singular.

Winfield’s algorithm [144| not only employs the interpolation equation Eq. 1.4 to define
@, but also includes some of earliest work on trust regions. At an iteration n, the algorithm
generates the quadratic approximation (), using Eq. 1.4. Furthermore, the iteration
computes the vector z € R? that minimizes @, subject to the bound ||z —X,|| < p, where
X,, is the best point among the interpolation points at iteration n, and p, is the trust
region radius. This algorithm presents the particularity that, an eventual degeneration of
the system Eq. 1.4 is ignored and it is assumed that the calculation of (), is sufficiently
robust to provide a quadratic function that allow the trust region sub problem to be
solved and the resulting x receives no special treatment. Other methods ensure that @,
is well defined. Powell |[108| stated that Lagrange functions are highly useful for selecting
the interpolations points at each iteration such that the quadratic polynomial ),, is well
defined by Eq. 1.4. Using this idea, Powell proposed in 2002 the NEW Unconstrained
Optimization Algorithm (NEWUOA) algorithm as a quadratic interpolation method that
uses only d = 2d + 1 to build the quadratic function Q. Therefore, the amount of work
per iteration is only of order (3d+ 1), which allows d to be quite large. The success of the
method is, according to Powell [109], due to the use of the symmetric Brodyen method for

16
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updating the Hessian of Q,, H(Q,), when first derivative of f are available |[40|. Another
claimed advantage [110] of the NEWUOA is that is suitable for the minimization of noisy
objective functions.

The algorithm can be summarized as follows. First, an initial quadratic model @)y is
created for the objective function f. An iteration n then performs the following steps:

e Compute the minimum of @),, inside the trust region,

Improve the model using the latest optimum,

Stop if the latest trust region is lower than the user-defined end value,

Stop if the distance between @, and f is small enough (perfect match of the model
(), and the objective function f),

Decrease the trust-region radius if the values computed for f stops decreasing.

A more detailed presentation of the algorithm can be found in [110].

Implicit filtering

Implicit Filtering, as devised by Gilmore and Kelley [47, 80|, belongs to the so-called
Stochastic Approximation methods dating back to work of Robins and Monroe [115]
and Kiefer and Wolfowitz [83| and which were specifically designed to deal with noisy
objective functions. In contrast with the direct deterministic search methods introduced
so far, Implicit Filtering relies on the idea suggested by Kiefer and Wolfowitz of explicitly
approximating the local gradient of the objective function by means of finite differencing.
Because the gradient is only an approximation, the computed steepest descent direction
may fail to be a descent direction and the line search may fail. In this case, the difference
increment used to numerically compute the gradient is reduced. The name “implicit
filtering” has been chosen because the method uses differencing to “step over” the noise
at varying levels of resolution, hence implicitly filtering the objective function from the
noise. The method uses the central difference gradient that we denote V, f in a gradient
based method. Let z a point in R?, and h a difference increment, a central difference
gradient is defined as follows:

f(x+ he') — f(x — he')
2h

(Vif(x)) = ci=1,....d (1.5)
where €’ is the i"® unit vector. Clearly this computation involves 2d evaluations. At
iteration n, the algorithm computes the central difference gradient at the current solution
Xy, 16, Vi f(X,). As in gradient based methods, the new point X,,,; is generated as
X, + t,d,, where t, is determined by a standard line search in direction d,. The descent
direction d,, is usually generated as in Quasi-Newton methods. A presentation of the

convergence theory of implicit filtering and of several related methods can be found in
[80].
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1.2 Randomized search methods for non linear contin-
uous optimization

Randomization is an efficient research tool for seeking the optima of an objective function
especially when no information about he derivative neither the Hessian of this function
are provided. Randomized search methods are global search methods in the sense that the
stochastic nature of the search can prevent the convergence to a local optimum?. Their
ability to escape local optima is also due to the fact that they are usually population
based. However, despite their practical ability to solve many real-world otpimization
problems, the majority of these methods do not rely on a firm mathematical background:
they are in general designed based on nature-inspired paradigms, and their theoretical
study comes long after their effective use and successes in practical applications. This
section will survey the most widely used randomized search methods.

1.2.1 Pure Random Search (PRS) and Pure Adaptive Search
(PAS)

Pure Random Search (PRS) [31] is the simplest random search method. This method
consists in generating the solutions Xi,...,X,, independently, using a fixed probability dis-
tribution. When the stopping criterion is met, the best point reached so far is taken as
the solution proposed by the method. It has been theoretically proven [149] that PRS
converges to the global minimum with probability 1 for every objective function for which
the neighborhood of the optimum can be reached with a strictly positive probability.
However, the search is always done around the same fixed point and the search distri-
bution parameters, namely the radius and the covariance matrix of the search in case of
continuous optimization, are kept unchanged during the run. Therefore, these parameters
are not adapted, neither relatively to the history of the search, nor to the local shape of
the function to optimize. This makes PRS totally inefficient in practice, with a very large
convergence time that increases exponentially with the search space dimension [149].

Then Pure Adaptive Search (PAS) was introduced as a random search method having
an exponentially lower complexity than that of PRS [148]|. In fact, the convergence
time of PAS varies linearly with the search space dimension d in the specific case of
Lipschitz objective functions. This method differs from the PRS method in the fact that
the new individual is uniformly generated on the set containing individuals having better
objective function values than the current solution. Therefore PAS is not practical because
the principal computational effort of the algorithm lies in generating points uniformly
distributed in the improving region. Moreover, PAS can be seen as a particular instance
of an Evolution Strategy (ES) (see Section 1.2.4 for a presentation of ES) evolving a
unique solution and where no adaptation in the search parameters is done.

3However, the probability to escape a local optimum can be too small when using some randomized
search method such as the (1 4 1)-ES for example (which will be described in Section 1.2.4).

18



1.2.  Randomized search methods for non linear continuous optimization

1.2.2 Simulated Annealing (SA)

Simulated Annealing (SA) [84, 3| is a global optimization method inspired from annealing
in metallurgy. The optimization method considers each point x of the search space as a
state of some physical system, and the objective function value of z, f(x), as the energy
of the state x. The goal is then to bring the system, from an arbitrary initial state, to a
state with the minimum possible energy — that is, to minimize the objective function f.
The algorithm generates a sequence of solutions (X,,) as follows. Let X,, be the solution
at iteration n. A new solution Y,, is generated using a search space distribution depending
on X,,. The acceptance rule of the new point Y,, is the Boltzmann rule, defined as follows

Y, if f(V,) < f(X,),
Xn+1 = Y, if f(Y,) > f(X,,) with probability e(f(xn)T;f(Yn)), (1.6)
X,, otherwise

where T},, the so-called temperature, is a positive parameter that will be decreased to 0.
The goal of the randomization in the Boltzmann acceptance rule for the new solution
Y,, is to avoid getting stuck in local optima. In practice, the sequence (7)) has to be a
decreasing sequence such that the probability to accept worse solutions decreases during
the run. The convergence (in probability) results [84, 102] only require that the tempera-
ture sequence (7T,,) decreases to 0 and, in some cases, that this sequence decreases slowly
enough in order to escape local optima. In [102] too, key concepts such as global versus
local exploration and adaptability of the parameters of the search distribution and of the
acceptance probability have been underlined.

In practice, however, the major inconvenient of SA methods, and especially of one
of the most popular one, the so-called Adaptive Simulated Annealing (ASA) [68, 69|, is
the tuning of its underlying parameters. It is worth noticing that SA can be seen as a
particular ES method (see paragraph 1.2.4 for a presentation of ES) evolving a single
solution and using Boltzmann randomized rule for the acceptance of a new point. Along
those lines, the methods discussed in |37| for the adaptation of the parameters of the
search distribution are quite similar to that of the so-called derandomized ES (see Section
1.3).

1.2.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) |81, 126, 127, 34| is a population-based stochastic
optimization technique initially proposed by R. Eberhart and J. Kennedy in 1995, inspired
by social behavior of bird flocking or fish schooling. PSO tracks a number of so-called
particles (solutions vectors) in a swarm. The default swarm size is S = 10 + [2/d]. At
each iteration n, let X,, = (X,,},...X,%) denotes a particle of the swarm. This particle is
characterized by:

e a velocity V,, (that can also be viewed as the previous displacement of this particle,
i.e., Xn — Xn—l);

e the best solution encountered so far by that particle, denoted pbest,, i.e., pbest,, €

{Xo, ..., X, } with f(pbest,) < f(Xj;), ¥j € {0,...,n}, and
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e the global best position ever visited by all particles that we will denote gbest,,.
The particle X,, is then pulled toward the best positions pbest,, and gbest,, as follows

Vj+1 =wV? + o’ [pbestf;b — XfJ + 3 [gbest{l — Xﬂj ,

" . . (1.7)

Xpst? =X7 + VI,
for each coordinate j = 1,...,d, where o/ and 3 are uniformly distributed in [0, ¢] with
¢ =1n(2) +% and the inertia weight w equals TI(Q) One of the reasons of the widespread

use of PSO is that it is very easy to program (no linear algebra involved for instance),
and there are very few parameters to adjust. Indeed, in the recent years, PSO has been
applied in many research and application areas [35, 28, 32, 94, 95|. Unfortunately, in
a recent study |62] investigating the performances of the Standard PSO 2006 [1] on ill-
conditioned functions, it has been demonstrated that, whereas PSO performs very well
on separable functions (even if ill-conditioned), its performance degrades dramatically on
non-separable ill-conditioned functions.

1.2.4 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are bio-inspired optimization methods which evolve a
population of solutions. They are an iterative technique inspired by Darwin’s theory of
natural evolution, more precisely the idea that the emergence of species that are adapted
to their environment results from the synergy between natural selection (survival of the
fittest) and blind variations (random modification of the genetic material from parents
to offspring, independently of any adaptation). The denomination of the ingredients of
the algorithm also arise from the biological paradigm: the objective function is usually
called the fitness, the points of the search space, possible solutions of the problem at hand,
are called individuals, and the set of individuals that the algorithms evolves is termed a
population. A generation (one iteration of the algorithm) consists in

1. Selecting among the population at current time n (also termed the parents) some
individuals based on their fitnesses, biased toward individuals with good values
with respect to the optimization problem at hand (i.e., implementing a first step of
‘natural’ selection);

2. Applying variation operators (i.e., stochastic operators independent of the objective
function) to the selected parents, thus generating offspring. The variation operators
are either unary operators (also called mutations), or k-ary operators (then called
recombination or crossover operators);

3. Evaluating the offspring, i.e., computing the value of the objective (fitness) function
at the newly generated points, the offspring;

4. Selecting among the offspring and the 'old’ parents, based again on fitness values, the
individuals who will survive to the next generation, thus implementing the second
step of matural’ selection.
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From the description above, it is clear that Evolutionary Algorithms are zeroth order
methods. Moreover, they have been applied successfully to solve many real-world prob-
lems [51, 43, 22, 104, 142]. However, their main drawback is that they are computationally
costly, requiring in general a large number of generations and rather large population sizes.
Moreover, another difficulty comes along with their high flexibility: when tailoring these
methods to a new problem, the user has to set a high number of parameters. A promising
line of research in to cope with this difficulty while maintaining the high flexibility of
those algorithm is to make as many of those parameters as possible adaptive, i.e., auto-
matically determined during the course of evolution. In the specific field of continuous
optimization, many adaptive methods have been developed, and will be detailed in the
forthcoming Section 1.2.4.

Historical roots

Before turning to the detailed description of Evolution Strategies, the Evolutionary Al-
gorithm at the heart of this thesis, it is worth describing shortly other roots of the field
that have also been applied to continuous optimization.

Genetic Algorithms (GAs) are still the most popular field of Evolutionary Algo-
rithms. GAs has been investigated since the early sixties by J. Holland [64]. GAs were
initially designed to handle bit-string representation, but were also used for continuous
optimization problems by representing each real number by its 'natural’ binary represen-
tation. However, such representation have some sever drawbacks. In particular, it does
not respect at all the topology in R%, as thoroughly discussed in [135]. Today, with very
few exceptions, bit-string representations are abandoned when dealing with continuous
parameters, at least when accuracy matters. Hence GAs will not be discussed any more
here. For more details, see the seminal book by Goldberg [49], or the more recent and
comprehensive books [101, 143|. One of the earliest book about optimization by means
of natural evolution is that of L. Fogel |45], introducing what has been known as Evo-
lutionary Programming (EP). Initially devoted to the optimization of Finite State
Automata, Evolutionary Programming was successfully applied to very diverse search
spaces, including continuous ones. However, in that particular setting, EP can also be
considered as a particular case of self-adaptive Evolution Strategies (see next Section),
and is not an active field per se any more. It is hence only recalled here to account for
the historical truth.

Modern EAs tend to forget the frontiers between those historical dialects, as advocated
by Michalewicz [99] and De Jong [38], and presented in the recent textbook by Eiben and
Smith |41|. The remaining differences regard the representation: Genetic Algorithms are
associated with bit-strings, Genetic Programming with parse-tree, and Evolution Strate-
gies with real-valued parameters: they are the background of this work, and will now be
introduced in detail.

Evolution Strategies

Evolution Strategies (ESs) have been introduced by I. Rechenberg [114, 113| and H.P.
Schweffel [123] in Germany, also in the mid-sixties. For historical reasons, specific no-
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tations are used, that will be defined here. For instance, the population size is denoted
1 € N, and the number of generated offspring A € IN.
ESs instantiate the generic EA given above the following way:

1. There is no parent selection step per se: all u parents are chosen with uniform
probability to generate offspring

2. the main variation operator is the Gaussian mutation (see below); recombination,
also called here intermediate crossover, is achieved by performing a linear combi-

nation of two or more parents (though in the original ES, no recombination was
used);

3. All offspring are evaluated normally;

4. The survival selection is deterministic: the p best individuals are chosen either
among the X offspring and the algorithm is then called a (u,\) — ES  or among
the p+ A parents plus offspring, and the algorithm is then a randomized hill-climber
termed a (u+ \) — ES.

The main operator of ESs is the Gaussian mutation: a parent X generates an offspring
Y by Gaussian mutation which will be written as

Y =X +0oN(0,0). (1.8)

where oN(0, C') = N(0, 02C) is a drawn according to the multivariate normal distribution
of mean 0 and covariance matrix 0?C. The reason for separating the step-size o from the
covariance matriz C lies in the adaptation mechanisms that will be described later (Section
1.3): this will to separately adapt the average length of the mutation by modifying the
step-size ¢ and the main directions of the mutation by modifying the covariance matrix
C.

However, those parameters (o and C') should be adapted along evolution to the current
fitness landscape, that is the local characteristics of the objective function.

Adaptation in ES

As said above, parameter control (also termed on-line parameter tuning) is a general issue
in Revolutionary Algorithms [42]. In the particular case of Evolution Strategies, it has
received a lot of attention since the very early works in the 60’s.

The 1/5 adaptation rule is the oldest known adaptation rule [121, 114|. This rule
adapts a single step-size for the whole population (and used the Identity matrix as Co-
variance Matrix). Its mechanism is to compute the empirical success probability over the
last generations and to increase the step-size mutation (0,41 = Uneé) if this success prob-
ability exceeds 0.2 (or to decrease the step-size (0,41 = 0,/€3) if the empirical success
probability is below 0.2). This rule was derived after a theoretical study on two simple
objective functions (the sphere function, and the corridor function, a linear constrained
function), and asymptotically when the space dimension d tends to +o0o. Whereas it was
shown to be quite efficient on many functions, it can be totally wrong when the fitness
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function does not behave like the model functions. Moreover, it does not adapt the co-
variance matrix of the search distribution.

The self-adaptation rules were introduced by Schwefel in the seventies [124]. Self-
Adaptive ESs (or SA-ESs) use the evolution itself to adjust the mutation parameters.
The basic idea is to associate to each individual its own mutation parameters. One muta-
tion then amounts to first mutate the individual’s mutation parameters, then to mutate
the individual itself using the new values of the mutation parameters. In the long run,
even though the selection only acts based on fitness values, only individuals with 'good’
mutation parameters (i.e., adapted to the local characteristics of the fitness) can survive
many selection steps. It is sometimes said that the mutation parameters are updated
'for free’. There are 3 variants of this technique, depending on the number of mutation
parameters that evolve.

In the isotropic SA-ES, only one mutation step-size is considered per individual, and
the covariance matrix is kept equal to I;. The step-size undergoes a log-normal mutation
(in order to keep it positive, and because it is then used multiplicatively in the Gaussian
mutation):

o= oexp7N(0,1) (1.9)

were T is a strictly positive parameter and N(O, 1) is a sampling of a normal distribution
with mean 0 and standard deviation 1. The parent is then mutated using the usual
(GGaussian mutation with step-size o:

Y = X 4+ oN(0, 1) (1.10)

Note that considering the pairs (X, o) of individuals together with their mutation step-
size, the complete mutation can also be written as

(X,0) — (X 4+ oexpN(0, 1)N(0, 1), 0 exp 7N(0, 1))

In the non-isotropic SA-ES, the covariance matrix is a diagonal matrix with positive

coefficients denoted (0%,03,...,02). The mutation of the deviations o;’s proceeds as
follows
o; = 0;exp7'N(0,1) exp7N;(0,1) for 1 <i <d (1.11)

where N(0,1) and N;(0,1) (1 < i < d) are d + 1 independent samplings of a centered
reduced normal random variable. Then, each coordinate of a parent is mutated using the
corresponding mutated step-size in the same direction, giving offspring Y as follows

Y= X; +o;N(0,1) for 1 <i < d. (1.12)

Note that there is no global step-size here, but that the log-normal mutation of all ¢;’s
has a first term that is common to all ¢’s, and thus can be seen as some global update,
plus a term that is specific to each coordinate i.

Finally, the Correlated SA-ES uses a full covariance matrix (i.e., not restricted to a diag-
onal matrix) in order to also adapt to the principal directions of the objective function.
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In order to easily mutate this covariance matrix, it is written as the product of d(d —1)/2
2D-rotation matrices R(qy;;) with 1 < ¢ < j < d and a diagonal matrix D with diagonal

coefficients o%, ..., 02

i=1 j=i+1

The mutation of the covariance matrix consists first in a log-normal mutation of the co-
efficients of the diagonal matrix D, as in the non-isotropic case (see Eq. 1.11). Then the
angles a;; (1 < i < j <d) are also mutated using independent samplings of a Gaussian
variable SN(0, 1) (for a user-defined [3). Finally, the parent X is mutated by a Gaussian
mutation of covariance matrix the mutated C.

In [54], it has been shown that the different variants of SA-ES are not coordinate-
independent, i.e., will behave differently if a (linear) change of coordinate is done in the
search space (though the function stays the same). Moreover, the use of a randomized self-
adaptation rule implies a low correlation between the mutation step-size and the distance
between the new accepted offspring and its parent i.e., || X,,4+1 — X,|| [124]. Those remarks
have lead to different attempts to completely derandomize the SA-ES algorithm.

Recombination operator Though the initial ES algorithm didn’t use any recombina-
tion, it has been shown that the performances of ESs are increased if a recombination
operator is used [123, 147|. Furthermore, |25| shows a qualitative improved progress when
a global intermediate recombination of p parents is used rather than a (1, A)-ES.

Toward completely derandomized ES These ideas has been exploited to design
new ES algorithms with recombination and a derandomization of the adaptation rule of
the search distribution parameters. The most advanced ES using these techniques is the
so-called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) introduced by N.
Hansen and A. Ostermeier in 1996 [61, 59, 57, 16|. This method uses a completely deran-
domized self-adaptation using the cumulation of previous step-size and covariance matrix
moves. The adaptation of the covariance matrix used in CMA-ES allows he algorithm
to be invariant by change of coordinates. Moreover, the algorithm generates a sequence
of covariance matrices C,, which is observed to converge to the inverse of the Hessian in
the case of quadratic convex objective functions. Compared to other ES, CMA-ES has
been shown to exhibit similar behavior on perfectly scaled objective functions, and to
perform better on ill-conditioned non separable objective functions [61]. CMA-ES is also
performing well on multi-modal functions [56]. The importance of CMA-ES nowadays
justifies that it is be presented in detail in a stand-alone forthcoming Section 1.3.

1.2.5 Differential Evolution

Differential Evolution (DE) was introduced by Price and Storn [131, 132, 133|, and can be
viewed as a particular Evolutionary Algorithm for continuous optimization: DE evolves a
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population of individuals X, ..., X, using a very specific mutation operator, that adds,
at each iteration, to a given individual one (or many) difference vector(s) between one (or
many) couple(s) of other individuals in the population (hence the name of the algorithm).
A crossover operator is then performed between the mutated vector and the parent, and
finally the offspring replaces its parent if it has a better fitness. There are several strategies
for DE that differ in the way mutation and crossover is conducted [130, 111, 98| (the latter
reference is a compartive study between some variants of DE). The variants are specified
using the notation DE/x/y/z where x denotes the way the vector to mutate will be chosen
(randomly or the best one for example), y denotes the number of difference vectors to
add to the mutated vector and z denotes the crossover sheme (binomial or exponential for
example). In the classical variant of DE, the DE /rand/1/bin, the mutation and crossover
write as:

1. Mutation For each parent X;, 7 =1,..., u, the following mutating vector is created
M, =X, + F(X,, — X,,),

where r1,75 and rg are indices that are uniformly chosen in {1,..., u}, and where
F' is a user-defined amplifying factor in [0, 2].

2. Crossover First an integer jo is uniformly chosen in {1,...,d}. Then, a uniform
crossover between X; and M; is performed:

M if § = jq
Y/ =< M/with probability CR if j # jo, (1.14)
XJwith probability (1 — CR) if j # jo

where C'R € [0, 1] is a user-defined Crossover Rate.

Then the offspring Y; replaces its parent X; iff it has a better fitness. In [131], Price
and Storn have shown on some test functions that DE is superior to Adaptive Simulated
Annealing (ASA) (see Section 1.2.2). The DE algorithm is rotationally invariant when the
crossover rate C'R equals 1, whereas the behavior of the algorithm is not invariant to search
space rotation if CR # 1 [111, p. 98|. Note also that the performance of DE is sensitive
to its control parameters [46] and that the DE is not only prone to premature convergence
but also to stagnation [88| and that a successful location of the global optimum depends
on choosing the correct control parameters. Finally, the recommended population size for
DE is 10d, and the performance of the algorithm hence poorly scales up with d.

1.2.6 Estimation of Distribution Algorithms

The first instance of an Estimation of Distribution Algorithm (EDA) is the PBIL al-
gorithm (Population Based Incremental Learning) that has first been proposed as an
alternative to Genetic Algorithms in the bit-string framework [21]. EDAs try to iden-
tify a probability distribution defined on the search space by successively sampling the
current distribution, computing the fitness of the sampled points, selecting some of the
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sampled point with a bias toward the best performing points, and either reconstructing
a probability distribution from the selected points, or updating the current distribution
using those sample points.

EDAs have been applied to continuous optimization, starting with a modified PBIL
algorithm [125] that was using ...a Gaussian distribution on the real-valued search space.
Several variants have then been proposed (see e.g. [91] for a survey), and all of them
evolve a full multivariate normal distribution by modifying its mean and covariance matrix
along evolution. This is exactly what a fully derandomized Evolution Strategy like CMA-
ES is doing (see next Section). In particular, the Estimation of Multivariate Normal
Algorithm (EMNA) [91] uses an update mechanisms that is very similar to that of CMA-
ES, though it reconstructs the covariance matrix from the selected sample points while
CMA-ES carefully updates the current covariance matrix. Experimental results |58| have
demonstrated that CMA-ES takes advantage of this update and performs better than
EMNA even on multi-modal test functions.

1.3 Covariance Matrix Adaptation-Evolution Strategy

Though it clearly belongs to the Evolution Strategy family of stochastic search algorithms,
the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) is presented in a sepa-
rate Section in order to emphasize its importance — as will be witnessed by the empirical
comparisons presented in next Section.

CMA-ES was introduced by N. Hansen and A. Ostermeier in 1996 [60] and the com-
plete almost parameter-less algorithm was published in 2001 [61]. Tt is a (u,A) — ES
that uses a global recombination operator involving the p parents at each iteration, and
hence is referred to as a (u/p, A)-ES. Let X,, denotes the recombination of the parents
at iteration n*. This 'super-parent’ is subject to X\ independent mutations, resulting in \
offspring Y7,...,Y\:

Yk:Xn—l-JnNk(O,Cn) forkzl,...,)\

The new super-parent X, is the computed as a linear combination of the best p offspring:

1
Xn+1 - Zwi}/i:k ) (115)
=1

where the positive weights w; € R are set according to individual ranks and sum to one,
and the index ¢: A denotes the i-th best offspring. The use of the weighted recombination
of the parents as shown in Eq. 1.15 allows CMA-ES (and in general any (u/p, A)-ES) to
have a larger progress (at each iteration) than any (1, A)-ES in the absence of noise [25].

Moreover, because it only uses an ordering of the A\ offspring, CMA-ES is invariant by
any monotonous transformation of the fitness function (see Section 1.4.2). In particular,
(non-)convexity does not modify in any way the behavior of CMA-ES.

“Note that in the presentation of CMA-ES in Chapter 5, the ieration number, here n, is referred to
as g. In the same chapter, the quantities X,,, Yx, 0y, Cpn, (Pt)n and (), are respectively referred to as

(a_c')sf,), a_c',(f’“), o), Cc9), ;E(cg) and ﬁf,g). Note also that Equations1.17 and 1.19 for the covariance matrix
adaptation are more general than those of Chapter 5.
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Adaptation in CMA-ES It is stated in [16] that the adaptation used in CMA-ES
allows to achieve, on convex-quadratic functions, log-linear convergence (see Definition 1.1
in Section 1.5) after an adaptation time which scales between 0 and the square of the
dimension of the search space. This adaptation is done deterministically and the basic
idea is to increase the probability to reproduce good steps. This is done by computing
the so-called evolution paths for both the step-size and the covariance matrix. Let C,
denote the covariance matrix at an iteration n and B, D, D,, (Bn)T its decomposition in the
eigenvector basis (B, is an orthogonal matrix and D,, a diagonal matrix whose diagonal
contains the square roots of the eigenvalues of C,,°). Let (p,), and (p.), be the evolution
paths of respectively the step-size mutation and the covariance matrix. The adaptation
is done as follows: First, the cumulative path for the step-size mutation is updated:

Vo (2 = co) e % Bo(Dn) ' BT (Xng1 — Xan) (1.16)

On

(ﬁa)nJrl = (1 - Ca)(ﬁa)n +

where ¢, is a parameter in ]0, 1]. Then, the evolution path for the covariance matrix is in
turn updated as follows:

Cc(2 - Cc)ﬂeff (

n

where (Hy)pyy = 1 if —@nil (15 + _L)E(|| N(0,1,) ||), and 0 otherwise,

1—(1—cy)2(n+1) d—0.5
¢. €0, 1] is the cumulation coefficient and pg is a strictly positive coefficient which denotes
‘the “variance effective selection mass”. It can be seen from Eq. 1.16 and Eq. 1.17 that
the evolution path updates take into account the last move (X, 11 — X,,) and the history
of the search which is represented by (p.), for the evolution of the search directions, and
(P )n for the evolution of the radius of the search. Finally, the mutation step-size and the
covariance matrix are updated using information on the whole search history as follows:

v =one (7 (aaeion 1)) (119

where d, > 0 is a damping factor and N (0, I) is the multivariate normal distribution
with covariance matrix identity. For the covariance matrix, the update takes place as
follows:

(ﬁC)TL+1 = (1 - Cc) (ﬁc)n + (Ha)n+1 Xn+1 — Xn) (117)

1 "
Cn-i—l - (1 - Ccov)Cn + Ccov—(pc)n—I—l ((pc)n+1)T

cov

1 a W;
+ Ceov (1 - ) Z E(KA - X’n)()/i!)\ - XH)T (119)

IU“COV i=1

where Ceoy, ficoy €]0, 1[. This update rule is called the rank-mu update for C,, [59]. When
feoy = 1, this rule reduces to the so-called rank-one update [61].

5Such a decomposition is always possible as C), is positive definite symmetric matrix.
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On the practical side, the default parameters of CMA-ES were carefully tuned in
[57].  For example, the default values for A and p are respectively A%/ = |4 + 3log(d)]
and pf = L%j Moreover, a ’'restart’ version of CMA-ES has been introduced in
[16] in order to increase the probability to converge towards the global optimum when
minimizing multi-modal objective functions. In this method, the algorithm is restarted
with an increased population size when some restart criteria are met, indicating that the
search process is no more progressing. Different restart criteria are used:

1. RestartTolFun: Stop if the range of the best objective function values of the recent
generations is below than a TolFun value.

2. RestartTolX: Stop if the standard deviation of the normal distribution is smaller
than a TolX value and op, is smaller than TolX in all components.

3. RestartOnNoEffectAxis: Stop if adding a 0.1 standard deviation vector in a principal
axis direction of (), does not change X,,.

4. RestartCondCov: Stop if the condition number of the covariance matrix exceeds a
fixed value.

The resulting version of CMA-ES is a quasi parameter free algorithm. This version of
CMA-ES performed best at the CEC 2005 Special Session on Continuous Optimization
[2].

CMA-ES has also been applied to a variety of real-world optimization problems [53].
For more details about CMA-ES, we refer to [52].

1.4 Comparison of continuous optimization methods

The difficulties of real-world optimization problems can be characterized by several dif-
ferent features. In addition to difficulties due to the search space, such as high dimension
and constraints, real-world problems difficulties are generally related to the characteristics
of the objective function.

1.4.1 Objective functions

Let us first list several properties of objective functions that can be the source of difficulties
for their optimization. Objective functions can be

e non-convex: The hypothesis of convexity is the basis of the gradient based meth-
ods, that were designed to have good performances at least on quadratic convex
functions. The non-convexity of the objective functions is hence an obstacle for
methods relying on quadratic approximation such as Conjugate Gradient, BFGS,
and Implicit Filtering.

e rugged: Most convergence results that have been proved for optimization methods
(especially deterministic methods) require some regularity of the objective functions.
Hence those methods might fail on rugged functions.
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e noisy: Noisy objective functions arise in most real-world problems, and high values
of noise can totally mislead the search. For instance, numerically-computed gradi-
ents become totally unreliable in the presence of noise. But because the ranking
of candidate solutions can be hindered by the noise, search methods using rank
information can also be deceived by noisy functions.

e multi-modal: Some objective functions have many local optima. The performance of
an optimization method can be also measured by its capacity to escape local optima
and converge to the global optimum. Deterministic gradient-based methods will
need some restart procedures to escape local optima, and stochastic search methods
will require a careful balance between exploitation and exploration. Moreover, it is
well known that population based methods can help to avoid convergence to a local
optima — but how large should the population be, depending on the characteristics
of the objective function?

e ill-conditioned: Ill-conditioning is well defined for quadratic functions, as the ratio
between the largest and the smallest eigenvalues. More generally, an ill-conditioned
problem is a problem where different variables show a very different sensitivity
in their contribution to the objective function value. For this kind of objective
functions, algorithms exploring all directions with a unique radius will most likely
fail in their search. Algorithms have to provide some adaptation rule for the search
directions, in order to gradually learn the local conditioning. Ill-conditioning also
suggests the use of second order information to learn about the local curvature of
the objective function. In addition, this difficulty can lead to numerical failure of
some line search methods used in gradient based methods.

e non-separable: A function is separable when its global optimum can be reached
by successively optimizing in each of the dimensions. Such objective functions are
hence easy to optimize. However, some search algorithm do implicitly exploit the
separability of the objective function [62|. On the other hand, an algorithm that
is invariant by a change of coordinate will perform exactly the same on a sepa-
rable function and on its (non-separable) rotated instances, thus ensuring that its
performances are not the result of the separability of the objective function.

The different available optimization methods will behave differently when facing the
above-mentioned possible sources of difficulty. On the other hand, knowing the char-
acteristics of a given objective function with respect to those possible difficulties will
allow the user to choose an optimization method that can cope with the corresponding
difficulty. For instance, multi-modality suggests the use of population-based methods;
Ruggedness, non convexity, and noise suggest the use of randomized search methods;
And ill-conditioning and non-separability suggest the use of an efficient and non isotropic
adaptation mechanism for the search directions.

1.4.2 Invariance properties

On the other hand, according to the No Free Lunch theorem [145], no method can out-
perform all other methods on all test problems. Note that the No Free Lunch Theorem of
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[145|, applies to finite search spaces (which is not the case here) and states that assum-
ing a uniform distribution over all "possible problems’, no method outperforms all other
methods on average. When the search space is continuous, it is impossible to define the
notion of a average over all possible problems [20]. However, it is possible to find methods
optimal on some class of functions [20|. For example, quadratic approximation methods
(see the paragraph on quadratic approximation methods), BEGS or the conjuguate gradi-
ent method will probably be more efficient (in the sense that they will probably need less
computational effort to generate solutions close to the optimum) on quadratic objective
functions than other methods which do not make use of a quadratic model hypothesis of
the objective functions. However, there would exists other methods that will be proba-
bly more efficient, on non-convex objective functions, than methods making use of the
quadratic model hypothesis . The same reasoning holds for example for the PSO method
(see Section 1.2.3) which will be probably highly competitive on separable functions, but
probably not the best choice on non-separable problems. Therefore, one should look to
classes of problems where a given method might outperform another method. This is
where invariance properties can play an important role: when a given method is invariant
with respect to a set of transformations in the space of problems, assessing its ability
to solve (with some 'reasonable’ computational effort) one problem immediately demon-
strates similar efficiency on the set of all transformed problems. Moreover, the more
invariance properties an algorithm has, the more robust it is.

Given an objective function f : R? — R, there are different ways to transform the
problem of optimizing f on R? First, any transformation 7' : R — R can be used to
transform the objective function f to another objective function 7'(f). Instances of such
common transformations are

e Translation: Addition of a constant, i.e., T'(f) = f +a
e Scaling: Multiplication by a positive constant, i.e., T(f) =ax f, (a > 0)

e Monotonous transformation: Composition by an order-preserving function i.e., T'(f) =
go f where g : R — R is a strictly increasing function

Another way to transform the problem of optimizing f into another problem is to apply
f to a transformation of the input parameters, i.e., optimizing f o U where U : R? — R?
is a transformation of the search space. Search space transformations include translation,
parameter rescaling and any linear change of coordinate (e.g., rotations).

Two important invariance properties have already been mentioned, and will be empha-
sized in the remaining of this Chapter. First, monotonous invariance is achieved by all
rank-based methods, i.e., methods that only use comparisons of possible solutions (e.g.
PSO, ESs, DE, most EDAs, but not gradient-based methods). A search method with
the monotonous invariance property will behave exactly the same on f and \/ﬁﬁ. Sec-
ond, rotation invariance is achieved by CMA-ES and DE without crossover, but also by
gradient-based methods when the gradient is computed analytically (and not numerically,
coordinate by coordinate) and ensures a robust behavior of the algorithm with respect to
non-separability.

60bviously f is positive in this case.
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The importance of those invariance properties will be empirically illustrated in the
following Sections.

1.4.3 Empirical comparisons

The most widely used search methods have been presented in Sections 1.1 and 1.2. When
a real-world optimization problem is encountered, the practitioner will want to know which
is the most efficient method to apply to the problem at hand. From our point of view,
an efficient optimization method is a method that can offer a good compromise between
the ’quality’ of the solution proposed and the computational effort needed to generate
such a solution. There are two ways to compare the efficiencies of optimization methods:
theoretical and empirical. Few theoretical studies |128] have investigated the comparison
of optimization methods. Moreover, theoretical studies rely on strong assumptions on the
objective functions and/or the search space that are not satisfied in practice. Furthermore,
according to Powell [108] “there seems to be hardly any correlation between the algorithms
that are in regular use for practical applications and the algorithms that enjoy guaranteed
convergence in theory”. The efficiency of an optimization method is in general 'measured’
when solving real-world problems. Therefore, empirical studies seems to be an effective
way for comparing optimization methods.
Empirical studies comparing efficiencies and robustness of optimization methods [122, 106,
82,9, 55| are usually done using a set of well-known tests functions. For instance, a set of
test functions were collected in [134] to compare performances of optimization methods
during a Special Session at the Congress on Evolutionary Computation (CEC2005). As
pointed out in [62], any set of test functions should take into account the search difficulties
as described in Section 1.4.1.

Probably the most investigated objective function test is the (quadratic) sphere func-
tion:

fophere(z) = 272 = ||2||, 2 € R?, (1.20)
where ||.|| denotes the euclidean norm on RY. This function has a unique global mini-
mum at (0,...,0) and is therefore useful for local studies where the goal is to study the

convergence of uni-modal objective functions toward a local optimum. A more general
class of convex quadratic functions which can be written as f(z) = 27 Hz, where H is
a symmetric positive definite matrix, is often used to compare optimization methods, as
the condition number of H (the ratio between its largest and smallest eigenvalues) gives
a quantified information about the conditioning of the problem. The so-called ellipsoid
function for instance is defined, for x = (x1,...,24) as:

feu(x) = a%x?, (1.21)

where a > 0 is the condition number of the function. One can test the behavior of a given
algorithm for different condition numbers by changing the value of «.

Another widely used function, which is not quadratic, but also allows one to study
the effect of ill-conditioning on the behavior of an algorithm is the so-called diff-powers
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function:

i—1

d
faigs(x) =Y a0 (1.22)

i=1

where a > 0 controls the conditioning of the problem.
For testing algorithms on multi-modals problems, the Rastrigin function is often used:

Jras(z) = 10d + Z(x? — 10 cos(2mx;)) . (1.23)

i=1

However, all the above functions are separable (as sum of functions of each variables).
In order to test the effects of non-separability, any rotation using an orthogonal matrix
M can applied on the search space: the functions fe; o M (with o # 1), faigg o M (with
a #0) and f,4s o M are non-separable.

Finally, in order to test the robustness relatively to noisy objective functions, one can
add to these functions a random variable, as what has been done for the sphere function
in 25, 9.

Performance measurement In order to quantify and compare the performance of
search algorithms, one has to introduce a quantity which measures how successful an
algorithm is. Arnold and Beyer |9] have used as efficiency quantity, the ratio between the
expected gain at each generation and the average number of evaluations at each iteration.
Another quantity estimating the success performance has been used in [82]: A successful
run is a run where the algorithm solves the problem i.e., reaches a given precision of the
minimal objective function value before a fixed number of evaluations. Then the success
performance is defined as the average number of function evaluations for successful runs
over the empirical success rate. This success performance measure is called SP1.

1.4.4 Comparison of randomized search methods

In the previous sections, we present some popular randomized search methods. The sim-
plest ones PRS and PAS can be seen as particular ES where no adaptation is used. For
this reason, they are not efficient in practice when compared to self-adaptive ES as
their computation time will be (relatively) very high. Concerning Simulated Annealing,
the techniques introduced for the adaptation of its search parameters in [37] are similar
to those used in the derandomized CMA-ES. Therefore here again SA can be seen as
a particular ES. According to empirical studies, CMA-ES is shown to perform well on
ill-conditioned non-separable problems |61, 59, 82| as well as on multi-modal problems
[56, 82]. The CMA-ES algorithm is also highly competitive with all of the widely used
randomized search methods, as shown in [55, 62]. The latter studies include the com-
parison of CMA-ES with other ESs, as well as with DE, the EMNA EDA, PSO and
the Matlab implementation of BFGS. Moreover, CMA-ES performed best on the set of
25 test functions proposed during the CEC05 Challenge for continuous optimization |2|.
CMA-ES was competitive in all uni-modal and multi-modal objective functions. Only on
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separable functions, it was significantly outperformed by other competitors. Note how-
ever that a simple modification of CMA-ES has been proposed in order to increase the
performance of CMA-ES on separable functions [116], constraining the covariance matrix
to be diagonal.

1.4.5 Comparison of randomized and deterministic methods

According to different empirical studies [106, 9, 56|, randomized search methods, and
especially CMA-ES, are highly competitive and usually more robust than deterministic
search methods in solving real-world optimization problems. In [106], population based
methods and especially ES are shown to outperform deterministic point-based methods
in noisy environments. In [56|, empirical comparisons also include the BFGS method.
In [9], the efficiency of a CMA-ES like algorithm’, Hook and Jeeves pattern search al-
gorithm, multi-directional search simplex method and Implicit Filtering are compared
for the minimization of noisy objective functions. The comparison shows that for high
search space dimensions and large amounts of noise strengths, the CMA-ES like strategy
is the most efficient. As a matter of fact, the multi-directional search diverges for too
high noise levels and Hook and Jeeves and Implicit Filtering stagnate for sufficiently high
noise levels, whereas the performance of the ES algorithm gracefully decreases for high
dimensions and high noise levels. Other empirical results comparing the performances of
CMA-ES, DE, PSO, NEWUOA and BFGS have been recently presented by A. Auger and
N. Hansen [18] in a tutorial session during the PPSN’08 conference. The results show that
CMA-ES is more robust for wide class of objective functions, thanks to its invariance to
transformations such as search space rotation, composition by an order-preserving func-
tion and a less deterioration of its performance when the objective function is more and
more ill-conditioned. Relying on the empirical studies surveyed above, CMA-ES clearly
seems the best default choice among the different search methods presented here, when
no further information about the objective function is available. In fact, it is robust, hav-
ing a competitive efficiency compared to other optimization methods when dealing with
difficult optimization problems, especially in the case of non separable, non convex, ill
conditioned, multi-modal and noisy objective functions. Of course, in the case of convex,
relatively well-conditioned functions (condition number smaller than 10°), methods such

as NEWUOA or BFGS should be preferred.

However, it is worth noticing that real-world optimization objective functions are
more likely to lie in one of the difficult classes described above than in the class of convex
separable functions. In any case, the application part of this work (Chapter 5) will use
CMA-ES to solve a real-world optimization problem.

"The algorithm used is called the Cumulative Step-Size Adaptation Evolution Strategy, which is
referred to as (u/p, A)-CSA-ES. This algorithm uses the same step length adaptation as in CMA-ES, but
does not attempt to adapt the covariance matrix.
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1.5 Survey of theoretical studies on Evolution Strate-
gies: Non-noisy functions

This section will rapidly survey the existing theoretical studies of search algorithms be-
longing to the Evolution Strategy family.

The majority of theoretical studies of ES algorithms is concerned with isotropic ES,
for which no search direction is preferred (the covariance matrix is equal to the identity
matrix during the whole run and is not updated). Let (X,) be the sequence of vectors
in R? generated by the ES method and (f(X,,)) be the corresponding objective function
values. The goal of theoretical studies is to investigate the limit of the sequence (X,)
(respectively (f(X,))) to the set of optima z* (respectively to the minimal objective
function value f*).

The behavior of ES has been empirically observed to be log-linear, and we will start
by formalizing this concept:

Definition 1.1. Let A be an algorithm designed for the minimization of an objective
function with a unique global optimum. Let (d,), be the sequence of the distances to
the optimum of the best points sampled by algorithm A at iteration n. Then algorithm
A (or the sequence (d,),) is said to have a log-linear behavior if there exists ¢ # 0
such that lim, = In(d,) = ¢. Note that depending on ¢, this can mean convergence or
divergence: If ¢ > 0, the algorithm diverges in the sense that the logarithm of the distance
to the optimum will increase linearly to +o00. We shall refer to this situation as log-linear
divergence. On the opposite, if ¢ < 0, the algorithm converges in the sense that the
logarithm of the distance to the optimum will decrease linearly to 0. We shall refer to
this situation as log-linear convergence.

Existing theoretical studies can be divided into two classes: global and local conver-
gence studies.

1.5.1 Global convergence studies

Global convergence studies refer to theoretical studies where the objective function is not
subject to many hypothesis. In particular, these studies include multi-modal objective
functions. In the case of the simplest ES procedure, the (1 + 1)-ES, a sufficient condition
ensuring almost sure convergence of the algorithm over a compact set [150] when the
sequence of step-sizes, (0y)nen, is deterministically updated with zero as limit is that
ony/In(n) — 400 when n goes to +oc.

In the case where the step-size is not updated, Rudolph [117|, and later Chonghui
and Huanwen [33] prove the same result of almost sure convergence of the sequence of
objective functions solutions generated by the (1+ 1)-ES to the global minimal objective
function value for continuous objective functions defined on a bounded search space. For
a specific ES using quasi-random mutations and a specific deterministic adaptation rule
of the step-size [19], an almost sure global convergence is shown using mild assumptions
on the objective function.
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A negative result was shown by Rudolph [119] in the case of the (1 4 1)-ES using the
one-fifth adaptation rule: there is a strictly positive probability that the algorithm gets
stuck in a local optimum.

1.5.2 Local convergence studies

All theoretical studies that will be presented in this thesis belong to the local convergence
studies. These studies are concerned either with objective functions that possess a unique
global optimum, or with the convergence of ES to a local optimum. Without loss of
generality, we can suppose that in the general case that the local (or unique) optimum z*
that we are concerned with is (0,...,0) € R<.

Local studies can in turn be classified into studies in finite dimension and studies
where the dimension is assumed very large, that we will abusively call 'infinite dimension’
studies.

Infinite dimension studies

By infinite dimension studies, we refer to studies that make the approximation of a search
space dimension d going to 4+o0o0. The general context of this studies is the so-called
progress rate theory [114, 25|. This theory investigates quantities such as the progress
rate, the fitness gain, or the success probability. The progress rate is the expected progress
toward the optimum of a single iteration which can be written as the conditional expecta-

tion K <1 — %\XO The fitness gain is the expected gain in fitness at each iteration.

A class of objective functions that have been widely investigated in progress rate
theory is the class of the so-called spherical functions, which are real valued functions
defined on R? by f(z) = g(||=||*) where x € R?, g : [0, +00[— R is an increasing function
and ||.|| denotes the euclidean norm on R%. All spherical functions have a unique global
minimum reached on (0,...,0). Infinite dimension studies had also investigated other
objective function models such as the corridor model, various ridge functions and other
positive definite quadratic forms.

These studies use some normalizations of underlying quantities such as the step-size
mutation and the progress rate. These normalizations are useful when dimension d goes
to infinity. The sign of the limit of the normalized progress rate determines whether the
algorithm converges or diverges when the search space dimension is sufficiently high: A
strictly positive normalized progress rate implies the convergence of the relative algorithm
and a strictly negative normalized progress rate implies the divergence of the algorithm.
Moreover, these studies investigate isotropic ES using either realistic adaptation rules
such as the one-fifth adaptation rule, the self-adaptation rule or the cumulative step
length adaptation rule, or an artificial adaptation rule called scale-invariant adaptation
rule. The scale-invariant adaptation rule, which assumes that the distance to the optimum
of a current solution is known at each iteration (which is not the case in practice), sets
the step-size mutation at a given iteration proportional to this distance.

Studies using the progress rate theory are quantitative studies, asymptotic in the
dimension of the search space but that rely on some approximations. Other asymptotic
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studies have been carried out by J. Jiagerskiipper [72, 70, 71, 75|%, the proofs are rigorous
at the expense of loosing quantitative results. Most of these studies aim to determine
how the runtime of ES (or more general zeroth order methods) varies as a function of the
search space dimension.

Finite dimension studies

Some local studies in the finite dimensional case have also been concerned with the scale-
invariant adaptation rule: Tt has been proved [17] that this rule is optimal, in the sense
that the convergence rate that is obtained with this rule when minimizing sphere func-
tions is optimal. However, it has also been rigorously shown that the (1, A\)-ES converges
(or diverges) log-linearly when minimizing spherical functions using either the optimal
scale-invariant adaptation rule [17, 27| or the true self-adaptation rule [13, 27| (see Sec-
tion 1.2.4). Those results [13, 17, 27| have been established using the Laws of Large
Numbers (LLN) for independent random variables or for random variables constituting a
Markov chain sequence. A complete presentation of the theory investigating the stability
of Markov chain sequences can be found in [97].

Other results have been obtained for more general classes than sphere functions. For
a specific class of convex objective functions, Rudolph [118| investigates the (1,)\)-ES
where mutations follow a uniform distribution on the sphere and the step-size is adapted
proportionally to the norm of the gradient on the current solution (at iteration n, the
step-size o, is set to o||VX,||, where X,, is the current solution and o is a strictly pos-
itive constant). He proves that the sequence of objective functions (f(X,)), converges
geometrically fast to the optimal value provided that o is sufficiently small. A. Auger
et al. [14] investigate a similar (1, A\)-ES algorithm using Gaussian mutations and either
the scale-invariant adaptation rule (i.e., o, = o||X,]||) or the gradient-proportional rule
(i.e., 0, = 0||VX,]|, for some o > 0). They prove that the sequence (f(X,)), converges
to the optimal solution almost surely and in L', for a specific class of twice continuously
differentiable objective functions. This result was established using the martingale theory
and holds for sufficiently small values of o.

Finally, A. Auger and N. Hansen [17| have bridged the gap between the progress
rate theory and finite dimension studies. In the context of the minimization of spherical
functions, they introduce the so-called log-progress rate as the conditional expectation
E (In(]|X,.]]) = In(|X,41]])|X,,). They prove that the sign of this quantity gives the almost
sure convergence of the algorithm for finite dimensions. Moreover, they have shown that,
when using the normalizations that are used in the context of the progress rate theory, the
limits of the normalized log-progress rate and of the normalized progress rate are equal
when the search space dimension d goes to infinity. Another important point of their
study is that, for finite dimension, the sign of the normalized progress rate determines
the convergence in mean of the solutions generated by the (1, A\)-ES algorithm, and not
the almost sure convergence.

8For the first reference, the work has been done in collaboration with Carsten Witt.
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1.6 Survey of theoretical studies on Evolution Strate-
gies: Noisy functions

1.6.1 Motivations

The most important part of the work presented in this thesis deals with the optimization
of noisy objective functions. Noisy optimization is an important part of optimization, be-
cause noisy objective functions are very frequently encountered in real-world optimization
problems. Several situations may lead to noisy objective functions. Objective functions
can be the result of some physical measurements, and the measured values will differ due
to the variability of experimental conditions at each measurement. Noise can be also the
consequence of user input. Also objective functions resulting from Monte-Carlo simu-
lations are noisy due to their stochastic nature: the precision of these methods depend
on the number of iterations, but the results over different simulations will always have a
positive variance.

These examples share the property that the reevaluation of these objective function
with the same input data will lead to different values: we shall assume that the noise
investigated here is an unknown random variable. The randomness of the noisy part
of objective functions removes an important part of the information on this function.
This means that ruggedness can be taken into account by the model of a noisy objective
function.

Many papers have been devoted to theoretical or empirical investigations of optimiza-
tion of noisy objective functions [138, 23, 106, 80, 24, 25, 7, 5, 8, 9, 10, 136|. In many em-
pirical studies [9, 106, 138|, noisy objective functions are used to assess the performances
of different strategies. The work in [9] demonstrates the efficiency and the robustness of
a CMA-ES-like algorithm (which is an algorithm similar to CMA-ES but wich does not
use the adaptation of the covariance matrix) when dealing with noisy objective functions.
Furthermore, for high noise levels, this CMA-like method outperforms the implicit filter-
ing method, a method that was especially designed to deal with noise (see Section 1.1.2).
In |106], the efficiency of population-based methods is compared to that of deterministic
point-methods in noisy environments. The results favor population-based optimization,
and ES in particular.

ES have thus been empirically demonstrated to be robust when minimizing noisy
objective functions. However, the most investigated theoretical studies are infinite di-
mension studies [24, 7, 25, 8, 5| and rely on many approximations and normalizations (see
Section 1.6.3).

1.6.2 Evolutionary Algorithms in noisy environments

Evolutionary Algorithms are known to be robust with respect to noise, as has been known
for long in the context of discrete search spaces [44, 112, 100]|. However, studies of GA in
noisy environment are mostly empirical and, to the best of our knowledge, do not include
any theoretical investigation.

In [24], H.-G. Beyer surveyed some studies on the behavior of different flavors of EAs
(GA, ES and EP). In particular, despite the fact that GA (for discrete search spaces)
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and ES (for continuous optimization) operate on different search spaces, their behaviors
show some similarities when applied to noisy objective functions. In fact, the noise results
in a decrease of the convergence speed, and leads to a loss of accuracy in terms of the
localization of the optimum.

The critical issue when optimizing noisy objective functions is that it can make the
selection process unreliable, and hence turn any search algorithm into some kind of random
walk. However, because the noise is assumed to have zero mean, stochastic techniques
can cope with rather high levels of noise by over-sampling the noisy fitness function: this
can be achieved by assigning to each new individual an average of several evaluations of
the fitness function. Another possible solution is to increase the population size: The
non-zero variance of the population size in the case of the (i, \)-ES [7], or, the genetic
repair of the (u/pr, A)-ES [6], lead to an increase of the performances of these strategies in
noisy environments. In the same case of ES, another solution, that has been analyzed in
[24], is concerned with the use of rescaled mutations: The standard ES Gaussian mutation
is replaced by equation:

(V)i = (Xa): + 1o (0, Co), (1.24)

where k& > 1 is the rescaling parameter. As stated by Beyer, “the (1, A\)-ES can perform
large search steps with the result of larger fitness differences which will be significant over
the noise level.”

There has been, however, some theoretical studies about the behavior of ESs in noisy
environments, that will now be described.

1.6.3 Theoretical results for noisy optimization

Theoretical studies of optimization of noisy objective functions using ES have been mainly
done in the context of of the progress rate theory in infinite dimension. However, few stud-
ies in finite dimension have been done in the context of optimization of noisy objective
functions using ES [136].

The first infinite dimension studies of ES on noisy environments have been carried
out by Rechenberg [114], who investigated the computation of the progress rate on the
noisy instances of the sphere and the corridor functions. He succeeded in calculating the
progress rate of the (14 1)-ES for the minimization of the noisy corridor function. Twenty
years later, Beyer [23] computed the progress rate for the (14 \)-ES and (1, \)-ES when
minimizing the noisy sphere function. Since then, many works by Arnold and Beyer have
studied the behavior of ES on noisy objective functions [10, 5, 7, 8, 24, 25, 23]|. These
studies cover the comma strategies |7], the comma strategies with recombination |6], and
the plus strategies |8, 25, 23|. Note the plus strategies in [23, 25| in fact use a particular
plus strategy in which the fitness of the parent is reevaluated at each iteration.

Noise model

Before starting a theoretical investigation of a noisy fitness function, a model has to be
chosen for the noise. Let f be a fitness function with a minimal value f* supposed to be
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equal to zero (termed the ’ideal’ fitness in the following). There are several possible ways
to build a noisy fitness function f ;s from f.

A first natural idea is to add to the ideal function some random variable, for example
a Gaussian random variable: fnoisy(x) = f(x) + eN(0,1) where the noise level € is a
constant value. A possible defect of this model is that the noise can dominate the ideal
fitness when getting close to the optimum, and consequently leads the search to behave
like a random walk.

Another idea, which is often true in the case of quadratic (ideal) objective functions
(which will be investigated in this thesis), is that the behavior of the algorithm depends
on the ratio between the noise level and the values of the ideal objective function. This
is why the noise level should be proportional to the ideal objective (quadratic) function.
Note that this statement is not necessarily verified in general. In fact, for cubic or quartic
ideal objective functions for example, the behavior of the algorithm really depends on the
ratio between the noise level and the standard deviation of the ideal fitness values in the
population. Therefore, for the specific case of quadratic ideal objective function, the idea
of having a noise level proportional to the ideal objective function, should be suitable,
and leads to a multiplicative noise model which writes as fnoisy(x) = f(x)(1+0N(0,1)).

In the studies cited above |10, 5, 7, 8, 24, 25, 23|, the objective function is the so-called
noisy sphere function: the Gaussian noise’ has a standard deviation proportional to the
ideal fitness, or, equivalently, to the distance to the optimum (for the sphere function).
Moreover, the noise model takes into account an additional normalization of the noise
strength with respect to the search space dimension d. In a more general context of ideal
objective functions f(z) = ||z||* with @ > 0, the noise strength o, should be written |25]
2% where o > 0 is called normalized noise strength. Therefore, the model of noisy

d )
sphere function with a fitness-proportional GGaussian noise can be written as:

2 *
f(2) = le]* + == l2]*N(0, 1) (1.25)

In addition to the normalization of the noise strength, Arnold and Beyer use the same
normalizations relative to the progress rate and the step-size mutation that had been
introduced in the non-noisy case for the theoretical studies in the context of the progress
rate theory (see Section 1.5.2). Using these normalizations, Arnold and Beyer [8] approx-
imate the standard deviation of the noise at the offspring location by that at its parent
location. Their argument is that, in very large dimension, the parent and its offspring
are so close that the fitness has the same noise level at both locations. Mathematically
speaking, if we denote y an offspring of a parent x, the expression of the fitness of the
offspring which, according to Eq. 1.25, writes as f(y) = ||y[|* + % y||I>N(0,1) is well ap-

2[>N(0,1). The random part 22 [|y[[>N(0,1) is replaced

207
d

proximated by f(y) = |ly||* +
by % z||*N(0,1).

Infinite dimension results

As in the non-noisy case, the sign of the limit of the normalized progress rate is sufficient to
indicate whether the algorithm converges or diverges, in the limit of infinite dimension for

Note that the study in [10] does not assume a Gaussian noise.
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the noisy sphere function. The first (expected) result that can be seen in the plots of the
limit of the normalized progress rate as a function of the normalized step-size mutation for
different normalized noise strengths (see for example |25, Fig 3.10], [8, Fig 6|, [7, Fig 4]) is
that the normalized progress rate decreases when the normalized noise strength increases.
In particular, the best normalized progress rate corresponds to the non-noisy case (for
which the noise strength o, equals 0). For comma strategies, it is proved in |25, Fig 3.10|
for the (1,5)-ES that :

e For 'small’ values of the normalized noise strength, the algorithm converges for small
values of the normalized step-size mutation and diverges for sufficiently "large’ values
of the normalized step-size mutation, and

e For ’large’ values of the normalized noise strength: the algorithm diverges for any
value of the normalized step-size mutation.

For plus strategies, the curves in [8, Fig 6], plotted using some normalized noise strength
values, suggest that the (1+1)-ES which does not use reevaluation of the parent converges
for any value of the normalized step-size mutation. For plus strategies, and using the
reevaluation of the parent at every iteration, the plots in |25, Fig 3.12| and |8, Fig 6]
suggest that for ’small’ values of the normalized noise strength the algorithm converges
and that it can diverge for large normalized noise strengths.

The performance of these different ES strategies (which do not use recombination) has
been compared in |7, Fig 6] as a function of the normalized noise strength. It is shown
that for small normalized noise strength values, plus strategies perform better than comma
strategies, and that the opposite happens for large normalized noise strength values.

Moreover, some computations in the infinite dimension setting were used to decide
whether re-sampling and/or increasing the population size can improve the performance
of the ES in noisy environments: the (u, u))-ES performs slightly better than the (1, \)-
ES when using re-sampling [24]. For ’large’ noise strengths, the expressions of the progress
rate derived by Arnold and Beyer |25, 6] suggests that it is better to reevaluate and re-
sample than to increase A for the (1,\)-ES, and that one should increase g when using
the (p/p, A)-ES.

Finally, the adaptation of the mutation step-size when optimizing noisy objective
functions was studied. The usefulness of the one-fifth rule was discussed in [8| and that
of a self-adaptive strategy with a rescaled mutation in |24|. An interesting result was
derived in [6] where the efficiency of cumulative step length adaptation when dealing with
noisy environments was shown for the (1/p, A\)-ES minimizing the noisy sphere function.
More precisely, the study suggests that cumulative step length adaptation generates step
lengths in the vicinity of optimal ones provided that population sizes are sufficiently large.
However, a limitation of this results, which has been done in the limit of infinite search
space dimension, is that it requires at the same time sufficiently large population sizes
and A << d.

In our theoretical and numerical study, we investigate first (Chapter 2) the optimiza-
tion using the (1 4+ 1)-ES of non noisy objective functions. Then in Chapters 3 and
4, we investigate the behavior, when minimizing noisy objective functions, of the scale-
invariant (1 + 1)-ES (Chapter 3) and of the scale-invariant (1, A\)-ES (Chapter 4). For
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the studies in noisy environments, the noisy objective function model is similar to the
one investigated by Arnold and Beyer given in Eq. 1.25 but the noise distribution is not
necessary supposed to be Gaussian. In fact, the distribution of the random part of noisy
objective functions investigated here include lower bounded and unbounded distributions.
Moreover, we uses mild assumptions on the noise distribution. Finally, we theoretically
investigate the reliability of some approximations used by Arnold and Beyer.

1.7 Discussion

In previous sections (Sections 1.4.4 and 1.4.5), we have shown that ESs and in particular
CMA-ES are efficient to solve difficult optimization problems. We give a particular inter-
est to the difficulties that can be caused by noisy objective functions which are frequently
encountered in practice. In particular, ESs using recombination, have been empirically
shown [9, 106] to be more robust than other deterministic or randomized search methods
in noisy environments. A first goal of this thesis is then to study theoretically and nu-
merically the behavior of some simple ESs (simpler than CMA-ES) in noisy environments
as they performed better in noisy environments. We are convinced that both theoretical
and numerical approaches have to be investigated in a complementary approach. In fact,
theoretical studies are helpful to explain the behavior of a given method but they need
strong assumptions on objective functions, that are not satisfied in practice. Numerical
approaches are also helpful in order to improve our understanding of the behavior of the
algorithms, but one has to be careful not to hastily turn some behaviors that have been
observed in very particular cases into general truths. Here again, a theoretical study
can help understanding the experimental facts. For this reason, our studies are based on
establishment of convergence theorems with numerical simulations that illustrate results
and that helped us for the understanding of the behavior of the algorithms and wee guide-
lines for our theoretical results. Previous theoretical studies of ES in noisy environments
(see Section 1.6) lie on the limit of infinite dimension of the search space. This hypothesis
allow to use some approximations. Moreover, some normalizations have been frequently
used. The noise distribution is also restricted to the Gaussian model (see Eq. 1.25). In
our work, we want to investigate theoretically ESs (in particular, in noisy environments)
when the dimension of the search space is finite and compare our results to to infinite
dimension results. In the particular case of noisy objective functions, the noise is not
always assumed to be Gaussian. Another motivation for this study is that, as pointed out
in [17], infinite dimension results [17| usually provide convergence in mean results and in
this work we want to give almost sure convergence results.

In the second part of this thesis, CMA-ES is applied to solve a real-world optimization
problem. The problem had been previously tackled using gradient-based strategies |74,
73] and one of the goals of this study is to compare performances of randomized and
deterministic search methods in this specific study and see whether it is true or not that
randomized search methods seem to be more robust that deterministic search methods in
solving real-world optimization problems.
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Chapter 2

Log-linear Convergence and Optimal
Bounds for the (1 + 1)-ES

The material in this Chapter is mainly contained in the paper [77| that has been published
in a Springer Verlag LNCS volume containing a selection of papers presented at the
conference Euvolution Artificielle 2007. This work has been done in collaboration with
Pierre Liardet.

In this paper, we have studied the (1 + 1) isotropic ES for minimizing real valued
objective functions defined in R? (d > 1). We have shown two main results:

e Theorem 2.4: The convergence of the (14 1) isotropic ES is at most log-linear and
the optimal convergence rate is derived.

e Theorem 2.10: The convergence of the specific (1 + 1)-ES using a scale-invariant
adaptation rule is log-linear when the objective functions are the so-called spherical
functions, f(z) = g(||z||?) where z € R% g : [0, +o0o[— R is an increasing function
and ||.|| the euclidean norm on R?. Moreover, the optimal convergence rate, that
can be rached when the (1 + 1) isotropic ES optimize any objective function using
any adaptation rule, is obtained when the adaptation rule of the step-size is the
scale-invariant adaptation rule and the objective function is the spherical function.

The log-linear behavior of the scale-invariant (1 + 1)-ES is established using the Law of
Large Numbers (LLN) for orthogonal random variables (Theorem 2.9). This theorem has
been derived from [93, p. 458].

Similar results had been previously proved in the case of the (1,\)-ES: The log-linear
behavior (convergence or divergence) of the scale-invariant (1, A)-ES minimizing spherical
functions have been previously shown in |27, 17|. The result has been derived using the
LLN for independent random variables and suggests that the convergence results obtained
hold in probability. In [12], it is stated that almost sure convergence is obtained using
similar techniques as in [13] where the proof relies on the LLN for Markov chains. For
specific classes of twice continuously differentiable objective functions, it has been shown
in [14], that almost sure convergence holds for adaptive (1, \)-ES with the scale-invariant
adaptation rule of the step-size mutation o, i.e., 0, = || X, || or with different step-size
mutations at each direction (o,)" = a|%§)|, where for ¢ € {1,...,d}, 66_92 is the i-th
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partial derivative of f and X,, is the solution at an iteration n. Those results were derived
using tools of martingale theory. For the (1, \)-ES using a realistic self-adaptation rule,
the log-linear behavior on spherical functions has been shown in [13] using the LLN for
Markov chains. The optimality of the scale-invariant adaptation rule when minimizing
spherical functions has been already rigorously derived for comma strategies in [17].

The contribution of this study is that it provides tight bounds for (141)-ES algorithms.

The optimal bounds derived in this work can be used to assess the performances of a given
(realistic) step-size adaptation strategy comparing the convergence rate achieved by the
strategy with the optimal one, given by the (artificial) scale-invariant algorithm on sphere
function.
The optimal convergence rate that can be reached by a (1+1)-ES algorithm is given by the
value of 0 maximizing the function F' defined in Lemma 2.1. The theoretical computation
of the optimal ¢ value is presumably impossible. However, as the convergence rate F'is
expressed as a function of an expectation, its computation (and then that of the optimal
o value) is investigated using Monte Carlo simulations when the search space dimension
d is finite.

In the conclusion of the paper (Section 2.5), we state that the computation of the value
of o maximizing the convergence rate is equivalent to that of ¢ maximizing the log-progress
E(In||X,])—E(n ||X,51]]). We also state that, when the search space dimension d goes to
infinity, the quantities d(E(In || X,||)—FE(In || X,+1]|)) and the so-called normalized progress
rate d(E(||X,]]) — E(||X,+1]])) are equal when replacing o by o*/d (¢* > 0), having a limit
that only depends on ¢* that we can denote [(c*) and whose expression is the opposite
value of the one given in [25, Eq. 3.88|. The limit I(c*) is also the limit, when d goes to
infinity, of the normalized convergence rate dF (c*/d) where F' is defined in Lemma 2.1.
These statements could be rigorously shown using the same technique used in Chapter 4
where a more complicate result is given in the specific case of comma strategies. Morevoer,
the result will enable us to state the convergence rate varies asymptotically linearly with
the inverse of the search space dimension. On the other hand, it is worth noticing, that
in the similar context of a (14 1)-ES using isotropically distributed mutation vectors and
minimizing spherical functions, an algorithmic analysis of how the runtime of the (1 + 1)-
ES depends on the search space has been performed by J. Jagerskiipper |[71|. In particular,
Jens shows for the one-fifth adaptation rule that, the time to halve the distance to the
optimum is linear in the dimension. This is an other way to state the result (shown here)
that the dependence of the convergence rate is inversely proportional to the dimension.
However, Jens studies being asymptotic in the dimension, no convergence rates for finite
dimension can be derived.
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Errata :
There are few errata in the published paper:

e Proof of Lemma 2.1: The surface area of the d-dimensional unit ball should read
Sq = 2m2T(2).

e Proof of Proposition 2.7: 1) The quantities Y,, and Y, are random variables, not
random vectors. 2) Last equation: The right hand side of the first line should be

12

wa <1H7 (H”ﬁ—’m”” +axH)>e’Hm2 dr — F(0).

e In Fig 2.1, the plots are rather related to the definition of F' given in Eq. 2.3 than
to Eq. 2.4 which is a consequence of Eq. 2.3.

e A spelling mistake in the sentence just after Eq. 2.1, the world “euclidian” should
be written as “euclidean”.
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e The word “independency” appears twice in the chapter (in the proofs of Lemma 2.2
and of Proposition 2.7) and should be replaced by “independence”.

e In the proof of Lemma 2.2, one should have “Using the independence of o X ||~

and NV ..."

e Before Theorem 2.8, one should have “ But the random vectors Y, are i.i.d. ...”
instead of “ But the random vectors ﬁ are i.i.d. ...”.
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Abstract

The (1 + 1)-ES is modeled by a general stochastic process whose asymptotic behavior is
investigated. Under general assumptions, it is shown that the convergence of the related
algorithm, is sub-log-linear, bounded below by an explicit log-linear rate. For the specific
case of spherical functions and scale-invariant algorithm, it is proved using the Law of
Large Numbers for orthogonal variables, that the linear convergence holds almost surely
and that the best convergence rate is reached. Fxperimental simulations illustrate the
theoretical results.

2.1 Introduction

Evolutionary algorithms (EAs) are bio-inspired stochastic search algorithms that itera-
tively apply operators of variation and selection to a population of candidate solutions.
Among EAs, adaptive Evolution Strategies (ESs) are recognized as state of the art algo-
rithms when dealing with continuous optimization problems. Adaptive ESs sequentially
adapt the parameters of the search distribution, usually a multivariate normal distribu-
tion, based on the history of the search. Several adaptation schemes have been introduced
in the past. The one-fifth success rule |[114, 82| considers the adaptation of one parameter,
referred as the step-size, based on the success probability. The most advanced adaptation
scheme, the Covariance Matrix Adaptation (CMA), adapts the full covariance matrix of
the multivariate normal distribution [61].

The first theoretical works carried out in the context of Evolution Strategies focused on
the so-called progress rate defined as a one-step expected progress towards the optimum
[114, 25|. The progress rate approach consists in looking for step-sizes maximizing the
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expected progress. This amounts to investigating an artificial step-size adaptation scheme
called scale-invariant, in which, at each iteration, the step-size is proportional to the
distance to the optimum. The results derived in the context of the progress rate theory
hold asymptotically in the dimension of the search space and the techniques used do not
allow to obtain finite dimension estimations.

Finite dimension results were obtained in the context of 'comma’ strategies on the
class of the so-called sphere functions, mapping R? into R (d being the dimension of the
search space) and defined as

f(@) = g(lz]*), (2.1)

where g : [0, +oo[— R is an increasing function and ||.|| denotes the usual euclidian norm
on R. On this class of functions, scale-invariant ESs [27] and self-adaptive ESs (which use
a real adaptation rule) [27, 13] do converge (or diverge) with order one, or log-linearly'.

In this paper, finite dimension results are investigated and the focus is on the simplest
ES, namely the (1 + 1)-ES. Section 2.2 introduces the mathematical model associated to
the algorithm in a general framework and provides preliminary results. In Section 2.3,
a sharp lower bound of the log-convergence rate is proved. In Section 2.4, it is shown
that this lower bound is reached for a scaled-invariant algorithm on the class of sphere
functions. The proof of convergence on the class of sphere functions uses the Law of Large
Numbers for orthogonal random variables. A central limit theorem is also derived from
this analysis. In Section 2.5 our results are discussed and related to previous works. Some
numerical experiments illustrating the theoretical results are presented.

2.2 Mathematical model for the (1 + 1)-ES

Let R? be equipped with the Borel o-algebra and the Lebesgue measure. In the sequel
we always assume that (NV,,),, denotes a sequence of random vectors (r.vec.) independent
and identically distributed (i.i.d.), defined on a suitable probability space (€, P), with
common law the multivariate isotropic normal distribution on R¢ denoted by N(0, I)
(2). Let (0,), be a given sequence of positive random variables (r.var.). We also assume
that for each index n, o, is defined on € and is independent of N,,; further we will
also require that the sequences (0,), and (N,), are mutually independent. Finally, let
f : R? — R be an objective function (which is always assumed to be Lebesgue measurable)
and let §, : RY x Q — {0,1} (n > 0) be the measurable function defined by 6, (x,w) :=
L f(atom (@)Na ()< f(2)} - In this paper, (14 1)-ES algorithms are modeled by the R%-valued
random process (X,,),-0 defined on Q by the recurrence relation

Xn+1 = Xn + 5n(Xn> IQ)UnNn 5 (22)

where I is the identity function w — w on Q and X is given.

"We say that the sequence (X,,), converges log-linearly to zero (resp. diverges log-linearly) if there
exists ¢ < 0 (resp. ¢ > 0) such that lim,, 2 In [|X,, || = c.
2N(0, 1) is the multivariate normal distribution with mean (0,...,0) € R? and covariance matrix the

identity 1.
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The classical terminology used for algorithms defined by (2.2) stresses the parallel
with the biology: the iteration index n is referred as generation, the random vector X,,
is called the parent, the perturbed random vector X,, = X,, + 0,,N,, is the n-th offspring.
The scalar r.var. o, is called step-size. The r.var. 9,, translates the plus selection “+” in
the (1+ 1)-ES: the offspring is accepted if and only if its fitness value is smaller than the
fitness of the parent. Several heuristics have been introduced for the adaptation of the
step-size 0, the most popular being the one-fifth success rule [114, 82|.

Notations and preliminary results

For a real valued function 2 — h(z) we introduce its positive part h*(z) := max{0, h(z)}
and negative part h~ = (—h)". In other words h = h* — h™ and |h| = AT + h™. In the
sequel, we denote by e; a unitary vector in R?. The following technical lemmas will be
useful in the sequel.

Lemma 2.1. Let N be a r.vec. of distribution N(0, I;). The map F : [0, 00] — [0, +0o0]
defined by F(400) := 0 and

F(o):=E[In" (|ley + oN|)] = W /Rd In"(||e; + ax||)e_@dx (2.3)

otherwise, is continuous on [0, 4+00] (endowed with the usual compact topology), finite
valued and strictly positive on ]0, col.

Proof :

The integral (2.3) always exists but could be infinite. In any case, F'(¢) is independent of
the choice of e; due to the invariance of A/ under rotations. For convenience we choose
er = (1,0,...,0) so that In"(|le; + ox|) = 0 if z = (xy,...,24) with z; > 0. Let
f1:R? x [0, 00] — [0, +00] be defined by

|Ed]

fi(z,0) =In"(|ley + oz||*)e 2

for x # (=1/0,0,...,0) and fi((—1/0,0,...,0),0) = 400 (with ¢ > 0) and finally
fi(z,+00) = 0 (= limy— 4o fi(z,0)). Notice that fi(z,0) = 0 if 2y > 0 and readily
fil(z1, 29, ..., 24),0) = fil(z1, €229, ..., €47q),0) for any (e, ..., €eq) in {—1,+1}%! so
that we can restrict the integration giving F'(c) to the domain D :=] — oo, 0[x]0, co[?71,

more precisely one has

1/2\4/2
F(o) = Z<%> /Dfl(:v,cf)dx (2.4)
with in addition f; is finite everywhere in D. From the definition of F(400) and f;
one has 1(2/m)%2 [ fi(z,+o00)dz = 0 = F(400) so that (2.4) holds also for ¢ = +oc.
Now, for any real number o > 0 fixed, the inequality fi(x,0) > 0 holds on B, := {z €
D; |ley + ox|| < 1} which is a nonempty open set, therefore F(o) > 0. In addition,
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2.2.  Mathematical model for the (1 +1)-ES

fi(z,0) = 0 for all  and so, F'(0) = 0. Passing to spherical coordinates (with d > 2)we
obtain after partial integration

+o0
/fl(a:)da: = 20d/ / “(Jor — ZA61|)7“d_1e_ T sin®? 0, dr db,
D
Cq = / / sm(@d 2)d02 de_1

for d > 3 and ¢ = 1. With the classical Wallis integral W,_o = OW/2 n%20 df and the
surface area of the d-dimensional unit ball S; = QWd/Q/F(g) we have S; = 2%,W,_5 and

after collecting the above results we get

1 a2 o o2 | P
F(o) = < d / / “(lor — €)r¢ e sin®2(#) dr df .
2m Wa_ 2F 3)

The integrand ¢ : (,0,0) — In"(|or — e?|)r¢-te- 5 sind ~2(0) defined on the set

10, +00[x[0, /2] x [0,00] (with g(r,0,+00) = 0) is continuous. In fact, the continu-
ity is clear at each point (r,0,0) with 0 # +oo and for the points (r,60, +00), one has
g(p,a,0) =0 on ]r/2, +o0[x[0,7/2]x]2, +00]. Moreover, g is dominated by g; : (r,6) —
In~(sin @)r?te=*/2 i.e., g(r,0,0) < g1(r, ) for all (r,0, ) in ]0, +oo[x[0,7/2] x [0, +0o0].
Since g; is integrable, the continuity of F' on [0, +0o0] follows from the Lebesgue dominated
convergence theorem. For the remaining case d = 1 the conclusions of the lemma follow

where

2
easily from (2.4) that gives F'(o) = 2\/% S (|1 = or|)e” 2 dr. O
Corollary 1. The supremum 7 := sup F([0, +oc]) is reached and op := min F'~!(7)

exists. Moreover 0 < op < 400 and 0 < 7 < 400.

Proof :
This corollary is a straightforward consequence of the continuity of F' according to Lemma 2.1
which implies that F~!(7) is nonempty and compact. O

Lemma 2.2. Let X denote a r.vec. in R? such that || X||~! is finite almost surely. Let o
be a non negative random variable and let A" be a random vector in R? with distribution
N(0, I;) and independent of o] X||~!. Assume that

E(ln (1 —i—THXH>) € O(e™)

with a constant ¢ > 0, then the expectation of In* (|| X[ ~"[| X + oA|) is finite.

Proof :
Obviously E(In* (| X" X + oN|)) < E(In(1 + %7IV1)). Using the independency of
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Chapter 2. Log-linear Convergence and Optimal Bounds for the (1 + 1)-ES

o||X|| and NV, and passing to the spherical coordinates, one gets

2
_ =]l

E(ln(1+m||./\/'||)) - E(/ ln(l—i—meH) 5 )

+oo 2
= SdE(/O ln(l—i—?“HXH)rd_le_%dT)

+oo 2
= Sd/ E(ln(1+r Nré-te= T dr
0 HXH

—+o0
<< / rd—ler= _dr<+oo
0

Remark 2.2.1. The assumption E(In(1+7r757)) € O(e) (with ¢ = 0) is verified if there
exists o > 0 such that the expectation of the r.var. (o/||X||)® is finite.

2.3 Lower bounds for the (1 + 1)-ES

In this section, we consider a general measurable objective function f : R — R. We
prove that the (14 1)-ES defined by (2.2) for minimizing f, under suitable assumptions,
satisfies for all z* in R? and all indices n > 0:

—o00o < E(In[|X, —2"||) =7 < E(In || X541 — 27]]) < 400 (2.5)

where 7 is defined in Corollary 1.

If 2* is a limit point of (X,,) (that could be a local optimum of f), (2.5) means that the
expected log-distance to z* cannot decrease more than 7, in other words, —7 is a lower
bound for the convergence rate of (1 4+ 1)-ES. The proof of this result uses the following
easy Lemma whose proof is left to the reader.

Lemma 2.3. Let Z and V be r.vec. and let © be any r.var. valued in {0,1}. Assume
that the r.var. In(||Z]|) is finite almost surely. Then the following inequalities

(| Z[)) =~ (122 + VI) < In(|Z+6V])

<
< W(IZ[) + W™ (1217 Z + V) (2.6)
hold almost surely.

We are ready to prove the following general theorem.

Theorem 2.4 (Lower bounds for the (14 1)-ES). Let (X,,),, be the sequence of random
vectors verifying (2.2) with a given objective function f as above. Assume that for each
step n = 0,1,2,... the random vector N,, is independent of both the random variable o,
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2.3.  Lower bounds for the (1+1)-ES

and the random vector X,,. Let z* be any vector in R? and suppose that E(| In(]|X, —
z*|])]) < 400 and for all n > 0,

o
E((1+r ")) € 0
[ X — ]
with a constant ¢, > 0. Then
E (| In ([|Xn = 2"} ) < 400,
and
E(n(||Xy — %)) =7 < E(n([[Xpsa — 7)), (2.7)

for all n > 0, where 7 is defined in Corollary 1. In particular, the convergence of the
(1 + 1)-ES is at most linear, in the sense that

1 * *
inf B (In (|IX, — 2|/ Xo = 27[})) = —. (2.8)
Proof :
Set Z, = X, — 2*, X,, = X, + 0,N,, and Z, = X,, — 2*. We prove the integrability of
In (|| Z,]|) by induction. By assumption E(In(||Z)) is finite. Suppose that E(In||Z,]|) is
finite, then 0 < [|Z,|| < 400 almost surely, hence In (|| Z,+1]|) is also finite almost surely.
We claim that E(In(||Z,41]))) is finite. By applying Lemma 2.3 we get (2.6) and derive

" ([ Zosall) < 0 (1Zall) + 0" (12017 (120 + 00 NaID) - (2.9)

By Lemma 2.2 the expectation of In™ (|| Z,|| (]| Z, + 0, N, |))) is finite and using (2.9) we
conclude that E(In™ (|| Z,41]])) < +o0. It remains to show that E(In™ (|| Z,41])) is also
finite. Using the first inequality in (2.6) we obtain

g
n Nn
12l

™ (| Znal]) < =T ([| Za]]) + In” <H HZII '

)+t (1Zeal) . (210

For each n > 0, let F,, denote the g-algebra generated by the r.vec. X,, and the r.var. o,.
Taking the conditional expectation we obtain

Eln™([[Znll) | Fn]

Z o
< —(1Zal) + B[~ (|| 25 + m N
1Zall - N Zall

) “7:”} +E[1n+ (HZnHH) “7:"} :

Since the distribution A, is invariant under rotation and independent of F,,,

B (| Iy Ty JED ! / 0= (lex + taz e 5 da
n n Nz IR 1 n
1Znll 1125 (2m)Y? Jga
= F(tn)
where e; is any unit vector on R? ¢, = 0,/||/Z,|| (and F is the map introduced in

Lemma 2.1). Using Lemma 2.1, we get
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Chapter 2. Log-linear Convergence and Optimal Bounds for the (1 + 1)-ES

En™ (| Zoal) | Fa] < —In([|Za|))+7+E [In* (|| Znsa]]) | Fn] (vecall that 7 = max F([0, +00])).
Passing to the expectation we get

En” (| ZnialD] < =E I ([ Za])] + 7 + E [In* (| Zp41]))] < +o0.
Hence E[|In(||Zn+1])]] is finite for all n > 0. Moreover, we also get
En|[Zyal) = E(n|[Z.]) =7
and after summing such inequalities we obtain
E(n (|1 Z.l/11 %)) =z —n
and (2.8) follows. O

When z* is a local minimum of the objective function, E(In ||X,, —z*||) — E(In || X, 41 —
x*||) represents the expected log-distance reduction towards z* at the n-th step of iteration,
called log-progress in [17|. Theorem 2.4 shows that the log-progress is bounded above by
T = F(op).

2.4 Spherical functions and the scale-invariant algorithm

In this section we prove that the lower bound —7 obtained in Theorem 2.4 is reached for
spherical objective functions when o, = op||X,|| (n > 0). Recall that sphere objective
functions are defined by f(z) = g(||z||*) where g is any increasing map, so that the
acceptance condition f(X,11) < f(X,) is equivalent to || X, 1| < ||X,||. Tt follows that
(IIX5]])ns0 is a non-increasing sequence of positive random variables (finite almost surely),
hence converges pointwise almost surely. For spherical functions, Lemma 2.3 becomes:

Lemma 2.5. Let X and W be any random vectors and let © = 1 x4w)<fx)} and
assume that the random variable In(|| X||) is finite almost surely. Then the equality

In([|X + OW||) — In([|X) = =™ (J|X | ~HIX + W) (2.11)
holds almost surely.
Proof :
The equality (2.11) emphasizes the fact that || X + O] < || X|| with equality on the event
{0 =0} (= {[[X + Wl > [|X][}). N

Proposition 2.6. Let (X,,), be the sequence of random vectors valued in R? satisfying the
recurrence relation (2.2) involving spherical function f(z) = g(||x[|*) where g : [0, 00[— R
is an increasing map. Assume that F(In(||Xo||) is finite and that, at each step n, the
random vector N,, is independent of both the random variable ¢,, and the random vector
X, Then E(In(||X,||) is finite for all indices n, the inequalities

E(In([| Xa]l) = 7 < E(In([| Xnal])
hold, where 7 is defined above in Corollary 1, and

In([|X ) = ([ X ]]) = In™ (| X[ X + 00 Nal) < +00 a.s. (2.12)
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2.4. Spherical functions and the scale-invariant algorithm

Proof :

By construction || X,,1]] < || X.|l < [|[Xo|| so that E(In™ (]| X,,41]))) < E(In™ (]| Xo|])) < +oc.
Now assume that In(]|X,||) is integrable, hence 0 < ||X,| < +oo a.s. and so, by
Lemma 2.5, to obtain the inequalities and equality asserted in the proposition it is enough
to prove that E(In~ (|| X,,|| | X, +0.N,|)) < 7. But similarly to the end part of the proof
of Theorem 2.4 we have E(In" (|| X, | Xy + 0uNul) = E(F(0./|| X)) < 7. O

Now we pay attention to the particular case where o, = o||X,, || with o > 0 fixed. The
resulting (1 + 1)-ES is said to be scale-invariant, and is modeled by the d-dimensional
random process

X1 = Xy + 0,(X,, Io) o[ X0 | Vo (n>0). (2.13)

For convenience of the reader we collect the hypothesis that govern the scale-invariant
random process (2.13):

(HSI) The sequence of random vectors (N,), in R? is ii.d. with common law
N(0, 1), is independent of the initial random vector Xy and In(||Xy||) has a finite
expectation.

Notice that Assumption (HSIT) implies in particular that for m > n > 0, N,, is independent
of X,, and by Proposition 2.6, In(]|X,,||) has a finite expectation. The update rule (2.13)
is not so realistic because in practice, at each step n, the distance of X,, to the optimum
is unknown. Nevertheless, we will show that the stochastic process defined by (2.13)
converges log-linearly for sphere functions and that for 0 = o the convergence rate in

log is equal to —F(op) (= —7). In other words, the choice 0, = of||X,|| correspond
to the adaptation scheme that gives the optimal convergence rate for isotropic Evolution
Strategies.

It is usual for studying stochastic search algorithms to consider log-linear convergence
of X,, by investigating the stability of In (||X,51||/||X.||). This idea was introduced in the
context of ESs by Bienveniie and Frangois [27] and exploited in [13]. The process X,, given
by (2.13) has a remarkable property expressed in terms of orthogonality of the random

sequences Y, = In~ (H&—Z” + oN, ) — F(o):

Proposition 2.7. Consider the random variables

Y, = In" (H’é—:” +oN,

)= F(o)

where ' is defined by (2.4) and let ¢ > 0. Under the hypothesis (HSI) the followings
hold:

1. Forn >0, E(Y,) =0 and E(|Y,|*) < +o0.
2. Let (Y,))n>0 be the sequence of random variables
Y, :=In"(||e; + oN,|) — F(o).

The random variables Y,, (n > 0) are identically distributed and for every n > 0,
Y,, and Y] follow the same distribution.
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Chapter 2. Log-linear Convergence and Optimal Bounds for the (1 + 1)-ES

3. The sequence of random variables (Y},),>0 is orthogonal, i.e. for all indices i, j, with
i # j one has E(Y;) =0, E(Y??) < +o00 and E(Y;Y;) = 0.

Proof :
The isotropy of the standard d-dimensional normal distribution gives

B(n (HHX y|

hence E [ln <H e )] E[F(o)] and so, E(Y,,) = 0. Let F, : [0, 00] — [0, +00]
be defined by Fy(co ) =0 and, for ¢ € [0, +o0],

ll]I2

J)ix) = W/}Rdln_(Hel%—axH)e_ L i
~ F(0)

1 12

Fy(t) == () /Rd [In™(]|ex +txH)]Qe’%dx. (2.14)

Similarly to the proof of Lemma 2.1, we prove that F3 is continuous, hence bounded.
Now, from the definitions of F' and F5 one has

E(|Y,]}) = Fy(0) — (F(0))* < +c. (2.15)

This ends the proof of the first point.

The random vectors Y,, and Y, have the same distribution if their characteristic func-
tions are identical. But successively

E(e™ |X,) = 6fitF(a)E<eitln’ (HﬁJraNnH) !Xn)

B
(&

_ _ZtF(U)/ it (||etoz])) g-llel/2,,

(2m)d/?
_ E(eth,;)

Therefore E(¢"") = E(E(¢" | X,,)) = E(¢!™#). To finish the proof we show the orthog-
onality property of the Y, (n > 0). Let n and m be indices such that n < m. The random
vector Y, is o(X,,, NV,,)-measurable, so that

Using the independency of N,, with the random vectors. X,,, NV,, and X,,, we get

1 _ X, _ ll=)?
E(Y|Xp, Xin, Ny) = Ol /Rd<ln (Hm+(m}}))e F(o)
1 _ _l=i®
- G /Rd<ln (les + o) e L e — (o) =0,
that implies E(Y,,Y,) = 0. O
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2.4. Spherical functions and the scale-invariant algorithm

With the above notations define the random vectors S,, = Yo +---+ Y, and S], =
Yy+---+Y,. Under the hypothesis (HSI), the characteristic function of S, can be written
as E(itS,) = E(E(itS, | Xo,No, ..., Nu_1)) and so, E(itS,) = E(itS)) = (E(itYy))" ™.
But the random vectors Y, are i.i.d. with expectation 0 and variance Fy(o) — F(o)?
(see (2.15)). As a consequence, the central limit theorem holds for both (Y},),, and (Y}),:

Theorem 2.8. Under the hypothesis (HSI) one has

: In(]| X, |[) — In(|| Xo) + F(o)n | L
lim P < = — e 2du.
n—+00 ( V (Fy(o) — F(o)?)n t) V2T /_oo

The pointwise stability of In (]| X,,+1]|/|Xx]|) is obtained by applying the following Law
of Large Numbers (LLN) for orthogonal random variables (see [93, p. 458] where a more
general statement is given).

Theorem 2.9 (LLN for Orthogonal Random Variables). Let (Y,,),>0 be a sequence of
identically distributed real random variables with finite variance and orthogonal, i.e., for
all indices 4, j, with 7 # j one has E(Y;) =0, E(Y;?) < 400 and E(Y;Y;) = 0. Then

n—1

1
lim — Y.=0 a.s.
lgnnz k a.s

k=0
We are now ready to prove the following main result

Theorem 2.10. Let ¢ > 0 and let (X,,),, be the sequence of random vectors satisfying
the recurrence relation (2.13) with f(x) = g(||z||?) where g is an increasing map. Assume
that the hypothesis (HSI) holds. Then (X,), converges log-linearly to the minimum, in
the sense that

liml In <M> =—F(o)(<0) as. (2.16)
1 Xoll

where F' is defined by (2.4). The optimal convergence rate is obtained for ¢ = op =
min £~ (max F) (see Corollary 1).

Proof :
In case 0, = 0||X,,|| for all indices n the equality (2.12) becomes
_ Xn
I [ Xp || = In [ X, = —In (H +oN, )
[1Xa]]
and after summing the equations for k = 0,...,n — 1, we obtain
n—1

1 1 _ Xk

([ Xall = I [Xoll) = = St (|5 + o).
Proposition 2.7 and Theorem 2.9 end the proof. U
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Chapter 2. Log-linear Convergence and Optimal Bounds for the (1 + 1)-ES

2.5 Discussion and conclusion

Theorems 2.4 and 2.10 show that optimal bounds for the convergence rate of an isotropic
(14 1)-ES with multivariate normal distribution are reached for the scale-invariant algo-
rithm with o, = op||X,|| for the sphere function, where o maximizes

_ 1 _ )
F(a):E(ln Hel“—O’N”):W/Rdh’l (H61+0'1'”)6 2 dx .

From (2.12) and from the isotropy of the multivariate normal distribution N, it fol-
lows that finding ¢ maximizing F' amounts to finding ¢ maximizing the log-progress
E(In [ X,[]) = E(In || X1 ])-

Most of the works based on the progress rate, consist in finding 0 maximizing estima-
tions of the expected progress E(||X,.||) — E(||X,+1||) (when d goes to infinity) [114, 25].
Note that the definition of progress in those works does not consider In ||X,| and so is
different from the one underlying our study. Assuming that both definitions matches?®, our
results give an interpretation of this approach in terms of lower bounds for convergence
of ESs.

The lower bounds derived in this paper are tight. Consequently they can be used in
practice to assess the performances of a given step-size adaptation strategy comparing
the convergence rate achieved by the strategy with the optimal one, given by the scale-
invariant algorithm.

The numerical estimation of the optimal convergence rate —7 can be achieved with a
Monte Carlo integration: for different o, F/(c) equals the expectation E(In" |le; + o N||).
This expectation can be estimated by summing independent samplings of the random
variable In~ ||e; + oN||. This is illustrated in Fig 2.1.

The analysis of the log-linear convergence carried out in this paper relies on the appli-
cation of the Strong Law of Large Numbers for orthogonal random variables. This study
uses deeply the invariance under rotations of the standard d-dimensional multivariate
normal distribution and does not cover directly the usual case of stable Markov chains
that will be investigated in future works.
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Figure 2.1: Left: Plot of the function o — dF(c/d) (Eq. (2.4)) versus o for d =5 (resp.
10, 30) and 0 < o < 8. The upper curve corresponds to d = 5, the middle one to d = 10
and the lower one to d = 30. Note that the function F' defined in (2.4) implicitly depends
on d. Using the more explicit notation F, instead of F', the plots represent actually
o +— dFy(o/d). For d = 10, we see that or maximizing F' (defined in Corollary 1)
approximately equals 0.13. The plots were obtained doing Monte Carlo estimations of F
using 10° samples.

Right: Twenty realizations of the scale-invariant algorithm on the sphere function for
d = 10. The y-axis shows the distance to the optimum (in log-scale) and the x-axis the
number of iterations n. The twenty curves below correspond to the optimal algorithm,
ie. 0, = op||X,| for all n where op equals to 0.13 (value maximizing the curve of F
on the left for d = 10). The twenty curves above correspond to 20 realizations of the
scale-invariant algorithm for o, = 0.3||X,,||. Observed, the log-linear convergence as well
as the optimality of the scale-invariant algorithm for o = op.
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Chapter 3

Study of the Scale-invariant (1 + 1)-ES
in Noisy Spherical Environments

In real-world optimization problems, objective functions are noisy. The noise can stem
from physical measurement limitations or Monte Carlo simulations .... In Chapter 2, we
have established that the scale-invariant (1 4 1)-ES converges log-linearly when minimiz-
ing sphere functions. The goal of this chapter is to see how the behavior of the (1 +1)-ES
is affected when the sphere function is disturbed by noise. We investigate the (1 + 1)-ES
with the artificial scale-invariant adaptation rule because this rule is optimal in the case
of non-noisy spherical functions, as shown in Chapter 2. The noise model investigated
here is multiplicative, i.e., the noisy objective function result from the multiplication of
the non-noisy objective function by the random variable 1 + N where A is the noise ran-
dom variable. Theoretical studies of minimization of noisy objective functions using ES
have been mainly performed by Arnold and Beyer |23, 24, 7, 25, 5, 8, 10]. These studies
rely on the approximation of an infinite dimension of the search space and use classical
normalizations previously used in the field of progress rate theory for the step-size of the
mutation and the progress rate. Moreover, Arnold and Beyer used an additional normal-
ization for the noise strength which represents the variance of the random variable .

The chapter is composed of three parts:

The first part (Section 3.1) is the paper [76], that has been published in the proceed-
ings of the conference Parallel Problem Solving From Nature (PPSN 2008). The noisy
sphere function model used in this part is similar to the one studied by Arnold and Beyer
in [23, 24, 7, 25, 5, 8, 10]. Tt can be written as

Fo(@) = ||z* 1+ N) (3.1)

where we assume that the random variable A/ has a finite expectation such that E(N) >
—1 and admits a density function py which lies in the range [my, My| (—00 < my <
My < +o00, My > —1 and my # —1). Arnold and Beyer’s model is similar (see Eq. 3.2)
except that they used a normalization for the variance of the noise. Moreover, most of the
studies of Arnold and Beyer use the assumption of Gaussian noise. A notable exception
is the study in [10] which investigates the behavior of a class of ES using recombination,
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under the assumption of a general noise distribution. In this paper, we prove (Theorem
3.1), that the behavior of the scale-invariant (1 + 1)-ES minimizing the noisy sphere
(Eq. 3.1) depends on the infimum of the (support of the) noise my,. More precisely, we
prove that the sequence of solutions generated by the algorithm converges almost surely
to zero if my > —1 and diverges to infinity when —oo < my < —1. The result is
demonstrated using the Borel-Cantelli Lemma (Lemma 3.2). The study does not include
the case my = —1.
The second part (Section 3.2) is the main material for a paper that we intend to submit
soon. The goal of this part is to see if the log-linear behavior that we have proved in
Chapter 2 for (non-noisy) sphere functions also holds for noisy spherical functions. This
second part uses the same context as the first part (Section 3.1), i.e., the same noisy
objective function given by Eq. 3.1 and a scale-invariant (1 4 1)-ES. Therefore, the main
result derived in Theorem 3.1 is also used in this part. It is shown (Theorem 3.18) that the
convergence (if my > —1) or divergence (if —oo < my < —1) of the (1+1)-ES minimizing
the noisy sphere (Eq. 3.1) holds in the sense: = In|[|X,,|| converges in probability to ~ (see
Eq. 3.20) where ~ is finite and (X,,),, is the solution of the algorithm at an iteration n
defined in Eq. 3.5. However, according to the definition of the log-linear behavior given
in Eq. 3.7, one has to show that v # 0 which is not proven in our study.

The main result of this part (Theorem 3.18) has been established using the Law of
Large Numbers (LLN) for Markov chains (Theorem 3.12).
The third part (Section 3.3) is made of some additional theoretical results that were not
included in paper [76] that they generalize. They are related to 'spatial’ convergence (or
divergence) of the scale-invariant (1 + 1)-ES for the shifted noisy sphere function defined
by Fo(z) = (]|z]|* + a)(1 + N) where « is a positive constant *. Moreover, in these
studies, non lower-bounded noise distributions, i.e., my = —oo, are also investigated (In
[76], only lower bounded noise distributions had been investigated). Therefore our study
includes the particular case of Gaussian noise that has been investigated by Arnold and
Beyer. It is shown in Section 3.3.1 that if my > —1 the algorithm converges. However,
if —oo < my < —1, it is shown in Section 3.3.2 that the algorithm cannot converge
(in the sense that the L?-norm of the distance to the optimum of the noiseless part of
the objective function cannot converge to zero), as negative objective function values are
sampled after a finite number of iterations.

Comparison with results in [8] In [8|, the scale-invariant (1 + 1)-ES has been inves-
tigated using the following model of noisy sphere function:

207
f(2) = ol + € 2N (O, 1) (32

where d is the search space dimension, o} is a strictly positive constant called the normal-
ized noise strength and N(0, 1) is the Gaussian random variable with mean 0 and variance
1. The expected progress rate computed in [8] is positive and convergence occurs for all
of values. On the other hand, our theoretical study shows (see Section 3.3.2) that for
noise distributions with my = —oo, which is the case of a Gaussian noise, no convergence

*For a = 0, F,(x) simplifies to Fs(x) defined in Eq. 3.1.
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occurs. This result is also illustrated by experimental observations: In Fig. 3.3, it can be
seen that divergence happens for sufficiently large noise strength values. Therefore our
results may seem in contradiction with Arnold and Beyer’s results. The reason for this
apparent contradiction is that, in [8], the expression 2‘;‘* for the noise level implies a small
noise strength for large search space dimensions. For example, in [8, Fig 8], and for ¢} = 2
and d = 80, the noisy sphere function can be written as f(x) = ||z||*(1 + 0.05N(0, 1)).
Therefore, the probability to sample a negative fitness, which is the event that leads to
non convergence, is upper bounded by 107%. Sampling a negative fitness value is then an
event that will ‘'never’ happens in practical simulations as it has a probability less that
10788 to happen, and, the algorithm is observed to converge.

Future work Our study can be completed by investigating the case my = —1 which
was not solved here. Moreover, in the second part of the study, we have only shown that
converge rates (for my > —1) and divergence rates (for —oo < my < —1) is positive
or negative without excluding the case of null convergence or divergence rate to prove
the log-linear behavior as defined in Eq. 3.7. Fortunately, the convergence rate given in
Eq. 3.7 can be easily computed using Monte Carlo simulations. Therefore, one has to
compute numerically this convergence rate. It seems that the case my = —1 is equivalent
to having + In || X, || — 0in Eq. 3.20. Furthermore, the convergence established in Eq. 3.20
holds in probability and one has to investigate almost sure convergence in this equation.
Another issue to clarify is the reliability of an approximation that has been done in [§|,
stating that an offspring and its parent have similar noise levels in large dimensions. For
comma strategies, we confirm in Chapter 4 that such an approximation is reliable, but in
the limit of infinite dimension of the search space.

The (1+1)-ES with reevaluation of the parent, and link with Chapter 4 In this
chapter, we investigate the behavior of the (1 4+ 1)-ES when minimizing noisy objective
functions with positive ideal function values. The (1 + 1)-ES does not converge for noise
distributions allowing the sampling of negative fitness values and for the specific scale-
invariant adaptation rule. In fact, after a certain number of iterations, a strictly negative
objective function value will happens almost surely. Then, as the selection scheme used
in the (14 1)-ES is elitist, the sequence of (negative) fitness functions decreases and will
probably have as a limit —oo. The same reasoning applies for a (1 4+ A)-ES where A > 1.
This means that increasing the number of offspring A is not a solution to avoid divergence.
To avoid divergence cases, an alternative is to use the (1 4 1)-ES with a reevaluation of
the parent in the selection step [25, 8]. Another possible solution is to use a non elitist
ES such as the (1, \)-ES which will be investigated in the next chapter. Note that the
behavior of the (1 + 1)-ES with reevaluation will be very similar to a (1,2)-ES especially
for high dimensions of the search space, as suggested by relative progress rates computed
in [25]. Moreover, the study that we present in the next chapter (Chapter 4) uses the
LLN for orthogonal random variables and the same techniques can also be applied for the
variant of (1 + 1)-ES reevaluating the parent.
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Errata :
All over Section 3.1 of the chapter, the quantity mys should be referred to as the infimum
of the support of the noise and not the lower bound of the noise (even if my = —o0).

This implies, in the abstract of the first part of the chapter for example, that the sentence
“...the (1 + 1)-ES diverges when the lower bound allows to sample negative fitness ...”
should write “...the (1 + 1)-ES diverges when the infimum of the support of the noise
distribution allows to sample negative fitness ...". Similarly, the quantity My should be
referred to as the supremum (which can be infinite) of the support of the noise instead of
upper bound of the noise.

In Lemma 3.6, an additional hypothesis is necessary to establish the result. we have to
suppose that : for all n > 0, the random vectors U,, and N,, are independent. Moreover,
there are two errata in the second paragraph of the conclusion of the published paper:

e In the second paragraph of the conclusion, in the sentence “...the normalization of
the standard deviation of the noise implies a so small probability to sample 1 + N
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below —1 ...”, one should have “1 + A below 0” instead of 1 + N below —1

In the second paragraph of the conclusion, in the sentence “...where the standard
deviation of 0.1 corresponds to a probability to have (14 0.1 ) < 0 lower bounded
by 10723.”, one should have “upper bounded” instead of “lower bounded”.

In the abstract of the paper “dimensionality” should be replaced by “dimension”.

A spelling mistake in Section 3.1.2 (paragraph Experimental observations): ‘“re-
specitvely” should be written as “respectively”.

A spelling mistake in the sketch of the proof of Proposition 3.4: “striclty” should be
written as “strictly”.

In the beginning of the Section “Mathematical model for the (1 + 1)-ES”, “pertur-
bated” should be written as “perturbed”.

b

The word “independency” at the end of the proof of Lemma 3.5 in the Section
Appendix and the word “independance” in the proof of Lemma 3.6 in the Section
Appendix should be written as ‘independence”.
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Abstract

In this paper we investigate multiplicative noise models in the context of continuous op-
timization. We illustrate how some intrinsic properties of the noise model imply the
failure of reasonable search algorithms for locating the optimum of the noiseless part of
the objective function. Those findings are rigorously investigated on the (1 + 1)-ES for
the minimization of the noisy sphere function. Assuming a lower bound on the support
of the noise distribution, we prove that the (1 + 1)-ES diverges when the lower bound
allows to sample negative fitness with positive probability and converges in the opposite
case. We provide a discussion on the practical applications and non applications of those
outcomes and explain the differences with previous results obtained in the limit of infinite
search-space dimensionality.

3.1.1 Introduction

In many real-world optimization problems, objective functions are perturbed by noise.
Evolutionary Algorithms (EAs) have been proposed as effective search methods in such
contexts |9, 79]. A noisy optimization problem is a rather general optimization problem
where for each point  of the search space, we can observe f(x) perturbed by a random
variable or in other words for a given x we can observe a distribution of possible objective
values. The goal is in general to converge to the minimum of the averaged value of the
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observed random variable. One type of noise encountered in real-world problems is the
so-called multiplicative noise where the noiseless objective function f(z) is perturbed by
the addition of a noise term proportional to f, ie. the noisy objective function F reads

Flx) = flx)(1+N) (3.3)

where N is the noise random variable, sampled independently at each new evaluation
of a point. Such noise models are in particular used to benchmark robustness of EAs
with respect to noise [134]. The focus here is continuous optimization (that will be min-
imization) where f maps a continuous search space, ie. a subset of R? into R. The
EAs specifically designed for continuous optimization are usually referred as Evolution
Strategies (ES), where a set of candidate solutions evolves by first applying Gaussian per-
turbations (mutations) to the current solutions then selection. ES in noisy environments
have been studied by Arnold and Beyer |25, 7, 5]. Multiplicative noise has been investi-
gated in the case of NV being normally distributed with a standard deviation scaled by
1/d for a (14 1)-ES [8], (i, \)-ES |7, 24], (1/p11, A)-ES [6] and f being the sphere function
f(z) = ||z]|*>. Under the assumption that d goes to infinity, Arnold and Beyer show, for
f(z) = ||z||?, positive expected fitness gain for the elitist (14 1)-ES (if the fitness of the
parent is not reevaluated in the selection step which is the case of our study). This implies
a decrease of the expectation of the square distance to the optimum (here zero). However,
convergence of the (14 1)-ES to the optimum of the noiseless part of the noisy objective
function seems to be unlikely if the noise random variable takes values smaller than —1
as we illustrate now on a simple example. Assume indeed that A takes three distinct
values (each with probability 1/3) 4+, 0 and —v where v satisfies v > 1. For a given
r € RY, the objective function F(z) takes 3 different values (each with probability 1/3)
(14+)||z]l?, |=|I*, (1 —7)|l=]|*. The last term is strictly negative for  non equal to zero.
Therefore, if one negative objective function value is reached, the (14 1)-ES that can only
accept solutions having a lower objective function value will never accept solutions closer
to the optimum since they have higher objective function values'. On the contrary the
(14 1)-ES will diverge log-linearly %, i.e. the logarithm of the distance to the optimum
will increase linearly.

Starting from this observation, we investigate how the properties of the support of the
noise distribution relate to convergence or divergence of stochastic search algorithms and
can make the convergence to the optimum of the noiseless part of the objective function
hopeless for reasonable search algorithms. Compared to previous approaches, we do not
make use of asymptotic assumptions, trying to capture effects that were not observed
before [8]. Tn Section 3.1.2, we detail the noise model considered and show experimentally
on a (1 + 1)-ES that divergence and convergence is determined by the probability to
sample noise values smaller than —1. In Section 3.1.3, we provide some simple proofs of
convergence and divergence for the (1+1)-ES. In Section 3.1.4 we discuss the results and
explain where the difference with the results in [8] stems from.

! Their absolute value is smaller though. However, trying to minimize the absolute value of F instead
is not a solution in general, consider for instance the function f(z) = (||z[|> + 1)(1 + N).

2We will say that a sequence (d,,), diverges (resp. converges) log-linearly if there exists ¢ > 0 (resp.
¢ < 0) such that lim,  In(d,) = c .
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Figure 3.1: [Dashed Line| One dimensional cut of f(z) = ||z||* along one arbitrary unit
vector. |Straight line|] Left: One dimensional cut of g_g5(x) = ||z|*(1 — 0.5). Right: One
dimensional cut of g_;5(x) = ||z||*(1 — 1.5). For a given z, the noisy-objective function
can, in particular, take any value between the dashed curve and the straight curve.

3.1.2 Motivations

Elementary remarks on the noise model We investigate multiplicative noise models
as defined in Eq. 3.3 where A is a random variable with finite mean and f(x) is the
noiseless function that we assume positive in the sequel. We also assume that 1-+E(N) > 0
such that the argmin® of the expected value of F(z) is the argmin of f(x). Often, the
distribution of A is assumed symmetric, implying then that 1 + F(N) =1 > 0. Though
one might think that this condition is sufficient such that minimizing F(x) amounts to
minimizing f(z), we sketch now, why divergence to oo of the distance to the optimum
happens if 1 + N can take negative values.

Assume that f(z) converges to infinity when ||z|| goes to oo; typically f(z) can be the
famous sphere function f(z) = ||z||* and assume that the random variable A" admits a
density function ppr(t),t € R whose support is an interval [myr, Myr[, i.e. N € [mpr, My|
and the probability that N € [a,b] for any my < a < b < My is strictly positive. The
function g,,, () = f(x)(1+myr) gives a lower bound of the values that can be reached by
the noisy fitness function for different instantiations of the random variable N (because
f is positive). For a given x, F(z) can take values with positive probability in any open
interval of g, (), f(z)] 4.

In Fig. 3.1 are depicted a cut of f(z) = ||z||* and gy, (x) = f(z)(1 4+ my) for my
equals —0.5 and —1.5. The position of my with respect to —1 determines whether g,,,.(z)
is convex or concave: for my > —1, gm, (2) is convex, converging to infinity when [|z||
goes to oo and for my < —1, gm, () is concave, converging to minus infinity when [|z||
goes to co. Minimizing g,,, (z) in the case of my < —1 means that ||z| is diverging to
+00 and g, (x) is diverging to —oo which is the opposite of the behavior one would like
since we are aiming at minimizing the non-noisy function f(x) = ||z||>. Note that in the
example sketched in the introduction with A taking the values v, —v and 0, the plot of
|z||* and (1 — ~)||z||? for v = 1.5 are the curves represented in Fig 3.1 (right).

Experimental observations We investigate now numerically how the “shape” of the
lower bound might affect the convergence. For this purpose we use a (1,5)-ES and a

3The argmin of an objective function x — h(z) are defined as h(argmin, h) = min, h(z)
*Note that g, (z) < f(z) iff my < 0.
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Figure 3.2: Distance to the optimum (in log-scale) versus number of evaluations. Ten
independent runs for the scale-invariant (1,5)-ES (10 upper curves of each graph) and
(1+1)-ES (10 lower curves of each graphs) with d = 10 and o = 1/d. Left: f(z) = ||z|/*.
Middle: f(z) = ||z]|*(1 4+ U_os,0.5)- Right: f(z) = ||z]|*(1 + U_15,1.5)-

(1 + 1)-ES using scale-invariant adaptation scheme for the step-size®.

We investigate the function Fy(z) = ||z||*(1 + N) when the noise N is uniformly
distributed in the ranges [—0.5,0.5] and [—1.5,1.5] respecitvely denoted Uj_g505 and
U—15,1.5. This latter noise corresponds to the concave lower bound g_; 5(x) = —0.5]|z]?
plotted in Fig. 3.1. In Figure 3.2, the result of 10 independent runs of the (1,5)-ES (10
upper curves of each graph) in dimension d = 10 are plotted for the non-noisy sphere
(left), f([[’) = ||I||2(]_ + U[_0.570.5]) (mlddle) and f(l') = ||I||2(1 + U[_1.571.5}) (rlght) Not
too surprisingly, we observe a drastic difference in the last two cases: the algorithm
converges to the optimum for the noise Uj_g50.5 whereas the distance to the optimum
increases (log)-linearly for the noise having a lower bound smaller than —1 ¢. Comparing
the left and middle graphs we also observe, as expected, that the presence of noise slows
down the convergence. On the same figure (lower curves of the graphs), the results of 10
independent runs of the (1 + 1)-ES are plotted for the three same functions. As in the
case of the comma strategy we observe that the (14 1)-ES diverges in the case of the noise
U-15,.5 and that, when convergence occurs, the convergence rate is slower in presence
of noise. Last, we investigate numerically the (1 + 1)-ES where A is normally distributed
and in particular unbounded. This corresponds to the case investigated in [8]. We carry
out tests for a standard deviation of the Gaussian noise equals 0.1, 2 and 10. Results are
presented in Fig. 3.3. We observe convergence when the standard deviation of the noise
equals 0.1 and divergence in the last two cases.

5Tn a scale-invariant ES, the step-size is set at each iteration as a (strictly positive) constant o times the
distance to the optimum. This artificial adaption scheme (since in practice one does not know the distance
to the optimum!) allows to achieve optimal convergence rate for ES and is therefore very interesting from
a theoretical point of view. The algorithm is mathematically defined in Section 3.1.3.

SHowever, contrary to what we will see for the (1 + 1)-ES, we do not state that “-17 is a limit value
between convergence and divergence in the case of (1, A\)-ES. Indeed convergence and divergence depends
on the intrinsic properties of the noise and on A and o as well (see [25]).

72



3.1. On Multiplicative Noise Models for Stochastic Search

2 2 A a

Figure 3.3: Ten independent runs for the scale-invariant (1 + 1)-ES with a normally
distributed noise: on f(z) = ||z||*(1 + 0N (0, 1)) with o, equals 0.1 (left), 2 (middle) and
10 (right) for d = 10 and o = 1/d.

3.1.3 Convergence and divergence of the (1 + 1)-ES

In this section, we provide a simple mathematical analysis of the convergence and diver-
gence of the (1 + 1)-ES experimentally observed in the previous section. We focus for
the sake of simplicity on lower bounded noise, i.e. the support of the noise is included
in [my,+oo[. We prove that the (1 + 1)-ES minimizing the noisy sphere converges if
my > —1 and diverges if my < —1. The proofs are rather simple and rely on the Borel-
Cantelli Lemma. For the sake of readability we provide here a sketch of the demonstrations
and send the proofs with the technical details in the Appendix of the paper.

Mathematical model for the (1 + 1)-ES

The (1 4+ 1)-ES is a simple ES which evolves a single solution. At an iteration n, this
solution denoted X,,, is called parent. The minimization of a given function f mapping
R? (d > 1) into R using the (1 + 1)-ES algorithm is as follows: At every iteration n,
the parent X,, is perturbated by a Gaussian random variable o,N,,, where o, is a strictly
positive value called step-size and (N,,),, € R? are independent realizations of a multivari-
ate isotropic normal distribution on R¢ denoted by N(0, I,) (7). The resulting offspring
X, + o,N,, is accepted if and only if its fitness value is smaller than the one of its parent
X,,. One of the key points in minimization using isotropic ES® is how to adapt the se-
quence of step-sizes (0,,). Convergence of the (1 + 1)-ES is sub-log-linear bounded below
by an explicit log-linear rate. This lower bound for the convergence rate is attained for
the specific case of the sphere function and scale-invariant algorithm where the step-size is
chosen proportional to the distance to the optimum, i.e. o,, = || X,,|| where o is a strictly
positive constant [17, 77|. The scale-invariant algorithm has a major place in the theory
of ES since it corresponds to the dynamic algorithm implicitly studied in the one-step
analysis computing progress rate or fitness gain [113, 25|. Using this adaptation scheme,
the algorithm is referred to as the scale-invariant (1 + 1)-ES and the offspring writes as

"N(0, I4) is the multivariate normal distribution with mean (0,...,0) € R? and covariance matrix the
identity 1.

8ES are called isotropic when the covariance matrix of the distribution of the random vectors (N,),
is Id.
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X, + 0||X,||N,,. The noisy sphere function is denoted
Fo(x) = 2’1+ N) (3-4)

where we assume that the random variable A/ has a finite expectation such that E(N) >
—1 and admits a density function pyr which lies in the range [mys, Mys[ where —oo < my <
My < 400, My > —1 and my # —1. The normalized noisy part A of the noisy sphere
function will be called normalized overvaluation of . The term normalized overvaluation
was already defined in [8| where it corresponds to the opposite of the quantity considered
here up to a factor d/2. The minimization of this function using the scale-invariant (1+41)-
ES is mathematically modeled by the sequence of parents (X,,) with their relative noisy
objective functions (Fs(X,,)) and normalized overvaluations (O,,). At an iteration n, the
fitness of the parent is F,(X,) = [|X,||*(1+ O,) and the fitness of an offspring equals
1X,, + || XulINL 1% (1 + AN,) where (N,), is a sequence of independent random variables
with \ as a common law. Let X, € R be the first parent with a normalized overvaluation
Oy sampled from the distribution of A/. Then the update of X,, for n > 0 writes as:

X1 = Xpn + UHXnHNn if HXn + UHXnHNnH2 (1 +Nn) < HXnH2 (1 + On) )

. (3.5)
= X,, otherwise,
and the new normalized overvaluation O,,; is then:
Ons1 = No if [[ X + o[ X INa[I* (1 + Na) < [ Xall* (14 On) (3.6)

= 0,, otherwise .

The (14 1)-ES algorithm ensures that the sequence relative to the function to minimize
(which is (F4(X,,)) in our case) decreases. This property makes the theoretical study of
the (1 + 1)-ES easier than that of comma strategies. Our study shows that the behavior
of the scale-invariant (1 + 1)-ES on the noisy sphere function (3.4) depends on the lower
bound of the noise my .

Theorem 3.1. The (1 + 1)-ES minimizing the noisy sphere (Eq. 3.4) defined in Eq. 3.5
converges to zero if my > —1 and diverges to infinity when my < —1.

Proof :

The proof of this theorem is split in two cases my > —1 and my < —1 respectively
investigated in Proposition 3.3 and Proposition 3.4. O
The proofs heavily rely on the second Borel-Cantelli Lemma that we recall below. But
first, we need a formal definition of ‘infinitely often (i.0.)": Let ¢, be some statement,
eg. |a, —a|l > e. We say (g, i.0.) if for all n, 3 m > n such that g, is true. Similarly,
for a sequence of events A, in a probability space, (4, i.0.) equals {w|w € A, i.0.} =
MNn0 Umsn Ay = lim A,,. The second Borel-Cantelli Lemma (BCL) states that:

Lemma 3.2. Let (A4,),>0 be a sequence of events in some probability space. If the events
A, are independent and verify ) -~ P(A,) = 400 then P(lim A,) = 1.
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Proposition 3.3 (Convergence for my > —1). If my > —1, the sequences (Fs(X,)) and
(IIX,]|) converge to zero almost surely.

Sketch of the proof (see detailed proof in Appendiz) The condition my > —1 ensures
that the decreasing sequence (Fy(X,,)) is positive. Therefore it converges. Besides the
sequence (||X,,||) is upper bounded by 6 := Fy(Xo)/(1 + mpyr) as shown in Fig. 3.1 (left).
Consequently, the probability to hit, at each iteration n, a fixed neighborhood of 0 is
lower bounded by a strictly positive constant. Applying BCL we deduce the convergence
of the sequence (F4(X,)) (and then that of (||X,]|)) to zero. O

Proposition 3.4 (Divergence for my < —1). If my < —1, the sequence (Fy(X,,)) di-
verges to —oo almost surely and the sequence (||X,]|) diverges to +o0o0 almost surely.

Sketch of the proof (see detailed proof in Appendiz) As 1 4+ my < 0, the probability
to sample a noise N,, such that 1+ N, < 0 is striclty positive. Therefore there exists an
integer n; such that for all n > ny, Fs(X,,) < 0. Consequently (||X,,||) is lower bounded
by A as illustrated in Fig. 3.1 (right) where the straight horizontal line represents the
slope y = Fs(X,,). Besides, the probability to have Fy(X,) as small as we want is
lower bounded by a strictly positive constant which gives with BCL the divergence of the
sequence (Fy(X,,)) to —oo, i.e. the sequence (||X,||) diverges to +oc. O
Remark that for the example sketched in the introduction where N takes the 3 different
values 7, 0 and —v and under the condition v > 1 the proof of divergence will follow the
same lines.

3.1.4 Discussion and conclusion

We conclude from Theorem 3.1 that what matters for convergence or divergence of the
(141)-ES in the case of noisy objective function with positive noiseless part is the position
of the lower bound mys of the noise distribution A with respect to —1 or in other words
the existence or not of possible negative fitness values. This result applies in particular
when N equals a truncated normal distribution, i.e. N'= 0. N(0,1)1_, 4" for any a and
o positive. Whenever o.a > 1, Proposition 3.4 applies and the (1 + 1)-ES diverges.
Those results might appear in contradiction with those of Arnold and Beyer [8] proving
that the expected fitness gain is positive—and therefore convergence in mean holds for the
scale-invariant ES—for a noise distributed according to a normal distribution. In their
model, Arnold and Beyer scale the standard deviation of the noise o, with 1/d, i.e. when
d — o0, 0. converges to 0. The largest value for the normalized o in |8, Fig 5, 6, §|,
for d = 80 corresponds to a standard deviation of 0.05 for which the probability to have
(14-0.05N) < 0 is upper bounded by 10788 (19 i e. relatively unlikely! Therefore though
they consider some unbounded noise having a support in R, the normalization of the
standard deviation of the noise implies a so small probability to sample 1 + A below —1
that the unbounded noise reduces to the case of convergence where my > —1. The same
conclusion holds for the numerical example given in Section 3.1.2, Fig. 3.3 (left) where

9The indicator function 1(_, 4(2) equals 1 if 2 € [—a, a] and 0 otherwise.
"0For computing the lower bound we use the fact that P(N(0,1) < x) < exp(—22/2)/|z|\/(27) for
x < 0.
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the standard deviation of 0.1 corresponds to a probability to have (1 + 0.1 N) < 0 lower
bounded by 10723, Therefore though the theory predicts divergence as soon as my < —1,
what matters in practice is how likely the probability to sample N' < —1 is.

In conclusion, we have illustrated that convergence but also divergence can happen for
the multiplicative noise model. Those results are due to the probability to sample 1 + N
smaller than 0 and are therefore intrinsic to the noise model and not to the '+’ strategy.
The probability that 1 + A can be very small, in which case theory predicts divergence
that will not be observed in simulations. We decided to present simple proofs relying
on Borel-Cantelli Lemma. As a consequence, those proofs do not show the log-linear
convergence and divergence observed in Section 3.1.2. Obtaining the log-linear behavior
can be achieved using the theory of Markov chain on continuous state space. Last, we
did not include results concerning a translated sphere f(z) = ||z||* + a with a > 0 for
which our proofs of convergence can be extended but where linear convergence does not
hold anymore due to the fact that the variance of the noise distribution does not reduce
to zero close to the optimum.
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Appendix

Proof of Proposition 3.3 The sequence (Fy(X,,)) is decreasing and is lower bounded
by 0 as Fy(X,,) > [|X,]|? (1 +myu) > 0. Therefore it converges to a limit [ > 0. Let us
show that [ = 0. Let € > 0, we have to show that 3 ny > 0 such that F,(X,,) < e forn > ny.
Since the sequence (Fs(X,,)) is decreasing, we only have to show that 3 nyg > 0 such that
Fo(Xn,) < €. Let > 1and such that [14+myr, B(14+mp)[C supp(1+N). In Lemma 3.5,
we have defined the event A, . 3, shown that it is included in the event {F,(X,41) < €} and
proved that the events (A, . 5), are independent. Moreover, P(A,.3) = P(|le; + oNJ|* <
WM)P(HN < B(14+myr)) (where 6 is defined in Lemma 3.5) is a strictly positive
constant for all n. Then Y 7% P(A,) = +oo. This gives by BCL that P(lim An) = 1.
Therefore P(lim {F,(X,11) < €}) = 1, i.e. Ing such that Vn > ng, F,(X,) < e. Therefore

F(X,,) converges to 0. The sequence (||X,]|) converges also to 0 as || X,[|* < ﬁ(—ﬂf;f) O

Lemma 3.5. If my + 1 > 0, the following points hold:

Fs(Xo)

1+mpr > 0.

1. The sequence (]|X,]|) is upper bounded by 6 :=

2. Let € > 0 and § > 1 such that B(1 + my) € supp(l + N). For n > 0, the
T < —} N{L+N, <8(1 +m/\f)}> (1)

TXn

event Ay, ¢ 3= ({ H (+B)P (1 my)

verifies A, . 3 C {Fs(Xp41) < e}. Moreover, the events (A, ), are independent.

""'The multivariate Gaussian distribution is absolutely continuous with respect to the Lebesgue measure
such that P(||X,,|| = 0) = 0 and then we can divide by ||X,,|| almost surely.
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Proof :

1. Forn > 0, Fo(X,) = [|Xa]2 (1 + On) = || Xa|? (1 + Nym)) where ¢(n) is the index of
the last acceptance (obviously ¢(n) < n). Then, for n >0

Fo(Xn) > [IXall? (1 + mu) > 0 and consequently [|X,[|? < Z:Zal < Zo)

2. Let € > 0 and 3 > 1 such that [1 4+ my, B(1 + my)[C supp(l +N) (With Bmy < My
if My < +00). For n > 0, the event

{(H T WM) N(+N, <B(1+ mN))} implies for the offspring

X, =X, + UHX HN created at the iteration n that

Then F,(X ) < %e < e. If this offspring is accepted then Fy(X,41) < €, otherwise the
fitness is already less than ¢ and we have also F(X,,;11) < e. Finally, the independency

of the events (A, . 3), result from Lemma 3.6 applied to the sequence (X,,). O

Lemma 3.6. Let (U,) be a sequence of random vectors in R? such that P(||U,|| =0) =0
and N,, independent random vectors distributed as N(0, ;). Then the variables Y,, :=

are independent.

|

Proof :

The independance of the random variables Y,, is due to the fact that the multivariate
Gaussian Variable N(0, I4) is isotropic and is therefore invariant by rotation. The length
of the vector + oN,, will therefore be independent of where we start on the unit

IIU I

hypersphere, i.e., independent of the vector ”g"”. O

Proof of Proposition 3.4 Let n > ny (n; defined in Lemma 3.7). We have to show that
for any m < Fy(X,,) < 0, 3 n > n; such that Fy(X,,) < m, or equivalently |Fs(X,,)| >
|m/|. Similarly to the proof of Proposition 3.3, by BCL we have (B, 3 i.0.) ((Bnms
being defined in Lemma 3.7) therefore Lemma 3.7 gives that (Fs(X,,41) < m i.0.). Then

Fo(X,) = [|X,|* (1 +O,) tends to —oo. Foralln > ny, 0 > 1+ O, > 1+ my, then
|7 (Xn)|
[1+my]

Lemma 3.7. Assume that my + 1 < 0. The following points hold:

< [|X,,||* for n > ny. Consequently (||X,||) converges to +oo almost surely. O

| Fs (Xny )

1. There exists ny > 0 and A := JE—

for n > ny almost surely.

> 0 such that F4(X,,) <0 and ||X,]| > A

2. Let m < Fy5(X,,) <0and 3 > 1. For n > ny, the event B, ,, 5 defined by By, , 5 :=
({\1 NP > ﬂ“} N {1 N, < H—MM}) verifies By C (Fo(Xns1) < m).

[ma+1] A2 B

Proof :

1. We first prove that the event A :={ 3 n; > 0 such that ¥V n > nq,

F(X,,) < 0} is equivalent to the event B := { 3 py > 0 such that N, < —1}.

Proving that A C B is equivalent to show that B C A°. Suppose that Vp > 0, N, > —1.
Then Vp > 0, O, > —1. Therefore Vp > 0, F4(X,) = | X,[[*(1+O,) > 0. Now we
have to show that B C A: Suppose that 3 py > 0 such that N,, < —1. We denote
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p1 > 0 the integer defined by p; = min{p € N such that N, < —1}. Then F;(X,,) <0
and Fy(X,) > 0 for all 0 < p < p; — 1. Since (F; (Xn)) is a decreasing sequence,
Fs(X,) < 0V n > p;. This implies that P(A) = P(B). Now, we have for all n > 0,
P(B°) = P(M,5 (N = —1)) STy P (N, = =1) = (P(N = =1))".

Let a := P(N > —1)12). As my < —1, then a < 1 which gives P(B¢) = 0 and therefore
P(A) = 1. Then 3 ny > 0 such that Fy(X,) < 0 for n > n; almost surely. The
sequence (Fy(X,,)), is decreasing (because of the elitist selection). Then for n > ng,
Fs(X,) < Fo(X,,) < 0. This gives |Fs(X,)| > [Fs(Xyn, )| > 0. It is easy to see (from
Eq. 3.6) that for all n € N, O, = Ny, where )(n) is the last acceptance index before
the iteration n. Combining this with the fact if 1 + my < 14 Ny < 0 one gets 0 <

Fo(Xny
Fu )| < F (X)) = Xl P+ M| < X211+ ] Then [X, 2 > Zeel g

2. By the first result of the Lemma, 3 ny > 0, A > 0 such that F4(X,,) < 0 and || X,,|| >
A Vn > ny. We consider n > ny, then || X,|| > A. We notice that V y € R4\ {(0,0)},

i UNH > |1 — o|IN|||. Let 8 > 1. As the upper bound My verifies 1 + My > 0,
ng € supp(1+N)NR~. Suppose that we have |1 —o||N,|||* > % and [14+WN,| >
W then the offsprlng X, = X + 0||X,||N,, is such that

[Fo(Xa)] = [1Xall? 2|1 = | IN, [[[]L + A . Then |Fy(X,)| =
%hn\ > |m)| Wthh gives Fy (Xn+1) < FS(Xn) < m. Consequently, for n > ng, the event
Bums = {\1 — o|NA 2| > %} N {\1 TN, > %} is included in {F,(Xpy1) <
m}. O

'2We apply the same reasoning with a = 2/3 for the example given in the introduction where N take
values in {—~,0,~} (with v > 1) .
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3.2 Convergence and divergence rates of the (1 + 1)-ES
under multiplicative noise

It is generally observed in the case of optimization with Evolution Strategies (ES) and
theoretically proven, in the case of minimization of non-noisy sphere functions, using either
the artificial scale-invariant adaptation rule ' [27, 17, 77| or the real Self-Adaptation rule
[27, 13] that ESs converge (or diverge) log-linearly. This means that, after an adaptation
time, the logarithm of the distance to the optimum decreases (or increases) linearly with
the number of iterations. Let d,, denote the distance, at the iteration n, of the current
solution to the optimum. The log-linear behavior of the algorithm is here mathematically
expressed as:

1
3 ¢ € R* such that lim —In (d,) = c. (3.7)

n—oo N,

The limit ¢ is called convergence rate. The term “convergence” has to be considered in
the mathematical sense relative to the convergence of the sequence %ln (dy). In fact, if
c > 0, the algorithm diverges. If ¢ < 0, the algorithm converges.

Specific results have been derived in the case of minimization using the simplest ES, the
(14 1)-ES. When minimizing the non-noisy sphere function, the scale-invariant (1+1)-ES
converges log-linearly with a strictly negative convergence rate |77]. When the objective
function is the sphere function with multiplicative noise lower bounded, the (1 + 1) scale-
invariant ES converges or diverges (according to the infimum of the noise) as we have
shown in Section 3.1. Moreover, a log-linear behavior has been observed in Figure 3.2 but
only the convergence or divergence have been proven and not the log-linear behavior.
The aim of this section is to generalize the theoretical result of log-linear behavior of the
(141)-ES minimizing sphere functions to noisy sphere functions First, in Section 3.2.1, we
recall the mathematical definition of the algorithm, of the objective function model and
previous results of convergence and divergence obtained (This section may seem redundant
with defintions and results of Section 3.1, but it will be useful for the paper that we intend
to submit and which will be constituted of the whole Section 3.2.). Then, in Section 3.2.2,
we investigate the log-linear behavior of the algorithm and show that there exists ¢ € R
such that lim,,_, % In (d,) = ¢ where cis given in terms of the expectation, with respect to
the probability measure relative to the stationary state of the algorithm, of the difference
of the logarithms of two consecutvie distances to the optimum. The proofs of all results
of this section are in the appendix section

! The scale-invariant rule is not realistic as it assumes the knowledge of the optimum location.
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3.2.1 Mathematical formulation of the problem and (spatial) con-
vergence and divergence of the (1 + 1)-ES

In this section, we present the model of the noisy sphere function and the mathematical
model of the (1+1)-ES used for finding the optimum of the noiseless part of this function.
Then we recall the results derived in [76] relative to the scale-invariant (1 + 1)-ES mini-
mizing this noisy function: The scale-invariant (1+ 1)-ES converges or diverges relatively
to the infimum of the noise distribution support.

Noisy objective function model : Sphere function with multiplicative noise

The noisy sphere function mapping R? into R is defined as:
Fo(z) = [z’ 1+ N) (3.8)

where N is the noise random variable, sampled independently at each new evaluation of a
point. The noisy part of Fy(z) is ||z||2A/. Therefore, the term N represents the normalized
noisy part of the noisy sphere function which will be called normalized overvaluation of
x. The term normalized overvaluation has been introduced in [8] where it corresponds to
the normalized difference between the ideal and the noisy objective function. We assume
that NV has a finite expectation and that E(N) > —1. Therefore, our study includes the
particular case of white noise where E(N) = 0. We also assume that N admits a density
function pp with support [my, My[ where —oo < my < My < 400, My > —1 and

my # —1.

Mathematical model for the scale-invariant (1 + 1)-ES minimizing F; (Eq. 3.8)

The (141)-ES is a simple ES evolving a unique solution. At every iteration n, this solution
denoted X,, and called parent is perturbed by the addition of a centered multivariate
normal distribution to create a new candidate solution called offspring. The offspring
writes as X,, + 0,N,,, where o, is a strictly positive real number called step-size and
(N,)n € R? are independent realizations of a multivariate isotropic normal distribution
in R? denoted by N(0, I;) (). The density of N(0, I;) is denoted py. In the specific case
of random variables (N,,),, € R? following the spherical multivariate normal distribution
N(0, 1), the algorithm is called isotropic ES. The efficiency of an isotropic ES is closely
related to the adaptation rule of the sequence (0,,),. The best adaptation scheme is the
so-called scale-invariant adaptation rule for which the step-size is set proportionally to the
distance to the optimum, i.e., o, = o||X,|| where o is a strictly positive constant. The
optimality of this artificial rule in spherical environments has been derived in [17, 77].
The algorithm using this adaptation rule is referred to as the scale-invariant (1 + 1)-ES
for which the offspring writes as X,, + o||X,||N,.

Let Xy € R? be the first parent randomly chosen such that || Xg|| > 0 almost surely and
with a normalized overvaluation Oy sampled from the distribution of /. At an iteration n,
and for the objective function investigated here (Eq. 3.8), the fitness of a parent X,, with a

2N(0, 1) is the multivariate normal distribution with mean (0,...,0) € R? and covariance matrix
identity I;.
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normalized overvaluation O, equals [|X,,[|* (1 + O,,) and the fitness of an offspring equals
1X,, + || Xu[INL |12 (1 + N,) where (NV,), is a sequence of random variables independent
with A as a common law. The new parent X,,,; is the offspring X,, + || X,,|IN,, iff its
fitness value is smaller than the one of its parent X,,, otherwise X,, ;1 equals X,,. Therefore,
this acceptance condition implies, for n > 0, that:

2
Xpp1 = X + 0| XN, if [HX" + 0| X, IN, ] (14 M) < [IXull? (14 O,) .

(3.9)
= X,, otherwise,
and the normalized overvaluation O, of the new parent X, is then:
2
O = At [+ AN | a0 < KP4 0.

= 0,, otherwise .

Convergence and divergence of the (1 + 1)-ES

The behavior of the algorithm defined by Eq. 3.9 and Eq. 3.10 designed for the minimiza-
tion of the objective function (Eq. 3.8) was established in |76]. The result is recalled in
the following theorem.

Theorem 3.8 ([76]). The (1 + 1)-ES defined in Eq. 3.9 minimizing the noisy sphere
(Eq. 3.8) converges to zero if my > —1 and diverges to infinity when my < —1.

This theorem states that the behavior of the algorithm depends on the infimum m, of the
noise N. If my < —1, there is a strictly positive probability to sample negative fitness
values and the algorithm diverges since the best fitness, which becomes negative after
some iterations, is decreasing. If my > —1, the algorithm converges. In the following
section, we theoretically investigate the log-linear behavior of the algorithm defined by
Eq. 3.9 and Eq. 3.10.

3.2.2 Convergence and divergence rates of the (1 + 1)-ES

Theoretical results of convergence of stochastic search algorithms can be obtained using
mathematical tools such as Law of Large Numbers (LLN) for independent or orthogonal
random variables or LLN for Markov chains. In the specific case of the noisy sphere
function, Eq. 3.9 and Eq. 3.10 show that the variables are correlated and suggest the use
of Markov chains to investigate the stability of these dynamics.

Motivations

The log-linear behavior means that, after an adaptation time, the sequence (In (|| X,]])),,
where (||X,]]),, is defined in Eq. 3.9 increases or decreases linearly with the number of
iterations. This means that one has to investigate the sequence (In (||X,])),,. The follow-

ing proposition is a basic step for proving the log-linear behavior expressing %ln <||||§Z||||>
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as the sum of n random variables divided by n. The same idea has been previously used
in |27, 13, 17, 77|.

Proposition 3.9. Let (X,,), be the sequence of random vectors valued in R? satisfying
the recurrence relation (3.9). Then for all indices n, we have
D a.s.  (3.11)
[ Xl

Proposition 3.9 states that the limit of % In <”X0”> is given by the limit of the right hand

side of Eq. 3.11. The right hand side of Eq. 3.11 can be simplified using the invariance
by rotation of the multivariate normal distribution. For this purpose, we will introduce
the sequences (Z,), and (F(Z,))n:

L (L) 22 (] 5 |
n \ o] nk: Xl [t omal aeairson)

Definition 3.10. Consider a sequence of independent identically distributed (i.i.d.) ran-
dom vectors (N} ), in R? with common law N(0, I;) and a sequence of random variables
(M), also i.i.d. with N as common law. Let e; € R? be equal to (1,0,...,0). We define

1. the Markov chain (Z,), as follows: Z, = N, where N, is a random variable dis-
tributed as N, and, for all n > 0,

Zpir = 0u(Z)N, + (1 = 0,(Z,)) 2, (3.12)
where 6,(Z,) equals 1 if |le; + oN/ ||> (1 + N)) — 1 < Z,, and 0 otherwise.

2. the sequence (F(Z,))n>0 as follows: for n > 0,

F(Zn) = 1In (||61 + O-N;z]l{||e1+crN§l||2(1+/\/7’l)<1+Zn}H) . (3.13)

Using these definitions, we can state the key point of our study in the following Propo-
sition.

Proposition 3.11 (Link between the stability of (Z,,), and log-linear convergence). Let
(Zn)n and (F(Z,)), be the Markov chains introduced in Definition 3.10. Then the fol-

lowing equality
| X H) 1
n F(Zy) 3.14
oo (e Z ) 1

holds in distribution. Therefore, if Zk;o F(Zy) converges almost surely to a finite value

that we will denote ~, +1In (”X"”

”X0”> will converge (in probability) to the same value .

The condition + >~ F(Z;) — ~ given in Proposition 3.11 holds if the LLN holds for
the Markov chaln (Zn) If in addition v # 0, then the log-linear behavior holds, at least
in probability, for the sequence (||X,|), given in Eq. 3.9. In the following section, we
investigate the establishment of a LLN for the Markov chain (Z,),.
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Stability

In Proposition 3.11, we have seen that log-linear convergence can be implied from the
stability of the chain (Z,), introduced in Definition 3.10. The goal is to prove that the
chain (Z,,), is sufficiently stable so that a LLN can be stated. Before investigating the sta-
bility of (Z,), we recall some definitions and results about -irreducible Markov Chains
that will be used in the sequel. We refer to the Meyn and Tweedie book for a complete
presentation of this theory [97]. In the following B(R) will denote the Borel o-algebra on
R and for a subset S C R, B(S) will denote the Borel o-algebra on S.

Basics about Markov chains and definitions For a Markov chain (Z,), C R, the
transition kernel P(.,.) is defined for all z € R, for all A € B(R) as

P(z,A) = P(Z, € AlZy = z).
A chain (Z,), is irreducible with respect to a measure @ if:
V(z,A) € R x B(R) such that p(A) > 0,3 ng > 0 such that P"(z, A) >0, (3.15)

where P™(z, A) equals P(Z,, € A|Zy = z). Another equivalent definition for the -
irreducibility of the Markov chain (Z,), is: Vz € R,VA € B(R) such that o(A) >
0, P(14 < 00|Zy = z) > 0 where, 74 is the hitting time of Z,, on A, i.e.,

74 = min{n > 1 such that Z,, € A}.

If the last term of Eq. 3.15 is equal to one, the chain is recurrent. A ¢-irreducible chain
(Zp)n is Harris recurrent if:

VA € B(R) such that ¢(A) > 0; P,(na =0) =1,z € R,

where 7, is the occupation time of A, i.e., na =~ 11z, ca}-
A chain (Z,), which is Harris-recurrent admits an invariant measure, i.e., a measure 7
on B(R) satisfying:

7(A) = /Rw(dz)P(z,A),A € B(R).

If in addition this measure is a probability measure, the chain is called positive. Positive,
Harris-recurrent chains satisfy the Strong Law of Large Numbers (LLN) as stated in [97,
Theorem 17.0.1] and recalled here.

Theorem 3.12 (LLN for Harris positive chains). Suppose that (Z,),, is a positive Har-
ris chain with invariant probability measure 7, then the LLN holds for any function G
satisfying 7(G) = [ Gdr < o0, i.e.,

i % S G(%) = 7(G). (3.16)
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To show the different stability notions such as recurrence, Harris-recurrence or posi-
tivity of (Z,), it is possible to make use of practical drift conditions. Stronger stability
criteria are called uniform ergodicity and geometric ergodicity (see [97, Eq. 16.6, Eq. 15.7|
for the definitions). These stability notions imply the positivity and Harris recurrence of
the chain. Drift conditions can be used to prove the geometric ergodicity of ¢-irreducible
chain. Uniform ergodicity can be obtained without the need to verify the p-irreducibility,
using the following theorem which is derived from a specific case of |97, Theorem 16.2.1,
Theorem 16.2.4].

Theorem 3.13 (Condition for uniform ergodicity). Suppose that there exists a finite
measure v on ‘B(R) such that a Markov chain (Z,,), satisfies P(z, A) > v(A) for all z € R
and A € B(R). Then (Z,),is uniformly ergodic.

Using the equivalent property of uniform ergodicity (assertion (vi) in [97, Theo-
rem 16.0.2]) in the assertion (ii) of [97, Theorem 10.4.10] one can conclude that if a
Markov chain (Z,), is uniformly ergodic then it is p-irreducible, aperiodic (see definition
in [97, p. 121]) positive Harris-recurrent. Combining this with Theorem 3.13, we have the
following corollary.

Corollary 2. Suppose that there exists a finite measure v on B(R) such that a Markov
chain (Z,), satisfies P(z, A) > v(A) for all z € R and A € B(R). Then (Z,) is ¢-
irreducible, aperiodic, positive Harris-recurrent.

Stability of Z, In the following, we will study the Markov chain (Z,),, introduced in
Definition 3.10. Its stability will follow from the use of Corollary 2 and consequently the
(LLN) given in Theorem 3.12 holds for (Z,),.

Lemma 3.14.
Zy, € supp(pa) = [mar, My|.

Proposition 3.15 (Transition Kernel). The transition kernel P(.,.) of Z, is split into an
absolutely continuous part P; and a singular part P:

Vz € [mpr, Mpr[, VA € B([mpr, My[), P(z,A) = Pi(z, A) + 5{2}(A)P2(2) (3.17)

where Py(z, A) equals P({N € A} N{lles +oN[*(1+N) <1+ z}), 0y is the Dirac
measure concentrated in {z} and Py(z) = P(|le; +oN|*(1+N)>1+2). An other
expression for P; is

My
Pi(z,A) = /d/ La(w)Lgjjeyvot)2(1+uy <142 (s £)pn () par(u)dudt . (3.18)
R

my

Proposition 3.16 (Doeblin condition or minoration condition). In the case my # —1,
Vz € [myr, M|, YA € B([mp, Myr]), Pi(z,A) > v(A)

where v is the measure defined as

My
V(A) = /Rd/ ]lA(u)]l{||el+at||2(1+u)<1+mN}(u,t)pN(t)pN(u)dudt
ma
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The following corollary holds as a direct consequence of the application of Corollary 2
using the result of Proposition 3.16.

Corollary 3. If my # —1, the chain (Z,,), is positive Harris recurrent.

The following Proposition will be useful when establishing the LLN for the Markov
chain (Z,)p.

Proposition 3.17. Suppose that the Markov chain (Z,,),, admits an invariant probability
measure denoted p. Let v be the quantity defined by

- / E [In(flex + 6()oN(0, L) )] du(2) (3.19)

where §(z2) equals 1if |le; + oN(0, I;)]|* (1 + N) — 1 < z and 0 otherwise. Then 7 is finite
for all o > 0. Moreover, the application o — ~y(o) is continuous on ]0, +00.

We are now ready to state the main result of this section

Theorem 3.18. The (1 + 1)-ES minimizing the noisy sphere (Eq. 3.8) defined in Eq. 3.9
(and Eq. 3.10) converges almost surely to zero if my > —1 and diverges almost surely
to infinity when my < —1. The convergence (or divergence) rate verfies the following
equation

%111 Xl = := /E (In([ler + 6(2)aN(0, La)|))] du(2) (3-20)

which holds in probability and where 6(z) equals 1 if |je; + oN(0, Ip)||* (1 +N) =1 < 2
and 0 otherwise and p is the invariant probability measure of the Markov chain (Z,),.
Moreover, if 14+my > 0 then the convergence rate v < 0 and if 1+mu < 0 then v > 0.

Remark 3.2.1. Theorem 3.18 does not state that the log-linear behavior holds for the
sequence (||X,||), where (X,,),, is defined in Eq. 3.9. It gives only the expression of the
convergence (or divergence) rate of the sequence In((||X,||))n. To show rigorously the
log-linear behavior, one has to show that the convergence rate given in Eq. 3.20 is not
equal to 0 when my # —1. However, a benefit of our study is that the convergence rate
derived in Eq. 3.20 is easy to compute numerically using Monte Carlo simulations. Note
finally that Figure 3.2 suggests that the convergence (or divergence) rate is not equal to
zero for the value of o represented.

3.2.3 Conclusion

The theoretical study using LLN for Markov chains shows that the scale-invariant (14 1)-

ES minimizing the noisy sphere function with lower bounded noise satisfies £ In [|X,|| oy

where 7 is a finite convergence (or divergence) rate which corresponds to the expectation
J En(]ler + 6(2)oN(0, 1y)]])] du(z) where §(z) equals 1if [le;+0N(0, I;)||* (1 + N)—-1 < z
and 0 otherwise and p is the invariant probability measure of the Markov chain (Z,),.
However, we have not been able to exclude the case of the convergence rate v equal to
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zero to state that the behavior of the algorithm investigated is log-linear according to the
definition given in Eq. 3.7. Figure 3.2 suggests that the algorithm converges or diverges
log-linearly if the infimum of the noise, m,r, is such that my # —1. Numerical simulations
of the convergence rate derived in Theorem 3.18 can be used to exclude numerically the
case of null convergence rate which seems to be equivalent to the case my = —1. Finally,
another point which has to be investigated in a future work is to show that the convergence
given in Eq. 3.7 i.e., = In || X,,|| — ~ holds also almost surely.

86



3.2. Convergence and divergence rates of the (1 + 1)-ES under multiplicative noise

Appendix

The following Lemma will be useful for proofs.

Lemma 3.19. The sequence (X,), introduced in Eq. 3.9 satisfies: for every n > 0,
|X,.|| # 0 almost surely.

Proof :

The result is demonstrated inductively. The first parent is chosen randomly with P(||Xg|| =
0) = 0. Suppose that P(||X,| = 0) = 0. As the offspring X,, is obtained by adding to
X, a random vector admitting an absolutely continuous distribution with respect to the
Lebesgue measure then P(||X,.|| = 0) = 0. Consequently, if the offspring is accepted then
P([[Xni1ll = 0) = P(IIXq]l = 0) = 0, otherwise P(||[Xp1]] = 0) = P([[ X[ =0) =0. O

Proof of Proposition 3.9
Taking the norm in Eq. 3.9, we have for n > 0

[ X1l = 1Xn + [ X [N L, o)X [N 2 (14M) < (1400 X [} ]

Lemma 3.19 states that n > 0, | X,,|| # 0 almost surely. Then the previous equation can
be rewritten as

X1l =

AR

ﬁﬁu*"NnH (1+Nn)<(1+0n)} H a-s

Taking the logarithm of the previous equation, one has for n > 0

a.s. (3.21)

(|| X (|| Xal]) +1 H Nl : H
n([|Xnia ) = In(|I Xz ) + n( X To {HﬁwNnH (1+Nn)<(1+on)} )

Summing the equations (3.21) from 0 to n — 1 and dividing by n, one gets

n—1
L (1) 152, (B
no \ Xl ) n 1 Xl

= lnzlln HﬁjtaN 1
N n k=0 HXkH g {””§—2H+0Nk”2(1+j\/’k)<1+ok}

).

Proof of Proposition 3.11

Step 1: We show that the random variables Z,, (introduced in Definition 3.10) and O,
(defined in Eq. 3.10) follow the same distribution. We are going to prove inductively this
result. For n = 0, the random variables Oy and Z; = N, follow the same noise distribution
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N. For n > 0, suppose that O, and Z,, follow the same distribution. We have to show
that E(e"9n+1) = E(eZn+1). According to Eq. 3.10 and using Lemma 3.19, we have

E(e"9"+1X,,0,) = E

itN,
" oo X )

itOy,
—i—E{e ]l{H;é—"n“JraNnHQ(lJan)>l+On}‘XmOn} ’

Let R, : R? — R? be an orthogonal transformation (rotation) such that R, (ﬁ) = e.
Then, || X2: + 0N, || = | R, (”X i +oN ) | = |les + Rn(N,,)|| which gives

itOn, _ Ny
E(e +1‘Xm0n)—E{e 1{}}el+0Rn<Nn>}}2<1+Nn><1+on}‘X“’O“}

O,
+E {e ﬂ{Heﬁ—aRn(Nn)HQ(I-I—Nn)zl—i—On}‘Xn’ On} '

This equation can be rewritten as:

itOy,
B0 00 = [ S sonol s son P

d dy .
/mN Myl /Rd {He1+aRn(gc)H2(1+y)21+0n}pN($’) x pn(y)dy

Let us apply the change of variables z = R, (x). As the isotropic multivariate normal
distribution is invariant by orthogonal transformation, the new variable follows also the
same multivariate normal distribution and one can write

itOn 11 _ ity
P00 = [ ol armeso N 2

itOnp,
i /[mN,MN[ /Rd ‘ 1{H61+0'ZH2(1+y)21+On}pN(z)dZ p/\/(y)dy .

Therefore, one gets:
E(eitOnJrl ‘Xm On) —

itNn itOn
E{e e oma | fasam<iion} 7€ 1{Hel+aNnH2<1+Nn)>Hon}‘On}‘

The right hand side of the previous equation can be written as g,(0,,) with g,, continuous?
and bounded (]g,(0,)] < 1). As O,, and Z, follow the same distribution (recurrence

3The continuity follows from the Lebesgue dominated convergence Theorem for continuity.
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hypothesis), then E(g,(O,)) = E(g,(Z,)) which means that by taking the expectation of
the previous equation, one gets

E(eiton+1) —
N itZn
. {e ]l{HelJrUNnH2(1+Nn)<1+Zn} } B {e IL{H«elJraNnH2(1+/\/n)21+zn} }
= (et

Step 2: We have shown that the random variables Z,, and O,, follow the same distribution.
In the same manner, we want to show that, for n > 0, the random variables

— Xn_
([ Ny s ])

F(Z,) :==In([ler + oNL L ey o 201447 <1+2,3 ||) are equal in distribution.

R

. Xn oNp, 2 n n
E(e™X,,0,) = EX{ e map o[ <o }}\Xmon

Again, the invariance of the multivariate normal distribution by any orthogonal transfor-
mation R and the fact that |R(z)|| = ||=|| for any z € R? gives

B(e™|X,,0,) =E {e{“ln(”e”“N"”)ﬂ{newNn2<1+Nn><1+0n}}\0n} .

The conditional expectation E(e™"|X,,, O, ) reduces then to a function of O,, and can be
written as h,(O,,) where h, is real valued bounded function and for which the continuity
follows from the Lebesgue dominated convergence Theorem. As O, and Z, follow the
same distribution, one has E(h,(O,,)) = E(h,(Z,)) which gives E [eitu”} = E [e"F(#)],
Therefore, for n > 0, U,, and F(Z,) follow the same distribution

Step 3: Now, we have to show that, for n > 1, S"7— Uy and >}~ (Zk) are equal in
distribution. We are going to prove the result 1nduct1vely For n = 1 Zk oUr = Uy and
Zk o F(Z ) = F(ZO) are equal in dlq’rrlbuhon according to step 2. Suppose that, for
n>1,.5, L{k and T, o F(Zk) are equal in distribution. Let us prove that
St and Tn+1 are equal in dlstrlbutlon. We have to show that E (e"n+1) = E (¢"Tn1),
We define the filtration 7,, as

7;1 = O'(X(),...,Xn,Oo,...,On,No,...,Nn_l,A/b,...,Nn) . We have

E <€it5n+1 ‘7;1) — ztSnE ZW"‘T

it 1n

ey toNal

{H ||§ZH*"N"HQOW")“*O”} H> 7.,

— eitSnE

— it <eztln ler+oN» 1 {||e1+0‘NnH2(1+Nn)<1+On}”)|’];L>
_ eztSnE <6th (Zn) ’T
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This gives E (eitSn“\’]}L) =F (eitS"”LF(Z”)]’];). Taking the expectation of this equation,
one gets E (e"n+1) = F ("5 TF(Zn))  This can be rewritten as

E (eitSnH) — (eitSn—l—F(Zn)‘N;WNé’ Zn)}
(eitS”|N;l,./\/;;, Zn) eitF(Zn)]
( eitsn) eitF(Zn)]

6itTn) eitF(Zn)]

Consequently, for n > 1, % Zz;é Uy, and %ZZ;& F(Zy) are equal in distribution.
By Proposition 3.9, one has

1 HXnH> 1 <H Xy, )
Sl P i I R i Y O S R ' H 5.
n n(HXoH w2 U+ L o Pmervond )

Then = In <”X"”) equals in distribution £ 3770 F(Zy). Consequently if the Markov chain

Kol n
(Zy)n is stable such that it verifies the (LLN) for Markov chains, the result holds in the
sense that £+ 371 | F(Z;) converges to some 7 a.s. It follows that 1 In||X,|| converges to
~ in probability. U

Proof of Lemma 3.14

The result is proven inductively. For n = 0, by Definition 3.10, Zy = N, € [myr, My[.
For n > 0, suppose that Z, € supp(pyx) = [mn, My[. By Eq. 3.12, Z, 41 equals N €
supp(py) = [mar, Mar| or Z,1 equals Z, which is in supp(py) = [mar, Mpr| by the
recurrence hypothesis. Then Z, 1 € supp(py) = [mar, My|. O

Proof of Proposition 3.15

The transition kernel P(z, A) is the probability that Z; belongs to A conditionally to
Zy = z. By Eq. 3.12, Z; equals N if ||e; + oN||* (1 + N) < 1 + z, otherwise Z; equals z.
Let Py(z, A) represent the probability to have Z; = M and Z; € A and P»(z) represent
the probability to have ||e; + oN|[* (1 +AN) > 1+ 2. The expression of P(z, A) given in
Eq. 3.18 follows. O

Proof of Proposition 3.16
Let us show that v : B([my, My [) — RT U {+oo} defined as

My
o) = [ [ L@ st (0 D@ (a)dude
mps

is a finite measure. First, we have v(0)) = 0. Second, if E; and Es are two disjoint sets
then v(E; U Ey) = v(Ey) 4+ v(Es) as the function 1g, g, is identically equal to 1g, + 1g,
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when E; N Ey = (). Third,

My
/ Lyjies +ot2(1+u)<1+my 3 (0 O)px (O par(u)dudt < 1.

myx

(e M = [

Rd

Now, if my = —1 then the indicator function 1yje, o2 (1-4u)<14mp} (U, 1) equals zero for
any t € R% and u € [—1, M| almost surely. Therefore, v is identically equal to zero.
However, if my # —1, then, for A € B([mpr, Mys[) with a strictly positive Lebesgue
measure, the set

A= {(u,t) € ([mnr, Myy][NA) x R? such that |le; + ot||* (1 +u) < 1+ mp}

has a striclty positive measure with respect to a Lebesgue measure defined on B(R?¢ x
[mar, M[). This implies that v is non identically equal to zero if and only if my # —1.
Moreover, for t € RY, (u, 2) € [myr, M2

ler + ot (14+u) < 1+mpy = |ley +ot|P(14u) <14z

which gives that Vz € [myr, Mpr[, VA € B([mpr, My[), Pi(z, A) > v(A). O

Proof of Proposition 3.17
Let g : RY x R* x R x R be defined for (z,0,y, 2) in R? x R7 xR x R by

9(x,0,y,2) = |ler + Lyje,+ou|2(14y)—1<2} (T, ¥, 2) o] -

The quantity 7 defined in Eq. 3.19 results from the integration of the function In(g)
with respect to the variables x, y and z. We notice that g((zq,22,...,24),0,y,2) =
g((z1, €2, . .., €42q), 0,9, 2) for all (e, ..., €q) in {—1,+1}471 and (21, 2o, ..., 24) in R
Therefore, we can restrict the integration with respect to the variable  to the domain
D = R*x]0, +oo[d_1, more precisely the quantity v can be rewritten as

1 Mpr Mpr 7Hm|l2
7= d/2// / In(g(z,0,y,2)) e 2 py(y)dedydu(z) .

where g is the invariant probability measure of the Markov chain (Z,), introduced in
Definition 3.10 which we supposed that it exists in the hypothesis of Proposition 3.17.
We introduce v as:

2

= W /p/ N/ I [y, 0., 2)] ¢ paly)dadydp(2)

my my
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such that v =~" —~~. The quantities v and v~ are well defined but could be infinite.
Using spherical coordinates (with d > 2) we obtain after partial integration

7_:(%) der%/m// / |

n” [A(r,0,0,y,2)] 7 e T sin 2 (0)pur(y) dr dfdydp(z) ,

O A
T =15 w. 17 /(4d)
2 Wd72r<§) 0 0 mas mas

In* [h(r, 0, 0,9, 2)] e sin2(8)pw(y) dr dddydu(2),
where h is the positive function defined on R* x [0, 7] x RY x R x R by

h(n 87 g,Y, Z) - ||]l{||m‘—ew||2(1+y)—1<z}(r7 07 Y, Z)UT - €i9 H :
For (r,0,0,y,2) in RT x [0, 7] x R% x R x R, we have
Int(h(r,0,0,y,2)) <In*(1 +or) <or (3.22)
and
In"(h(r,0,0,y,2)) <In" (sin(d)). (3.23)
This gives
1\? om oo 2
+ d -
7§<—) 7/ rfe 2 dr < 400,
2) W @
and

1 oo 2
v < <§) Wl ( —— / / In~ (sin(h)) rite== sin®"2(0) dr df
a2l (%)

; [ / -
<|l=z) ————~ r 2d7“ sin“"2(0)df < +o0.
<2> T , Y

For the remaining case d = 1, we have

SIE]

T < L/ |x\e‘§dx = 2—0 ze
T V27 Jr V21 Jr+

For 7, after a change of variables (v = ox), we get

o2 Myn (J1+1 (v,y, 2)v|)
{|14v|?(14y)—1<z} Y,z
dvd d,u z
\/271 / / / v N(y) y ( )

My In(]1+wv
- /_2/ | D ———— L4y 1< (0, Y, 2) oA () dvdydp( )

MNIn (11 + o
< £ / / Mzw(y)dvdycw(Z)
27 mar -2 v
10

\)
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The continuity with respect to o is shown , using the Lebesgue dominated convergence
theorem (for continuity), on every range |0, M| and then for the whole |0, 400 thanks to
the inequalities given in Eq. 3.22 and Eq. 3.23. This gives the result for d > 1.

For the case d = 1, the integrand in 7t is continuous with respect to o for almost all

z2
(z,y,2) in R X [mpr, Mpa[X[mpr, My[ and is dominated by \/LQ_WSxe*T for (x,0,y,2) €
R*x]0, 5] x [0, +00[X [mar, Mac[X [mpr, Mar[ which gives the continuity of 4+ with respect

to o by the Lebesgue dominated convergence Theorem. For 4~, and after the change

1
of variables v = oz, the integrand will be dominated by T/T%M for (v,0,y,2) €

1—2,0]x]0, +o00[X [mpr, Mar[x[mpr, My[ and the continuity of v~ with respect to o follows
from the dominated convergence Theorem. O

Proof of Theorem 3.18

The almost sure convergence or divergence was already given in Theorem 3.8. Now, we
give interest to the convergence (or divergence) rate.Corollary 3 states that, for my # —1,
the Markov chain (Z,,),, is positive and Harris recurrent. Therefore it satisfies the (LLN)
given in Theorem 3.12. Let u the invariant probability measure of the chain(Z,),. Then,
we can define the quantity v := [ E [In(|le; + 6(2)oN(0, I)||)] du(z) where §(z) equals 1
if le; +oN(0, I;)||? (1 + N) — 1 < z and 0 otherwise. By Proposition 3.17, ~ is finite. As
(Z,)n satisfies the conditions of the LLN and < 400, the right hand side of Eq. 3.14
converges almost surely to 7. Then the sequence L In([|X,||), converges in distribution
to 7. As 7 is a constant, the convergence of the sequence + In(||X,||), to v holds also in
probability.

The convergence in probability of the sequence L In(||X,||) (when mys # —1) implies that

there is a subsequence which writes as <ﬁ ln(||X¢(n)H)) and which converges almost
n

surely to the same limit ~.
Moreover, by Theorem 3.8, the sequence (In(||X,||)), converges almost surely to +oo
if my < —1 and to —oo if my > —1. Combining this with the fact that the sequence

(@ IH(HX¢>(n)H)> converges almost surely to 7, we deduce that v > 0 if my > —1 and
v <0if my > —1. [
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3.3 Additional convergence/divergence results

In this section, we generalize convergence/divergence results that have been derived in
[76] (Section 3.1) for the objective function defined by Eq. 3.4 to the following (noisy)
objective function:

Folx) = (|z|* + a)(1 + N) (3.24)

where « is a positive constant. The noise random variable N has a finite expectation
such that F(N) > —1 and has a density function py which lies in the range [myr, My|
where —oo < my < My < +o0* , My > —1 and mp # —1. Some of the proofs of
the following results are based on the second Borel-Cantelli Lemma (see Lemma 3.2).
It is worth noticing that the log-linear behavior observed in Figures 3.2 and 3.3 and
theoretically shown in Section 3.2 when o = 0 does not hold anymore for a > 0 as the
variance of the noise random variable does not reduce to zero close to the optimum. We
recall here that:

e The random vector N(0, ;) is the multivariate isotropic normal distribution on R?
with mean (0, ...,0) € R? and covariance matrix the identity 1.

e The random vectors N,, (n > 0) are independent realizations of N(0, I).
e The random variables NV,, (n > 0) are independent realizations of N.
e The vector e; is a unit vector in R? which equals (1,0,...,0).

In the case of the minimization of the objective function (Eq. 3.24) using a scale-invariant
(14 1)-ES, the solution at an iteration n, X, is updated as follows:

X1 = Xo + 0K Ny i [[[Xe -+ 011X N [*+ 0] (1 ML) < (1Kl + @) (14 On)

= X,, otherwise,
(3.25)

and the new normalized overvaluation O, is then:

Ot = Ny if [ [ X+ 0¥ [N + @] (14 Q) < (X2 + @) (140, (3.26)

= 0,, otherwise .
The results depend, similarly to the case of the noisy objective function given by Eq. 3.4,

on the infimum of the noise myr. The results are summarized in the two following sections.

3.3.1 Convergence in the case my > —1
The result is stated in the following proposition.

4Note that, comparing to Section 3.1, the hypothesis on the variable N/ are more general in this
section: The infimum of the noise can be infinite, i.e., my = —oo.
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Proposition 3.20 (Convergence for my > —1). Consider the sequences (O,,), and (X,,),
defined by the recurrence relations Eq. 3.25 and Eq. 3.26 for the minimization of the
objective function defined in Eq. 3.24. If my + 1 > 0 then the sequences (F,(X,,)), and
(IIX,]|)n converge respectively to a(1 + my) and zero almost surely.

Proof :

The convergence in the case o = 0 has been already stated in Proposition 3.3. Let us
now demonstrate the result for a > 0.

Step 1: Note in the beginning that the sequence (F,(X,)), is decreasing due to the
acceptance condition used in the (1 + 1)-ES. Let us show that the sequence (F,(X,)), is
positive, lower bounded and that the sequence (||X,||), is upper bounded. The decrease
of the sequence (F,(X,)), and the fact the random variable N is lower bounded by
my > —1 imply, for n > 0, that:

FulXo) > FulXp) = (IXallP + @) (14 0,) > (Xall® + @) (1 +my) > a1 +my) > 0.

(3.27)
The decreasing sequence (F,(X,,)), is then positive and lower bounded. Therefore it
converges almost surely. Moreover, by the previous equation, one gets

IXal* < M (3.28)

where M is defined as M := ]:"(Xol);z(j\l;’m"’). This means that the sequence (||X,]), is
upper bounded by M.

Step 2: Let us show that the sequence (F,(X,,)), converges almost surely to a(1 +mys).
Let € > 0, we are going to show that 3 ny > 0 such that F,(X,) < a(l+my) +
e, Yn > ng. Let n > 0. For e > 0, 3 K(¢) > 1 such that the probability to have
N, € supp(py) and a(l + N,) < a(l + my) + R 18 strictly positive. Let a :=

K(e)—1 1+mpr €
K (e) 1+mN+m Fa(Xo)—a(l+mpr

Xn
() TXall + O'Nn

fitness of the offspring X,, + || X,,||N,, at an iteration n verifies

y > Oand b := 1+mN+@ > (. Suppose that the events

2
< a) and (1 + N, <) hold. Therefore, using in addition Eq. 3.28, the

2

FolXn + 0 XalNs) = [[Xal® HXnH +oNy || (T+Na) +a(1+Ny)
< Mab+ ab
 K(e)—1

€
+a(l+my)+—==a(l+muy)+e.

K(e) K(e)

2
1Xx]] <a|N(1+AN,<b)| implies
the event F, (X, + 0| X,|[|[N,) < a(l+my) + € and therefore Fu(X,11) < Fo(X, +

Then, for n > 0, the event A, = ((H oo+ 0N,
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0| X, |INn) < a (1 +mpy) + €. Moreover, the event A, has a probability which verifies:

P(A,) =P HMJFUNH 2§a> m(1+Nn§b)>
X 2
=P ' IIX:H +oN, | < a> P14+ N, <b) (3.29)
2
=P 'HX || §a>P(1+N§b).

By Lemma 3.21, the quantity P (’

g a) equals P (|le; + oNJ|? < a). There-

fore, P(A,) equals the constant value P (He1 +oN||> <a) P(1+N <b) which implies
that > -, P(A,) = +oo. Moreover, by the same Lemma, we have the independence of

2
the events (‘ T < a | and therefore that of the events A,. Thus, the Borel-

Cantelli Lemma (Lemma 3.2) can be applied and shows that the event A,, happens almost
surely and then the event F,(X,11) < a (1 4+ myr) + € happens almost surely. Therefore,
the sequence (F,(X,)), converges almost surely to a (1 + myr).

Step 3: Now we have to show that the sequence (||X,]|), converges to 0 almost surely.
From Eq. 3.27, we have for n > 0,

fa(Xn) > (HXHHQ + O‘) (1 + m/\/’)'

Using the fact that my + 1 > 0, the previous equation implies that, for n > 0, 0 <
X, |2 < Ze&n) _ o As both the right and left hand sides of this equation converge to
zero, the sequence (||X,||), converges also to zero. O

Lemma 3.21. Let (X,,), be the sequence of random vectors in R? defined in Eq. 3.25 and
(N )n the relative sequence of independent random vectors following the same distribution
N(0, I;) used to define the sequence (X,), as shown in Eq. 3.25. Then the variables

= an ol

are independent and follow the same distribution as |le; +0oN(0, 1,)]|.

Proof :
In the beginning, let us show that, for n > 0, the random variable Y,, follows the same
distribution as ||e; + oN(0, I)||. Let ¢ € R, the expectation E(e™) writes as follows:

E(e™) = E [E <@it“%+0NnH yxn)] (3.30)

Let R, an orthogonal transformation (rotation) such that R, ( Xn ) = ey. The previous

Xanll
equation becomes:
E(e™) = E[E (eitlleﬁoRn(Nn)II’Xn)] . (3.31)

Applying a change of variables U,, = R,, (N,,), the variables U,, and N,, follow the same
distribution due to the fact that the distribution of N(0, /;) is spherical. Therefore, one
gets:

B(E) = B [ (1ot oNl)] = 1 (¢4t 0aol) (3:32
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Now, we have to show that the variables Y,, (n > 0) are independent. Let n, m in N such
that m # n. We suppose, without loss of generality, that n < m. Let t;,t, € R. We are
going to show that E (e1¥nFif2¥m) — [ (¢i1¥n) E (¢"2Ym). We have

E (eMYntiztm) — B [E (€M X, X, Ny )| (3.33)
The random variable Y,, is 0(X,,, N,,)-measurable, so that

E (eitlYn-i—itQYm) — B [eitlynE (gm”ﬁ—l—aNmH ‘Xnu ){m7 Nn>:| (334)

Using the independence of N,,, with the random vectors X,,, NN,, and X,,, we get

(eI, X = o [ eIl
m
1 . r
o [ e (3.)

e
- E [ zt2||el+0'Nm||} )

Therefore, we get
E (eit1Yn+z‘t2Ym) E ( ztlYnE (eit2||e1+cer||)>

= E (¢talertoNall)  (gidh) (3.36)
= E (¢¥) E (e2¥n) .

3.3.2 Divergence in the case —oo < my < —1

In the case where —oo < my < —1, the key idea is that objective functions are negative
after a finite number of iterations. This is stated in the following lemma.

Lemma 3.22. Consider the sequences (O,,),, and (X,,),, defined by the recurrence relations
Eq. 3.25 and Eq. 3.26 for the minimization of the objective function defined in Eq. 3.24. If
—o0 < my < —1, then objective functions are negative after a finite number of iterations
i.e., 3 n; > 0 such that F,(X,) < 0 for n > n; almost surely.

Proof :

The proof is similar to the proof of the assertion 1 of Lemma 3.7 in the non shifted case
(i.e., relative to the objective function given by Eq. 3.4). Let us show that the event
A = {3 n; > 0 such that Vn > n; F,(X,) < 0} is equal to the event B := {3 py >
0 such that NV, < —1}.

First, we show that .4 C B. This is equivalent to show that B C A°. IfVp >0, N, > —1
then Vp > 0, F,(X,) > 0 (because

Fall Xl = (1% 2+ 0) (14 0p) = (X, + @) (14 Nigy) where 1(p) < p is the index
of last acceptance).

Now we have to show that B C A : Suppose that 3 py > 0 such that N,, < —1. We
denote by p; > 0 the integer defined by p; = min{p € N such that N, < —1}. Then
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Fo (X,,) <0and F, (X,) >0forall 0 <p<p; —1. Then, as (F, (X,,)), is a decreasing
sequence, VYn > p; Fo(X,) < 0.
This implies that P(A) = P(B). Now, we have for all n > 0,

P(B%) = P(NF25 (N, > —1)) < T P (N > —1)) = (P (N > —1))™.

Let a := P(N > —1). As —oo < my < —1, then a < 1 and consequently P(B°) = 0
and P(A) = 1. Then 3 ny > 0 such that F,(X,) < 0 for n > n; almost surely. The
sequence (F,(X,))n is decreasing (because of the elitist selection). Then for n > ny,
Fo(Xp) < Fu(X,,) <0.

U
We are now ready to state the main result.

Proposition 3.23 (Divergence for —oco < mys < —1). Consider the sequences (O,,),, and
(X,,)n defined by the recurrence relations Eq. 3.25 and Eq. 3.26 for the minimization of
the objective function defined in Eq. 3.24. If my + 1 < 0 then:

1. Objective functions are negative after a finite number of iterations i.e., 3 n; > 0
such that F,(X,,) < 0 for n > n; almost surely.

2. For n > ny, the sequence of the expectations of the distances squared to the optimum
of the non noisy objective function is increasing in the sense that

[Xnga]?
E( Xl ‘XmOm/\/n) > 1.
Therefore, for n > ny, E(||X,[*) > E(||X;,[|?) > 0, and the sequence (E(||X,[|*)), cannot
converge to zero.

This result include the particular case of Gaussian noise (my = —oo). Therefore, in
the case of a Gaussian noise, the algorithm cannot converge in the sense that the L?-norm
of the sequence (||X,||), can not converge to zero. This result seems in contradiction with
the result of Arnold and Beyer [8] in which they show that convergence (in expectation)
occurs due to a positive expected progress rate. The reason for this apparent contradiction
is due to the model investigated by Arnold and Beyer. Arnold and Beyer’s model writes

as:
*
20?

f(x) = ||z||? (1 +=N(O, 1)) (3.37)

where d is the search space dimension, o7 is a strictly positive constant called the normal-
ized noise strength and N(0, 1) is the Gaussian random variable with mean 0 and variance
1. Our study shows that whenever, a negative fintess value is sampled, the algorithm
start to diverge. In [8, Fig 8|, and for the values ¢ = 2 and d = 80, the probability
that a negative fitness value is sampled is upper bounded by 107 as already stated in
Section 3.1.4. Therefore, the average value of the moment n; defined in Lemma 3.22
is 10%. As in practice, the algorithm does not run such a number of iterations, fitness
functions values sampled are positive and a convergence is observed.

Proof :

Note that the case o =0 and —oo < mys < —1 leads to a divergence of the algorithm as
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already stated in Proposition 3.4. Now we investigate the more general result where o > 0
and —oo < my < —1. The first point of the proof is demonstrated in Lemma 3.22. The
fact that 3 ny > 0 such that F,(X,,) < 0 for n > n; almost surely implies that 1+ O,, < 0
for all n > ny. For n > 0, as P(||X,|| = 0) = 0, one can divide the the acceptance event
inequality (see Eq. 3.25 and Eq. 3.26) by || X,]|>. The resulting inequality writes as:

X, 2 o .

In the sequel, we suppose n > n;. We have:

X [
(e Po0n %) =

Xn70n7N
( { (ol e ) 040> (145852 ) G+0n }’ )

B X2 !\m+aNny\21 X, O N,
X []2 {3 tonn]] +HXnII2>(1+N")<<1+HXC:LII2> LHOn) 1

As the multivariate normal distribution is isotropic, we get

Xl

b (]1{(||e1+can|| +HX ||2)(1+Nn)>( TXn “2)(1-1-0" } ‘Xn’ On’Nn)

B (les + Nl s

Let N,,; denote the first coordinate of the variable N,,. The quantity ||e; + oN,||? equals
1+ 20N, 1 + 0?|IN,||* and we have

)(1+Nn)<(1+m)(1+on)} ’XmOn,Nn) .

IX 112

X [|?
B (R X 0n ) =1

2 2
rok (HNHH ﬂ{<”el+"N"” R H2>(1+Nn)<<1+m>(1+0n)} ’XTMOn;Nn)

+ 20E (Nn’lﬂ{(”el—’—aN"” +||X H2)(1‘|'/\/'7z)<( Xn ”2) 1+On } ’Xn70na-/\/ )

For n > ny, we have 1 + O,, < 0. Therefore, the event

((||61 + oN,|I* + X, H2) (1+N,) < (1 + ﬁ) (1 +On))

is equivalent to the event
{(1 + N, <0)N <||61 + aNn||2 > A(O,, ||Xn]|,/\/'n))}
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1+0, o
ER Ao There-

where A (O,, [|X,||,NV,) is defined as A (O, ||X,||, N,) := <1 + ||XC:L||2)

fore, we get:

[ X1 [|?

b (Bl i 0.m) -1
200 (7, <01 E (Nt L {14208, 1 402N [25 A0 Xn [ N} | Xty Ony N3
+ 02 LN, <0b B ([ING P L 120N, 1 402N 25 AOmXn | N} | Xits Ony N3

NOW, we will show that M(Xn, On;-/\/’n) =F (Nn,l]l{||e1+can||2>A(On,||Xn||,Nn)} ‘ Xn, On,Nn) Z
(3.38)

0. The quantity M (X, O,,N,) can be rewritten as
/ 11 le1 400> A [Xn | N} (£) 2

d

M(Xna OmNn) -
(27

Let Oy, [|X,]| and NV, be fixed and let (x1,...,24) € R% If 2y is such that
r1 < 0and 1+ 20z, + ?||z||* > A (O, |Xall, M)

d
> > 1+ 202, 4 o||z))? > A (O, || X, Ny)

then
14+20(—x1)+0 ((x1)2 + Z(xz)2
i=2
Let B (Oy, |X,|l, N, ) denote the quantity A(O”’”X””’/;[;)*PUQ”mHQ. Then
B (O, | Xull, Nay (21,22 - . 20)) = B (O, |1 Xl Noy (21,22 .., 24)) (3.39)
(3.40)

and we have

1
M(XmOnaNn) - d
(2m)2
1
T e 21l o 20} L er-+owl2> AOn 1% | A} () d21
Applying a change of variables in the second term (u; = —z1,us = 9, ..., uqg = x4), and
using Eq. 3.39, one gets
1
M O ) = (2m)2 Jrat Rxlﬂ{xlgo}ﬂ{II>B(On7IIXn||,Nn,x)}(ﬂf)dwl dzy ... dzg
- _
1
+ (2 )% /Rd 1 [[R _ul1{u1gO}ﬂ{—u1>B(On,||Xn||,j\/’n,u)}(U)dul} dus . .. dug
- _
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This gives
M(Xm Om-/\/’n) -

1
7 / { / 11z, <0) (ﬂ{woB(on,nxnnNn,x)}(ﬂf)—]1{—m>B(on,||xn||,Nn,as>}(37))dﬂfl] dzy ... dzg.
(2m)2 Jra-1 /R

By Eq. 3.40, one has @11z, <0} (L{zy> B0, X0 | No2)} (Z) = L{—a15BOw[XnllNo2)} (T)) = 0

forall z € R?. Consequently M (X,,, O,,N,,) > 0 which implies that F (”ff;;:ﬁL'Q | X,., On,Nn> >

1 for n > n;. OJ
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Chapter 4

Log-linear Behavior of the
Scale-invariant (1, A\)-ES in Noisy
Spherical Environments

The material in this chapter is the basis for a journal paper that we intend to submit
soon. In Chapter 3, we investigated the effect of the elitist selection procedure of the
scale-invariant (1 + 1)-ES when minimizing noisy objective functions. For a class of
noisy objective functions with positive non-noisy part, we have shown that almost sure
convergence cannot occur if negative noisy objective functions values can be sampled
with a strictly positive probability. In this chapter, we investigate the behavior of the
non elitist (1, \) isotropic ES when minimizing noisy objective functions. The adaptation
rule is the scale-invariant rule (i.e., 0, = ¢||X,,||) that had been previously shown to be
optimal for comma strategies [17]. The general model of the noisy objective function is
given by the following equation

f(z) = ||=[[(1 4+ o) (4.1)

where € R?, A is an independent random variable that models the noise and o, is a
strictly positive constant which represents a scaling parameter for the noise level. We
will refer to o, as the noise strength. The noise random variable A is supposed to be
absolutely continuous with respect to the Lebesgue measure.

Moreover, we investigate two models relative to the computation of the fitness of the
offspring that we denote model pf and model apf respectively. Let z € RY denote
a parent and y € R? its offspring. In the model pf, the fitness of the offspring is
f(y) = |ly||+oclly|[NV. In the model apf, the fitness of the offspring is {(y) = ||y||+oc|z||N.
The model apf was used in [8| as a reliable approximation in the limit of infinite dimen-
sion of the search space.

The work can be divided into three parts, that we summarize below.
Part 1: Log-linear behavior for fixed finite dimension In this part, we investigate
the log-linear behavior of the algorithm for a fixed search space dimension. The log-linear
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behavior of the algorithm is proven in Theorem 4.8 for the models pf and apf. The result
is established using the Law of Large Numbers for orthogonal random variables. The
result is that lim,, + In (||X,[|) = F(o, o.) or F(o,0.) where F(o,0.) (respectively F(o,0.))
represents the convergence rate for the model pf (respectively apf). This theorem not only
states that the behavior of the algorithm is log-linear (whenever the quantites F (o, o.) and

F(o,0.) are nonzero), but also gives a quantitative information relative to the convergence
(or divergence) speed that can be numerically computed (see Part 3).

Part 2: Infinite dimension study The hypothesis used in 8] suggests that the model
pf is well approximated by the model apf for infinite dimension of the search space. In
this part, we show rigorously that such an approximation is reliable when the search space
dimension goes to infinity. Moreover, we investigate how the convergence rate F(o, o.) (or
F(o,0.)) varies as a function of the search space dimension d. Therefore, we investigate
the limit of the so-called normalized convergence rates dF(o,o.) and dF(o,0.) with o

equal to Z- and o. equal to Ze . The strictly positive constants o* and o are respectively

called normalized step-size rflutation and normalized noise strength. The result of this
computation relies on proving the uniform integrability of the underlying random variables
and is given in Theorem 4.9. It is proven that the quantities dF (%, %) and d]?‘(%*, %)
have the same limit, depending on A, ¢* and ¢, that we will denote [(\,0,0). This

result allows us to conclude that:

1. The convergence rate varies asymptotically linearly with the inverse of the search
. . . gk l(\o,0F M/ o* of l(\o,0f
space dimension in the sense that F(%, %) ~ Mro0d) and F(%, %) ~ %.
2. The approximation used in [8| is reliable when the search space dimension goes to
infinity.

Part 3: Specific case of Gaussian noise In this part, we focus on the particular
case of Gaussian noise. First, we give in Theorem 4.10 a simplified expression of the limit
I(A,0,07) of the normalized convergence rates dF (%, %) and d]?‘(%*, %) The proof in
Theorem 4.10 uses the same techniques that were used in |25], and mainly relies on the fact
that mutations follow the multivariate normal distribution.The limit of the normalized
convergence rate (given in Eq. 4.20) is found to be equal to the opposite of the limit of
the progress rate derived in [25|. This result generalizes the result derived in [17] for the

non-noisy sphere function. Moreover, the expression derived shows that:

1. For sufficiently large search space dimensions, if o < 2¢(1, ), the algorithm con-
verges provided that 0*? 4+ 07 < 4c2(1, \) (strictly negative normalized convergence
rate) and if oF > 2¢(1, \) the algorithm diverges (strictly positive normalized con-
vergence rate).

2. For fixed ¢* and A, the limit of the normalized convergence rate when the search
space goes to infinity is increasing as a function of o7, i.e., the noise slows down
a possible convergence of the algorithm or speeds up a possible divergence of the
algorithm.
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3. The limit of the normalized convergence rate when the search space dimension
goes to infinity is a decreasing function of A, i.e., increasing A speed up a possible
convergence of the algorithm.

Second, in the divergence case given by o > 2¢(1, \), we compare the strategies of
1. increasing A,

2. re-sampling the offspring fitness /N times and averaging its fitness through the N
samplings.

By increasing A or averaging (which decreases the normalized noise strength from o to

*

\‘;ﬁ) one can be in the convergence situation given by of < 2¢(1,A). It is established,

for sufficiently large values of o, that it is better for the (1, A)-ES (in term of evaluation
cost per generation), to reevaluate the offspring fitness than to increase the number of
offspring A. Note that a similar study had been previously done in [25].
Third, a contribution of this study is Theorem 4.8, which has been derived using a LLN
for orthogonal random variables, and gives the explicit expression of the convergence (or
divergence) rate. This expression is given in terms of an expectation of an underlying
random variable and therefore, according to the LLN, can be numerically computed us-
ing Monte Carlo simulations. Monte Carlo simulations of the normalized convergence
rates are plotted as a function of the normalized step-size mutation for different normal-
ized noise strengths, different dimensions and both models pf and apf. Strictly positive
(respectively negative) values of the normalized convergence rate mean that the algo-
rithm converges (respectively diverges). In particular, it can be seen that for almost all
parameter settings (normalized step-size muation, normalized noise strength, number of
offspring), the convergence rate is nonzero, which gives the log-linear behavior of the al-
gorithm.
Fourth, curves representing the normalized convergence rates for finite dimensions and
the infinite dimension (d — 4o00) are plotted (Figures 4.5 and 4.6) as a function of the
normalized step-size mutation for the models pf and apf and two values of the normal-
ized noise strength. These plots reveal that, for same parameter values of the algorithm
and of the normalized strength, finite convergence rates can have strictly negative sign,
suggesting a convergence of the algorithm, while the limit expression of the convergence
rate is strictly positive, suggesting the divergence of the algorithm in the limit of infinite
dimensions. Therefore, infinite dimension results have to be taken with care in some
cases. Moreover, the comparison of the curves relative to the model pf to those relative
to the model apf reveals that, for the same parameter values and finite dimensions, con-
vergence can be predicted for one of the two models, while divergence occurs for the other
model. These two observations prove the limits of adopting, for finite dimensions, infinite
dimension results and for approximating the model pf by the model apf.

Finally, optimal convergence rates, optimal normalized step-size mutations, and upper
bounds for the step-size mutation allowing to have a convergence of the algorithm are
plotted, for finite and infinite dimensions, as a function of the normalized noise strength

*

o;.
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4.1.  Introduction

Log-linear Behavior of the Scale-invariant (1, \)-ES in
Noisy Spherical Environments

4.1 Introduction

Optimization is a recurrent task in engineering problems and a research field investigated
by applied mathematicians and by computer scientists as well. Mathematically speaking,
the goal is to minimize (or maximize ') a real valued function f, called objective func-
tion, and defined on a search space ). The general context of this chapter is non linear
unconstrained continuous optimization. This means that f is non linear, the search space
) is non restricted and is (or contains) one or many open subsets of RY,

The difficulty of an unconstrained optimization problem is related to the dimension of
the search space €2 and to the characteristics of the underlying objective function f. In
real-world optimization problems, objective functions can be non-convex, non-smooth,
discontinuous, noisy, multi-modals, ill-conditioned, non separable .... The algorithms
developed to solve these problems explore the search space by generating, at each iter-
ation, new trial point(s) either deterministically or randomly using some search distri-
bution. Randomized search methods are well known global methods which prove to be
more robust than deterministic search methods when optimization problems are 'difficult’
[9, 106, 78|. Randomized search methods designed for continuous optimization include
Pure Random Search (PRS) [31], Pure Adaptive Search (PAS) [148], Evolution Strate-
gies (ES) |25], Differential Evolution (DE) [131, 132, 133|, Particle Swarm Optimization
(PSO) [34, 81, 126, 127|, (continuous) Estimation of Distribution Algorithms (continu-
ous (EDA)) [91] and Simulated Annealing (SA) [3|>. According to the comparison of
some widely used continuous randomized search methods which has been done during the
Congress of Evolutionary Computation (CEC 2005) [2], the state of the art of ES called
Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) was highly competitive by
solving all problems including multi-modal problems and robust as its performance was
not affected by non-separability or non-convexity. Moreover, the performance of CMA-ES
degrades slower than performance of the other methods when the test function is being
less and less conditioned.

Pure Random Search is the simplest randomized search method. At each iteration,
trial points are independent identically distributed (i.i.d.) and the best solution is re-
tained. In particular, points are always sampled around the same point and the search

Minimizing a real valued function f is equivalent to maximize — f.

2Simulated Annealing can be seen as a particular ES with a randomized rule for the acceptance of a
new trial point.
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distribution parameters such as the radius and favorite directions of the search are un-
changed during the optimization process. It has been proven [149| that this intuitive
procedure ensures a global convergence in the sense that the algorithm converges to the
global minimum with probability 1 for every objective function for which the neighbor-
hood of the global optimum can be reached with strictly positive probability. However,
the research parameters of Pure Random Search are not adapted relatively to the history
of the search and/or the shape of the objective function. Thus, its convergence time is
very large increasing exponentially with the search space dimension. This makes Pure
Random Search not useful in practice on some problems presenting a structure that could
be exploited. This exponential dependency of the convergence time of the PRS with
respect to the dimension is decreased to a linear dependency for the so-called Pure Adap-
tive Search (PAS) [148] but the PAS is an algorithm, not only move iff a better point is
sampled but also does not adapt its research parameters. The run time will be then very
large in practice.

On the other hand, ES, which are evolutionary algorithms (EA) designed for continuous
optimization, were successful due to the adaptation mechanisms of research parameters
they implement. ES, as other EA, use bio-inspired techniques at each iteration (called
also generation) to evolve a set (or population) of solutions. Solutions in the beginning
of an iteration n are called parents. Then the search step is based on the so-called mu-
tations. A mutation is a perturbation of a parent which corresponds to adding a random
sampling of a multivariate normal distribution. The resulting point is called offspring. At
an iteration n, let X,, be the parent, the offspring Y,, equals

Y, = X, + 0.N(0,C,), (4.2)

where o, is a strictly positive constant and N(0, M) denotes a sampling of the multi-
variate normal distribution with mean (0,...,0) € R? and a covariance matrix M. The
parameter o, and the matrix (), are the search distribution parameters. The parameter
o, corresponds to the 'radius’ of the search and is called the step-size mutation. The
matrix C), gives the favorite directions of the search at the iteration n and is abusively
called the covariance matrix of the mutation. An efficient ES has to adapt its research
parameters (o, and C,,) based on the history of the search. The simplest ES, is the so-
called (1 4 1)-ES, which evolves a single solution and accept, at each iteration, the new
trial point iff it is better than the previous sampled points. If the step-sizes o, (n > 0) are
set equals to a constant oy and the covariance matrices C,, are set equal to the identity
matrix of R? which we denote I;%, it has been shown [117, 33| that almost sure conver-
gence toward the global optimum holds when the objective function is continuous. If the
step-sizes g, (n > 0) are deterministically updated, it has been shown that global conver-
gence* holds for isotropic ES whenever a sufficient condition on the sequence of step-sizes
is satisfied [150]. Several adaptation schemes have been introduced. The one-fifth success
rule [114, 82| is the oldest known technique which adapts only the step-size. Self-adaptive
Strategies [114] and Meta-ES [63] employ the evolution itself to adjust the search param-
eter values. The state of the art of adaptive ES is the CMA-ES [61, 59, 57, 16| in which

3ES with C,, = I, are called isotropic ES.
4Global convergence studies refer to theoretical studies where objective function is not subject to many
hypothesis and in particular these studies concern multi-modal functions.
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the step-size and all the directions of the search are updated at each iteration.

The adaptation in ES makes them practically more effective and more rapid than PRS
as it is the case of CMA-ES for which it is stated in [16] that: “On Convex-quadratic
functions, the adaptation mechanisms for ¢ and C' allow to achieve log-linear convergence
after an adaptation time which scales between 0 and the search space dimension squared”.
The log-linear convergence, numerically observed in many numerical studies of optimiza-
tion using ES, means that the logarithm of the distance to the optimum decreases linearly
with the number of iterations after an adaptation time. Mathematically speaking, if we
denote d,, the distance of the solution at an iteration n to the optimum, the (log)-linear
(asymptotic) convergence means that

lim = In(d,) = ¢ (4.3)

n—oo M
for some ¢ # 0. The limit ¢ is called convergence rate (of the sequence (In(d,)),). The
sequence (d,), converges whenever ¢ < 0. If ¢ > 0, the algorithm diverges. It has
been proven |17, 77| for isotropic ES that the convergence of ES on uni-modal objective
functions is at most log-linear for any adaptation scheme of the sequence (o,,) and that
the optimal convergence rate is reached for a specific objective function and a specific
adaptation rule of the sequence (0,,). The specific objective function is the so-called sphere
function which is the function mapping R? into R and defined as f(z) = ||z||? for x € R?
where ||.|| denotes the euclidean norm on R?. The minimum of this function is reached
on (0,...,0). The specific adaptation rule is the so-called scale-invariant technique for
which the step-size is set proportionally to the distance to the optimum at each iteration®
in the sense that, in the case of an optimum in (0, ...,0), this rule writes as

on = 0o||X,] (4.4)

where ¢ is a strictly positive constant called normalized step-size mutation. This adap-
tation rule has been widely investigated in the context of progress rate theory [114, 25|
in which the exact expression of the scale-invariant mutation is to set ¢ in Eq. 4.4 equal
to % where o* is a strictly positive constant called the normalized step-size mutation®.
In progress rate theory, the goal is to maximize the expected progress to the optimum
at each iteration (called progress rate) and the results derived hold asymptotically in the
dimension of the search space. In the case of a realistic adaptation rule, an idea proposed
in [27] of investigating the stability of Markov chains relative to the ES dynamics to study
their behavior was exploited in [13| to rigorously prove that isotropic ES do converge (or

diverge) log-linearly when minimizing the sphere function.

Noisy objective functions are frequently encountered in real-world optimization prob-
lems. Noise can have various origins as physical measurement limitations or the use of
stochastic simulation procedures such as Monte-Carlo simulations. Note that these exam-
ples share the property that a reevaluation of a same solution lead to different objective

5This rule is artificial as in practice one does not know the optimum location.
6Note that we used the same terminology 'normalized step-size mutation’ to denote ¢ in Eq. 4.4 and
o* when o is replaced by %-.
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function values. Therefore, the noise investigated here is random.

The problem when dealing with noisy objective functions is that the noisy part of the
function can deceive the decision making. The comparison of two solutions is no more
reliable: the noisy objective function of a solution with low noise value can be better
than the objective function value of a solution with a better (ideal) function value but
large noise value. If this event happens frequently, the algorithm may diverges. Beyer
[24]| noticed that the behavior of evolutionary algorithms in noisy environments is similar,
independently of the nature of the search space (continuous or discrete): noisy objective
functions lead to the decrease of the convergence speed and to a deterioration of the fi-
nal optimum location quality. ES are robust when solving noisy optimization problems
[9, 106] compared to other deterministic or randomized search methods. In [9], it is shown
that ES perform better than some deterministic method which can stagnate. In partic-
ular, it is shown that, for large values of noise, ES can perform even better than the
implicit filtering method [47, 80| which belongs to the field of stochastic approximation
algorithms [115, 83, 86, 87| which are optimization methods specifically designed for the
optimization of stochastic and in particular noisy objective functions. In [106], it is stated
that ES perform the best among population-based methods on noisy environments. How-
ever, there are few rigorous mathematical studies of the convergence of ES with respect to
the noise properties. Theoretical studies of ES in presence of noise have been carried out
by Rechenberg [114], Arnold and Beyer 25, 7, 5, 10, 6, 8, 24|, using asymptotic estima-
tions when the dimension of the search space tends to infinity. In [8], the noisy objective
function used by the authors is

||| (1 + 22:/\/) (4.5)

in which the term o} is a strictly positive constant called normalized noise strength and
N is a Gaussian variable. Note that the noise model here is multiplicative, i.e., the noise
is the ratio between the noisy and ideal objective function. It is worth noticing that a
multiplicative noise model is a realistic model for modeling the noise, as the performance
of the algorithm depends on how the noisy value of the objective function compares to the
ideal value. Moreover, an hypothesis of an additional noise with a fixed variance will lead
to a random behavior of the algorithm when the ideal objective functions values become,
after some iterations, very small compared to the noise variance. In our study, we theoret-
ically investigate the behavior of the so-called (1, \)-ES” using the optimal scale-invariant
adaptation rule on the minimization of an objective function perturbed by a multiplicative
noise. The noisy objective function investigated here has a similar expression to that of
Eq. 4.5 and simplifies to the function f(z) = ||z|| in the absence of noise. We will denote
the non-noisy function f(z) = ||z|| the sphere function and the relative noisy function,
that we will investigate here, noisy sphere function. Note that in general, the terminology
‘sphere function’ is in general used to denote the function f(z) = ||«||?, but in our case we
used this terminology to refer to f(x) = ||z||. The study is similar for the two functions.
We investigate two noise models relative to two ways the offspring objective function

"In an iteration of the (1,))-ES, the new parent is the best offspring among the \ offspring newly
generated.
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computation is done. In the first model, the noise level of the offspring is proportional to
its (ideal) objective function f(x) = ||z||. The second model has been used by Arnold and
Beyer in [8] as a reliable approximation of the first one for high search space dimensions:
using the scale invariant algorithm with a Gaussian noise distribution for the noisy ob-
jective function, they claim that the noise level of an offspring (which corresponds to the
standard deviation of the noise distribution) is well approximated by that of its parent
when the search space dimension d goes to infinity. The first model will be referred to as
model pf and the second one will be denoted model apf.

The behavior of ES on noisy objective functions is important to study. The randomized
part of these functions covers many real objective function cases for which a little infor-
mation is given and therefore any kind of irregularity is included on this kind of functions.

In this chapter, we want to see if, similarly to the non-noisy case, the behavior of the
scale-invariant (1, \)-ES is log-linear on the noisy spherical objective functions. For this
purpose, we introduce in Section 4.2 the mathematical model for the objective function
and the scale-invariant (1, \)-ES minimizing this function with its two versions relative to
the models pf and apf. In Sections 4.3 and 4.4 we investigate the log-linear behavior of
the algorithm and derive the convergence (or divergence) rate in Theorem 4.8. Section 4.5
is dedicated to the study of the dependency of the convergence rate of the algorithm with
respect of the search space dimension: we compute a common limit (Theorem 4.9) for
the two models pf and apf of the so-called normalized convergence (or divergence) rate
when the search space dimensions goes to infinity and derive its expression on the specific
case of Gaussian noise (Theorem 4.10). In Section 4.6, the distinction between the cases
where convergence or divergence happens is investigated theoretically and numerically for
finite and infinite dimension cases. Note finally that for the sake of readability, most of
the proofs of this chapter are sent into an appendix section.

4.2 Mathematical model for the scale-invariant (1,)\)-
ES minimizing noisy sphere functions

4.2.1 Objective function model

The general noisy spherical model investigated here is the multiplicative noise model
which writes as

f(z) = |z||(1 + o) (4.6)

where z € RY, A is an independent random variable that models the noise and o, is
a strictly positive constant which represents the scaling parameter for the noise level.
We will refer to o, as the noise strength. The noise random variable N is supposed to
be absolutely continuous with respect to the Lebesgue measure. Its probability density
function is denoted py. The expression of the noise level o ||x|| conveys the idea of setting
the variance of the noise proportional to the (ideal) objective function which is the sphere
function ||z here.

In our study, we investigate two noise models relative to two different expressions for
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the computation of the offspring objective function. Let z denote the parent and y its
offspring. The model pf is the original model given by Eq. 4.6 and then verifying that the
noise level of the offspring is proportional to its (ideal) objective function, i.e., the fitness
of the offspring y writes as ||y|| + o¢||y||NV. The model apf is relative to the approxima-
tion used by Arnold and Beyer in [8]. In fact, Arnold and Beyer [8] state that for high
dimension of the search space the parent and its offspring are so close that the noise level
of the offspring (which is o.||y||V in the original model pf) will be well approximated by
that of its parent, i.e., o.||z||N. Thus, the fitness of the offspring y in model apf equals
lyll + oc||z||N. The model ( apf ) was also investigated in [136] as a model where the
noise level is scaled proportionally to the step-size mutation.

4.2.2 The algorithm: the scale-invariant (1, \)-ES minimizing the
objective function defined in Eq. 4.6

In the context of minimization of a real valued function defined on a continuous subset
of R (d > 1), the (1,\)-ES is a simple ES which evolves a single solution. The solution
at an iteration n is the parent denoted X,,. An iteration n of a (1, \)-ES is composed of
three steps:

e Search step:

In this step, A mutations are performed as in Eq. 4.2 resulting on A new trial points
(the offspring) Y, := X,, + 0,N;,(0, 1) ,i = 1,..., A . The quantities N;,,(0, 1) ,i =
1,..., A are independent realizations of the multivariate isotropic normal distribution on
R¢, N(0, 1), which we will denote N, For d = 1, N will be simply denoted NUsing
a scale-invariant mutation described in Eq. 4.4, the expressions of the offspring can be
rewritten as: Y;,, = X,, + 0||X,,||N; (0, 1) ,i=1,... A

e Evaluation step:
In this step, objective functions of the offspring created are computed. The noisy objective
function of an offspring Y;, denoted, according to the model used, f(Ym) or f(Y;,) is
then defined as

6(Yin) = [ ¥inll + 0o YN (4.7)

for the model pf, and )
f(Yin) = IYinll + 0el| Xnl|Nin (4.8)

for the model apf where, for n € N and ¢ an integer in [1, A], the random variables N,
are independent realizations of the (noise) random variable N. In Eq. 4.8, we have used
a tilde for the notation of the fitness function of the offspring for the model apf, which is
denoted without a tilde for the model pf. In the sequel, we will use the same convention,
i.e., use tilde for quantities relative to the model apf.

e Selection step:

In this step, only the best offspring (according to its objective function value) is kept
as the new parent X, ;. This means that X, equals Y., which verifies f(Y,,) =
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min{f(Y;,) , i = 1,..., A} if model pf is used and f(Y,,) = min{f(Y;,) , i = 1,...,A}
if model apf is used. For this chosen offspring the random vector (r.vec.) Ni‘,i% and the
random variable (r. var.) N, are then implicitely defined by

1% + ol Xa NS

s

n

[+ o) = min {[[ X0 + o[ Xl NG (1 0cMin)} (49)

if the model pf is used. For the model apf the previous equation writes

X+ T IXAlINE | + el XN = i {[[ X + XN + e[ XallNin} - (4.10)

In other words, the random vector NS:QZ and the random variable N, ,, are the instance

that gave the best offspring. According to this three steps, the mathematical formulation
of the algorithm is as follows: let X, € R? be the first parent randomly chosen with the
condition P(Xy = 0) = 0. Then an iteration of the scale-invariant (1, A\)-ES algorithm
designed for the minimization of the function defined in Eq. 4.6 writes for n > 0 as:

Xnpi1 = Xy + 0| X, [N (4.11)
where Nifl,)l is defined in Eq. 4.9 and Eq. 4.10 according to the model used.

In section 4.4, we investigate the stability of the sequence X,, for the models apf and
pf and derive the convergence theorem (Theorem 4.8). In section 4.5, we compute the
limit for d going to infinity of the so-called normalized convergence rate derived from
the expectation given in Theorem 4.8 using normalizations of the progress rate theory
including Arnold and Beyer |25, 8] normalizations for the noise.

4.3 Definitions and preliminary results

In the sequel, e; will denote the unitary vector in R? (1,0, ...,0) and Pr (E) the probability
of an event E. Moreover, let A € N*| (M;);<;<\ be A random variables (or vectors) and R
be a random variable or a real valued function. The argmin of the variables R(M;) (i €
{1,...,A}) is the random variable (or vector) M, which lies in the set {M;, i =1,... A}
and which verifies R(M,) = ming<;<\ {R(M;)}.will also use the following definition.

Definition 4.1.

1. We define the maps H (relative to the model pf) and H (relative to the model apf)
on N* x R? x [0, +00[x ][0, +-00[ into R as the following:

H(\ z,0,0.) = A/ Prt [l + ozl (1 + oey) < [ler + oND|| (140N pac(y)dy,
R

and

H(\, 2,0,00) = A/ Prt [ller + o] + oey < [ler + oN|| + 0. N] par(y)dy.
R
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2. Let (Ngd))ie[l,)\] (resp. (Ni)iep,y) be A independent samplings of N (resp. N).
We define the random vector (N&d),/\/*) as the argmin of the variables {|le; +
JNZ(-d)H (1+o0N;), i = 1,...,A} if model pf and as the argmin of the variables

{|le1 + O’Ngd)H +oN;, i=1,..., A} if model apf.
In this context, we have the following lemma.

Lemma 4.2. Let H and H be the functions introduced in Definition. 4.1 and Ngfl) the
random vector introduced in the same Definition. Then the probability density function
of the random vector N'¥ is defined, for a given (A, 0,0.) € N* x [0, +00[x][0, +00], as

1 Ik
om) i o3 H(\ x,0,0.), v € R (4.12)
s
if model pf and
1 2|2 ~
Wef : 2” H()\,.f,(f, 0'6), T € Rd (413)
s

if model apf. Moreover, we introduce the functions F and F mapping [0, +00[% [0, +00[
into R as follows:
F(o,0.) :=E [ln(||el + UNSfl)H)]
1

—— [ -
2m) i /Rd n(|le; + ozxl)e

where N is defined according to model pf and

Ik (4.14)

15‘(0, o) =FE [ln(Hel + UN&d)\])]
(4.15)

ll]I2

1 _
— W /Rd In(|le; + ox|)e

where Ngfl) is defined according to model apf. Then the functions F and F are well defined,
continuous on [0, +00[x[0, +00[ (endowed with the usual compact topology).

H(\, z,0,0.)dz

In order to take advantage of the fact that the random vector N9 has a spherical distri-
bution, the following definition will be useful in the sequel.

Definition 4.3. Let (./\/{n,i})n,i € R? a sequence of independent random vectors on
R? following the same distribution N@. Let also (Nj,)i, (i an integer in [1,)]) be
a sequence of independent identically distributed random variables (i.i.d.) with com-

mon law AN. We define the random vector (Uig,l%,v*7n) as the argmin of the variables
{||e1 + UNE’CQH (1+0Niyn), i =1,...,\} if model pf and as the argmin of the variables
{||le1 + aNngH +0Nin, i =1,...,A} if model apf. Let o a positive constant. We define
the random sequence (Z,,),>¢ as follows

Z, = In(]le; + 0Ui‘2]|) —Fy(o,0.)

where Fy (0, 0.) is defined by Eq. 4.14 if model pf and by Eq. 4.15 if model apf.
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Note that USf?1 is distributed as kad) introduced in Definition 4.1.

Remark 4.3.1. Note that in Definition 4.3, we have used the notation “F (o, 0.)” to
refer to the quantity F(o, o) for the model pf and to the quantity F(c, o,) for the model
apf. In the sequel, we will use the same convention, i.e., the notation A, will refer to a
quantity A relative to the model pf and to a quantity A relative to the model apf.

4.4 Log-Linear behavior of the scale-invariant (1, \)-ES
minimizing the objective function (Eq. 4.6)

The proof of the log-linear convergence for ES relies on the application of the Strong Law

of Large Numbers (LLN) for independent or orthogonal random variables or for Markov

chains.The following proposition is a key (classical) idea for the study of the stability of
the sequence (In (||X,])),, where (X,,), is defined by Eq. 4.11.

Proposition 4.4. Let (X,,), be the sequence of random vectors valued in R satisfying
the recurrence relation Eq. 4.11. Then for all indices n, we have

| X H) (H (d)
n In +oN;
( | Xo|| Z || X x| *

where the random vectors (kad,)l)n satisfy Eq. 4.9 if the model is pf and Eq. 4.10 if the
model is apf.

D @.s. (4.16)

To compute the limit of the right hand side of Eq. 4.16, we will apply the following LLN
for orthogonal random variables derived from [93, p. 458|.

Theorem 4.5 (LLN for Orthogonal Random Variables). Let (Y;,),>0 be a sequence of
identically distributed real random variables with finite variance and orthogonal, i.e., for
all indices 4, j, with ¢ # j one has E(Y;) =0, E(Y;?) < 400 and E(Y;Y;) = 0. Then
1 n—1
lim — = .S.
1Trln - Z Y. =0 a.s
k=0
This theorem will be applied for the random variables (Y},),>0 that we introduce in
the following definition.

Definition 4.6. Let (X,,), be the sequence of random vectors defined in Eq. 4.11, ¢ and
o. be striclty positive constants. Let also F be the function equal to the function F

given in Lemma 4.2 and (N( )) be the sequence of random variables given in in Eq. 4.9
if model pf is used; and F, be the function equal to the function F given in Lemma 4.2
and (kad,)l)n be the sequence of random variables given in in Eq. 4.10 if model apf is used.
We introduce the sequence of random variables (Y},),, as the following: for n > 0,

X
Yn;:m(H "t oN@
Xl

) F.(o,0.). (4.17)
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In the following proposition, we show that the sequence (Y,), introduced in Defini-
tion 4.6 satisfies the assumptions of Theorem 4.5.

Proposition 4.7. Let (Y,,), be the sequence of random variables in Definition 4.6. The
followings hold:

1. For n >0, E(Y,,) =0 and E(|Y,]?) < +o0.

2. The random variables Z, (n > 0) introduced in Definition 4.3 are identically dis-
tributed and for every n > 0, Y,, and Z,, follow the same distribution.

3. The sequence of random variables (Y,),>0 is orthogonal, i.e., for all indices 7, j, with
i # j one has E(Y;) =0, E(Y??) < +o00 and E(Y;Y;) = 0.

Then the following theorem holds as a consequence of Theorem 4.5, Proposition 4.7 and
Proposition 4.4.

Theorem 4.8 (Log-linear behavior of the scale-invariant (1, \)-ES minimizing the objec-
tive function (Eq. 4.6)). The scale-invariant (1, \)-ES minimizing the noisy sphere function
defined in Eq. 4.6 converges (or diverges) log-linearly in the sense that for o and o strictly
positive the sequence (X,,), of random vectors given by the recurrence relation Eq. 4.11
verifies the following equations

1
lim —In (|| X,||) = F(o,0.)  if model pf is used,
mon i (4.18)

1
lim — In (|| X,,||) = F(o,0.) if model apf is used,
non

almost surely, with F and F defined in Eq. 4.14 and Eq. 4.15.

Theorem 4.8 states that the convergence (or divergence) rate of the scale-invariant (1, \)-
ES minimizing the noisy sphere function given in Eq. 4.6 (or equivalently the convergence
(or divergence) rate of the sequence (In([|X,])),,) is F(o,0.) if model pf and F(o,0,) if
model apf. According to Eq. 4.3, the log-linear behavior holds if the convergence (or di-
vergence) rates F(o,0,) and F(c, 0.) are non zero. If F, (0,0.) < 0, the sequence (|| X,||)n
converges log-linearly to the optimum and if Fy (0,0.) > 0 the algorithm diverges log-
linearly. Fortunately, these quantities can be numerically computed using Monte Carlo
simulations and Figures 4.2, 4.3 and 4.4 (see Section 4.6), which have been performed
using a Gaussian noise, show that for almost all parameter settings of the algorithm they
are not equal to zero. Therefore, the log-linear behavior of the algorithm holds. These
figures give also the sign of the convergence (or divergence) rates F, (o, 0.). Moreover, the
sign of these rates (multiplied by the search space dimension d and using some normal-
izations) is investigated when the search space dimension goes to infinity in the specific
case of Gaussian noise (see Section 4.5).

An interesting question that arises now is how this convergence speed given by a pos-
sible negative value of Fy(o,0.) varies as a function of the dimension. In the context
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of progress rate theory, this question was addressed (for noisy and non noisy cases) [25|
by computing the limit when the dimension goes to infinity of the so-called normalized
progress rate. The normalized progress rate corresponds to the expected progress made
by an ES algorithm in a single step multiplied by the dimension d of the search space

ie., d [E (W\ Xn>] These computations have been done using the objective
function with a GGaussian noise defined in Eq. 4.5, the model apf and the scale-invariant

rule defined in Eq. 4.4 with ¢ = "F*. Using these expressions, the normalized progress
rate simplifies to d <1 -F [Hel + %N@HD where N\¥ is given in Definition 4.1.1t is

worth noticing that the quantity £ [Hel + UN@H} is the common ratio of the geometric
sequence E(||X,||) where (X,,) is defined by Eq. 4.11 which then converges to zero iff
E [Hel + UN@H] < 1. Therefore, as already pointed in [17] in the non noisy case, the

progress rate determines if the algorithm converges or not in expectation. The computed
limit of the normalized progress rate shows that the progress rate varies asymptotically
linearly as a function of the inverse of the search space dimension.

In the next section, and using normalizations of ¢ and o, as a function of d, we rigorously
compute the limit of the normalized convergence rate w.r.t to the dimension d of the
quantity d x Fy(o(d),o.(d)) that we will refer to as the normalized convergence rate.

4.5 Approximation of the convergence rate when the
search space dimension goes to infinity

In non noisy cases, it has been theoretically proven in [17| that the convergence rate of
ES varies asymptotically linearly as a function of inverse of the dimension of the search
space. This result is not specific to ES but holds also for more general cases: it is true for
any rank-based algorithm [137], or any Hit-and-Run direct search method [75]. In this
section, the goal is to extend the result of asymptotic linear complexity of the convergence
rate derived in the non noisy case to the noisy case. Moreover, we show rigorously that
the approximation of the model pf by the model apf that has been done in [8] is reliable
for infinite dimension of the search space. This is done by investigating the limit of the
normalized convergence rate. For this sake, we adopt the expression of the scale-invariant

mutation used in the context of progress rate theory i.e., 0 = "TJ and the normalizations
introduced in |8, 25| for the noise strength i.e., oo = %:8 where 0 > 0 and o > 0

are respectively the normalized step-size mutation and the normalized noise strength.
Theorem 4.9 summarizes the result of the limit, when d goes to infinity, of the normalized
convergence rate for any noise distribution. In Theorem 4.10, we give the simplified
expression of the limit of the normalized convergence rate in the specific case of Gaussian
noise. The main difficulty in establishing the proof of Theorem 4.9 is the verification of
the technical condition of uniform integrability. This condition was not verified in |25].

8In the general case where the ideal objective function equals ||z|%, (a > 0), Beyer |25] stated that
ao?

the normalization should be 0. = —=.
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Theorem 4.9. Consider the function F defined in Lemma 4.2. Let o and o} be two
strictly positive constants. For o(d) = %, o.(d) = 2, the following holds

*2

lim d x F(o(d),0.(d)) = lim d x F(o(d), 0.(d)) = A(0*, 0%, A) x o* + L

d—o0 d—00 2

with A(c*, 07, \) = / o dg ()\/ Pr A [o*z + o'y < 0*N + o' N] pN(y)dy) ,
R V2T R

(4.19)

where N is the standard normal distribution with mean zero and variance one. Moreover

A(c*, 0%, X) <0 for any (o*,07,A) € RY x R} x N*.

Theorem 4.9 states that the convergence rate of the (1, \)-ES varies linearly as a function of
the inverse of the search space dimension for noisy sphere functions. Besides, this theorem
is true for any absolutely continuous noise distribution. Therefore, it applies to the
particular case of Gaussian noise and then confirms the reliability of the approximation,
when the search space dimension goes to inﬁnity, of the original model pf by the model
apf made in [25, 8]. The quantities d F(Z- e d:) and d F(F’ 7) have the same limit:
the models pf and apf are similar when the dimension goes to infinity which confirm the
reliability of such an approximation.

Specific case of Gaussian noise: Suppose that the random variable N/ modeling the
noise follows the standard normal distribution?. In this case, the asymptotic expression
of the normalized convergence rate is given by the following theorem. Note that for
establishing the proof, we used the same techniques that have been used in [25] to derive
the limit of the normalized progress rate.

Theorem 4.10. Consider the functions F and F defined in Lemma 4.2 for the models pf
and apf respectively. Assume that the r.var N follows the standard normal distribution.
For A > 1, we denote by ¢(1,\) the expectation of A independent random variables which

follow the same standard normal distribution, then ¢(1, \) \/— f we 2" [p(u))* ! du
where ¢ is the distribution function of the standard normal distribution. For o(d) = %,
o.(d) = % where 0* and o} are strictly positive constants, the following holds
. 1 o2
dlgg@d Fy(o(d),o.(d)) = —c(1, )\)0*7*2 + 5 (4.20)
L+ ()

where F. stands for F if model pf and F if model apf.

9The standard normal distribution is the normal distribution with a mean of zero and a variance of
one.
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The right hand side of Eq. 4.20 generalizes the limit of the normalized convergence rate
computed in [17]| for the non-noisy sphere functions and corresponding to ¢ = 0 in
Eq. 4.20. Besides, the limit of the normalized convergence rate is equal to the opposite
of the limit of the normalized progress rate computed by Beyer in [25]. This result was
expected due to the mathematical approximation of In(xz) by  — 1 when x is close to
1. For the same reason, the limit of the normalized convergence rate, computed in |17|
for non-noisy sphere functions, was found to be equal to the opposite of the limit of the
normalized progress rate computed in [25]. We can also see from Eq. 4.20 that, for fixed
o*, the normalized convergence rate is an increasing function of ¢ . Besides, ¢(1, ) is
an increasing function of A as it corresponds to the expectation of the maximum of A
independent distributed random variables with a common law the standard normal dis-
tribution. Thus, the normalized convergence rate is a decreasing function of \.

4.6 Study of the specific case of Gaussian noise

In this section, the noise distribution A is supposed to be Gaussian. Moreover, o and o,
are respectively set equal to UTl* and %: where o* and o} are strictly positive constant. The
object of this section is to study the convergence and divergence cases of the algorithm
in the case of finite search space dimension and when the search space dimension goes to
infinity.

Convergence and divergence in the limit case of infinite search space di-
mension : It is easy to see from Theorem 4.10 that, if 0** + 0*? < 4¢%(1,)) then

limg_o F'x <%*, %) < 0 and then the algorithm converges if the dimension of the search

space d is sufficiently large. Otherwise, if 0** + 0% > 4¢*(1,)\) then F, ("7*, %) > 0
and the algorithm diverges when d is sufficiently large. Then if o < 2¢(1,\) (including
in particular the non-noisy case ¢ = 0), the algorithm converges for some values of o*
and sufficiently large values of d. But if o > 2¢(1, A), then the algorithm diverges for
any value of ¢* if d is sufficiently large. This means that one has to choose \ sufficiently
large such that o < 2¢(1,\) to ensure that the algorithm converges (provided that d is
sufficiently large). However, as the function A — ¢(1,\) verifies ¢(1,\) ~ /21In(\) [4]
, it increases very slowly. This leads, for sufficiently large values of o7 , to huge values
of minimal numbers of offspring needed for convergence as already pointed in |25| and
shown in Fig 4.1. As an example, for o7 = 8, the minimal number of offspring necessary
for satisfying the convergence condition o < 2¢(1, ) is 18477. Another way to satisfy
the convergence condition (for large values of d) is to decrease the noise level o* by using
reevaluation of offspring. Reevaluation means that the objective function of an offspring
y will be equal, for the model pf for example, to 1 N fe(y) with £ (y) = |yl + oelly| N
where N}, are independent realizations of the noise A'. The reevaluation using the compu-
tation of the objective function of an offspring as the average over NV evaluations, leads to
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20000 ! , , ;
15000
10000

5000

Minimal number of offspring needed for convergence

sigmaEps*

Figure 4.1: Minimal number of offspring A needed to converge as a function of ¢ in the
case of infinite dimension.

Table 4.1: Minimal number of evaluations needed per generation for different o} values
and corresponding numbers of evaluations and offspring.

or |1]|15]2|25| 3 |35|4|45| 5 |55 6 | 65| 7 |75]| 8
NxA|2| 3|46 | 1012|1520 |24 |30 |35 40 | 48 | 54| 60

N 1|1 1] 1|1,2]23]|3|45/[46/|56]57]8,10]8,12| 9 |10,12

A 2] 34| 6 |10,5/6,4| 5 [54|64|65|75|54|64]| 6| 65

a decrease of the noise level from ¢ to o /+/N. Then a “large” noise level value for which
a great number of offspring is needed to converge decrease to a “small” value for which a
reasonable number of offspring is sufficient for convergence. This happens at the expense
of an additional evaluation cost due to reevaluations of the offspring. We computed, for
different values of ¢, the minimal number of evaluations needed (for convergence) per
generation and saw the corresponding (optimal) number of evaluations N > 1 by off-
spring. Note that the case NV = 1 means that no reevaluation is used. Results are shown
in Table 4.1. This table shows that as the normalized noise strength o increases one has
to use more and more reevaluations of the offspring. Table 4.1 does not show the gain
in the cost of the number of evaluations that can be performed by using reevaluation.
The minimal costs of evaluations needed for convergence as a function of the number of
reevaluations of an offspring for different normalized noise strengths o is shown in Ta-
ble 4.2.  According to Table 4.2, it is better (in term of evaluation cost per generation),
for sufficiently large values of o7, to reevaluate the offspring fitness than to increase the
number of offspring A\. This holds only for ES with single parents. For comma ES us-
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Table 4.2: Minimal number of evaluations N x A needed per generation for different o

values and different number of evaluations V.

ol 1.5 251 3 |35] 4 |45] 5 | 5.5 6 6.5 7 7.5 8
NxA=A 3 10 | 16 | 28 | 51 | 98 | 203 | 444 | 1031 | 2541 | 6649 | 18477
NXA=2xA 10| 12 | 16 | 24 | 34 | 48 | 74 | 114 | 184 | 304 516
N XxA=3xA 12 |12 |15 | 21 | 27 | 36 | 45 63 87 123 177
NXxA=4xA 121 16 | 16 | 20 | 24 | 32 | 40 48 64 84 112
N XA=5xA 151 1512020 | 25| 30 | 35 45 55 70 85
N XA=6xA 18 | 18 | 24 | 24 | 30 | 36 42 54 60 78
NXA=TxA 21 | 28 | 28 | 35 | 35 42 49 56 70
N XA=8xA 24 | 32| 32 | 40 40 48 56 64
NXxXA=9x A\ 27 | 27| 36 | 36 45 54 54 63
NXxA=10x A 30 | 30 | 40 | 40 40 50 60 60
NxA=11x A 33| 33 | 44 44 55 55 66
NxA=12x A\ 36 | 36 | 48 48 48 60 60
NXxA=13x A 39 | 39 52 52 65 65
NxA=14x )\ 42 | 42 56 56 56 70
NXxA=15x A 45 | 45 45 60 60 75
NxA=16 x A 48 48 64 64 64
NXxA=1Tx A 51 51 68 68 68
NXxA=18 x A 54 54 72 72
NxA=19 x A 57 54 76 76
N XxA=20x A\ 60 60 60 80
N xA=21x\ 63 63 84
N X A=22x A\ 66 66 88
N XxA=23x A\ 69 69 69
N xA=24x\ 72 72 72
N XA=25x A\ 75 75
N xA=26x A\ 78 78
N XA=27Tx A\ 81 81
N xA=28 x \ 84
N XA=29 x A\ 87
N xA=30x A\ 90
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2.5 — — 2.5

Normalized convergence rate
o h
[6,]

Normalized convergence rate
o
(6]

0 1 2 3 4 5 o 1 2 3 4 5
Normalized step-size Normalized step-size

Figure 4.2: d = 3, A = 5. Monte Carlo simulations of the normalized convergence rate as

a function of the normalized step-size o* for the following o values: 0, 0.6 , 1.2, 1.8, 2.4,

3.0, 10.0 (from bottom to top). Plots in the left correspond to the normalized convergence

rate of the model pf ( i.e., d x F(Z-, %) where F is defined in Eq. 4.14) and plots in the

d’d
right correspond to the normalized convergence rate of the model apf ( i.e., d x F(%*, )

where F is defined in Eq. 4.15).

ing recombination of many parents (the so-called (u/pu, A\)-ES), the progress rate formula
derived in [25] suggests that it is preferable to increase the number of offspring than to
reevaluate them.

Convergence and divergence for finite dimensions For d < +oo, if the normal-

: n(o* ol ot of
ized convergence rate d F <7, 7) (or d F <7, =

converges. If it is strictly positive, the algorithm diverges. We plot, using Monte Carlo

)) is strictly negative, the algorithm

simulations, the expectations d F { Z-, %) and d F <"7, %) as a function of ¢* for differ-

ent values of o. Figures 4.2, 4.3 and 4.4 represent these plots for the models pf and apf
respectively for dimensions 3, 10 and 30.

Finite and infinite normalized convergence rates Using the explicit expression
of the limit of the normalized convergence rate given in Eq. 4.20 for Gaussian noise,
we plotted, for o = 1.2 (Fig 4.5) and of = 3 (Fig 4.6), the limit of the normalized
convergence rate when the dimension d goes to infinity with normalized convergence rates
for dimensions 3, 10 and 30 and models pf and apf as a function of the normalized step-
size mutation o*.

These plots use A = 5 and confirm results in Theorem 4.10. In fact, the curves are
getting closer to the limit expression of the convergence rate given in Eq. 4.20 as the
dimension increases. This holds for the two models pf and apf. Moreover, these curves
reveals that the limit expression of the normalized convergence rate is an upped bound for
normalized convergence rates of finite dimensions. This shows that the study of the limit
of the convergence rate is safe as whenever this limit is strictly negative (and the “limit”
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4.6. Study of the specific case of Gaussian noise

Normalized convergence rate
N \\ N .
Normalized convergence rate

Normalized step-size Normalized step-size

Figure 4.3: d = 10, A = 5. Monte Carlo simulations of the normalized convergence rate as
a function of the normalized step-size ¢* for the following o values : 0, 0.6 , 1.2, 1.8, 2.4,
3.0, 10.0 (from bottom to top). Plots in the left correspond to the normalized convergence
rate of the model pf (i.e., d x F(Z, %) where F is defined in Eq. 4.14) and plots in the

d>d
right correspond to the normalized convergence rate of the model apf ( i.e., d x F(UTl*> %)

where F is defined in Eq. 4.15).
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Figure 4.4: d = 30, A = 5. Monte Carlo simulations of the normalized convergence rate as
a function of the normalized step-size ¢* for the following o values : 0, 0.6 , 1.2, 1.8, 2.4,
3.0, 10.0 (from bottom to top). Plots in the left correspond to the normalized convergence
rate of the model pf (i.e., d x F(%, %) where F is defined in Eq. 4.14) and plots in the
right correspond to the normalized convergence rate of the model apf ( i.e., d x F(

where F is defined in Eq. 4.15).
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Figure 4.5: Normalized convergence rates for dimensions 3, 10 and 30 and the limit
expression of the convergence rate (d = +o00) as a function of ¢* for 07 = 1.2, A =5
and models pf (left) and apf (right). From bottom to top, the curves correspond to
dimensions 3, 10, 30 and the limit d = +o0.
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Figure 4.6: Normalized convergence rates for dimensions 3, 10 and 30 and the limit
expression of the convergence rate (d = +00) as a function of o* for 07 = 3, A = 5 and
models pf (left) and apf (right). From bottom to top, the curves correspond to dimensions
3, 10, 30 and the limit d = 400
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4.7. Discussion and conclusion

algorithm converges), not only the convergence holds for sufficiently large dimensions but
for all dimensions. In the case of 07 = 3, Eq. 4.20 implies that the algorithm diverges
for sufficiently high values of d as oF — 2 % ¢(1,5) is strictly positive. However, for small
dimensions, the algorithm can converge for some ¢* values as shown in Fig 4.6 (right)
in the lower curve corresponding to d = 3. This represents a limit for the usefulness
of infinite dimension results as infinite dimension study predicts divergence and the plot
corrseponding to dimension 3 in Fig 4.6 (right) shows that the algorithm converges for
the same settings of the algorithm and of the normalized noise strength. Another fact
revealed by the comparison of finite dimension curves corresponding to the model pf (left)
to those corresponding to the model apf (right) is that, for the same parameters values
(i.e., 0%, of, XA and d), the signs of the convergence rates are sometimes different. This
means that, while a convergence is predicted for one of the two models, a divergence
occurs for the other model. This is a limitation of the use, when the dimension is finite,
of the approximation of the model pf by the model apf.

Optimal convergence rates, optimal step-sizes and limit values for convergence
for different noise levels We plotted, using A = 5 and the model pf, as a function of
the normalized noise strength o the following quantities:

e optimal normalized convergence rates (Fig 4.7)
e optimal normalized step-size mutations (Fig 4.8 (Left))

e upper values of the normalized step-size mutation for which the algorithm converges
(Fig 4.8 (Right))

The plots show that, for a given o these values decrease as the dimension increases and
have as limit the values corresponding to d = +o00. [t is woth noticing that in Figures 4.7
and 4.8, the curves relative to infinite dimension can be found in [114, Fig. 14-2 and
14-3|.

4.7 Discussion and conclusion

In this chapter we have analyzed the convergence of the scale-invariant (1, A\)-ES for the
noisy sphere function. Two models for the noise have been analyzed: the model pf, where
the noise is scaled proportionally to the location of the individual or to the non-noisy
part of the objective function and the model apf, introduced as an approximation of the
model pfin [25, 8|, where the noise is scaled proportionally to the norm of the parent and
therefore to the step-size.

We prove rigorously that comma ES are more robust than plus ES in presence of noise:
In Chapter 3, it is shown that the algorithm cannot converge (at least in expectation),
if the noise is Gaussian. However, we have shown in this chapter that convergence holds
almost surely (also in expectation) for Gaussian noise but with small standard deviation
(or noise strength). Moreover there is a robustness in the technique used for the proof:
the convergence in presence of noise is obtained using the same tools used for the analysis
of convergence of ES on non-noisy functions.
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Figure 4.7: Optimal normalized convergence rate as a function of the normalized noise
strength ¢ for dimensions 3,10,30 and the limit of infinite dimension (from bottom to

top).
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Figure 4.8: Left: Optimal normalized step size ¢* as a function of the normalized noise
strength ¢ for dimensions 3,10,30 and the limit of infinite dimension (form top to bottom
(considering the values corresponding to o = 0)). Right: Normalized step size o* for
which the convergence rate equals 0 as a function of the normalized noise strength o for
dimensions 3,10,30 and the limit of infinite dimension (from top to bottom).
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4.7. Discussion and conclusion

The convergence rate obtained for finite dimension is expressed as the expectation of a
random variable. Though it is difficult to have a theoretical estimation of this convergence
rate without making an assumption (that the dimension is large for instance), our study
shows that it is fairly easy to simulate the convergence rate with a Monte-Carlo method.

We derive rigorously the limit of the normalized convergence rate when the dimension
d goes to infinity and meet the results obtained with the progress rate approach |25],
bridging therefore the gap between finite approximation results and infinite approxima-
tions results. As already observed in |25], the computed expression is a generalization of
the normalized progress rate (or normalized convergence rate in our case) in the case of
non-noisy comma ES but this computation allowed us to prove: 1) the similarity of the
two models for infinite dimensions; 2) that the convergence rate of the algorithm changes
asymptotically linearly with the inverse of the search space dimension. In the particular
case of Gaussian noise, the limit of the normalized convergence rate has been explicitly
derived (the same expression has been previously derived in [25] for the progress rate)
and we investigate the use of re-sampling versus increasing the number of offspring to
make the algorithm converge when noise levels are large. Moreover, the specific study
of the Gaussian noise case: 1) show the usefulness of infinite dimension studies where
normalized convergence rate can be quantified explicitly, to learn about the behavior of
the algorithm for finite dimensions studies; 2) the limits of adopting, for finite dimensions,
infinite dimension results and for approximating the model pf by the model apf.
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Appendix

Proof of Lemma 4.2

Let (Ngd))ie[l,,\] (resp. (MVi)iepy) be A independent samplings of N@ (resp. N). The

random vector (Nid),j\/*) verifies, according to Definition 4.1,
lex + oN [ (1 + oelVL) = Jodn { [lex + NP (1 + oM7)} (4.21)

for the model pf, and

ler + oN@D|| 4+ o N, = nin {Hel +oND| + 0N} (4.22)

for the model apf. First, we give interest to the probability density function of the random

vecotr N&d) in the specific case of the model pf. The same reasoning holds for the model

apf. Let A € B(R?Y)'%. According to Eq. 4.21, we have:

P(N@ € A) = Ul PN € 4 Npgjonspn o N7 (140N < [ler+oNS7 || (14 0Aj))
The random variables (Ngd))ie[l,,\] and (N;)ieq,y play the same role. Therefore, we have,
P(ND € A) = A\P(N” € A;Npejanller + N[ (1 + 0N < Jley + 0N (1 + a.Nj))

This can be rewritten as

A llz)2
PN € A) = / e P(Nagjaler+oal| (14 oci) < ller+oN{? || (14 o)) da
A

This gives

//

The random vectors (N ,Ni)icp,y are independent identically distributed. Therefore,
for fixed (z,y) € R? x R, we have

) (P(Passaller + 0wl (1 -+ o) < lle + NPl (1+ 0.AG)) ) dady
(4.23)

P(Macjerller + ozl| (1 + o) < ller + NP || (1 4 a.N;)
= Ma<jerP(ller + oz (1 +oy) < [ler + aN§- | (1+0N;))
= P Y(Jler + ozl| (1 + o) < [les + oN%|| (1 + 0 N)).

1093 (R?) is the Borel o-algebra on R
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4.7. Discussion and conclusion

Combining the last equation with Eq. 4.23, one gets

P(NW ¢ A) = - X
)2
/ / ) (PA(ler + ol] (1 + 0y) < lles + oN (1 + 0 N))) dady  (4.24)
This gives
1 |2
P(N@ € A) = - / e H\, z,0,0.)dz, (4.25)
(2m)>

where H is given in Definition 4.1. This ends the proof for the probability density function
of the random vector N'?

Now, we define the quantities F(0,0.) :== FE [ln (ller +oNP|))| and
Fi(o,0.) = E [ln+(||el - akad)H)} where F (0, 0.) (resp. F}(0,0.)) stands for F~ (o, o)

(resp. FT(o,0.)) with N@ given by Eq. 4.21 if model pf, and for 15‘_(0, o) (resp.
F*(0,0.)) with N given by Eq. 4.22 if model apf. Note that we have used the no-
tation “F” to refer to the quantity F~ for the model pf and to the quantity F~ for the
model apf. In the sequel, we will use the same convention, i.e., the notation A, will refer
to a quantity A relative to the model pf and to a quantity A relative to the model apf.

The quantities F, and F{ exist but could be infinite. Let ¢gf g, : N* x R? x
[0, +00[x [0, 400 be defined for (A, z,0,0.) in N* x R? x [0, +-00[x [0, +-00] by

1 =2

gi—()\7x70-7 06) - (27T)d/2 1n+(||61 + O-I'H2)e 2 HX ()\,I‘,O’, UE)
and ) ,
_ _ iz
20 0,0) = (e + owlhe F (0 .00,
We notice that for d > 2, gt (A, (z1,29,...,24),0,0.) = gL (A, (x1, €22a, . . ., €4T4), T, )
(which is also true for gi) for all (ey,...,€eq) in {—1,+1}%% and (21, 29,...,24) in RY

then we can restrict the integration giving F (o, o.) to the domain D := R*x]0, +-00[?"1,

more precisely one has (for d > 2)

F (0,0.) = 2d2/ g\, x,0,0.)dz
D

and
Ff(o,0.) = 2d_2/ gr(\, z,0,0.)dx .
D
Changing to spherical coordinates (with d > 2) we obtain after partial integration

ol

1

Fo(0,00) = (%) Wl ()

+o0 ] 2
/ / “(Jor —€”)) r e 2 sin? 2 (0) K« (A, 7,0, 0,0) dr b,

w\:\ N
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and

+OO i . 7‘2
/ In® (Jor — e”|) r¥ e 2 sin? 2 (0) K« (A, 7,0, 0,0) dr df
0

where for n € N, W f sin™ @ df is the classical Wallis integral and for z €

C such that Re(z) > 0,T(z) = [ e “u*"'du is the Gamma function and K, is the
function defined on N* [O oo[x [0, 7] x [0, +00[x[0, +00] by

K(\1.0,0,0) = A/ Pr 2 [lor — €| (1 + oey) < [ler + oND| (1 + 0N)] pa(y)dy,
R

for the model pf and

K\ r6,0,0.) = )\/ Pr A |or — e + oy < |ler + oN@ || + o N pa(y)dy,
R

for the model apf.

The integrand hy, : (r,0,0,0.) +— In" (Jor —e?|)ri-te= 7  sind™ 2OVK (N, 7,0,0,0.) defined
on the set |0, +00[x[0,7/2] x [0, +00[x[0,400[ is continuous for almost all (7,60, 0, 0.) in
10, +00[x [0, 7/2] %[0, +00[% [0, +-00[. In particular, for almost all (r, ) in |0, +-00[x [0, 7/2],
the map (o,0.) — hy(r,0,0,0.) is continuous. Moreover, the function K is dominated
by A and |or — €| > sin@ for all (r,0) in ]0, +oo[x[0,7/2]. Then A} is dominated
by hy : (r,0) — In (sin@)r?le /2 ie., hi(r,0,0,0.) hi(r,0) for all (r,0,0,0.) in
10, +00[x[0, /2] x [0, 400[x[0, +00[. Since h; is integrable, the mapping F7 is finite and
continuous w.r.t. the variables ¢ and o, on [0, +00[x |0, +00| thanks to the Lebesgue
dominated convergence theorem. Besides, we have

Fl(o,0¢) < (1)g ! /+<>0/7r rie="s dr df < 400
0,0)< (=) ——— o :
) 2) Wil (%) Jo 0

Then F} and F are finite meaning that the map F, is well defined. Now we have to
look at the continuity of FY. The integrand

bt (r,0,0,0) — Int(Jor — ?)rite 2  sin’™ 2Ky (N 1,0,0,0,)

defined on the set |0, +oo[x[0, 7] x [0, +00[x [0, +o00[ verifies that for almost all (r,0) in
10, +00[x [0, 7], the map (o, ) — hi(r,0,0,0.) is continuous on every set [0, S] x [0, +o0]
with 0 < S < +00. Moreover, b, is dominated by hy : 7 — Srle™""/2 for (r,0,0,0.) in
10, +00[x [0, 7] x [0,5] x [0, +0c]. Since hy is integrable, the continuity of F} w.r.t. the
variables o and o, on [0, S] x [0, +oc[ follows from the Lebesgue dominated convergence
theorem. This is true for any [0,.5] x [0, +00[ with 0 < S < +oco then the continuity of F}
holds also on [0, +00[x[0, +0c[. For the remaining case d = 1, the integrand in F} (o, o.)

will be dominated by Sze™ T for (z,0,0.) € Rx [0, S]x[0, +-00[ which gives the continuity
of F{ (0, 0.) on [0, +00[x[0, +00[. For Fy, after a change of variables y = oz, the integrand

1
in F (0, 0.) will be dominated by 3—2—27(@ for (y,0,0.) €]—2,0]x [0, +o0[x[0, +00[. O
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4.7. Discussion and conclusion

Proof of Proposition 4.4

At each iteration n, Eq. 4.11 gives

Xl = 1% + oI Xa N

where (kad,)l)n is defined in Eq. 4.9 or in Eq. 4.10 according to the model considered. In
the beginning, we show inductively that, for all n > 0, ||X,,|| > 0 almost surely:

1) By definition P(||Xo|| > 0) = 1. 2) Suppose that P(||X,| > 0) = 1 for n > 0; then,
by Eq. 4.11, the " offspring has a strictly positive non-noisy objective function ( i.e.,
P(|[Y;nll > 0) =1 for all ¢ in [1, A]) as the multivariate normal distribution is absolutely
continuous w.r.t. to the Lebesgue measure and in particular P(||X,4;]| > 0) = 1. This
gives that for all n > 0, ||X,,|| > 0 almost surely and we can write

Xl = ) a.s.
Taking the logarithm of the previous equation, we get
i (o) = (3,1 + o (| 2 + N2 ) s

and after summing such equalities we obtain

1) = 150 = 3 [+ o

Proof of Proposition 4.7

We will detail the proof for the model apf. Thus in the remainder of this proof the
random vectors NSf?1 and N are relative to the apf model ( i.e., respectively defined in
Eq. 4.10 and Definition 4.1). The same reasoning holds for the model pf. For X,, fixed,
let L, : N* x R x [0, +-00[x [0, +o0[— R* be the function defined by

f/n(/\,a:,a, o) = )\/

: H+Ue ]p/\f( )dy,

(4.26)
for (\,z,0,0.) € N* x R? x [0, +00[x [0, +00[. Similarly to the proof of Lemma 4.2, we
have

o o
M [1Xa [yl

1 z)? ~
PN® € AX,) = / L O g0, 0)da (4.27)
A (2m)2

Therefore, the probability density function of the random vector Ngq)1 conditionnally to

X,, is obtained by multiplying the probability density function of N@ by the function L,

131



Chapter 4. Log-linear Behavior of the Scale-invariant (1, X\)-ES in Noisy Spherical Environments

given in Eq. 4.26.
The isotropy of the standard d-dimensional normal distribution gives

bvnso = pe [ o s o s o] o]t
R
Let us compute E(lnf (H |>>§ZII + aNgg,lr)L )) and E(ln (H o] + Ngdn )) We have
B (- ) ) =
[
1 X o)) ~
- 1*H" H—anA,,,ed.
e Joo (I + ool Bt
Using again the isotropy of the standard d-dimensional normal distribution, one gets
E< <HHX i )\X ) E [In~(|le; + oN@|)] < +o0. (4.28)
Similarly, we have
Xn
E<1n+ <HHX H )\X ) E [In*(Jle; + oN@|)] < +o0. (4.29)

Hence E [ln <H el oN') } = F(0,0.) < 400, and so E(Y,) = 0.

Let Fy : [0, 00[X [0, +00[— [0, 4+00] be defined, for (t1,t3) € [0, +00[x[0, +00[, by
~ A _lel)? ~
Gltioh) = 5 /R in(ller + bz e S HA, 2, 1, ) de

where H is the function defined in Definition 4.1. Similarly to the proof of Lemma 4.2,
we prove that GG has finite values. Now, from the definitions of ' and F5 one has

E(|Y,]?) = G(o,0.) — (F(0,0.)? < +00. (4.30)

This ends the proof of the first point. The random vectors Y, and Z, have the same
distribution if their characteristic functions are identical. But successively

E(eitYn \Xn) _ efitF(a,ae)E<€itln (Hﬁﬂmi,n

2l |Xn)

—itf‘(a,ae) ) _
_eterd [ om0,
T Rd
efitl:ﬁ(a,as) - 5 o~
_ W/ eittalletos) o=l /2 \ 3 . o)
T Rd
= E(e'").

Therefore E(e'¥") = E(E(e™ | X,,)) = E(e*?"). To finish the proof we show the orthog-
onality property of the sequence (V). Let n and m be indices such that n < m. The

random vector Y, is o(X,, N@l)—measurable, so that

E(Y, Yy | Xy Xy ND) = Y, B(Y,0[ X0, X, NOY

*,M
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4.7. Discussion and conclusion

The random variable Y,, depends only on the random vectors N&% and X,, such that

E(Y X0, Xon, kad,)l) reduces to E(Y,,|X,,) and we get

E(Yn|Xom) 27T1d/2 [Rd HHX [ +JxH)>ei

H2 ~ -
27)d/2 [Rd n(|le; + Jl’”)) 2 H\\, 2,0,0.)dx — F(o,0.) =0,
that implies E(Y,,Y,) = .

2
|

> L\ x,0,0)dx — F(0,0.)

Proof of Theorem 4.8

In Proposition 4.7, we show that the random variables (Y},),, introduced in Definition 4.6

satisfy the assmuptions of Theorem 4.5. Therefore, the LLN for orthognal random vari-
)”X Ta UN*d,)C D con-

verges almost surely to F(o,0.) when n goes to infinity. Then, by Proposition 4.4, we

ables applies for the sequence (Y},), in the sense that + 7' | 111(

have %ln <|||I§<ZI|I|) converges almost surely to F (o, 0.) when n goes to infinity.

Proof of Theorem 4.9

We recall here that the multivariate normal distribution on R? with mean (0, ...,0) and
covariance matrix the identity I;, N(0, 1), is simply denoted N%. In the one dimension
case, i.e., d = 1, it will be simply denoted N. Moreover, for d > 1, x% denotes the
chi-square distribution with d degrees of freedom. To prove the theorem, we need the
following proposition.

Proposition needed to establish Theorem 4.9

Proposition 4.11. Consider the function F' defined in Lemma 4.2. Let ¢* and o7 be
two strictly positive constants. The functions H and H introduced in Definition 4.1 are
redefined as mapping N* x R x [0, +o0[ into R™ with

H(d, z,u) = A / pac(y) %

N 2 +\ 2 * o*
o (5] () oo ) e en ()

and

fi(d,z,0) = A [ pal)x
R
o* 2 - 2 o*
Py -1 (HTC) +<7) ut %y < flor + TN 4 | dy,
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for z € R, u € [0, 400 and d € N*. The following holds

d N2 /om\2
d x Fy (Ud Ud) E 51n<<1+%N) +<%) x31> H, (d,N,Xfll)] (4.31)

and the family {%l In ((1 + %*N)Q + ("7*)2 Xil) H, (d,N, X?lfl)} . where H, stands for
d>1

H or H, is uniformly integrable.

Proof :
Th proof is given for the model apf. The result for the model pf iq obtained using the

o*

same proof. Let us rewrite F(o(d), 0c(d)) in Eq. 4.15 using o(d) = %, o.(d) = %

= (0" o\ A d oF o
dXF(E,E) —W/ —ln("€1+_x" )6

*

(/R Pr “KHe1+—xH+ —y < ler + dN(d |+ N)} ()dy) de. (4.32)

2
\

In the remainder of this proof, the positive quantities o*, o7 and X are fixed. Let H be
the measurable function defined on N* x RY by:

*

fid.a) =3 [ Pt e+ Gl + By < e+
R

2 N I+ N] pn(y)dy .
The probability of an event E is upper bounded by 1. Therefore, the function H is upper

hounded by X and d x F(Z- e Cg) can be rewritten as

- (o of 1 d o* _le)? ~
ek (_ _) ~ 2m)ie /R g n(ler+ —al)e 2 H(d, x)de.  (4.33)

Let us apply the change of variables x; = t, 9 = \/r cos(0;), x3 = /rsin(0;) cos(0s), x4 =

V7 sin(0y) sin(0z) cos(3), . .., w42 = /rsin(0y) .. .sin(f4_3) cos ( _5) and
xq = /rsin(6;)...sin(04_3)sin(f,_»). Then, for d > 2, d x F(%, %) writes as

N pa——
d’ d 2 QWQ%F(CI;ZI) R J[0,400]

w0\ 2 %\ 2 . 2 ~
In [(1 + %t) + <%) u] uT e H(d, t,u)dtdu,

where for t € R, u € [0, +00]

H(d, t,u) =

N N\ 2 o
A prit 1+ 74 7 ey < N dy .
[ \/(+d)+<d wt %oy < low + TN 4 %N | pity)iy
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4.7. Discussion and conclusion
This means that we have

o* (o d o* 2 o* 2 B
dxF ( R d) E |5 ((1 + EN) + (F) x§_1> H (d,N,Xi_l)] (4.34)

where x2_, denote the chi-square distribution with d — 1 degrees of freedom and

(0N ) = [ )

R

* 2 0\ 2
o g
py A1 \/(1+dN) +<d_) Xd1+dy<]|el+dN(d’|+ 6./\/|N7Xd1 dy,

For fixed o > 0, let ((K)q)q>1 be the sequence of random variables defined as

% 2 £\ 2 R
Kq(d,N,x5,) = gln ((1 + %N) + <%) x§1> H(d,N,x7,)

Therefore, we get d x F ( e d) =F <f(d) Let K+ and K be respectively the positive

and negative part of the function Kd such that Kd = K — K . We have to show that the
families of positive random variables (~(K);L)d>1 and ((K)d )dzl are uniformly integrable.

First, we give interest to the family ((K)})g>1. We have

. A\ N 2 N 2
(K)j < 5dIn* (1+%N) + (%) x§_1>

* £\ 2
%dhﬁ 1427 N+ (%) (N2 + xi_1)>
A o* o*\?
< Zdn* 1+ 25 |N| + (—) (N2 +x31)> (4.35)
2 d d
- )\d 20* o\’ 9 9
=5 F‘N’ + <E) (N +Xd71>

A (o4 T ()

According to the last inequality, we have to show that the families |N| and (ﬁ)dzl

are uniformly integrable. The family |N| contains a unique integrable random variable

2 2
therefore it is uniformly integrable. The random variable (%)d converges (by the

Law of Large Numbers) almost surely and therefore in probability to 1. Moreover the

N2+X§71‘

sequence of postive real values E [' y } = 1 converges to E [|1|] which gives, by the
d

N+Xd1

so-called L" convergence theorem from [93], that ( )a>1 converges to 1 in the sense
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N2+X371

d

of the norm L'. Finally, the family ( )as1 converges in L' therefore it is uniformly
integrable. )

Let us now give interest to the family ((K);)4>2. We have

) A\ . N2 N 2
(K); < SdIn <(1 + %N) + (%) x§_1>

A _ o* 2 o\ 2
Ao ( N2 )
< =dln 11— {N<0}
2 N2+ 2,
A N2 )d
e [ . b PPN (130)
2 [( Nz + X¢2i—1 (N0}
d
A 1
N2y
d
8
1
S 4A 1 N2 ]]'{N<O}
N2+x7 4
B
Let us show that the family (Gg)g>2 := (#) Tyn<oy is uniformly inte-
_N2+X3—1

d>2
grable. A criterium that can be used to show the uniform integrability of (G4)a>2 is to

show that the family

d
4
1
N2 ]l{N<O}
NZ+x3_4

(E [G2(d”)d21 = £

1

d>1

is uniformly bounded. The expectation (E [G?(d)]) can be rewritten as:

d

d d
1 1 * 1 1 2
2 _ 1t _ — 5=
E |:G (d):| — 2E (1 B (Nl(OJd))Q) 2(27r)g /I'%d (1 B (Ha;lll)j) e 2 dxa

IN(0,14)]J?

Changing to spherical coordinates (with d > 2), one gets

E[G*(d)] = 2W1H /0 W/Q(Sml( 9)) : sin™2(6) do
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4.7. Discussion and conclusion

Suppose now that g is an integer. Then Jp > 1 such that d = 2p. As lim,, .., v/nW, =

\/7/2 then
W%_2 Wy ~ lim V2p — 2 lim,_oo/p — 2W, 5 _ /3

lim = lim

d—o0 Wd_g p—0o0 ng_g P—00 £/ D IIIIlp_>Oo \/2]) ng 2

If g is odd, then % is an integer and WQ_Q < Wa-1_, and we have also
2

Wd__
lim —2— = /2.

d—o00 d—2

Then for d > dy, F [G*(d)] < @ Consequently, the family { £ [G*(d)]}4>d, is uniformly
bounded which means that the family (K~)4sg, is uniformly integrable and therefore the

famil
y . ) o~ 2
g g 2 ~ 2
{dln ((1 + EN) + <E) Xd1> H (d, N, Xdl)}

is uniformly integrable.

d>1
0

proof of the Theorem First, we show the Theorem for the model apf. Let g denote
the measurable function defined on N* x R x [0, +o00] for (d, z,u) € N* x R x [0, +o00[ by

* 2 %\ 2
o o
g(d,x,u) = (1 + ZFx) + (3) u.

Let N, X5, and N be random variables respectively distributed as N, x5, and N. Using
the definition of the function H introduced in Proposition 4.11, one can write

) 2\ _ A1 2
H(d, N, xg_1) = AEx {EN,xgl,N (]l{\/m+f§N<\/m+§N}‘N7Xd—hN):| :

The indicator function in the previous equation is upper bounded by 1. Therefore,
H(N, x2 ;) < X and we have

dxF (‘; ‘;) Ex e Kg 1n(g(d,N,X§_1))) H(d,N,Xﬁ_l)} .

By Proposition 4.11, the family {(%l In(g(d,N,x3_,))) H(d, N, Xﬁfl)} is uniformly in-
d>1
tegrable then

o* o} ) d -
lim d x F ( 7 ) = Enw ez nggo (5 In(g(d, N, X?z_l))) H (d,N, X¢2i—1):| :

d—o00

Then we have to compute limg_, 21 ( (d N, X3 1)) and limg_ ﬁ(d, N, X2 ).
d d * “\?
§1n (9(d,N,x7.1)) = 2 In <1 + Q%N + (%) (N2 +X3—1>> :
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We have In(1 +z) ~ x when  — 0. Moreover, N* + x2 | can be rewritten as the sum of
d idenpendent random variables following the distribution of N2. Therefore, by the LLN
for independent identically distributed random variable, we have limg_ o é (N2 + X¢21—1) =
FE(N?) =1 almost surely. Consequently, one gets:

. d ) 0_* O'* 2
lim S (g(d, N, xg,)) = lim d <EN + (2_01) (N* + X§_1)>
0_*2
=o'N .
o' N+ 5

Now, Let us compute the limit of H(d, N, x2_,) when d goes to infinity. First, we notice
that the acceptance event

<m+%/\/g \/m+%/\7)

can be rewritten as

(1] yota iy 1+ ] < oo -1+ %] )

We denote by h (d,N,x3_,,N,x3_,) the quantity

Then H(d, N, x3_,) becomes
AN, 3 = B [BA Lo (B (@ N3 N L) IN G ) |
As ﬁ(d, N, X% ;) < X then by the dominated convergence theorem, we have

lim FI(d, N,xGo0) = Ay [ B3 (T (@ NG N8 NG V)|

d— 00 d—1 d—o00

Now, by the (almost sure) continuity of the indicator function, we have

lim £ (d’ N7 Xifl’ N7 X?lfl> = 1{0*N+U:NSU*N+U:N}

d—o0

almost surely. Then

lim H(d’ N7 X?i—l) = )\EN [Elé\];\_lf <]1{U*N+O'ZN§U*N+U:/\7}‘N7N>:| .

d— o0

Collecting the information above, one gets

* * *2
Jim d x F (% %) = L A0, 0T ) x 0", (4.37)
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where A(c*,0F,\) := AEx [N Eyx [Elé‘;j\—l/ <]]'{U*N+U*N§U*N+U*./\7}‘N7'/\/’)i|:| :
For the model pf, we similarly get (replacing h for the model apf by its analogue h for
the model pf)

0_* 0_* 0_*2

lIlmdxF|—,—=|=

v (d’ d) > "
AORKE’N@D,;@f1 |:NE./\/' [E§;2%717N <hm (daN>X§71aN>X§71) ‘N>X371>N):|i| :

d—0o0

where h (d, N, X¢21—1> N, )’((21_1) is given by
ﬂ{d(\/g(d,N,xi_l)(l-l—%N)—l) <d(\/9@NZ_ ) (1+%N)-1)}

lim ﬁ (da N> Xifla N> X?lfl) = dlggo h <d> Na X?lfh Na X?lfl)

d—o0

then
. ot ol L. - (o o}
g ok (.5 ) = g P ()

To end the proof, we have to show that the quantity A(c*, o, \) defined in Eq. 4.37 is

Y €

negative for all (0%, 07, \) € R x R% x N*. The quantity A(c*, o}, \) can be rewritten as

» e )’ e

22

2

e
Ao, 0l \) = | x
( ) v

Let z,y € R. If # > 0 and o*z + o'y < 0*N + N then o*(—x) + o'y < o*N + o' N.
Therefore, for z > 0,

dx ()\/ Pr * 0"z + o'y < o*N + o' N] pN(y)dy) :
R

Pr A o*z + oty < o*'N+ o' N| < Pr 2o (—z) + o'y < o*N + o' N] . (4.38)

The quantity A(c*, 0¥, ) can be rewritten as
_a?
A(o*, 0%, N) = / ;" ()\/ Pr 2 o*x + o'y < o*N + 07N p/\/(y)dy)
R+ V2T
2
/ e
x
R

z
2

X
+
_|._

R
mdm </\ / Pr At o*z + 0ty < "N + o N pN(y)dy)
R

Applying a change of variables, one gets

N

x

A(c*, 0 N) = / o ()\/ Pr * 0%z + o'y < 0*N + o7 N] pN(y)dy)
R+ V 2 R

22

e 2
o d A P A—1 *( + *o L *N—|— *N d)
/me x( é r o' (—x)+oly<o ar N pa(y)dy
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This gives

M

T

e 2
A A d d
A(0",0%, ) = / e wém(y) y

(Pr oz +oly <o*N+oiN|]— Pr* ' o*(—2) +0ly < o*N+0oiN]) .

The result follow from Eq. 4.38. [

Proof of Theorem 4.10

Let us recompute the quantity A(c*, 0¥, \) in Eq. 4.19. We have

) €

A(o*, 0, \) = /1’16 2 dry </ Pr * 0%z, + 0y < "N + o' N] pN(y)dy) :
V2 R

In the case where the noise A is Gaussian, the random variable 0*N + ¢ is a Gaussian
variable with mean 0 and variance o** 4+ 0%, Then

4| oty + oty 1 2
A(o*, 0, \) = /xe 2 dx /PrAliegN ——e z2dy | .
( V2 ' v Vo2 + ox? V2
Applying the change of variables t = z; and s = 2% e get

3
/0'*24'02‘2

A", 0% \) = 1+<”—*)21/ tefe"< (5 *t>2dt[ — p(s)* L ds.

) € *
0—6

Now, from the appendix of [25] (Eq.A.8), we know that for (a,b) € R?,

2
—ab exp (—%&7)

/te et )’ gy —
V2 V1+a?(1+a?)

Using Eq. 4.39, we get

/ g—s exp (—15?) .
U 70-67)‘ \/ﬁ/ 1+<a_*>2 [1_¢(S)] ds.

— ()M ds.

(4.39)

Thus

A(o", 0% ) = V_\/T/

Using the symmetry property stating that for any s in R, 1 — ¢(s) = ¢(—s), one has

A(c* 0 \) =

R T

[(—s)] " ds .
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4.7. Discussion and conclusion

After substituting u = —s, one gets
A oo _ 1
A(0*,07,)) = — {—r/ we = [(u) ld“} NaNaE
Consequently
1
A(o*, 0, N) = —c(1,\)
o 2
L+ (%)
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Chapter 5

Identification of the Isotherm Function
in Chromatography Using CMA-ES

The main material contained in this chapter is the paper [78] published in the Proceed-
ings of the 2007 IEEE Congress on FEvolutionary Computation conference. The work
presented here has been funded by the CNRS program ACI NIM (Nouvelles Interfaces
des Mathématiques — New Frontiers for Mathematics) Chromalgema, coordinated by F.
James (University of Orléans), and is a joint work with Frangois James and Marie Postel
(University Pierre et Marie Curie Paris 6).

The goal is to solve an identification problem arising from a model of analytic chro-
matography, a technique used by chemical engineers. Chromatography aims at separating
the m components of a mixture (that can be a gas or a liquid) by injecting the mixture
in a column of length L filled by a porous medium (generally a solid, but sometimes a
liquid). Pushed by a continuous injection of an inert medium, the different components of
the mixture moves through the column at different speeds, due to their different affinities
with the porous medium in the column. The different components of the mixture reach
the end of the column at different times. In a perfectly linear world, and if the column was
long enough, each component would have its own propagation speed, and the separation
would be perfect. However, because the propagation speed of each component depends on
the concentrations of the other components, the model is non-linear and the components
are not perfectly separated, whatever the column length. It is however very important to
be able to predict when this or that component will be highly concentrated at the end of
the column. The ’output’ concentration vector (one concentration per component) at the
end of the column is called a chromatogram and will be denoted c(¢, L) (t € [0,T]).

Writing the mass balance of the system leads to a system of Partial Differential Equa-
tions [140| that has been shown to be a non-linear hyperbolic system [141]. The unknown
are the concentrations c(¢,2),t € [0,7],z € [0,L] and the 'flux’ F of this system in-
volves what chemists call the isotherm function of the process (because the temperature
is fixed during the whole process). Solving the direct problem, i.e. computing the output
chromatogram from the initial conditions and the concentrations that are injected in the
column during the whole experiment, thus amounts to solving the system of PDEs (5.2),
with flux given by Equation (5.3).

Because this system is hyperbolic, it is well-known that it has a unique solution, and
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many numerical schemata can be used in order to numerically approximate its solution.
Also, because all eigenvalues of this system are positive [141], the standard Godunov
scheme here amounts to a simple forward finite difference discretization, and the resulting
discrete system is numerically stable under the so-called CFL condition given by Eq. 5.5.

The goal The art of chromatography separation requires knowing when to gather the
output of the column to reach a desired level of purity of the products. This can be easily
computed provided the numerical model described above gives a good prediction of the
chromatogram. However, the accuracy of the prediction given by the numerical solution
of system (5.2) highly depends on the validity of the isotherm function for the actual
chemical system at hand and isotherm functions are not precisely known by chemists
in the case of multiple components. Moreover, there are very few data points that would
allow the engineers to fit an approximate model, and acquiring a new data point requires
several months of tedious experiment. On the other hand, it is much easier to experiment
with a given chromatographic column, recording both the input concentrations and the
corresponding output chromatograms. It should hence be possible to identify the isotherm
function from those data by solving the inverse problem: find the isotherm function H
such that the numerical solution of system (5.2) with the given input fits the experimental
chromatogram as accurately as possible.

More formally, this problem can be turned into a minimization problem: given an
experimental chromatogram c.,,(t), ¢ € [0,7], find the isotherm function H such that
the solution of the direct system given in Eq. 5.2 minimizes the cost function J com-
puted as the least square difference between the computed chromatogram cg(t, L) and
the experimental one ¢, (%):

7(H) = / lext(t, L) — o)t (5.1)

Chemical scientists have introduced several parametric models for isotherm functions (see
Section 5.3.2 for a presentation of some models). The resulting optimization problem
hence amounts to parametric optimization. This parametric optimization problem has
alreay been adressed using gradient-based approaches |73, 74|. However, the function to
optimize is not convex, and experiments performed in [73] suggest that the function is
multi-modal. An additional difficulty induced by the computation of the fitness function
is that the CFL stability condition can be violated during the optimization, leading to
infeasible individuals (in the sense that no value can be computed for the J function)
without any easy way to a priori predict for a given set of parameter whether this will
happen or not. Finally, the different variables of the problem have very different scales.

Implementation and results The minimization of the cost function 7, as a function
of the parameters of some parametric model for the isotherm function, is addressed using
the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES, see Section 5.4.2). The
implmentation that has been used here is that described in [16] and written in Scilab,
that has been interfaced with the C-++ code developed during the ACI Chromalgema for
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the fitness function [107|. This approach has been tested on the real data set provided
in |73|, and results compared with those of the gradient based approach provided on the
same publication. Note that in [73], the gradient based approach adopted is the conju-
gate gradient method of the discretized cost function. The gradient of the cost function J
with respect to parameters of the isotherm function is obtained as follows: A discretized
expression of the (parametric) cost function J(ay, ..., a,,) where aq, ..., a,, are the pa-
rameters to identify is computed. Then the gradient of the discretized cost function with
respect to the parameters to identify is computed and used as an estimator of the gra-
dient of the continuous formulation of the optimization problem in a conjugate gradient
approach. Our study shows that randomized search methods can perform better that the
gradient-based on this problem. In fact, CMA-ES is more robust as it always converges
to the same point, independently of the starting point — and this was clearly not the case
for the gradient approach. Moreover, CMA-ES is more efficient in solving the problem
at hand as it proposed more accurate solutions for two different configurations of the
parameters to identify. In particular, CMA-ES was able to handle the complete identifi-
cation problem, whereas the gradient approach required that some parameter values are
pre-determined using some experimental values. Another fact that has been learned dur-
ing this case study is that the two approaches (CMA-ES and gradient) have very similar
computation times: this is quite unusual as deterministic methods are in general much
faster than population based randomized search methods.

A common drawback of both the gradient-based and CMA-ES approaches is the poor
fit of the identified chromatogam with the (sparse) data points that the chemists had
gathered for the isotherm function — though the chromatograms were nicely fitted. This
suggests to use a multi-objective approach, fitting both the chromatogram through solving
the direct problem, and directly fitting the isotherm using the few data available points.
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Erratum :

In Section 5.4.2, the sentence “ An important property of CMA-ES is its invariance to
linear transformations of the search space.” should be replaced by “ An important property
of CMA-ES is its invariance to orthogonal transformations of the search space.”
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Abstract

This paper deals with the identification of the flux for a system of conservation laws in the
specific example of analytic chromatography. The fundamental equations of chromato-
graphic process are highly non linear. The state-of-the-art Evolution Strategy, CMA-ES
(the Covariance Matrix Adaptation Evolution Strategy), is used to identify the parameters
of the so-called isotherm function. The approach was validated on different configurations
of simulated data using either one, two or three components mixtures. CMA-ES is then
applied to real data cases and its results are compared to those of a gradient-based strat-

egy.

5.1 Introduction

The chromatography process is a powerful tool to separate or analyze mixtures [50]. It
is widely used in chemical industry (pharmaceutical, perfume and oil industry, etc) to
produce relatively high quantities of very pure components. This is achieved by taking
advantage of the selective absorption of the different components in a solid porous medium.
The moving fluid mixture is percolated through the motionless medium in a column. The
various components of the mixture propagate in the column at different speeds, because
of their different affinities with the solid medium. The art of chromatography separation
requires predicting the different proportions of every component of the mixture at the
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end of the column (called the chromatogram) during the experiment. In the ideal (linear)
case, every component has its own fixed propagation speed, that does not depend on the
other components. In this case, if the column is sufficiently long, pure components come
out at the end of the column at different times: they are perfectly separated. But in the
real world, the speed of a component heavily depends on every other component in the
mixture. Hence, the fundamental Partial Differential Equations of the chromatographic
process, derived from the mass balance, are highly non linear. The process is governed by
a nonlinear function of the mixture concentrations, the so-called Isotherm Function. This
function computes the amount of absorbed quantity of each component w.r.t. all other
components.

Mathematically speaking, thermodynamical properties of the isotherm ensure that
the resulting system of PDEs is hyperbolic, and standard numerical tools for hyperbolic
systems can hence be applied; if the isotherm is known: The precise knowledge of the
isotherm is crucial, both from the theoretical viewpoint of physico-chemical modeling and
regarding the more practical preoccupation of accurately controlling the experiment to im-
prove separation. Specific chromatographic techniques can be used to directly identify the
isotherm, but gathering a few points requires several months of careful experiments. An-
other possible approach to isotherm identification consists in solving the inverse problem
numerically: find the isotherm such that numerical simulations result in chromatograms
that are as close as possible to the actual experimental outputs.

This paper introduces an evolutionary method to tackle the identification of the
isotherm function from experimental chromatograms. The goal of the identification is
to minimize the difference between the actual experimental chromatogram and the chro-
matogram that results from the numerical simulation of the chromatographic process.
Chemical scientists have introduced several parametric models for isotherm functions (see
[50] for all details of the most important models). The resulting optimization problem
hence amounts to parametric optimization, that is addressed here using the state-of-the-
art Evolution Strategy, CMA-ES. Section 5.2 introduces the direct problem and Sec-
tion 5.3 the optimization (or inverse) problem. Section 5.4.1 reviews previous approaches
to the problem based on gradient optimization algorithms |74, 73|. Section 5.4.2 details
the CMA-ES method and the implementation used here. Finally, Section 5.5 presents
experimental results: first, simulated data are used to validate the proposed approach;
second, real data are used to compare the evolutionary approach with a gradient-based
method.

5.2 Physical problem and model

Chromatography aims at separating the components of a mixture based on the selec-
tive absorption of chemical species by a solid porous medium. The fluid mixture moves
down through a column of length L, considered here to be one-dimensional. The various
components of the mixture propagate in the column at different speeds, because of their
different behavior when interacting with the porous medium. At a given time ¢t € R™, for
a given z € [0, L] the concentration of m species is a real vector of R™ denoted c(¢, z).
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The evolution of c is governed by the following partial differential equation:

0.c+ 0,F(c) =0,
c(0,2) = co(2), (5.2)

where ¢y : R — R™ is the initial concentration, c;,; : R — R™ the injected concentration
at the entrance of the column and F : R”™ — R™ is the flux function that can be expressed
in the following way
1—e€
+
€

H(c)) (5.3)

where H : R™ — R™ is the so-called isotherm function, € € (0,1) and v € R [73]. The
Jacobian matrix of F being diagonalizable with strictly positive eigenvalues, the system
(5.2) is strictly hyperbolic and thus admits an unique solution as soon as F' is continuously
differentiable, and the initial and injection conditions are piecewise continuous. The
solution of Eq. 5.2 can be approximated using any finite difference method that is suitable
for hyperbolic systems [48|. A uniform grid in space and time of size (K +1) x (N +1) is
defined: Let Az (resp. At) such that KAz = L (resp. NAt =T'). Then an approximation
of the solution of Eq. 5.2 can be computed with the Godunov scheme:

o Az " _
Crr1 = Cp — E(F(Ck) —F(c;)) (5.4)

where ¢ is an approximation of the mean value of the solution ¢ at point (kAz, nA¢)'.
For a fixed value of %, the solution of Eq. 5.4 converges to the solution of Eq. 5.2 as At
and Az converge to zero. The numerical scheme given in Eq. 5.4 is numerically stable
under the so-called CFL condition stating that the largest absolute value of the eigenvalues

of the Jacobian matrix of F is upper-bounded by a constant

% max Sp(|F'(c)|) < CFL < 1. (5.5)

5.3 The Optimization Problem

5.3.1 Goal

The goal is to identify the isotherm function from experimental chromatograms: given
initial data cp, injection data c;,;, and the corresponding experimental chromatogram
Cexp (that can be either the result of a simulation using a known isotherm function, or
the result of actual experiments by chemical scientists), find the isotherm function H
such that the numerical solution of Eq. 5.2 using the same initial and injection conditions
results in a chromatogram as close as possible to the experimental one cg,.

"Mean value over the volume defined by the corresponding cell of the grid.
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Ideally, the goal is to find H such that the following system of PDEs has a unique
solution c(t, 2):

0.c + 0, F(c) =

c(0,z) = Co( )
c(t,0) = Ciny(1),
c(t, L) = Ceap(t).

However, because in most real-world cases this system will not have an exact solution,
it is turned into a minimization problem. For a given isotherm function H, solve system
5.2 and define the cost function J as the least square difference between the computed
chromatogram cg(t, L) and the experimental one c.,(t):

(5.6)

J(H) = / lex(t, L) — Cenp(t) |t (5.7)

If many experimental chromatograms are provided, the cost function is the sum of such
functions J computed for each experimental chromatogram.

5.3.2 Search Space

When tackling a function identification problem, the first issue to address is the para-
metric vs non-parametric choice [120]: parametric models for the target function result in
parametric optimization problems that are generally easier to tackle — but a bad choice
of the model can hinder the optimization. On the other hand, non-parametric models
are a priori less biased, but search algorithms are also less efficient on large unstructured
search space.

Early trials to solve the chromatography inverse problem using a non-parametric model
(recurrent neural-network) have brought a proof-of-concept to such approach [43|, but
have also demonstrated its limits: only limited precision could be reached, and the ap-
proach poorly scaled up with the number of components of the mixture.

Fortunately, chemists provide a whole zoology of parametrized models for the isotherm
function H, and using such models, the identification problem amounts to parametric
optimization. For i € {1,...,m}, denote H; the component i of the function H. The
main models for the isotherm function that will be used here are the following:

e The Langmuir isotherm [89] assumes that the different components are in compe-
tition to occupy each site of the porous medium. This gives, for alli=1,...,m

N*

Hi = T ~m 1 .
(C) 1 + Zl:l KlCl

There are m + 1 positive parameters: the Langmuir coefficients (Ki)ie[l,m}, homo-
geneous to the inverse of a concentration, and the saturation coefficient N* that
corresponds to some limit concentration.
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e The Bi-Langmuir isotherm generalizes the Langmuir isotherm by assuming two
different kinds of sites on the absorbing medium. The resulting equations are, for
alli=1,...,m

N*
HZ(C) = Z ) s Ki,sci' (59)
se{1,2} 1+220 Kise

This isotherm function here depends on 2(m + 1) parameters: the generalized
Langmuir coefficients (K; ) and the generalized saturation coefficients

(N3)s=1,2-

e The Lattice isotherm [141] is a generalization of Langmuir isotherm that also con-
siders interactions among the different sites of the porous medium. Depending on
the degree d of interactions (number of interacting sites grouped together), this
model depends, additionally to the Langmuir coefficients (KZ-)Z-G[Lm] and the satura-
tion coefficient N*, on interaction energies (E;;); jejo.d,2<i+j<a Tesulting in JT™, %

parameters. For instance, for one component (m = 1) and degree 2, this gives:

1€[1,m],s=1,2

Hyo - N _Kict et (K, c)?
€)= —-

2 142K, c+e 7 (K c)?
where T is the absolute temperature and R is the universal gas constant. Note that

in all cases, a Lattice isotherm with 0 energies simplifies to the Langmuir isotherm

with the same Langmuir and saturation coefficients up to a factor %

: (5.10)

5.4 Approach Description

5.4.1 Motivations

Previous works on parametric optimization of the chromatography inverse problem have
used gradient-based approaches |74, 73]. In [74], the gradient of J is obtained by writing
and solving numerically the adjoint problem, while direct differentiation of the discretized
equation have also been investigated in |73]. However the fitness function to optimize
is not necessarily convex and no results are provided for differentiability. Moreover, ex-
periments performed in 73] suggest that the function is multimodal, since the gradient
algorithm converges to different local optima depending on the starting point. Evolu-
tionary algorithms (EAs) are stochastic global optimization algorithms, less prone to get
stuck in local optima than gradient methods, and do not rely on convexity assumptions.
Thus they seem a good choice to tackle this problem. Among EAs, Evolution Strategies
have been specifically designed for continuous optimization. The next section introduces

the state of the art EA for continuous optimization, the covariance matrix adaptation ES
(CMA-ES).

5.4.2 The CMA Evolution Strategy

CMA-ES is a stochastic optimization algorithm specifically designed for continuous opti-
mization [61, 59, 57, 16]. At each iteration g, a population of points of an n-dimensional
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continuous search space (subset of R™), is sampled according to a multi-variate normal
distribution. Evaluation of the fitness of the different points is then performed, and pa-
rameters of the multi-variate normal distribution are updated.

More precisely, let <f>§f,) denotes the mean value of the (normally) sampling distribu-
tion at iteration g. Its covariance matrix is usually factorized in two terms: ¢@ € R*,
also called the step-size, and C'9), a definite positive n x n matrix, that is abusively called
the covariance matrix. The independent sampling of the \ offspring can then be written:

x,(fﬂ) <> +_A/k( ( )C(g)) fork=1,...,\

where Ny (0, M) denote independent realizations of the multi-variate normal distribution
of covariance matrix M.
The p best offspring are recombined into

m

@ =3 wad™h (5.11)

=1

where the positive weights w; € R are set according to individual ranks and sum to one.
The index i: A denotes the i-th best offspring. Eq. 5.11 can be rewritten as

(@B = +Zw/\/m (09)2C) (5.12)

The covariance matrix C9) is a positive definite symmetric matrix. Therefore it can be
decomposed in

C¥) = B9 DYDY ( B(g))T ,

where B is an orthogonal matrix, i.e. B (B(g))T = I, and DY a diagonal matrix
whose diagonal contains the square root of the eigenvalues of C'9)

The so-called strategy parameters of the algorithm, the covariance matrix C@ and
the step-size 0@, are updated so as to increase the probability to reproduce good steps.
The so-called rank-one update for C'@ [61] takes place as follows. First, an evolution
path is computed:

Ce 2 — Cc ,Uef-f — =
FHD Z (1= )l 4 YOl ) ) (@8 - @)

- Cc) P W W

where c. €]0, 1] is the cumulation coefficient and pg is a strictly positive coefficient. This
evolution path can be seen as the descent direction for the algorithm.
Second the covariance matrix C'@ is “elongated” in the direction of the evolution path,

T
i.e. the rank-one matrix @™V (ﬁﬁgﬂ)) is added to C'9):

T
CUtY = (1 = ooy )C9 + Copu 9TV (ﬁgﬁl))

where c.oy €]0,1[. The complete update rule for the covariance matrix is a combination
of the rank-one update previously described and the rank-mu update presented in [59].

155



Chapter 5. Identification of the Isotherm Function in Chromatography Using CMA-ES

The update rule for the step-size ¢@ is called the path length control. First, another
evolution path is computed:

FHD Z (1= ) + 00(20(—9)00)/%& « BODO B0 () — @0)  (5.13)
where ¢, €]0,1]. The length of this vector is compared to the length that this vector
would have had under random selection, i.e. in a scenario where no information is gained
from the fitness function and one is willing to keep the step-size constant. Under random
selection the vector 13((,9) is distributed as N (0, I;). Therefore, the step-size is increased if
the length of p&) is larger than E(|| N(0,1;) ||) and decreased if it is shorter. Formally,
the update rule reads:

(9+1) — 5 exp | 2 |7 | 1 (5.14)
g =0 X - — .
dcr E(H N(O7Id) H)

where d, > 0 is a damping factor.
The default parameters for CMA-ES were carefully derived in [57], Eqs. 6-8. The only

problem-dependent parameters are (;1?)&),) and 0¥, and, to some extend, the offspring size
A: its default value is [44-3log(n)] (the p default value is [4]), but increasing A increases
the probability to converge towards the global optimum when minimizing multimodal
fitness functions [57].

This fact was systematically exploited in |16, where a "CMA-ES restart" algorithm
is proposed, in which the population size is increased after each restart. Different restart

criteria are used:

1. RestartTolFun: Stop if the range of the best objective function values of the recent
generation is below than a TolFun value.

2. RestartTolX: Stop if the standard deviation of the normal distribution is smaller
than a TolX value and op, is smaller than TolX in all components.

3. RestartOnNoEffectAxis: Stop if adding a O( 1) standard deviation vector in a principal
g

axis direction of C9) does not change (7).
4. RestartCondCov: Stop if the condition number of the covariance matrix exceeds a
fixed value.

The resulting algorithm (the CMA-ES restart, simply denoted CMA-ES in the remainder
of this paper) is a quasi parameter free algorithm that performed best for the CEC 2005
special session on parametric optimization [2|.

An important property of CMA-ES is its invariance to linear transformations of the
search space. Moreover, because of the rank-based selection, CMA-ES is invariant to any
monotonous transformation of the fitness function: optimizing f or h o f is equivalent,

for any rank-preserving function h : R — R. In particular, convexity has no impact on
the actual behavior of CMA-ES.
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5.4.3 CMA-ES Implementation

This section describes the specific implementation of CMA-ES to identify n isotherm coef-
ficients. For the sake of clarity we will use a single index in the definition of the coefficients
of the isotherm, i.e we will identify K,, N; and E. for a € [1, A], b € [1, B] and ¢ € [1, (]
where A, B and C are integers summing up to n.

Fitness function and CFL condition The goal is to minimize the fitness function
defined in Section 5.3.1. In the case where identification is done using only one exper-
imental chromatogram, the fitness function is the function [J defined in Eq. 5.7 as the
least squared difference between an experimental chromatogram c.,,(t) obtained using
experimental conditions ¢y, ¢;,; and a numerical approximation of the solution of system
(5.2) for a candidate isotherm function H using the same experimental conditions. The
numerical simulation of a solution of Eq. 5.2 is computed with a Godunov scheme written
in C+-+ (see [107| for the details of the implementation).

In order to validate the CMA-ES approach, first "experimental" chromatograms were
in fact computed using numerical simulations of Eq. 5.2 with different experimental condi-
tions. Let Fy;,, denotes the flux function used to simulate the experimental chromatogram.
For the simulation of an approximated solution of Eq. 5.2, a time step At and a CFL
coefficient strictly smaller than one (typically 0.8) are fixed beforehand. The quantity
max Sp(|F%;,,(c)|) is then estimated using a power method, and the space step Az can
then be set such that Eq. 5.5 is satisfied for F,;,,. The same At and Az are then used
during the optimization of 7.

When c,,, comes from real data, an initial value for the parameters to estimate, i.e.
an initial guess given by the expert is used to set the CFL condition (5.5).

Using expert knowledge The choice of the type of isotherm function to be identified
will be, in most cases, given by the chemists. Fig 5.1 illustrates the importance of this
choice. In Fig 5.1-(a), the target chromatogram c.,, is computed using a Langmuir
isotherm with one component (m = 1 and thus n = 2). In Fig 5.1-(b), the target
chromatogram c.,, is computed using a Lattice of degree 3 with one component (m =1
and thus n = 4). In both cases, the identification is done using a Langmuir model, with
n = 2. It is clear from the figure that one is able to correctly identify the isotherm, and
hence fit the "experimental" chromatogram when choosing the correct model (Fig 5.1 (a))
whereas the fit of the chromatogram is very poor when the model is not correct (Fig 5.1
(b)).

Another important issue when using CMA-ES is the initial choice for the covariance
matrix: without any information, the algorithm starts with the identity matrix. However,
this is a poor choice in case the different variables have very different possible order of
magnitude, and the algorithm will spend some time adjusting its principal directions to
those ranges.

In most cases of chromatographic identification, however, chemists provide orders of
magnitudes, bounds and initial guesses for the different values of the unknown parameters.

157



Chapter 5. Identification of the Isotherm Function in Chromatography Using CMA-ES
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chromatogram is perfectly fit. poor fit of the chromatogram.

Figure 5.1: Importance of the choice of model (one component mixture)

Let [(Ka)mins (Ka)maz), [(ING)mins (N} )maz] and [(Ee)min, (Ec)maz] the ranges guessed by
the chemists for respectively each K,, N; and E.. All parameters are linearly scaled into
those intervals from [—1, 1], removing the need to modify the initial covariance matrix of

CMA-ES.

Unfeasible solutions Two different situations can lead to unfeasible solutions:

First when one parameter at least, among parameters which have to be positive, be-
comes negative (remember that CMA-ES generates offspring using an unbounded normal
distribution), the fitness function is arbitrarily set to 10%.

Second when the CFL condition is violated, the simulation is numerically unstable,
and generates absurd values. In this case, the simulation is stopped, and the fitness
function is arbitrarily set to a value larger than 10%. Note that a better solution would
be to detect such violation before running the simulation, and to penalize the fitness by
some amount that would be proportional to the actual violation. But it is numerically
intractable to predict in advance if the CFL is going to be violated (see Eq. 5.5), and the
numerical absurd values returned in case of numerical instability are not clearly correlated
with the amount of violation either.

Initialization The initial mean (:E'>§}?,) for CMA-ES is uniformly drawn in [—1, 1], i.e.,
the parameters K,, N; and E. are uniformly drawn in the ranges given by the expert.
The initial step-size gq is set to 0.3. Besides we reject individuals of the population sam-
pled outside the initial ranges. Unfeasible individuals are also rejected at initialization:
at least one individual should be feasible to avoid random behavior of the algorithm. In
both cases, rejection is done by resampling until a “good” individual is got or a maximal
number of sampling individuals is reached. Initial numbers of offspring A and parents p
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are set to the default values (A = |4+ 3log(n)| and p = [A/2]).

Restarting and stopping criteria The algorithm stops if it reaches 5 restarts, or
a given fitness value (typically a value between 107° and 107'° for artificial problems,
and adjusted for real data). Restart criteria (see Section 5.4.2) are RestartTolFun with
TolFun= 10"12 x ¢, RestartTolX with TolX= 10"12 x ¢(©, RestartOnNoEffect Axis and
RestartCondCov with a limit upper bound of 10 for the condition number. The offspring
size A is doubled after each restart and p is set equal to [A/2].

5.5 Results

5.5.1 Validation using artificial data

A first series of validation runs was carried out using simulated chromatograms. Each
identification uses one or many experimental chromatograms. Because the same dis-
cretization is used for both the identification and the generation of the "experimental"
data, one solution is known (the same isotherm that was used to generate the data), and
the best possible fitness is thus zero.

Several tests were run using different models for the isotherm, different numbers of
components, and different numbers of time steps. In all cases, CMA-ES identified the
correct parameters, i.e. the fitness function reaches values very close to zero. In most
cases, CMA-ES did not need any restart to reach a precision of (107!), though this was
necessary in a few cases. This happened when the whole population remained unfeasible
during several generations, or when the algorithm was stuck in a local optimum. Fig-
ures 5.2, 5.3, 5.4 show typical evolutions during one run of the best fitness value with
respect to the number of evaluations, for problems involving respectively 1, 2 or 3 com-
ponents. Figure 5.4 is a case where restarting allowed the algorithm to escape a local
optimum.

Specific tests were then run in order to study the influence of the expert guesses about
both the ranges of the variables and the starting point of the algorithm possibly given
by the chemical engineers: In CMA-ES, in a generation g, offspring are drawn from a
Gaussian distribution centered on the mean <;1?)§,€,). An expert guess for a good solution
can hence be input as the mean of the first distribution (f>§}?,) that will be used to generate
the offspring of the first generation. The results are presented in Table 5.1. First 3 lines
give the probabilities that a given run converges (i.e., reaches a fitness value of 107'2),
computed on 120 runs, and depending on the number of restarts (this probability of course
increases with the number of restarts). The last line is the ratio between the average
number of evaluations that were needed bhefore convergence (averaged over the runs that
did converge), and the probability of convergence: this ratio measures the performance of
the different experimental settings, as discussed in details in [15].

The results displayed in Table 5.1 clearly demonstrate that a good guess of the range
of the variables is the most prominent factor of success: even without any hint about the
starting point, all runs did reach the required precision without any restart. However,
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Figure 5.2: Single component mixture, 1000 time steps. Simulate a Lattice (5 parameters)
and identify a Lattice of degree 4 (5 parameters): Best fitness versus number of evalua-

tions. The first run gave a satisfactory solution but two restarts have been performed to
reach a fitness value (2.4 107'°) lower than 107
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Figure 5.3: Binary component mixture, 500 time steps . Simulate a Langmuir (3 pa-
rameters) and identify a Lattice of degree 3 (10 parameters): Best fitness versus number
of evaluations. The first run gave a satisfactory solution but the maximal number (here
five) of restarts have been performed attempting to reach a fitness value of 10714, the best
fitness value (1.4 107') was reached in the fourth restart.
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Figure 5.4: Ternary component mixture, 2000 time steps. Simulate a Langmuir (4 param-
eters) and identify a Langmuir (4 parameters): Best fitness versus number of evaluations.
Two restarts were necessary: Before the second restart, CMA-ES is stuck in some local
optima (fitness of order of 107'), in the second restart, the algorithm reaches a fitness
value of 9.9 1071°.

when no indication about the range is available, a good initial guess significantly improves
the results, without reaching the perfect quality brought by tight bounds on the ranges:
scaling is more important than rejecting unfeasible individuals at the beginning.

Computational cost The duration of an evaluation depends on the discretization of the
numerical scheme (number of space- and time-steps), and on the number n of unknown
parameters to identify. Several runs were precisely timed to assess the dependency of
the computational cost on both factors. The simple Langmuir isotherm was used to
both generate the data and identify the isotherm. Only computational costs of single
evaluations are reported, as the number of evaluations per identification heavily depends
on many parameters, including the possible expert guesses, and in any case is a random
variable of unknown distribution. All runs in this paper were performed on a 1.8GHz
Pentium computer running with a recent Linux system.

For one component (m = 1, n = 2), and 100, 500 and 1000 time steps, the averages of
the durations of a single evaluation are respectively 0.0097, 0.22, and 0.9 seconds, fitting
the theoretical quadratic increase with the number of time steps (though 3 sample points
are too few to demonstrate anything!). This also holds for the number of space steps as
the number of space steps is proportional to the number of time steps due to the CFL
condition. For an identification with a 1-component Langmuir isotherm, the total cost of
the identification is on average 540 seconds for a 1000 time steps discretization.

When looking at the dependency of the computational cost on the number of unknown
parameters, things are not that clear from a theoretical point of view, because the cost
of each computation of the isotherm function also depends on the number of components
and on the number of experimental chromatograms to compare with. Experimentally,
for, 2, 3 and 4 variables, the costs of a single evaluation are respectively 0.9, 1.04, and
2.2 seconds (for a 1000 time steps discretization). For an identification, the total time
is roughly 15 to 25 minutes for 2 variables, 40 to 60 minutes for 3 variables, and 1 to 2
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Table 5.1: On the usefulness of Expert Knowledge: target values for Langmuir isotherm
are here (K;,IN*) = (0.0388,107). Expert range is [0.01,0.05] x [50,150], wide range
is [0.001,1] x [50,150]. The expert guess for the starting point is a better initial mean
(according to fitness value) than random. The first 3 lines give the probabilities (computed
over 120 runs) to reach a 1072 fitness value within the given number of restarts. The last
line is the ratio of the number of evaluations needed for convergence (averaged over the
runs that did converge) by the probability of convergence after two restarts (line 3).

Range Expert range | Wide range | Wide range
Starting point No guess No guess | Expert guess
no restart 1 0.84 0.95
1 restart 1 0.92 0.97
2 restarts 1 0.95 0.97
Perf. 601 1015 905

hours for 4 variables.

5.5.2 Experiments on real data

The CMA-ES based approach has also been tested on a set of data taken from [66]. The
mixture was composed of 3 chemical species: the benzylalcohol (BA), the 2-phenylethanol
(PE) and the 2-methylbenzylalcohol (MBA). Two real experiments have been performed
with different proportions of injected mixtures, with respective proportions (1,3,1) and
(3,1,0). Consequently, two real chromatograms have been provided. For this identifica-
tion, Quinones et a.l. |66] have used a modified Langmuir isotherm model in which each
species has a different saturation coefficient N:

Six parameters are to be identified: N7 and K, for« =1,...,3. A change of variable has
been made for those tests so that the unknown parameters are in fact N* and K|, where
K; = K;N;: those are the values that chemical engineers are able to experimentally
measure.

Two series of numerical tests have been performed using a gradient-based method
[73]: identification of the whole set of 6 parameters, and identification of the 3 saturation
coefficients N only, after setting the Langmuir coefficients to the experimentally measured
values (K|, K, K;) = (1.833,3.108,3.511). The initial ranges used for CMA-ES are
(60, 250] x [60, 250] x [60, 250] (resp. [1.5,2.5] x [2.7,3.7] x [3,4] x [90,200] x [100, 200] x
(100, 210]) when optimizing 3 parameters (resp. 6 parameters). Comparisons between the
two experimental chromatograms and those resulting from CMA-ES identification for the
two experiments are shown in Figure 5.5, for the 6-parameters case. The corresponding
plots in the 3-parameters case are visually identical though the fitness value is slightly
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Figure 5.5: Experimental chromatograms (markers) and identified chromatograms (con-
tinuous line) for the BA, BE and MBA species. Plots on the left/right correspond to an
injection with proportions (1,3,1)/(3,1,0).

lower than in the 6-parameters case (see Tables 5.2 and 5.3). But another point of
view on the results is given by the comparison between the identified isotherms and the
(few) experimental values gathered by the chemical engineers. The usual way to present
those isotherms in chemical publications is that of Figure 5.6: the absorbed quantity
H(c); of each component i = 1,23 is displayed as a function of the total amount of
mixture (c¢; + ¢ + c¢3), for five different compositions of the mixture [73|. Identified
(resp. experimental) isotherms are plotted in Figure 5.6 using continuous lines (resp.
discrete markers), for the 6-parameters case. Here again the corresponding plots for the
3-parameters case are visually identical.

5.5.3 Comparison with a Gradient Method

CMA-ES results have then been compared with those of the gradient method from [73],
using the same data case of ternary mixture taken from [66] and described in previous
Section. Chromatograms found by CMA-ES are, according to the fitness (see Tables 5.2
and 5.3), closer to the experimental ones than those obtained with the gradient method.
Moreover, contrary to the gradient algorithm, all 12 independent runs of CMA-ES con-
verged to the same point. Thus, no variance is to be reported on Tables 5.2 and 5.3.
Furthermore, there seems to be no need, when using CMA-ES, to fix the 3 Langmuir
coefficients in order to find good results: when optimizing all 6 parameters, the gradient
approach could not reach a value smaller than 0.01, whereas the best fitness found by
CMA-ES in the same context is 8.321073 (Table 5.3).
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Table 5.2: Comparing CMA-ES and gradient: the 3-parameters case. Solution ( line
1) and associated fitness values ( line 2) for the modified Langmuir model (Eq. 5.15).
Line 3: For CMA-ES, "median (minimal)" number of fitness evaluations (out of 12 runs)
needed to reach the corresonding fitness value on line 2. For gradient, "number of fitness
evaluations — number of gradient evaluations" for the best of the 10 runs described in [73].

CMA-ES Gradient
N;k (120.951,135.319,165.593) (123.373,135.704,159.637)
Fitness x 103 8.96 8.78 8.96
# Fit evals. | 175 (70) 280 (203) 140 — 21
00 BA (g/l) 14 90
Q MBA (g/l)
< =60
30 =
‘: :» .’a_om_a..ew-@"&'e : :‘¢,0~¢"&000.@
00 30 c,+c,+C, 60 00 30 C,+C,*C, 60
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H(C),
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Figure 5.6: Isotherms associated to parameters values of Table 5.3 (continuous line) and
experimental ones (markers) versus total amount of the mixture for different proportions
of the component in the injected concentration [73].

Table 5.3: Comparing CMA-ES and gradient: the 6-parameters case. Solutions ( lines 1
and 2) and associated fitness values ( line 3) for the modified Langmuir model (Eq. 5.15).

CMA-ES Gradient
K; (1.861,3.120,3.563) (1.780,3.009,3.470)
Ny (118.732,134.860,162.498) (129.986,141.07,168.495)
Fitness x 103 8.32 10.7
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Finally, when comparing the identified isotherms to the experimental ones (figure 5.6),
the fit is clearly not very satisfying (similar deceptive results were obtained with the gra-
dient method in [73|): Fitting both the isotherms and the chromatograms seem to be
contradictory objectives. Two directions can lead to some improvements in this respect:
modify the cost function 7 in order to take into account some least-square error on the
isotherm as well as on the chromatograms; or use a multi-objective approach. Both mod-
ifications are easy to implement using Evolutionary Algorithms (a multi-objective version
of CMA-ES was recently proposed [67]), while there are beyond what gradient-based
methods can tackle. However, it might also be a sign that the modified Langmuir model
that has been suggested for the isotherm function is not the correct one.

Comparison of convergence speeds Tables 5.2 and 5.3 also give an idea of the
respective computational costs of both methods on the same real data. For the best
run out of 10, the gradient algorithm reached its best fitness value after 21 iterations,
requiring on average 7 evaluations per iteration for the embedded line search. Moreover,
the computation of the gradient itself is costly roughly estimated to 4 times that of the
fitness function. Hence, the total cost of the gradient algorithm can be considered to be
larger than 220 fitness evaluations. To reach the same fitness value (8.96 1073), CMA-ES
only needed 175 fitness evaluations (median value out of 12 runs). To converge to its
best value (8.78 1073, best run out of 12) CMA-ES needed 280 fitness evaluations. Those
results show that the best run of the gradient algorithms needs roughly the same amount
of functions evaluations than CMA-ES to converge. Regarding the robustness issue, note
that CMA-ES always reached the same fitness value, while the 10 different runs of the
gradient algorithm from 10 different starting points gave 10 different solutions: in order
to assess the quality of the solution, more runs are needed for the gradient method than
for CMA-ES!

5.6 Conclusions

This paper has introduced the use of CMA-ES for the parametric identification of isotherm
functions in chromatography. Validation tests on simulated data were useful to adjust the
(few) CMA-ES parameters, but also demonstrated the importance of expert knowledge:
choice of the type of isotherm, ranges for the different parameters, and possibly some
initial guess of a not-so-bad solution.

The proposed approach was also applied on real data and compared to previous work
using gradient methods. On this data set, the best fitness found by CMA-ES is better than
that found by the gradient approach. Moreover, the results obtained with CMA-ES are far
more robust: (1) CMA-ES always converges to the same values of the isotherm parameters,
independently of its starting point; (2) CMA-ES can handle the full problem that the
gradient method failed to efficiently solve: there is no need when using CMA-ES to use
experimental values of the Langmuir parameters in order to obtain a satisfactory fitness
value. Note that the fitness function only takes into account the fit of the chromatograms,
resulting in a poor fit on the isotherms. The results confirm the ones obtained with a
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gradient approach, and suggest to either incorporate some measure of isotherm fit in the
fitness, or to try some multi-objective method — probably the best way to go, as both
objectives (chromatogram and isotherm fits) seem somehow contradictory.
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Summary and Conclusion

The context of this thesis is the non linear continuous optimization using Evolution Strate-
gies (ES). The work is composed of two parts. The first part is a theoretical and numerical
study of the optimization using ES. In particular, we focus on the optimization of noisy
objective functions which are frequently encountered in practice. In the second part, the
state-of-the-art ES, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is
applied to solve an identification problem relative to the chromatography technique used
by chemical engineers.

Theoretical and numerical study

The study in Chapter 2 of the (1 + 1)-ES generalizes previous results relative to the
behavior of the (1, \)-ES [17|: The optimal convergence rate of ES is reached when the
adaptation rule of the step-size is the artificial scale-invariant adaptation rule and the
objective function is the spherical function. Therefore, these optimal settings (scale-
invariant 4 spherical functions) can be used to assess the performances of algorithms using
realistic adaptation rules and optimizing real world objective functions by comparing their
performances with the optimal one.

In our study, we mainly investigate the rigorous proof with the numerical illustration
of the convergence and divergence of scale-invariant ES. In Chapter 2, the Law of Large
Numbers (LLN) for orthogonal random variables has been used to show the log-linear
convergence of the scale-invariant (1 4+ 1)-ES when minimizing spherical functions. In
Chapter 3, the Borel-Cantelli Lemma was used to show the almost sure convergence (or
divergence) of the scale-invariant (1 4+ 1)-ES when minimizing noisy spherical functions.
Then, in the same chapter, we used the LLN for Markov chains to rigorously derive the
expressions of convergence (or divergence) rates of the algorithm. However, in order to
obtain the log-linear behavior of the algorithm, one has to show that the convergence (or
divergence) rates are not equal to 0. Though it is difficult to have a theoretical estimation
of this convergence rate, our study shows that the expressions of the convergence (or di-
vergence) rates derived can be estimated using Monte Carlo simulations. Therefore, one
can show numerically that the convergence (or divergence) rates are not equal to 0. For
the scale-invariant (1, A\)-ES minimizing noisy spherical functions, the LLN for orthogonal
random variables is used again in Chapter 4 to show the log-linear of behavior of the
algorithm. In the same chapter, numerical simulations have investigated the convergence
(or divergence) rate that was theoretically derived to distiguish convergence and diver-
gence cases. Moreover, it is theoretically proven (Chapter 4) that the convergence rate is
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asymptotically (in the search space dimension) linear as a function of the inverse of the
search space dimension. Note that for rank-based algorithms [137] or any Hit-and-Run
direct search method [75], we know that the convergence rate is asymptotically linear as
a function of the inverse of the search space dimension.

The convergence results obtained in Chapter 2 (Theorem 2.10) and in Chapter 4
(Theorem 4.8) were obtained using the LLN for orthogonal random variables. Note that
the same results can be obtained using LLN for independent random variables.

Optimization of noisy objective functions When objective functions are noisy, ES
had been shown to be more robust than other optimization methods in previous empirical
studies [9, 106]. As pointed in 24|, the difficulty when handling noisy objective functions
arises for high noise levels. If the noise level is high, relatively to the ideal objective
function value, the selection process can be deceived and therefore the performance of the
algorithm is altered. This may lead to a non convergence of the method. Therefore, we
investigated a multiplicative noise model for which the random noise is the ratio between
the noisy objective function value and the ideal one. We investigated both the scale-
invariant plus and comma strategies:

1. For the (14 1)-ES (Chapter 3), the only relevant fact is whether the noisy function
can take negative fitness values or not. If a negative fitness value can happen,
the scale-invariant (1 4+ 1)-ES will diverge, because of the elitist selection. This
result may appear in contradiction with the result that has been previously derived
in [8], stating that the algorithm is expected to converge, because of its positive
expected progress rate. The point is that, in the numerical simulations investigated
in that paper, negative fitness values were never sampled because they had a very
small probability to occur. This was due to the use of normalizations of the noise
strength with respect to the search space dimension. This also shows that numerical
simulations have to be considered with care, and that both theoretical and numerical
approaches have to be investigated in a complementary approach.

2. For the (1,))-ES (Chapter 4), the conclusions are different. The (1, \)-ES can
converge even in the case where negative fitness values can happen, provided that
the variance of the noise (the noise strength) is sufficiently small. On the other
hand, if the noise strength is sufficiently high, divergence occurs. In the specific
case of GGaussian noise, the distinction between convergence and divergence cases was
theoretically (respectively numerically) shown for infinite (respectively finite) search
space dimension. For infinite dimension, similar results had been obtained using the
limit of the normalized progress rate |25|, which is equal to the opposite of the limit
of the normalized convergence rate derived in our study. Moreover, for 'large’ noise
strength values where divergence occurs, convergence can nevertheless be obtained
by increasing the number of offspring A, and/or reevaluating each offspring several
times and setting its fitness value to the average of these reevaluations. These
solutions had been previously proposed in |25], and are also discussed in Chapter 4.
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Elitist strategies and comparing ES in noisy environments The results of Chap-
ter 3 show that, if negative objective functions values have a strictly postive probability
to happen, then the scale-invariant (1 4 1)-ES cannot converge becasue of the elitist se-
lection. Therefore, the non convergence holds also even if the number of the offspring is
increased, i.e., even when using a (1 + X\)-ES with A > 1. Tt is worth noticing that the
non robustness of the elitist selection have been already noticed in previous studies [119|
(where the objective functions is not noisy), where it had been shown that the (1+1)-ES
using the 1/5-success rule can get stuck in a local optimum. To overcome the non conver-
gence of the (1+ 1)-ES (when minimizing noisy objective functions) shown in Chapter 3,
a possible solution is to reevaluate the parent at each selection step. Therefore, the objec-
tive functions values of the solutions generated by the algorithm are no more decreasing.
Another solution is to use the (1, A\)-ES which has been analyzed in Chapter 4 using the
LLN for orthogonal random variables. The study of the scale-invariant (1 + X)-ES with
reevaluation of the parent has not been investigated here but it can be done, similarly to
the (1, A)-ES, using the LLN for orthogonal random variables. Moreover, the (1 + \)-ES
with reevaluation is similar, for infinite dimension, to a (1, + 1)-ES as suggested by
the limits of the normalized progress rates derived in |25]. Note that our study does not
include the comparison of the performances of plus and comma ES in noisy environments.
However, our study gives a guideline for practitionners about which strategy to use when
some qualitative or quantitative informations on the noise distribution are available. If
the noise is such that negative objective function values can happen one should not use
plus strategies with no reevaluation of the parent. In this case, comma strategies (and
probably plus strategies with reevaluation, relying on results in |25]) can be used with the

possible solutions of reevaluating offspring or increasing their number if the noise level is
"high’.

In a previous study that compared the performances of ES in the presence of a Gaussian

noise 7|, it had been shown that, for small values of the noise strength, the plus strategies
(with or without reevaluation) perform better than the comma strategies, and that the
opposite happens for large normalized noise strength values. However, according to our
study and from a theoretical view point, plus strategies with no reevaluation should not
be used in the case of Gaussian noise as they lead to a non convergence of the algorithm.
Therefore one has to investigate, in case of (theoretical) convergence, the comparison
of the convergence rates of the (1 + A\)-ES with reevaluation of the parent, and of the
(1, (A+1))-ES. Note that in practice, when the noise is Gaussian with a sufficiently small
noise strength, the study of Chapter 3 shows that convergence can be seen in numerical
simulations as the event leading to the non-convergence of the algorithm requires a huge
number of iterations which is not the case of almost all numerical simulations. In these
cases, and if one knows that (ideal) objective functions have to be positive, the (1+1)-ES
can be used as a fast strategy (as suggested by the study in [7]) until a negative fitness
value is sampled or another stopping criteria is met.
Finally, ES with recombination has to be theoretically and numerically investigated and
compared with the other strategies. Another point that should be investigated, in noisy
environments, is the behavior of ES using actual adaptation techniques (e.g. SA-ES and,
of course, CMA-ES).
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On the use of infinite dimension approximations and link with the progress rate
theory The limit of the (normalized) convergence rate (or normalized progress rate) of
an ES has in general, a simpler expression than that relative to a fixed dimension. This
makes the distinction of convergence and divergence cases easier and the results obtained
when the search space dimension goes to infinity can be considered to be reliable for
sufficiently large dimensions.

In Chapter 4, we also extend a result from [17| to the noisy case: when optimizing

spherical functions, the normalized progress rate, which is related to the convergence in
mean of an ES, and (the opposite of) the normalized convergence rate, which gives the
almost sure convergence, have the same limit when d goes to infinity.
On the other hand, for finite dimensions of the search space, Figure 4.5 and Figure 4.6 in
Chapter 4 show that for some cases, divergence can hold in the case of infinite dimension
while convergence holds for some finite dimensions. This confirms the observation that
has already been done in the case of sphere function in [27]: The authors show that infinite
dimension results do not cover all convergence cases for finite dimensions.

Moreover, our study shows rigorously (Chapter 4) the reliablity of an approximation
for large dimensions that has been previously done in [8] when optimizing noisy objective
functions. This approximation assumes that, for high dimensions of the search space, the
parent and its offspring have the same noise level. However, the finite dimension plots of the
convergence rates that are shown in Chapter 4, and especially in Figure 4.2, demonstrate
that for the same noise variance and the same step-size mutation, the original model
and the approximating one can have completely different behaviors (convergence for the
former and divergence for the latter). Therefore, such approximations has to be taken
with care.

Application

In Chapter 5, CMA-ES was applied to solve a real-world problem encountered in chem-
ical engineering. This study confirms previous empirical comparison dealing whith the
efficiency and the robustness of deterministic and randomized search methods. In this
specific case study, CMA-ES is demonstrated to be more robust than a gradient based ap-
proach: CMA-ES found the same solution than the gradient method, but independently
of the starting point, whereas gradient search is very sensitive to its initialization. In
fact, the solutions proposed by CMA-ES were also slightly more accurate. But the most
striking result is that CMA-ES succeeded to handle the full optimization problem whereas
the gradient-based approach failed unless some parameters were fixed by the user to some
experimentally determined values.
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