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Résumé de la thèseUn problème d'optimisation non linéaire ontinu peut être formulé omme suit : Étantdonné une fontion f : R
d 7→ R, appelée fontion objetif, le but est de herher, dans unespae ontenant une ou plusieurs parties ouvertes de R

d, le veteur (soit d paramètres)qui maximise (ou minimise) la fontion f .Dans ette thèse, on s'intéresse à l'optimisation non linéaire ontinue par des méthodesappelées Stratégies d'Évolution (SE), algorithmes évolutionnaires dédiés à l'optimisationsur un espae ontinu. Les SE ont montré leur e�aité pratique pour la résolution deproblèmes d'optimisation réels. Cependant les SE, omme l'ensemble des algorithmesévolutionnaires, ne sont pas basés sur les premiers prinipes, mais adaptés d'une imita-tion des prinipes de l'évolution naturelle, la survie des individus les plus adaptés. Dansune première partie de ette thèse, on étudie théoriquement et numériquement la on-vergene des SE, en partiulier dans le adre de l'optimisation des fontions objetifsbruitées. On montre par exemple que des niveaux assez élevés du bruit peuvent entraînerla non-onvergene de l'algorithme. Les expressions des vitesses de onvergene sont en-suite établies théoriquement. Les as de onvergene et de divergene sont distinguésthéoriquement et numériquement.La seonde partie traite une appliation à un problème réel en génie himique, l'identi�ationde paramètres pour le système de la hromatographie analytique. L'approhe évolution-naire est omparée à une méthode déterministe basée sur le alul du gradient numérique.L'approhe évolutionnaire est plus robuste sur e as d'étude spéi�que.
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Introdution (In Frenh)Les problèmes d'optimisation sont très fréquents dans l'industrie omme dans di�érentsdomaines de la reherhe. L'optimisation non linéaire ontinue s'intéresse aux problèmesoù la fontion à optimiser, appelée fontion objetif, ou �tness, est dé�nie sur un espaed'état ontinu de dimension d, ç.à.d., f : R
d 7→ R, et n'est pas linéaire. Le but est don,de herher d paramètres réels qui maximisent (ou minimisent) une fontion f .Pour résoudre les problèmes d'optimisation, plusieurs méthodes ont été développées.La plupart de es méthodes sont itératives, et génèrent, à l'itération n, une (ou plusieurs)nouvelle(s) solution(s) soit de manière déterministe, soit de manière stohastique en éhan-tillonnant une distribution de probabilité. Ces méthodes peuvent être don lassées endeux grandes familles : méthodes de reherhe déterministe et méthodes de reherhestohastique.Dans les problèmes réels d'optimisation, le proessus de reherhe de la (ou des) so-lution(s) optimale(s) peut s'avérer di�ile. Les fontions objetifs peuvent être non on-vexes, irrégulières, bruitées, multimodales, mal onditionnées, non séparables . . . Les on-traintes sur l'espae de reherhe peuvent aussi rendre la reherhe enore plus di�ile.En�n, la di�ulté du problème d'optimisation roît également ave la dimension d del'espae de reherhe.Certaines études empiriques [122, 55, 82, 106, 9℄ omparant les méthodes d'optimisationet en partiulier les méthodes de reherhe stohastique aux méthodes de reherhe déter-ministe donnent un avantage aux méthodes de reherhe stohastique quand les fontionsobjetifs sont de plus en plus omplexes à optimiser, i.e., quand les fontions objetifs sontplut�t non-onvexes, multi-modales, très mal onditionnées, non séparables, ou bruitées.En partiulier, dans le adre de l'optimisation de fontions bruitées, qui onstitue la ma-jeure partie de ette thèse, les études empiriques [106, 9℄ montrent que les méthodes dereherhe stohastique appelées Stratégies d'Évolution (SE) sont plus robustes fae aubruit que les méthodes déterministes.Les Stratégies d'Évolution sont des algorithmes évolutionnaires dédiés à l'optimisationontinue. Ils ont montré leur e�aité pratique pour la résolution de problèmes d'optimisationréels [51, 43, 22, 104, 142℄. Cependant les SE, omme l'ensemble des algorithmes évolution-naires, ne sont pas basés sur les premiers prinipes, mais sont le fruit d'une imitation desprinipes de l'évolution naturelle (la survie et la reprodution des individus les plus adap-tés). La méthode �état de l'art� en optimisation évolutionnaire ontinue aujourd'hui est la5



Introdution (In Frenh)méthode CMA-ES, ou Covariane Matrix Adaptation-Evolution Strategy, introduite parN. Hansen et A. Ostermeier au milieu des années 90 [61, 59, 56℄. Des études empiriquesont montré que CMA-ES est e�ae et robuste fae aux problèmes non séparables etmal onditionnés [61, 59, 82℄, mais est également e�ae pour résoudre les problèmesmultimodaux [56, 82℄. D'autres études empiriques [61, 56, 55, 62℄ omparant CMA-ESà d'autres méthodes populaires de reherhe stohastique ainsi qu'à la méthode BFGS,méthode de reherhe déterministe très utilisée, ont montré une grande ompétitivité deCMA-ES.Dans ette thèse, on s'intéresse à l'optimisation non linéaire ontinue par Stratégiesd'Évolution. La thèse omprend deux parties: la première est onsarée à des étudesthéoriques et numériques onernant la onvergene de Stratégies d'Évolution plus simplesque CMA-ES, algorithmes qui sont les seuls à avoir été étudiés d'un point de vue théoriquepour le moment. Dans ette partie, on s'intéresse en partiulier à l'optimisation desfontions quadratiques bruitées. La seonde partie traite une appliation à un problèmeréel en génie himique, l'identi�ation des paramètres de la loi de omportement (oufontion isotherme) pour le système de la hromatographie analytique.
1 Étude théorique et numérique1.1 État de l'art et ontexteLes premières études théoriques des Stratégies d'Évolution ont été des études asympto-tiques par rapport à la dimension de l'espae de reherhe (d → +∞) [25, 114℄. Lespremières études théoriques établies en dimension �nie sont elles de François et Bien-venue [27℄ et de Auger [13, 17℄. Il est ainsi aujourd'hui démontré [13, 17, 27℄ que laonvergene de Stratégies d'Évolution adaptant leur pas de reherhe à haque itérationest (log-)linéaire (i.e. le logarithme de la distane séparant la solution de l'optimum tendlinéairement vers −∞ en fontion du nombre d'itérations). Ce résultat est valable pourtoute fontion qui s'érit sous la forme g(||x||2) où g est une fontion stritement rois-sante. Pour des lasses de fontions bruitées (que l'on érira sous la forme ||x||2(1 + N )ou ||x||(1 + N ), N étant une variable aléatoire modélisant le bruit), les études les pluspoussées sont elles de Arnold et Beyer [5, 7, 8, 24, 25℄, études asymptotiques ii enorepar rapport à la dimension d de l'espae de reherhe.La partie théorique de ette thèse onerne l'étude de la onvergene des Stratégiesd'Évolution, pour l'optimisation de fontions, non bruitées et bruitées.1.2 ContributionsNotre apport dans ette thèse est résumé dans les points suivants :6



1. Étude théorique et numériqueOptimisation des fontions non bruitées (Résultats publiés dans [77℄) :Dans le ontexte dérit i-dessus, nous démontrons :1) Une onvergene log-linéaire d'un algorithme �arti�iel� de type ES1 appelé sale-invariant (1 + 1)-ES, dans lequel le pas de reherhe à haque itération est proportionnelà la distane qui sépare la solution ourante de l'optimum (résultat similaire à e qui aété prouvé dans [13, 17, 27℄ pour l'algorithme appelé (1, λ)-ES).2) L'optimalité en terme de vitesse de onvergene du sale-invariant (1 + 1)-ES. Cerésultat on�rme le résultat montré dans [17℄ pour l'algorithme (1, λ)-ES.Cette étude est présentée dans le hapitre 2.Optimisation des fontions bruitées (Résultats inluant eux publiés dans [76℄)Nous étudions le omportement des stratégies sale-invariant (1 + 1)-ES (hapitre 3) etsale-invariant (1, λ)-ES (hapitre 4) lors de la minimisation de fontions bruitées. Nousmontrons:
• Pour l'algorithme sale-invariant (1 + 1)-ES : les fontions bruitées sont ii modé-lisées sous la forme ||x||2(1 +N ). La onvergene montrée auparavant [77℄ pour lesfontions non bruitées n'est plus valable lorsque le niveau de bruit est su�sammentélevé pour que des valeurs négatives de la fontion objetif puissent être générées.Si la probabilité de l'évènement (N < −1) est stritement positive, l'algorithme neonverge pas (si le bruit est Gaussien) et diverge (si le bruit est minoré). Pour desdistributions de bruit qui ne permettent de générer que des valeurs positives de lafontion objetif, l'algorithme onverge toujours.Pour les fontions objetifs qui s'érivent sous la forme (||x||2+α)(1+N ) ave α > 0,l'algorithme onverge si les valeurs des fontions objetifs générées ne peuveut êtreque positives. S'il y a une probabilité stritement positive que des valeurs négativesde la fontion objetif soient générées, l'algorithme ne onverge pas. Nous omparonsaussi nos résultats aux résultats obtenus dans [8℄ qui semblent en ontradition aveles résultats que nous avons obtenus.Dans une autre partie de ette étude, nous établissons théoriquement les expressionsdes vitesses de onvergene (ou divergene) de l'algorithme lors de la minimisationdes fontions objetifs de la forme ||x||2(1 + N ). Les vitesses de onvergene (oudivergene) obtenues peuvent être alulées numériquement. Pour des vitesses deonvergene non nulles, le omportement de l'algorithme est log-linéaire.
• Pour l'algorithme sale-invariant (1, λ)-ES : les fontions bruitées sont ii modéliséessous la forme ||x||(1 + N ). Le omportement log-linéaire (onvergene/divergene)est prouvé théoriquement. Les as de divergene ou onvergene de l'algorithme, enfontion du niveau de bruit et du pas de mutation, sont distingués théoriquement(lorsque d → +∞) et numériquement (pour d < +∞). Nous montrons que lesvitesses de onvergene varient presque linéairement ave l'inverse de la dimension1l'aronyme ES se rapporte à l'appellation anglophone pour les Stratégies d'Évolution: EvolutionStrategies 7



Introdution (In Frenh)de l'espae de reherhe. Cette étude prouve rigoureusement que ertaines approx-imations faites (lorsque d tend vers l'in�ni) dans [8℄ sont justi�ées.1.3 Outils mathématiques utilisésNous avons essentiellement utilisé dans notre étude des outils de la théorie de probabil-ité, tels que le Lemme de Borel-Cantelli, pour prouver la onvergene presque sûre desalgorithmes étudiés. Nous avons aussi eu reours aux di�érentes lois des grands nombresrelatives aux variables aléatoires orthogonales [93℄ ou aux haînes de Markov [97℄ pourétudier la stabilité des suites assoiées aux algorithmes étudiés.2 Appliation (Résultats publiés dans [78℄)La seonde partie de la thèse est onstituée du hapitre 5. Elle s'attaque à un problèmed'ingénierie réel. Le but est d'identi�er les paramètres de la fontion isotherme, loi deomportement du proessus de hromatographie utilisé en génie himique. L'approheutilisée pour résoudre e problème d'identi�ation est de le poser sous la forme d'un prob-lème d'optimisation. Pour résoudre le problème d'optimisation paramétrique ainsi obtenu,nous avons utilisé l'état de l'art en Stratégies d'Évolution, l'algorithme CMA-ES. La ver-sion de l'algorithme utilisé est elle dérite dans [16℄. Ce problème a déjà été traité pardes méthodes à base de desente de gradient dans [73, 74℄. Nous avons testé l'approheévolutionnaire sur l'ensemble des donnés réelles publiées dans [73℄. La omparaison denotre approhe à elle du gradient numérique [73℄ a révélé que 1) L'algorithme CMA-ESonverge toujours vers le même point indépendamment du point de départ (ontraire-ment au gradient). 2) Les meilleures valeurs de la fontion objetif ont été trouvées parCMA-ES pour deux on�gurations expérimentales. En partiulier CMA-ES est apabled'optimiser les 6 paramètres simultanément, alors que l'utilisation de l'algorithme à basede gradient a néessité de �xer ertaines valeurs de 2 des paramètres à partir de donnéesexpérimentales. Une autre remarque est que les temps de alul entre CMA-ES et laméthodes à base de gradient sont omparables, alors qu'il est en général onsidéré queles méthodes déterministes sont nettement plus rapides que les méthodes stohastiques àbase de population de solutions.Note : la thèse est rédigée en anglais.
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Summary of ontributions
Optimization problems are frequently enountered in all domains of siene and engineer-ing. They are of partiular relevane in industry. They inlude tasks suh as sheduling,shape optimization, model alibration, and parameter identi�ation. The goal of an op-timization problem is to �nd the optimum (or the optima) of a real-valued funtion fde�ned on some searh spae Ω, subset of the d-dimensional spae R

d. Many methodshave been developped to solve ontinuous optimization problems. They an be broadlyategorized in two lasses: deterministi and stohasti searh methods.Among stohasti searh methods, the so-alled Evolution Strategies (ES) have demon-strated their e�ieny in solving real-world optimization problems. This motivates thegeneral ontext of this thesis, ontinuous optimization using ES.The work presented in this doument an be divided into two parts: The �rst partdeals with a theoretial and numerial study of some basi ES algorithms; The seondpart is devoted to an appliation that is takled using the CMA-ES method.1 Part 1: Theoretial and numerial studyThis part is onerned with the theoretial and numerial study of the optimization, usingES, of objetive funtions having a unique global optimum. Therefore, this work an belassi�ed as belonging to the studies of loal onvergene. The searh spae Ω is supposedto be unonstrained (Ω = R
d). We are interested in isotropi ES, i.e., ES where no searhdiretion is preferred. We investigate the optimization of the following objetive funtions,that have been widely investigated in previous theoretial studies about ES:

• the so-alled spherial funtions, that an be written as g(||x||2), where g is a stritlyinreasing funtion and ||x|| denotes the norm of vetor x ∈ R
d, and

• noisy objetive funtions, that are modelized as ||x||2(1 +N ) or ||x||(1+N ), where
N is a random variable representing the noise.The unique global optimum of spherial funtions is (0, . . . , 0) ∈ R

d. Note that for noisyobjetive funtions, the goal is to reah the optimum of the non-noisy part of the objetivefuntion, i.e., (0, . . . , 0). Our theoretial ontributions in this thesis lies in Chapters 1, 2and 3 and an be summarized as follows: 9



Summary of ontributions1.1 Optimization of non noisy funtions (Results in [77℄) :In Chapter 2, we investigate the (1+1)-ES, and in partiular the (1+1)-sale-invariant-ESin whih the 'radius of the searh', or step-size, is, at eah iteration, proportional to thedistane between the urrent solution and the optimum. We rigorously prove:1. A log-linear onvergene of the simplest ES, alled sale-invariant (1 + 1)-ES, whenminimizing spherial funtions. A log-linear onvergene means that the logarithmof the distane to the optimum onverges linearly to −∞ as a funtion of the numberof iterations.2. The optimality (regarding the onvergene speed) of the (1+1)-ES algorithm usingthe arti�ial sale-invariant rule when minimizing spherial funtions. Moreover,optimal onvergene rates are numerially derived as a funtion of the searh spaedimension.1.2 Optimization of noisy funtions (A part of the results hasbeen appeared in [76℄)Noisy objetive funtions are important to study, as real objetive funtions are usuallynoisy. Noisy spherial funtions investigated here are of partiular interest as the ran-domness of their noisy part an over a wide range of irregular real objetive funtions.We investigate the sale-invariant (1+1)-ES (Chapter 3) and the so-alled sale-invariant
(1, λ)-ES (Chapter 4) for the minimization of noisy objetive funtions. More preisely:

• For the sale-invariant (1+1)-ES, noisy objetive funtions are modelized as ||x||2(1+
N ). The main result is that the onvergene that has been already shown in [77℄for non noisy objetive funtions does not always hold for noisy objetive funtions.If the noise level is suh that negative objetive funtions values an be sampledwith a strilty positive probability, the algorithm does not onverge (if the noiseis Gaussian) and diverges (if the noise is lower bounded). Furthermore, for noisedistributions that only sample positive �tness values, the algorithm onverges. Weprove also that the same results hold for a more general lass of noisy objetivefuntions that an be written as (||x||2 + α)(1 + N ) with α > 0. Our results areompared with those in [8℄, with whih they seem ontraditory. In this study, wealso theoretially derive the onvergene (or divergene) rates of the algorithm min-imizing noisy objetive funtions written as ||x||2(1 + N ). Moreover, we show thatthe onvergene (or divergene) rates an be omputed numerially. For onvergene(or divergene) rates whih are not equal to zero, the behavior of the algorithm islog-linear.

• For the sale-invariant (1, λ)-ES, the noisy objetive funtions that are investigatedan be written as ||x||(1 + N ). The log-linear behavior (onvergene/divergene)is theoretially proven. The onvergene and divergene ases are distiguished asa funtion of the noise level and the so-alled 'normalized step-size mutation' (aparameter of the algorithm), theoretially (when d goes to in�nity) and numerially10



2. Part 2: Appliation (Results in [78℄)(for d < +∞). We show that onvergene rates vary almost linearly with theinverse of the dimension of the searh spae. Moreover, we theoretially prove thatthe approximations used in [8℄ for the in�nite dimension study are reliable.2 Part 2: Appliation (Results in [78℄)The appliation part of this thesis is presented in Chapter 7. We investigate the resolutionof a real-world problem enountered by hemial engineers. The goal is the identi�ationof the parameters of the isotherm funtion governing the hromatography proess. Theapproah used in order to solve this problem is to turn the identi�ation problem into anoptimization problem. One of the di�ulties of the resulting optimization problem is thatthe relative searh spae is impliitely onstrained. The resulting parametri optimizationproblem is takled using the state-of-the-art in Evolution Strategies, the so-alled CMA-ES (Covariane Matrix Adaptation-Evolution Strategy) introdued by N. Hansen and A.Ostermeier [57, 59, 61℄. The version of this algorithm used here is that of [16℄. This iden-ti�ation problem had already been addressed using gradient-based approahes [74, 73℄.We perform the identi�ation using the real-world data set provided in [73℄: this allows usto ompare our results with those of the gradient based approah. The omparison revealsthat our approah is more e�ient than the numerial gradient approah. More preisely,1) The CMA-ES algorithm always onverges to the same solution, independently of thestarting point: this was not the ase for the gradient approah. 2) Better objetive valuesan be found by CMA-ES for two di�erent experimental on�gurations. In partiular,CMA-ES is able to handle the full problem and identi�y the 6 parameters, whereas thegradient approah doesn't work unless the values of 2 of the parameters are manually�xed (to experimental values). Finally, both approahes have very similar omputationtimes, whih is a rather unusual �nding, as it is well known that deterministi methodsare generally muh more faster than population based stohasti methods.The last part of the doument is a general onlusion that summarizes the resultsobtained, also giving perspetives of possible future work.
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Chapter 1Non linear ontinuous optimizationOptimization is a reurrent task mostly investigated by Engineers, Applied Mathemati-ians, and Computer Sientists. We are here interested in ontinuous minimization 2problems that an be formally formulated as follows:
{Minimize f(x),

x ∈ Ω
(1.1)where f : Ω 7→ R is the objetive funtion de�ned on some open subset Ω of R

d and isassumed to be non linear.Real-world ontinuous optimization problems are everywhere. For instane, they inludeshape optimization of e.g. airfoils in aeronauti industry, model alibration frequentlyenountered in biologial or physial domains, and parameter identi�ation in the ontextof inverse problems.This work fouses more partiularly on the blak box senario, where the only availableinformation about the objetive funtion is the values it takes on any input from R
d.In partiular, no gradient nor Hessian information an be obtained (exept of oursethrough numerial omputation from funtion values). Hene we will only onsider zerothorder methods, that only use funtion values. In order to solve real-world ontinuousoptimization problems, many iterative methods have been developed. These methods anbe broadly lassi�ed in two ategories, relatively to the method they use to explore thesearh spae: Deterministi and randomized searh methods.In the following of this Chapter, we will brie�y survey both deterministi and randomizedsearh methods operating on unonstrained searh spaes (i.e., Ω = R

d).1.1 Deterministi searh methods for non linear on-tinuous optimizationThe most widely used deterministi searh methods have been reviewed in [108, 80, 85, 29℄where onvergene results are given. In the following, we give a presentation of some of2Without loss of generality, the minimization of a real valued funtion f is equivalent to the maxi-mization of −f . 13



Chapter 1. Non linear ontinuous optimizationthe most popular deterministi searh methods.1.1.1 Gradient based methodsGradient based methods refers to methods whih use the expliit value of the gradient ofthe objetive funtion at a given loation. These methods have been originally inspiredfrom the approximating Taylor formula of a su�iently smooth funtion. They have beendesigned to work well at least on the onvex quadrati funtions. These methods aredesent methods in the sense that the newly generated point at eah iteration has alwaysa better objetive funtion value than the previous one. More preisely, let Xn be thesolution at an iteration n. The new point Xn+1 is generated as follows:
{

Xn+1 = Xn + tndn,

tn = arg mint≥0{f(Xn + tdn)}
(1.2)where dn is the desent diretion and tn the desent step.The desent step tn is determined by some line searh method (suh as rules of Wolfe,Goldstein and Prie, Armijo [29℄).A natural idea for the hoie of the desent diretion dn is to hoose the oppositeof the gradient at the urrent loation, i.e., dn = −∇(f(Xn)). However, better hoiesan be made: In the onjugate gradient methods, the suessive desent diretions dnsatisfy the reurrene relation dn+1 = −∇(f(Xn+1)) + ‖∇(f(Xn+1))‖2

‖∇(f(Xn))‖2 dn. It is shown (seefor example [103℄) that the onjugate gradient method theoretially onverges in atmost d iterations when minimizing onvex quadrati funtions. Another hoie for thedesent diretion dn is −H̃−1
n ∇(f(Xn)) where H̃n is (an approximation of) the Hessianmatrix in the urrent solution. Gradient methods using suh a desent diretion are alledQuasi-Newton Methods. The state of the art of these methods is the so-alled Broyden-Flether-Goldfarb-Shanno algorithm (BFGS).A drawbak of all gradient based methods, however, is that they are loal methods: be-ause the objetive funtion value dereases at eah iteration, the searh is stuk in the�rst enountered loal optima.Note that even in the blak box senario where no derivative information is available,it is useful to onsider gradient based methods:

• If the objetive funtion is smooth and its values an be omputed with full preision,�nite-di�erenes an be used to obtain estimates of the derivative that are aurateenough to be used as gradients in a gradient based method, suh as the impliit�ltering method desribed in Setion 1.1.2.
• Many popular searh software (e.g., within Matlab) used numerial gradient, andit is hene mandatory to ompare the results of any newly proposed optimizationmethod to those of gradient-based methods, even if using numerial gradient, inorder to assess their performanes.14



1.1. Deterministi searh methods for non linear ontinuous optimization1.1.2 Deterministi diret searh methodsDeterministi diret searh methods �rst appeared in the 1950's and early 1960's withthe growing use of omputer to �t experimental data. The name diret searh was intro-dued in 1961 by Hooke and Jeeves. These methods do not use the expliit expressionof the gradient to generate new solutions. In the following, we present some widely useddeterministi diret searh methods.Derivative-free pattern searh methodsThe diret Pattern Searh algorithm of Hooke and Jeeves [65℄ is one of the earliest deter-ministi searh methods that does not make use of derivatives. The generi pattern searhalgorithm [39℄ alulates objetive funtion values of the urrent pattern and tries to �nda minimizer. Let Xn denotes the solution at the iteration n. The Hooke and Jeeves algo-rithm is a member of the so-alled Generalized Pattern Searh algorithms (GPS) whihseeks for a lower value of the objetive funtion by sampling points in the searh spae ina �xed set (or pattern) around the urrent point. Sampled points build the set Ln whihis de�ned as follows
Ln = {x ∈ R

d ; x = Xn ± ∆ns
iei , i ∈ {1, . . . , d}} (1.3)where ∆n > 0 is the pattern size whih represents the searh step, ei is the ith unit vetor,and s = (s1, . . . , sd) ∈ R

d is a �xed parameter that an be used to take into aount thedi�erent sales of the parameters to optimize. If the algorithm �nds a new minimum,then it hanges the enter of the pattern and iterates. If all the values on the patternfail to produe a derease, then the searh step or pattern size is redued by half, i.e.,
∆n+1 = ∆n

2
. The searh ontinues until the searh step ∆n gets su�iently small, thusensuring onvergene to a loal minimum. Performane is inreased by reusing patternvalues as the pattern enter moves. Convergene analysis of GPS algorithm minimizingsmooth objetive funtions have been performed by Torzon [139℄ and Audet and Dennis[11℄.Simplex methodsThe �rst simplex based diret searh method was proposed by Spendley, Hext and Himsworthin 1962 [129℄. In 1965, the original method was developed by Nelder and Mead [105℄. Themethod evolves a onvex hull of d + 1 points in R

d, where the points satisfy the non-degeneray ondition that the volume of the hull is nonzero. At every iteration, the worstvertex is replaed by a new vertex using re�etion, expansion or ontration. In the asewhere this fails, a shrink step is arried out. Thus, this method only ensures improvementof the objetive funtion value in the sequene of worst vertexes, but it is the sequene ofbest vertexes that ultimately is of interest.It has been theoretially and numerially shown that the Nelder-Mead simplex algorithman fail in pratie. M Kinnon [96℄ onstruted a family of stritly onvex objetive fun-tions in R
2 for whih he demonstrated that the Nelder-Mead algorithm fails to onverge toa stationary point, i.e., on whih the gradient equals 0. In Mkinnon examples, simplexes15



Chapter 1. Non linear ontinuous optimizationonverge to a straight line that it is orthogonal to the steepest desent diretion. In [146℄,there is a disussion of the limitations, disadvantages, suesses and developments of theNelder-Mead algorithm.To overome the shortomings of the Nelder-Mead algorithm, Torzon [138℄ proposedthe so-alled multi-diretional searh, whih is also a simplex-based strategy. It has theproperty that shrinks our for any number of variables, provided that the level setsof the objetive funtion are bounded. In [138℄, Torzon gives a onvergene proof forthe mutli-diretional searh and performs empirial tests inluding the multi-diretionalsearh, Nelder and Mead algorithm and a quasi-Newton method. She showed that themulti-diretional searh is robust whereas the Nelder-Mead algorithm is not, and thatmulti-diretional searh an handle higher dimension problems and laimed that themulti-diretional searh may be useful for optimizing noisy objetive funtions. How-ever, the multi-diretional searh also has some limits. In fat, the empirial study thathas been performed in [9℄ demonstrates that the performane of the multi-diretionalsearh markedly degrades with inreasing searh spae dimensions, and it is stated that,in the presene of noise, �. . . the multi-diretional searh method never stagnates butrather diverges if the noise strength is too high�.Quadrati approximation methodsThese methods rely on an interpolation or an approximation of the objetive funtionwith a quadrati funtion Q. The approximation is supposed to be reliable on a region ofthe searh spae alled the trust region. A quadrati funtion Q has d̃ = 1
2
(d+ 1)(d+ 2)independent oe�ients, that may be de�ned by the interpolation onditions on d̃ pointsof R

d:
Q(xi) = f(xi), i = 1, . . . , d̃ (1.4)The points xi should have the property that, if Eq. 1.4 is written as a system of linearequations in terms of the oe�ients Q, the matrix of the system should be non singular.Win�eld's algorithm [144℄ not only employs the interpolation equation Eq. 1.4 to de�ne

Q, but also inludes some of earliest work on trust regions. At an iteration n, the algorithmgenerates the quadrati approximation Qn using Eq. 1.4. Furthermore, the iterationomputes the vetor x ∈ R
d that minimizes Qn subjet to the bound ‖x−Xn‖ ≤ ρn where

Xn is the best point among the interpolation points at iteration n, and ρn is the trustregion radius. This algorithm presents the partiularity that, an eventual degeneration ofthe system Eq. 1.4 is ignored and it is assumed that the alulation of Qn is su�ientlyrobust to provide a quadrati funtion that allow the trust region sub problem to besolved and the resulting x reeives no speial treatment. Other methods ensure that Qnis well de�ned. Powell [108℄ stated that Lagrange funtions are highly useful for seletingthe interpolations points at eah iteration suh that the quadrati polynomial Qn is wellde�ned by Eq. 1.4. Using this idea, Powell proposed in 2002 the NEW UnonstrainedOptimization Algorithm (NEWUOA) algorithm as a quadrati interpolation method thatuses only d̃ = 2d + 1 to build the quadrati funtion Q. Therefore, the amount of workper iteration is only of order (3d+1)2, whih allows d to be quite large. The suess of themethod is, aording to Powell [109℄, due to the use of the symmetri Brodyen method for16



1.1. Deterministi searh methods for non linear ontinuous optimizationupdating the Hessian of Qn, H(Qn), when �rst derivative of f are available [40℄. Anotherlaimed advantage [110℄ of the NEWUOA is that is suitable for the minimization of noisyobjetive funtions.The algorithm an be summarized as follows. First, an initial quadrati model Q0 isreated for the objetive funtion f . An iteration n then performs the following steps:
• Compute the minimum of Qn inside the trust region,
• Improve the model using the latest optimum,
• Stop if the latest trust region is lower than the user-de�ned end value,
• Stop if the distane between Qn and f is small enough (perfet math of the model
Qn and the objetive funtion f),

• Derease the trust-region radius if the values omputed for f stops dereasing.A more detailed presentation of the algorithm an be found in [110℄.Impliit �lteringImpliit Filtering, as devised by Gilmore and Kelley [47, 80℄, belongs to the so-alledStohasti Approximation methods dating bak to work of Robins and Monroe [115℄and Kiefer and Wolfowitz [83℄ and whih were spei�ally designed to deal with noisyobjetive funtions. In ontrast with the diret deterministi searh methods introduedso far, Impliit Filtering relies on the idea suggested by Kiefer and Wolfowitz of expliitlyapproximating the loal gradient of the objetive funtion by means of �nite di�erening.Beause the gradient is only an approximation, the omputed steepest desent diretionmay fail to be a desent diretion and the line searh may fail. In this ase, the di�ereneinrement used to numerially ompute the gradient is redued. The name �impliit�ltering� has been hosen beause the method uses di�erening to �step over� the noiseat varying levels of resolution, hene impliitly �ltering the objetive funtion from thenoise. The method uses the entral di�erene gradient that we denote ∇hf in a gradientbased method. Let x a point in R
d, and h a di�erene inrement, a entral di�erenegradient is de�ned as follows:

(∇hf(x))i =
f(x+ hei) − f(x− hei)

2h
, i = 1, . . . , d (1.5)where ei is the ith unit vetor. Clearly this omputation involves 2d evaluations. Atiteration n, the algorithm omputes the entral di�erene gradient at the urrent solution

Xn, i.e., ∇hf(Xn). As in gradient based methods, the new point Xn+1 is generated as
Xn + tndn, where tn is determined by a standard line searh in diretion dn. The desentdiretion dn is usually generated as in Quasi-Newton methods. A presentation of theonvergene theory of impliit �ltering and of several related methods an be found in[80℄. 17



Chapter 1. Non linear ontinuous optimization1.2 Randomized searh methods for non linear ontin-uous optimizationRandomization is an e�ient researh tool for seeking the optima of an objetive funtionespeially when no information about he derivative neither the Hessian of this funtionare provided. Randomized searh methods are global searh methods in the sense that thestohasti nature of the searh an prevent the onvergene to a loal optimum3. Theirability to esape loal optima is also due to the fat that they are usually populationbased. However, despite their pratial ability to solve many real-world otpimizationproblems, the majority of these methods do not rely on a �rm mathematial bakground:they are in general designed based on nature-inspired paradigms, and their theoretialstudy omes long after their e�etive use and suesses in pratial appliations. Thissetion will survey the most widely used randomized searh methods.1.2.1 Pure Random Searh (PRS) and Pure Adaptive Searh(PAS)Pure Random Searh (PRS) [31℄ is the simplest random searh method. This methodonsists in generating the solutions X1,...,Xn independently, using a �xed probability dis-tribution. When the stopping riterion is met, the best point reahed so far is taken asthe solution proposed by the method. It has been theoretially proven [149℄ that PRSonverges to the global minimum with probability 1 for every objetive funtion for whihthe neighborhood of the optimum an be reahed with a stritly positive probability.However, the searh is always done around the same �xed point and the searh distri-bution parameters, namely the radius and the ovariane matrix of the searh in ase ofontinuous optimization, are kept unhanged during the run. Therefore, these parametersare not adapted, neither relatively to the history of the searh, nor to the loal shape ofthe funtion to optimize. This makes PRS totally ine�ient in pratie, with a very largeonvergene time that inreases exponentially with the searh spae dimension [149℄.Then Pure Adaptive Searh (PAS) was introdued as a random searh method havingan exponentially lower omplexity than that of PRS [148℄. In fat, the onvergenetime of PAS varies linearly with the searh spae dimension d in the spei� ase ofLipshitz objetive funtions. This method di�ers from the PRS method in the fat thatthe new individual is uniformly generated on the set ontaining individuals having betterobjetive funtion values than the urrent solution. Therefore PAS is not pratial beausethe prinipal omputational e�ort of the algorithm lies in generating points uniformlydistributed in the improving region. Moreover, PAS an be seen as a partiular instaneof an Evolution Strategy (ES) (see Setion 1.2.4 for a presentation of ES) evolving aunique solution and where no adaptation in the searh parameters is done.3However, the probability to esape a loal optimum an be too small when using some randomizedsearh method suh as the (1 + 1)-ES for example (whih will be desribed in Setion 1.2.4).18



1.2. Randomized searh methods for non linear ontinuous optimization1.2.2 Simulated Annealing (SA)Simulated Annealing (SA) [84, 3℄ is a global optimization method inspired from annealingin metallurgy. The optimization method onsiders eah point x of the searh spae as astate of some physial system, and the objetive funtion value of x, f(x), as the energyof the state x. The goal is then to bring the system, from an arbitrary initial state, to astate with the minimum possible energy � that is, to minimize the objetive funtion f .The algorithm generates a sequene of solutions (Xn) as follows. Let Xn be the solutionat iteration n. A new solution Yn is generated using a searh spae distribution dependingon Xn. The aeptane rule of the new point Yn is the Boltzmann rule, de�ned as follows
Xn+1 =











Yn if f(Yn) ≤ f(Xn),

Yn if f(Yn) > f(Xn) with probability e( f(Xn)−f(Yn)
Tn

),

Xn otherwise (1.6)where Tn, the so-alled temperature, is a positive parameter that will be dereased to 0.The goal of the randomization in the Boltzmann aeptane rule for the new solution
Yn is to avoid getting stuk in loal optima. In pratie, the sequene (Tn) has to be adereasing sequene suh that the probability to aept worse solutions dereases duringthe run. The onvergene (in probability) results [84, 102℄ only require that the tempera-ture sequene (Tn) dereases to 0 and, in some ases, that this sequene dereases slowlyenough in order to esape loal optima. In [102℄ too, key onepts suh as global versusloal exploration and adaptability of the parameters of the searh distribution and of theaeptane probability have been underlined.In pratie, however, the major inonvenient of SA methods, and espeially of oneof the most popular one, the so-alled Adaptive Simulated Annealing (ASA) [68, 69℄, isthe tuning of its underlying parameters. It is worth notiing that SA an be seen as apartiular ES method (see paragraph 1.2.4 for a presentation of ES) evolving a singlesolution and using Boltzmann randomized rule for the aeptane of a new point. Alongthose lines, the methods disussed in [37℄ for the adaptation of the parameters of thesearh distribution are quite similar to that of the so-alled derandomized ES (see Setion1.3).1.2.3 Partile Swarm Optimization (PSO)Partile Swarm Optimization (PSO) [81, 126, 127, 34℄ is a population-based stohastioptimization tehnique initially proposed by R. Eberhart and J. Kennedy in 1995, inspiredby soial behavior of bird �oking or �sh shooling. PSO traks a number of so-alledpartiles (solutions vetors) in a swarm. The default swarm size is S = 10 + [2

√
d]. Ateah iteration n, let Xn = (Xn

1, . . .Xn
d) denotes a partile of the swarm. This partile isharaterized by:

• a veloity Vn (that an also be viewed as the previous displaement of this partile,i.e., Xn − Xn−1),
• the best solution enountered so far by that partile, denoted pbestn i.e., pbestn ∈
{X0, . . . ,Xn} with f(pbestn) ≤ f(Xj), ∀j ∈ {0, . . . , n}, and 19



Chapter 1. Non linear ontinuous optimization
• the global best position ever visited by all partiles that we will denote gbestn.The partile Xn is then pulled toward the best positions pbestn and gbestn as follows

V j
n+1 =wV j

n + αj
[pbestjn −Xj

n

]

+ βj
[gbestjn −Xj

n

]

,

Xn+1
j =Xn

j + V j
n+1

(1.7)for eah oordinate j = 1, . . . , d, where αj and βj are uniformly distributed in [0, φ] with
φ = ln(2)+ 1

2
and the inertia weight w equals 1

2 ln(2)
. One of the reasons of the widespreaduse of PSO is that it is very easy to program (no linear algebra involved for instane),and there are very few parameters to adjust. Indeed, in the reent years, PSO has beenapplied in many researh and appliation areas [35, 28, 32, 94, 95℄. Unfortunately, ina reent study [62℄ investigating the performanes of the Standard PSO 2006 [1℄ on ill-onditioned funtions, it has been demonstrated that, whereas PSO performs very wellon separable funtions (even if ill-onditioned), its performane degrades dramatially onnon-separable ill-onditioned funtions.1.2.4 Evolutionary AlgorithmsEvolutionary Algorithms (EAs) are bio-inspired optimization methods whih evolve apopulation of solutions. They are an iterative tehnique inspired by Darwin's theory ofnatural evolution, more preisely the idea that the emergene of speies that are adaptedto their environment results from the synergy between natural seletion (survival of the�ttest) and blind variations (random modi�ation of the geneti material from parentsto o�spring, independently of any adaptation). The denomination of the ingredients ofthe algorithm also arise from the biologial paradigm: the objetive funtion is usuallyalled the �tness, the points of the searh spae, possible solutions of the problem at hand,are alled individuals, and the set of individuals that the algorithms evolves is termed apopulation. A generation (one iteration of the algorithm) onsists in1. Seleting among the population at urrent time n (also termed the parents) someindividuals based on their �tnesses, biased toward individuals with good valueswith respet to the optimization problem at hand (i.e., implementing a �rst step of'natural' seletion);2. Applying variation operators (i.e., stohasti operators independent of the objetivefuntion) to the seleted parents, thus generating o�spring. The variation operatorsare either unary operators (also alled mutations), or k-ary operators (then alledreombination or rossover operators);3. Evaluating the o�spring, i.e., omputing the value of the objetive (�tness) funtionat the newly generated points, the o�spring;4. Seleting among the o�spring and the 'old' parents, based again on �tness values, theindividuals who will survive to the next generation, thus implementing the seondstep of 'natural' seletion.20



1.2. Randomized searh methods for non linear ontinuous optimizationFrom the desription above, it is lear that Evolutionary Algorithms are zeroth ordermethods. Moreover, they have been applied suessfully to solve many real-world prob-lems [51, 43, 22, 104, 142℄. However, their main drawbak is that they are omputationallyostly, requiring in general a large number of generations and rather large population sizes.Moreover, another di�ulty omes along with their high �exibility: when tailoring thesemethods to a new problem, the user has to set a high number of parameters. A promisingline of researh in to ope with this di�ulty while maintaining the high �exibility ofthose algorithm is to make as many of those parameters as possible adaptive, i.e., auto-matially determined during the ourse of evolution. In the spei� �eld of ontinuousoptimization, many adaptive methods have been developed, and will be detailed in theforthoming Setion 1.2.4.Historial rootsBefore turning to the detailed desription of Evolution Strategies, the Evolutionary Al-gorithm at the heart of this thesis, it is worth desribing shortly other roots of the �eldthat have also been applied to ontinuous optimization.Geneti Algorithms (GAs) are still the most popular �eld of Evolutionary Algo-rithms. GAs has been investigated sine the early sixties by J. Holland [64℄. GAs wereinitially designed to handle bit-string representation, but were also used for ontinuousoptimization problems by representing eah real number by its 'natural' binary represen-tation. However, suh representation have some sever drawbaks. In partiular, it doesnot respet at all the topology in R
d, as thoroughly disussed in [135℄. Today, with veryfew exeptions, bit-string representations are abandoned when dealing with ontinuousparameters, at least when auray matters. Hene GAs will not be disussed any morehere. For more details, see the seminal book by Goldberg [49℄, or the more reent andomprehensive books [101, 143℄. One of the earliest book about optimization by meansof natural evolution is that of L. Fogel [45℄, introduing what has been known as Evo-lutionary Programming (EP). Initially devoted to the optimization of Finite StateAutomata, Evolutionary Programming was suessfully applied to very diverse searhspaes, inluding ontinuous ones. However, in that partiular setting, EP an also beonsidered as a partiular ase of self-adaptive Evolution Strategies (see next Setion),and is not an ative �eld per se any more. It is hene only realled here to aount forthe historial truth.Modern EAs tend to forget the frontiers between those historial dialets, as advoatedby Mihalewiz [99℄ and De Jong [38℄, and presented in the reent textbook by Eiben andSmith [41℄. The remaining di�erenes regard the representation: Geneti Algorithms areassoiated with bit-strings, Geneti Programming with parse-tree, and Evolution Strate-gies with real-valued parameters: they are the bakground of this work, and will now beintrodued in detail.Evolution StrategiesEvolution Strategies (ESs) have been introdued by I. Rehenberg [114, 113℄ and H.P.Shwe�el [123℄ in Germany, also in the mid-sixties. For historial reasons, spei� no-21



Chapter 1. Non linear ontinuous optimizationtations are used, that will be de�ned here. For instane, the population size is denoted
µ ∈ IN, and the number of generated o�spring λ ∈ IN.ESs instantiate the generi EA given above the following way:1. There is no parent seletion step per se: all µ parents are hosen with uniformprobability to generate o�spring2. the main variation operator is the Gaussian mutation (see below); reombination,also alled here intermediate rossover, is ahieved by performing a linear ombi-nation of two or more parents (though in the original ES, no reombination wasused);3. All o�spring are evaluated normally;4. The survival seletion is deterministi: the µ best individuals are hosen eitheramong the λ o�spring � and the algorithm is then alled a (µ, λ)−ES � or amongthe µ+λ parents plus o�spring, and the algorithm is then a randomized hill-limbertermed a (µ+ λ) −ES.The main operator of ESs is the Gaussian mutation: a parent X generates an o�spring
Y by Gaussian mutation whih will be written as

Y = X + σN(0, C). (1.8)where σN(0, C) = N(0, σ2C) is a drawn aording to the multivariate normal distributionof mean 0 and ovariane matrix σ2C. The reason for separating the step-size σ from theovariane matrix C lies in the adaptation mehanisms that will be desribed later (Setion1.3): this will to separately adapt the average length of the mutation by modifying thestep-size σ and the main diretions of the mutation by modifying the ovariane matrix
C. However, those parameters (σ and C) should be adapted along evolution to the urrent�tness landsape, that is the loal harateristis of the objetive funtion.Adaptation in ESAs said above, parameter ontrol (also termed on-line parameter tuning) is a general issuein Revolutionary Algorithms [42℄. In the partiular ase of Evolution Strategies, it hasreeived a lot of attention sine the very early works in the 60's.The 1/5 adaptation rule is the oldest known adaptation rule [121, 114℄. This ruleadapts a single step-size for the whole population (and used the Identity matrix as Co-variane Matrix). Its mehanism is to ompute the empirial suess probability over thelast generations and to inrease the step-size mutation (σn+1 = σne

1
3 ) if this suess prob-ability exeeds 0.2 (or to derease the step-size (σn+1 = σn/e

1
3 ) if the empirial suessprobability is below 0.2). This rule was derived after a theoretial study on two simpleobjetive funtions (the sphere funtion, and the orridor funtion, a linear onstrainedfuntion), and asymptotially when the spae dimension d tends to +∞. Whereas it wasshown to be quite e�ient on many funtions, it an be totally wrong when the �tness22



1.2. Randomized searh methods for non linear ontinuous optimizationfuntion does not behave like the model funtions. Moreover, it does not adapt the o-variane matrix of the searh distribution.The self-adaptation rules were introdued by Shwefel in the seventies [124℄. Self-Adaptive ESs (or SA-ESs) use the evolution itself to adjust the mutation parameters.The basi idea is to assoiate to eah individual its own mutation parameters. One muta-tion then amounts to �rst mutate the individual's mutation parameters, then to mutatethe individual itself using the new values of the mutation parameters. In the long run,even though the seletion only ats based on �tness values, only individuals with 'good'mutation parameters (i.e., adapted to the loal harateristis of the �tness) an survivemany seletion steps. It is sometimes said that the mutation parameters are updated'for free'. There are 3 variants of this tehnique, depending on the number of mutationparameters that evolve.In the isotropi SA-ES, only one mutation step-size is onsidered per individual, andthe ovariane matrix is kept equal to Id. The step-size undergoes a log-normal mutation(in order to keep it positive, and beause it is then used multipliatively in the Gaussianmutation):
σ := σ exp τÑ(0, 1) (1.9)were τ is a stritly positive parameter and Ñ(0, 1) is a sampling of a normal distributionwith mean 0 and standard deviation 1. The parent is then mutated using the usualGaussian mutation with step-size σ:
Y = X + σN(0, Id) (1.10)Note that onsidering the pairs (X, σ) of individuals together with their mutation step-size, the omplete mutation an also be written as

(X, σ) → (X + σ exp τÑ(0, 1)N(0, Id), σ exp τÑ(0, 1))In the non-isotropi SA-ES, the ovariane matrix is a diagonal matrix with positiveoe�ients denoted (σ2
1, σ

2
2, . . . , σ

2
d). The mutation of the deviations σi's proeeds asfollows

σi := σi exp τ ′N(0, 1) exp τNi(0, 1) for 1 ≤ i ≤ d (1.11)where N(0, 1) and Ni(0, 1) (1 ≤ i ≤ d) are d + 1 independent samplings of a enteredredued normal random variable. Then, eah oordinate of a parent is mutated using theorresponding mutated step-size in the same diretion, giving o�spring Y as follows
Yi = Xi + σiN(0, 1) for 1 ≤ i ≤ d. (1.12)Note that there is no global step-size here, but that the log-normal mutation of all σi'shas a �rst term that is ommon to all i's, and thus an be seen as some global update,plus a term that is spei� to eah oordinate i.Finally, the Correlated SA-ES uses a full ovariane matrix (i.e., not restrited to a diag-onal matrix) in order to also adapt to the prinipal diretions of the objetive funtion.23



Chapter 1. Non linear ontinuous optimizationIn order to easily mutate this ovariane matrix, it is written as the produt of d(d−1)/22D-rotation matries R(αij) with 1 ≤ i < j ≤ d and a diagonal matrix D with diagonaloe�ients σ2
1, . . . , σ

2
d.

C =

(

d−1
∏

i=1

d
∏

j=i+1

R(αij)

)

D (1.13)The mutation of the ovariane matrix onsists �rst in a log-normal mutation of the o-e�ients of the diagonal matrix D, as in the non-isotropi ase (see Eq. 1.11). Then theangles αij (1 ≤ i < j ≤ d) are also mutated using independent samplings of a Gaussianvariable βN(0, 1) (for a user-de�ned β). Finally, the parent X is mutated by a Gaussianmutation of ovariane matrix the mutated C.In [54℄, it has been shown that the di�erent variants of SA-ES are not oordinate-independent, i.e., will behave di�erently if a (linear) hange of oordinate is done in thesearh spae (though the funtion stays the same). Moreover, the use of a randomized self-adaptation rule implies a low orrelation between the mutation step-size and the distanebetween the new aepted o�spring and its parent i.e., ‖Xn+1−Xn‖ [124℄. Those remarkshave lead to di�erent attempts to ompletely derandomize the SA-ES algorithm.Reombination operator Though the initial ES algorithm didn't use any reombina-tion, it has been shown that the performanes of ESs are inreased if a reombinationoperator is used [123, 147℄. Furthermore, [25℄ shows a qualitative improved progress whena global intermediate reombination of µ parents is used rather than a (1, λ)-ES.Toward ompletely derandomized ES These ideas has been exploited to designnew ES algorithms with reombination and a derandomization of the adaptation rule ofthe searh distribution parameters. The most advaned ES using these tehniques is theso-alled Covariane Matrix Adaptation Evolution Strategy (CMA-ES) introdued by N.Hansen and A. Ostermeier in 1996 [61, 59, 57, 16℄. This method uses a ompletely deran-domized self-adaptation using the umulation of previous step-size and ovariane matrixmoves. The adaptation of the ovariane matrix used in CMA-ES allows he algorithmto be invariant by hange of oordinates. Moreover, the algorithm generates a sequeneof ovariane matries Cn whih is observed to onverge to the inverse of the Hessian inthe ase of quadrati onvex objetive funtions. Compared to other ES, CMA-ES hasbeen shown to exhibit similar behavior on perfetly saled objetive funtions, and toperform better on ill-onditioned non separable objetive funtions [61℄. CMA-ES is alsoperforming well on multi-modal funtions [56℄. The importane of CMA-ES nowadaysjusti�es that it is be presented in detail in a stand-alone forthoming Setion 1.3.1.2.5 Di�erential EvolutionDi�erential Evolution (DE) was introdued by Prie and Storn [131, 132, 133℄, and an beviewed as a partiular Evolutionary Algorithm for ontinuous optimization: DE evolves a24



1.2. Randomized searh methods for non linear ontinuous optimizationpopulation of individuals X1, . . . , Xµ using a very spei� mutation operator, that adds,at eah iteration, to a given individual one (or many) di�erene vetor(s) between one (ormany) ouple(s) of other individuals in the population (hene the name of the algorithm).A rossover operator is then performed between the mutated vetor and the parent, and�nally the o�spring replaes its parent if it has a better �tness. There are several strategiesfor DE that di�er in the way mutation and rossover is onduted [130, 111, 98℄ (the latterreferene is a ompartive study between some variants of DE). The variants are spei�edusing the notation DE/x/y/z where x denotes the way the vetor to mutate will be hosen(randomly or the best one for example), y denotes the number of di�erene vetors toadd to the mutated vetor and z denotes the rossover sheme (binomial or exponential forexample). In the lassial variant of DE, the DE/rand/1/bin, the mutation and rossoverwrite as:1. Mutation For eah parent Xi, i = 1, . . . , µ, the following mutating vetor is reated
Mi = Xr1 + F (Xr2 −Xr3),where r1, r2 and r3 are indies that are uniformly hosen in {1, . . . , µ}, and where

F is a user-de�ned amplifying fator in [0, 2].2. Crossover First an integer j0 is uniformly hosen in {1, . . . , d}. Then, a uniformrossover between Xi and Mi is performed:
Y j
i =











M j0
i if j = j0

M j
i with probability CR if j 6= j0,

Xj
iwith probability (1 − CR) if j 6= j0

(1.14)where CR ∈ [0, 1] is a user-de�ned Crossover Rate.Then the o�spring Yi replaes its parent Xi i� it has a better �tness. In [131℄, Prieand Storn have shown on some test funtions that DE is superior to Adaptive SimulatedAnnealing (ASA) (see Setion 1.2.2). The DE algorithm is rotationally invariant when therossover rate CR equals 1, whereas the behavior of the algorithm is not invariant to searhspae rotation if CR 6= 1 [111, p. 98℄. Note also that the performane of DE is sensitiveto its ontrol parameters [46℄ and that the DE is not only prone to premature onvergenebut also to stagnation [88℄ and that a suessful loation of the global optimum dependson hoosing the orret ontrol parameters. Finally, the reommended population size forDE is 10d, and the performane of the algorithm hene poorly sales up with d.1.2.6 Estimation of Distribution AlgorithmsThe �rst instane of an Estimation of Distribution Algorithm (EDA) is the PBIL al-gorithm (Population Based Inremental Learning) that has �rst been proposed as analternative to Geneti Algorithms in the bit-string framework [21℄. EDAs try to iden-tify a probability distribution de�ned on the searh spae by suessively sampling theurrent distribution, omputing the �tness of the sampled points, seleting some of the25



Chapter 1. Non linear ontinuous optimizationsampled point with a bias toward the best performing points, and either reonstrutinga probability distribution from the seleted points, or updating the urrent distributionusing those sample points.EDAs have been applied to ontinuous optimization, starting with a modi�ed PBILalgorithm [125℄ that was using . . . a Gaussian distribution on the real-valued searh spae.Several variants have then been proposed (see e.g. [91℄ for a survey), and all of themevolve a full multivariate normal distribution by modifying its mean and ovariane matrixalong evolution. This is exatly what a fully derandomized Evolution Strategy like CMA-ES is doing (see next Setion). In partiular, the Estimation of Multivariate NormalAlgorithm (EMNA) [91℄ uses an update mehanisms that is very similar to that of CMA-ES, though it reonstruts the ovariane matrix from the seleted sample points whileCMA-ES arefully updates the urrent ovariane matrix. Experimental results [58℄ havedemonstrated that CMA-ES takes advantage of this update and performs better thanEMNA even on multi-modal test funtions.1.3 Covariane Matrix Adaptation-Evolution StrategyThough it learly belongs to the Evolution Strategy family of stohasti searh algorithms,the Covariane Matrix Adaptation-Evolution Strategy (CMA-ES) is presented in a sepa-rate Setion in order to emphasize its importane � as will be witnessed by the empirialomparisons presented in next Setion.CMA-ES was introdued by N. Hansen and A. Ostermeier in 1996 [60℄ and the om-plete almost parameter-less algorithm was published in 2001 [61℄. It is a (µ, λ) − ESthat uses a global reombination operator involving the µ parents at eah iteration, andhene is referred to as a (µ/µ, λ)-ES. Let Xn denotes the reombination of the parentsat iteration n4. This 'super-parent' is subjet to λ independent mutations, resulting in λo�spring Y1, . . . , Yλ:
Yk = Xn + σnNk (0, Cn) for k = 1, . . . , λThe new super-parent Xn+1 is the omputed as a linear ombination of the best µ o�spring:

Xn+1 =

µ
∑

i=1

wiYi:λ , (1.15)where the positive weights wi ∈ R are set aording to individual ranks and sum to one,and the index i :λ denotes the i-th best o�spring. The use of the weighted reombinationof the parents as shown in Eq. 1.15 allows CMA-ES (and in general any (µ/µ, λ)-ES) tohave a larger progress (at eah iteration) than any (1, λ)-ES in the absene of noise [25℄.Moreover, beause it only uses an ordering of the λ o�spring, CMA-ES is invariant byany monotonous transformation of the �tness funtion (see Setion 1.4.2). In partiular,(non-)onvexity does not modify in any way the behavior of CMA-ES.4Note that in the presentation of CMA-ES in Chapter 5, the ieration number, here n, is referred toas g. In the same hapter, the quantities Xn, Yk, σn, Cn, (~pc)n and (~pσ)n are respetively referred to as
〈~x〉(g)W , ~x

(g+1)
k , σ(g), C

(g), ~p
(g)
c and ~p

(g)
σ . Note also that Equations1.17 and 1.19 for the ovariane matrixadaptation are more general than those of Chapter 5.26



1.3. Covariane Matrix Adaptation-Evolution StrategyAdaptation in CMA-ES It is stated in [16℄ that the adaptation used in CMA-ESallows to ahieve, on onvex-quadrati funtions, log-linear onvergene (see De�nition 1.1in Setion 1.5) after an adaptation time whih sales between 0 and the square of thedimension of the searh spae. This adaptation is done deterministially and the basiidea is to inrease the probability to reprodue good steps. This is done by omputingthe so-alled evolution paths for both the step-size and the ovariane matrix. Let Cndenote the ovariane matrix at an iteration n and BnDnDn (Bn)
T its deomposition in theeigenvetor basis (Bn is an orthogonal matrix and Dn a diagonal matrix whose diagonalontains the square roots of the eigenvalues of Cn5). Let (~pσ)n and (~pc)n be the evolutionpaths of respetively the step-size mutation and the ovariane matrix. The adaptationis done as follows: First, the umulative path for the step-size mutation is updated:

(~pσ)n+1 = (1 − cσ)(~pσ)n +

√

cσ(2 − cσ)µeff

σn
×Bn(Dn)

−1Bn
T (Xn+1 − Xn) (1.16)where cσ is a parameter in ]0, 1]. Then, the evolution path for the ovariane matrix is inturn updated as follows:

(~pc)n+1 = (1 − cc)(~pc)n + (Hσ)n+1

√

cc(2 − cc)µeff

σn
(Xn+1 − Xn) (1.17)where (Hσ)n+1 = 1 if ‖(~pσ)n+1‖√

1−(1−cσ)2(n+1)
< (1.5 + 1

d−0.5
)E(‖ N (0, Id) ‖), and 0 otherwise,

cc ∈]0, 1] is the umulation oe�ient and µeff is a stritly positive oe�ient whih denotes`the �variane e�etive seletion mass�. It an be seen from Eq. 1.16 and Eq. 1.17 thatthe evolution path updates take into aount the last move (Xn+1 − Xn) and the historyof the searh whih is represented by (~pc)n for the evolution of the searh diretions, and
(~pσ)n for the evolution of the radius of the searh. Finally, the mutation step-size and theovariane matrix are updated using information on the whole searh history as follows:

σn+1 = σn exp

(

cσ
dσ

( ‖ (~pσ)n+1 ‖
E(‖ N (0, Id) ‖)

− 1

)) (1.18)where dσ > 0 is a damping fator and N (0, Id) is the multivariate normal distributionwith ovariane matrix identity. For the ovariane matrix, the update takes plae asfollows:
Cn+1 = (1 − ccov)Cn + ccov

1

µcov

(~pc)n+1 ((~pc)n+1)
T

+ ccov

(

1 − 1

µcov

) µ
∑

i=1

wi
σ2
n

(Yi:λ − Xn)(Yi:λ − Xn)
T (1.19)where ccov, µcov ∈]0, 1[. This update rule is alled the rank-mu update for Cn [59℄. When

µcov = 1, this rule redues to the so-alled rank-one update [61℄.5Suh a deomposition is always possible as Cn is positive de�nite symmetri matrix. 27



Chapter 1. Non linear ontinuous optimizationOn the pratial side, the default parameters of CMA-ES were arefully tuned in[57℄. For example, the default values for λ and µ are respetively λdef = ⌊4 + 3 log(d)⌋and µdef = ⌊λdef

2
⌋. Moreover, a 'restart' version of CMA-ES has been introdued in[16℄ in order to inrease the probability to onverge towards the global optimum whenminimizing multi-modal objetive funtions. In this method, the algorithm is restartedwith an inreased population size when some restart riteria are met, indiating that thesearh proess is no more progressing. Di�erent restart riteria are used:1. RestartTolFun: Stop if the range of the best objetive funtion values of the reentgenerations is below than a TolFun value.2. RestartTolX: Stop if the standard deviation of the normal distribution is smallerthan a TolX value and σ~pc is smaller than TolX in all omponents.3. RestartOnNoE�etAxis: Stop if adding a 0.1 standard deviation vetor in a prinipalaxis diretion of Cn does not hange Xn.4. RestartCondCov: Stop if the ondition number of the ovariane matrix exeeds a�xed value.The resulting version of CMA-ES is a quasi parameter free algorithm. This version ofCMA-ES performed best at the CEC 2005 Speial Session on Continuous Optimization[2℄. CMA-ES has also been applied to a variety of real-world optimization problems [53℄.For more details about CMA-ES, we refer to [52℄.1.4 Comparison of ontinuous optimization methodsThe di�ulties of real-world optimization problems an be haraterized by several dif-ferent features. In addition to di�ulties due to the searh spae, suh as high dimensionand onstraints, real-world problems di�ulties are generally related to the harateristisof the objetive funtion.1.4.1 Objetive funtionsLet us �rst list several properties of objetive funtions that an be the soure of di�ultiesfor their optimization. Objetive funtions an be

• non-onvex: The hypothesis of onvexity is the basis of the gradient based meth-ods, that were designed to have good performanes at least on quadrati onvexfuntions. The non-onvexity of the objetive funtions is hene an obstale formethods relying on quadrati approximation suh as Conjugate Gradient, BFGS,and Impliit Filtering.
• rugged: Most onvergene results that have been proved for optimization methods(espeially deterministi methods) require some regularity of the objetive funtions.Hene those methods might fail on rugged funtions.28



1.4. Comparison of ontinuous optimization methods
• noisy: Noisy objetive funtions arise in most real-world problems, and high valuesof noise an totally mislead the searh. For instane, numerially-omputed gradi-ents beome totally unreliable in the presene of noise. But beause the rankingof andidate solutions an be hindered by the noise, searh methods using rankinformation an also be deeived by noisy funtions.
• multi-modal: Some objetive funtions have many loal optima. The performane ofan optimization method an be also measured by its apaity to esape loal optimaand onverge to the global optimum. Deterministi gradient-based methods willneed some restart proedures to esape loal optima, and stohasti searh methodswill require a areful balane between exploitation and exploration. Moreover, it iswell known that population based methods an help to avoid onvergene to a loaloptima � but how large should the population be, depending on the harateristisof the objetive funtion?
• ill-onditioned: Ill-onditioning is well de�ned for quadrati funtions, as the ratiobetween the largest and the smallest eigenvalues. More generally, an ill-onditionedproblem is a problem where di�erent variables show a very di�erent sensitivityin their ontribution to the objetive funtion value. For this kind of objetivefuntions, algorithms exploring all diretions with a unique radius will most likelyfail in their searh. Algorithms have to provide some adaptation rule for the searhdiretions, in order to gradually learn the loal onditioning. Ill-onditioning alsosuggests the use of seond order information to learn about the loal urvature ofthe objetive funtion. In addition, this di�ulty an lead to numerial failure ofsome line searh methods used in gradient based methods.
• non-separable: A funtion is separable when its global optimum an be reahedby suessively optimizing in eah of the dimensions. Suh objetive funtions arehene easy to optimize. However, some searh algorithm do impliitly exploit theseparability of the objetive funtion [62℄. On the other hand, an algorithm thatis invariant by a hange of oordinate will perform exatly the same on a sepa-rable funtion and on its (non-separable) rotated instanes, thus ensuring that itsperformanes are not the result of the separability of the objetive funtion.The di�erent available optimization methods will behave di�erently when faing theabove-mentioned possible soures of di�ulty. On the other hand, knowing the har-ateristis of a given objetive funtion with respet to those possible di�ulties willallow the user to hoose an optimization method that an ope with the orrespondingdi�ulty. For instane, multi-modality suggests the use of population-based methods;Ruggedness, non onvexity, and noise suggest the use of randomized searh methods;And ill-onditioning and non-separability suggest the use of an e�ient and non isotropiadaptation mehanism for the searh diretions.1.4.2 Invariane propertiesOn the other hand, aording to the No Free Lunh theorem [145℄, no method an out-perform all other methods on all test problems. Note that the No Free Lunh Theorem of29



Chapter 1. Non linear ontinuous optimization[145℄, applies to �nite searh spaes (whih is not the ase here) and states that assum-ing a uniform distribution over all 'possible problems', no method outperforms all othermethods on average. When the searh spae is ontinuous, it is impossible to de�ne thenotion of a average over all possible problems [20℄. However, it is possible to �nd methodsoptimal on some lass of funtions [20℄. For example, quadrati approximation methods(see the paragraph on quadrati approximation methods), BFGS or the onjuguate gradi-ent method will probably be more e�ient (in the sense that they will probably need lessomputational e�ort to generate solutions lose to the optimum) on quadrati objetivefuntions than other methods whih do not make use of a quadrati model hypothesis ofthe objetive funtions. However, there would exists other methods that will be proba-bly more e�ient, on non-onvex objetive funtions, than methods making use of thequadrati model hypothesis . The same reasoning holds for example for the PSO method(see Setion 1.2.3) whih will be probably highly ompetitive on separable funtions, butprobably not the best hoie on non-separable problems. Therefore, one should look tolasses of problems where a given method might outperform another method. This iswhere invariane properties an play an important role: when a given method is invariantwith respet to a set of transformations in the spae of problems, assessing its abilityto solve (with some 'reasonable' omputational e�ort) one problem immediately demon-strates similar e�ieny on the set of all transformed problems. Moreover, the moreinvariane properties an algorithm has, the more robust it is.Given an objetive funtion f : R
d 7→ R, there are di�erent ways to transform theproblem of optimizing f on R

d. First, any transformation T : R 7→ R an be used totransform the objetive funtion f to another objetive funtion T (f). Instanes of suhommon transformations are
• Translation: Addition of a onstant, i.e., T (f) = f + a

• Saling: Multipliation by a positive onstant, i.e., T (f) = a ∗ f , (a > 0)
• Monotonous transformation: Composition by an order-preserving funtion i.e., T (f) =
g ◦ f where g : R 7→ R is a stritly inreasing funtionAnother way to transform the problem of optimizing f into another problem is to apply

f to a transformation of the input parameters, i.e., optimizing f ◦ U where U : R
d 7→ R

dis a transformation of the searh spae. Searh spae transformations inlude translation,parameter resaling and any linear hange of oordinate (e.g., rotations).Two important invariane properties have already been mentioned, and will be empha-sized in the remaining of this Chapter. First, monotonous invariane is ahieved by allrank-based methods, i.e., methods that only use omparisons of possible solutions (e.g.PSO, ESs, DE, most EDAs, but not gradient-based methods). A searh method withthe monotonous invariane property will behave exatly the same on f and √√
f6. Se-ond, rotation invariane is ahieved by CMA-ES and DE without rossover, but also bygradient-based methods when the gradient is omputed analytially (and not numerially,oordinate by oordinate) and ensures a robust behavior of the algorithm with respet tonon-separability.6Obviously f is positive in this ase.30



1.4. Comparison of ontinuous optimization methodsThe importane of those invariane properties will be empirially illustrated in thefollowing Setions.1.4.3 Empirial omparisonsThe most widely used searh methods have been presented in Setions 1.1 and 1.2. Whena real-world optimization problem is enountered, the pratitioner will want to know whihis the most e�ient method to apply to the problem at hand. From our point of view,an e�ient optimization method is a method that an o�er a good ompromise betweenthe 'quality' of the solution proposed and the omputational e�ort needed to generatesuh a solution. There are two ways to ompare the e�ienies of optimization methods:theoretial and empirial. Few theoretial studies [128℄ have investigated the omparisonof optimization methods. Moreover, theoretial studies rely on strong assumptions on theobjetive funtions and/or the searh spae that are not satis�ed in pratie. Furthermore,aording to Powell [108℄ �there seems to be hardly any orrelation between the algorithmsthat are in regular use for pratial appliations and the algorithms that enjoy guaranteedonvergene in theory�. The e�ieny of an optimization method is in general 'measured'when solving real-world problems. Therefore, empirial studies seems to be an e�etiveway for omparing optimization methods.Empirial studies omparing e�ienies and robustness of optimization methods [122, 106,82, 9, 55℄ are usually done using a set of well-known tests funtions. For instane, a set oftest funtions were olleted in [134℄ to ompare performanes of optimization methodsduring a Speial Session at the Congress on Evolutionary Computation (CEC2005). Aspointed out in [62℄, any set of test funtions should take into aount the searh di�ultiesas desribed in Setion 1.4.1.Probably the most investigated objetive funtion test is the (quadrati) sphere fun-tion:
fsphere(x) = xTx = ‖x‖2, x ∈ R

d , (1.20)where ‖.‖ denotes the eulidean norm on R
d. This funtion has a unique global mini-mum at (0, . . . , 0) and is therefore useful for loal studies where the goal is to study theonvergene of uni-modal objetive funtions toward a loal optimum. A more generallass of onvex quadrati funtions whih an be written as f(x) = xTHx, where H isa symmetri positive de�nite matrix, is often used to ompare optimization methods, asthe ondition number of H (the ratio between its largest and smallest eigenvalues) givesa quanti�ed information about the onditioning of the problem. The so-alled ellipsoidfuntion for instane is de�ned, for x = (x1, . . . , xd) as:

fell(x) =

d
∑

i=1

α
i−1
d−1x2

i , (1.21)where α > 0 is the ondition number of the funtion. One an test the behavior of a givenalgorithm for di�erent ondition numbers by hanging the value of α.Another widely used funtion, whih is not quadrati, but also allows one to studythe e�et of ill-onditioning on the behavior of an algorithm is the so-alled di�-powers31



Chapter 1. Non linear ontinuous optimizationfuntion:
fdiff (x) =

d
∑

i=1

x
2+α i−1

d−1

i , (1.22)where α > 0 ontrols the onditioning of the problem.For testing algorithms on multi-modals problems, the Rastrigin funtion is often used:
fras(x) = 10d+

d
∑

i=1

(x2
i − 10 cos(2πxi)) . (1.23)However, all the above funtions are separable (as sum of funtions of eah variables).In order to test the e�ets of non-separability, any rotation using an orthogonal matrix

M an applied on the searh spae: the funtions fell ◦M (with α 6= 1), fdiff ◦M (with
α 6= 0) and fras ◦M are non-separable.Finally, in order to test the robustness relatively to noisy objetive funtions, one anadd to these funtions a random variable, as what has been done for the sphere funtionin [25, 9℄.Performane measurement In order to quantify and ompare the performane ofsearh algorithms, one has to introdue a quantity whih measures how suessful analgorithm is. Arnold and Beyer [9℄ have used as e�ieny quantity, the ratio between theexpeted gain at eah generation and the average number of evaluations at eah iteration.Another quantity estimating the suess performane has been used in [82℄: A suessfulrun is a run where the algorithm solves the problem i.e., reahes a given preision of theminimal objetive funtion value before a �xed number of evaluations. Then the suessperformane is de�ned as the average number of funtion evaluations for suessful runsover the empirial suess rate. This suess performane measure is alled SP1.1.4.4 Comparison of randomized searh methodsIn the previous setions, we present some popular randomized searh methods. The sim-plest ones PRS and PAS an be seen as partiular ES where no adaptation is used. Forthis reason, they are not e�ient in pratie when ompared to self-adaptive ES astheir omputation time will be (relatively) very high. Conerning Simulated Annealing,the tehniques introdued for the adaptation of its searh parameters in [37℄ are similarto those used in the derandomized CMA-ES. Therefore here again SA an be seen asa partiular ES. Aording to empirial studies, CMA-ES is shown to perform well onill-onditioned non-separable problems [61, 59, 82℄ as well as on multi-modal problems[56, 82℄. The CMA-ES algorithm is also highly ompetitive with all of the widely usedrandomized searh methods, as shown in [55, 62℄. The latter studies inlude the om-parison of CMA-ES with other ESs, as well as with DE, the EMNA EDA, PSO andthe Matlab implementation of BFGS. Moreover, CMA-ES performed best on the set of25 test funtions proposed during the CEC05 Challenge for ontinuous optimization [2℄.CMA-ES was ompetitive in all uni-modal and multi-modal objetive funtions. Only on32



1.4. Comparison of ontinuous optimization methodsseparable funtions, it was signi�antly outperformed by other ompetitors. Note how-ever that a simple modi�ation of CMA-ES has been proposed in order to inrease theperformane of CMA-ES on separable funtions [116℄, onstraining the ovariane matrixto be diagonal.
1.4.5 Comparison of randomized and deterministi methodsAording to di�erent empirial studies [106, 9, 56℄, randomized searh methods, andespeially CMA-ES, are highly ompetitive and usually more robust than deterministisearh methods in solving real-world optimization problems. In [106℄, population basedmethods and espeially ES are shown to outperform deterministi point-based methodsin noisy environments. In [56℄, empirial omparisons also inlude the BFGS method.In [9℄, the e�ieny of a CMA-ES like algorithm7, Hook and Jeeves pattern searh al-gorithm, multi-diretional searh simplex method and Impliit Filtering are omparedfor the minimization of noisy objetive funtions. The omparison shows that for highsearh spae dimensions and large amounts of noise strengths, the CMA-ES like strategyis the most e�ient. As a matter of fat, the multi-diretional searh diverges for toohigh noise levels and Hook and Jeeves and Impliit Filtering stagnate for su�iently highnoise levels, whereas the performane of the ES algorithm graefully dereases for highdimensions and high noise levels. Other empirial results omparing the performanes ofCMA-ES, DE, PSO, NEWUOA and BFGS have been reently presented by A. Auger andN. Hansen [18℄ in a tutorial session during the PPSN'08 onferene. The results show thatCMA-ES is more robust for wide lass of objetive funtions, thanks to its invariane totransformations suh as searh spae rotation, omposition by an order-preserving fun-tion and a less deterioration of its performane when the objetive funtion is more andmore ill-onditioned. Relying on the empirial studies surveyed above, CMA-ES learlyseems the best default hoie among the di�erent searh methods presented here, whenno further information about the objetive funtion is available. In fat, it is robust, hav-ing a ompetitive e�ieny ompared to other optimization methods when dealing withdi�ult optimization problems, espeially in the ase of non separable, non onvex, illonditioned, multi-modal and noisy objetive funtions. Of ourse, in the ase of onvex,relatively well-onditioned funtions (ondition number smaller than 105), methods suhas NEWUOA or BFGS should be preferred.However, it is worth notiing that real-world optimization objetive funtions aremore likely to lie in one of the di�ult lasses desribed above than in the lass of onvexseparable funtions. In any ase, the appliation part of this work (Chapter 5) will useCMA-ES to solve a real-world optimization problem.7The algorithm used is alled the Cumulative Step-Size Adaptation Evolution Strategy, whih isreferred to as (µ/µ, λ)-CSA-ES. This algorithm uses the same step length adaptation as in CMA-ES, butdoes not attempt to adapt the ovariane matrix. 33



Chapter 1. Non linear ontinuous optimization1.5 Survey of theoretial studies on Evolution Strate-gies: Non-noisy funtionsThis setion will rapidly survey the existing theoretial studies of searh algorithms be-longing to the Evolution Strategy family.The majority of theoretial studies of ES algorithms is onerned with isotropi ES,for whih no searh diretion is preferred (the ovariane matrix is equal to the identitymatrix during the whole run and is not updated). Let (Xn) be the sequene of vetorsin R
d generated by the ES method and (f(Xn)) be the orresponding objetive funtionvalues. The goal of theoretial studies is to investigate the limit of the sequene (Xn)(respetively (f(Xn))) to the set of optima x∗ (respetively to the minimal objetivefuntion value f ∗).The behavior of ES has been empirially observed to be log-linear, and we will startby formalizing this onept:De�nition 1.1. Let A be an algorithm designed for the minimization of an objetivefuntion with a unique global optimum. Let (dn)n be the sequene of the distanes tothe optimum of the best points sampled by algorithm A at iteration n. Then algorithm

A (or the sequene (dn)n) is said to have a log-linear behavior if there exists c 6= 0suh that limn
1
n

ln(dn) = c. Note that depending on c, this an mean onvergene ordivergene: If c > 0, the algorithm diverges in the sense that the logarithm of the distaneto the optimum will inrease linearly to +∞. We shall refer to this situation as log-lineardivergene. On the opposite, if c < 0, the algorithm onverges in the sense that thelogarithm of the distane to the optimum will derease linearly to 0. We shall refer tothis situation as log-linear onvergene.Existing theoretial studies an be divided into two lasses: global and loal onver-gene studies.1.5.1 Global onvergene studiesGlobal onvergene studies refer to theoretial studies where the objetive funtion is notsubjet to many hypothesis. In partiular, these studies inlude multi-modal objetivefuntions. In the ase of the simplest ES proedure, the (1 + 1)-ES, a su�ient onditionensuring almost sure onvergene of the algorithm over a ompat set [150℄ when thesequene of step-sizes, (σn)n∈N, is deterministially updated with zero as limit is that
σn
√

ln(n) → +∞ when n goes to +∞.In the ase where the step-size is not updated, Rudolph [117℄, and later Chonghuiand Huanwen [33℄ prove the same result of almost sure onvergene of the sequene ofobjetive funtions solutions generated by the (1 + 1)-ES to the global minimal objetivefuntion value for ontinuous objetive funtions de�ned on a bounded searh spae. Fora spei� ES using quasi-random mutations and a spei� deterministi adaptation ruleof the step-size [19℄, an almost sure global onvergene is shown using mild assumptionson the objetive funtion.34



1.5. Survey of theoretial studies on Evolution Strategies: Non-noisy funtionsA negative result was shown by Rudolph [119℄ in the ase of the (1 + 1)-ES using theone-�fth adaptation rule: there is a stritly positive probability that the algorithm getsstuk in a loal optimum.1.5.2 Loal onvergene studiesAll theoretial studies that will be presented in this thesis belong to the loal onvergenestudies. These studies are onerned either with objetive funtions that possess a uniqueglobal optimum, or with the onvergene of ES to a loal optimum. Without loss ofgenerality, we an suppose that in the general ase that the loal (or unique) optimum x∗that we are onerned with is (0, . . . , 0) ∈ R
d.Loal studies an in turn be lassi�ed into studies in �nite dimension and studieswhere the dimension is assumed very large, that we will abusively all 'in�nite dimension'studies.In�nite dimension studiesBy in�nite dimension studies, we refer to studies that make the approximation of a searhspae dimension d going to +∞. The general ontext of this studies is the so-alledprogress rate theory [114, 25℄. This theory investigates quantities suh as the progressrate, the �tness gain, or the suess probability. The progress rate is the expeted progresstoward the optimum of a single iteration whih an be written as the onditional expeta-tion E (1 − ‖Xn+1‖

‖Xn‖ |Xn

). The �tness gain is the expeted gain in �tness at eah iteration.A lass of objetive funtions that have been widely investigated in progress ratetheory is the lass of the so-alled spherial funtions, whih are real valued funtionsde�ned on R
d by f(x) = g(‖x‖2) where x ∈ R

d, g : [0,+∞[7→ R is an inreasing funtionand ‖.‖ denotes the eulidean norm on R
d. All spherial funtions have a unique globalminimum reahed on (0, . . . , 0). In�nite dimension studies had also investigated otherobjetive funtion models suh as the orridor model, various ridge funtions and otherpositive de�nite quadrati forms.These studies use some normalizations of underlying quantities suh as the step-sizemutation and the progress rate. These normalizations are useful when dimension d goesto in�nity. The sign of the limit of the normalized progress rate determines whether thealgorithm onverges or diverges when the searh spae dimension is su�iently high: Astritly positive normalized progress rate implies the onvergene of the relative algorithmand a stritly negative normalized progress rate implies the divergene of the algorithm.Moreover, these studies investigate isotropi ES using either realisti adaptation rulessuh as the one-�fth adaptation rule, the self-adaptation rule or the umulative steplength adaptation rule, or an arti�ial adaptation rule alled sale-invariant adaptationrule. The sale-invariant adaptation rule, whih assumes that the distane to the optimumof a urrent solution is known at eah iteration (whih is not the ase in pratie), setsthe step-size mutation at a given iteration proportional to this distane.Studies using the progress rate theory are quantitative studies, asymptoti in thedimension of the searh spae but that rely on some approximations. Other asymptoti35



Chapter 1. Non linear ontinuous optimizationstudies have been arried out by J. Jägersküpper [72, 70, 71, 75℄8, the proofs are rigorousat the expense of loosing quantitative results. Most of these studies aim to determinehow the runtime of ES (or more general zeroth order methods) varies as a funtion of thesearh spae dimension.Finite dimension studiesSome loal studies in the �nite dimensional ase have also been onerned with the sale-invariant adaptation rule: It has been proved [17℄ that this rule is optimal, in the sensethat the onvergene rate that is obtained with this rule when minimizing sphere fun-tions is optimal. However, it has also been rigorously shown that the (1, λ)-ES onverges(or diverges) log-linearly when minimizing spherial funtions using either the optimalsale-invariant adaptation rule [17, 27℄ or the true self-adaptation rule [13, 27℄ (see Se-tion 1.2.4). Those results [13, 17, 27℄ have been established using the Laws of LargeNumbers (LLN) for independent random variables or for random variables onstituting aMarkov hain sequene. A omplete presentation of the theory investigating the stabilityof Markov hain sequenes an be found in [97℄.Other results have been obtained for more general lasses than sphere funtions. Fora spei� lass of onvex objetive funtions, Rudolph [118℄ investigates the (1, λ)-ESwhere mutations follow a uniform distribution on the sphere and the step-size is adaptedproportionally to the norm of the gradient on the urrent solution (at iteration n, thestep-size σn is set to σ‖∇Xn‖, where Xn is the urrent solution and σ is a stritly pos-itive onstant). He proves that the sequene of objetive funtions (f(Xn))n onvergesgeometrially fast to the optimal value provided that σ is su�iently small. A. Augeret al. [14℄ investigate a similar (1, λ)-ES algorithm using Gaussian mutations and eitherthe sale-invariant adaptation rule (i.e., σn = σ‖Xn‖) or the gradient-proportional rule(i.e., σn = σ‖∇Xn‖, for some σ > 0). They prove that the sequene (f(Xn))n onvergesto the optimal solution almost surely and in L1, for a spei� lass of twie ontinuouslydi�erentiable objetive funtions. This result was established using the martingale theoryand holds for su�iently small values of σ.Finally, A. Auger and N. Hansen [17℄ have bridged the gap between the progressrate theory and �nite dimension studies. In the ontext of the minimization of spherialfuntions, they introdue the so-alled log-progress rate as the onditional expetation
E (ln(‖Xn‖) − ln(‖Xn+1‖)|Xn). They prove that the sign of this quantity gives the almostsure onvergene of the algorithm for �nite dimensions. Moreover, they have shown that,when using the normalizations that are used in the ontext of the progress rate theory, thelimits of the normalized log-progress rate and of the normalized progress rate are equalwhen the searh spae dimension d goes to in�nity. Another important point of theirstudy is that, for �nite dimension, the sign of the normalized progress rate determinesthe onvergene in mean of the solutions generated by the (1, λ)-ES algorithm, and notthe almost sure onvergene.8For the �rst referene, the work has been done in ollaboration with Carsten Witt.36



1.6. Survey of theoretial studies on Evolution Strategies: Noisy funtions1.6 Survey of theoretial studies on Evolution Strate-gies: Noisy funtions1.6.1 MotivationsThe most important part of the work presented in this thesis deals with the optimizationof noisy objetive funtions. Noisy optimization is an important part of optimization, be-ause noisy objetive funtions are very frequently enountered in real-world optimizationproblems. Several situations may lead to noisy objetive funtions. Objetive funtionsan be the result of some physial measurements, and the measured values will di�er dueto the variability of experimental onditions at eah measurement. Noise an be also theonsequene of user input. Also objetive funtions resulting from Monte-Carlo simu-lations are noisy due to their stohasti nature: the preision of these methods dependon the number of iterations, but the results over di�erent simulations will always have apositive variane.These examples share the property that the reevaluation of these objetive funtionwith the same input data will lead to di�erent values: we shall assume that the noiseinvestigated here is an unknown random variable. The randomness of the noisy partof objetive funtions removes an important part of the information on this funtion.This means that ruggedness an be taken into aount by the model of a noisy objetivefuntion.Many papers have been devoted to theoretial or empirial investigations of optimiza-tion of noisy objetive funtions [138, 23, 106, 80, 24, 25, 7, 5, 8, 9, 10, 136℄. In many em-pirial studies [9, 106, 138℄, noisy objetive funtions are used to assess the performanesof di�erent strategies. The work in [9℄ demonstrates the e�ieny and the robustness ofa CMA-ES-like algorithm (whih is an algorithm similar to CMA-ES but wih does notuse the adaptation of the ovariane matrix) when dealing with noisy objetive funtions.Furthermore, for high noise levels, this CMA-like method outperforms the impliit �lter-ing method, a method that was espeially designed to deal with noise (see Setion 1.1.2).In [106℄, the e�ieny of population-based methods is ompared to that of deterministipoint-methods in noisy environments. The results favor population-based optimization,and ES in partiular.ES have thus been empirially demonstrated to be robust when minimizing noisyobjetive funtions. However, the most investigated theoretial studies are in�nite di-mension studies [24, 7, 25, 8, 5℄ and rely on many approximations and normalizations (seeSetion 1.6.3).1.6.2 Evolutionary Algorithms in noisy environmentsEvolutionary Algorithms are known to be robust with respet to noise, as has been knownfor long in the ontext of disrete searh spaes [44, 112, 100℄. However, studies of GA innoisy environment are mostly empirial and, to the best of our knowledge, do not inludeany theoretial investigation.In [24℄, H.-G. Beyer surveyed some studies on the behavior of di�erent �avors of EAs(GA, ES and EP). In partiular, despite the fat that GA (for disrete searh spaes)37



Chapter 1. Non linear ontinuous optimizationand ES (for ontinuous optimization) operate on di�erent searh spaes, their behaviorsshow some similarities when applied to noisy objetive funtions. In fat, the noise resultsin a derease of the onvergene speed, and leads to a loss of auray in terms of theloalization of the optimum.The ritial issue when optimizing noisy objetive funtions is that it an make theseletion proess unreliable, and hene turn any searh algorithm into some kind of randomwalk. However, beause the noise is assumed to have zero mean, stohasti tehniquesan ope with rather high levels of noise by over-sampling the noisy �tness funtion: thisan be ahieved by assigning to eah new individual an average of several evaluations ofthe �tness funtion. Another possible solution is to inrease the population size: Thenon-zero variane of the population size in the ase of the (µ, λ)-ES [7℄, or, the genetirepair of the (µ/µI , λ)-ES [6℄, lead to an inrease of the performanes of these strategies innoisy environments. In the same ase of ES, another solution, that has been analyzed in[24℄, is onerned with the use of resaled mutations: The standard ES Gaussian mutationis replaed by equation:
(Yn)j = (Xn)i +

1

k
σnNj(0, Cn), (1.24)where k > 1 is the resaling parameter. As stated by Beyer, �the (1, λ)-ES an performlarge searh steps with the result of larger �tness di�erenes whih will be signi�ant overthe noise level.�There has been, however, some theoretial studies about the behavior of ESs in noisyenvironments, that will now be desribed.1.6.3 Theoretial results for noisy optimizationTheoretial studies of optimization of noisy objetive funtions using ES have been mainlydone in the ontext of of the progress rate theory in in�nite dimension. However, few stud-ies in �nite dimension have been done in the ontext of optimization of noisy objetivefuntions using ES [136℄.The �rst in�nite dimension studies of ES on noisy environments have been arriedout by Rehenberg [114℄, who investigated the omputation of the progress rate on thenoisy instanes of the sphere and the orridor funtions. He sueeded in alulating theprogress rate of the (1+1)-ES for the minimization of the noisy orridor funtion. Twentyyears later, Beyer [23℄ omputed the progress rate for the (1 + λ)-ES and (1, λ)-ES whenminimizing the noisy sphere funtion. Sine then, many works by Arnold and Beyer havestudied the behavior of ES on noisy objetive funtions [10, 5, 7, 8, 24, 25, 23℄. Thesestudies over the omma strategies [7℄, the omma strategies with reombination [6℄, andthe plus strategies [8, 25, 23℄. Note the plus strategies in [23, 25℄ in fat use a partiularplus strategy in whih the �tness of the parent is reevaluated at eah iteration.Noise modelBefore starting a theoretial investigation of a noisy �tness funtion, a model has to behosen for the noise. Let f be a �tness funtion with a minimal value f ∗ supposed to be38



1.6. Survey of theoretial studies on Evolution Strategies: Noisy funtionsequal to zero (termed the 'ideal' �tness in the following). There are several possible waysto build a noisy �tness funtion fnoisy from f .A �rst natural idea is to add to the ideal funtion some random variable, for examplea Gaussian random variable: fnoisy(x) = f(x) + ǫN(0, 1) where the noise level ǫ is aonstant value. A possible defet of this model is that the noise an dominate the ideal�tness when getting lose to the optimum, and onsequently leads the searh to behavelike a random walk.Another idea, whih is often true in the ase of quadrati (ideal) objetive funtions(whih will be investigated in this thesis), is that the behavior of the algorithm dependson the ratio between the noise level and the values of the ideal objetive funtion. Thisis why the noise level should be proportional to the ideal objetive (quadrati) funtion.Note that this statement is not neessarily veri�ed in general. In fat, for ubi or quartiideal objetive funtions for example, the behavior of the algorithm really depends on theratio between the noise level and the standard deviation of the ideal �tness values in thepopulation. Therefore, for the spei� ase of quadrati ideal objetive funtion, the ideaof having a noise level proportional to the ideal objetive funtion, should be suitable,and leads to a multipliative noise model whih writes as fnoisy(x) = f(x)(1+σǫN(0, 1)).In the studies ited above [10, 5, 7, 8, 24, 25, 23℄, the objetive funtion is the so-allednoisy sphere funtion: the Gaussian noise9 has a standard deviation proportional to theideal �tness, or, equivalently, to the distane to the optimum (for the sphere funtion).Moreover, the noise model takes into aount an additional normalization of the noisestrength with respet to the searh spae dimension d. In a more general ontext of idealobjetive funtions f(x) = ‖x‖α with α > 0, the noise strength σǫ should be written [25℄
ασ∗ǫ
d
, where σ∗

ǫ > 0 is alled normalized noise strength. Therefore, the model of noisysphere funtion with a �tness-proportional Gaussian noise an be written as:
f(x) = ‖x‖2 +

2σ∗
ǫ

d
‖x‖2N(0, 1) . (1.25)In addition to the normalization of the noise strength, Arnold and Beyer use the samenormalizations relative to the progress rate and the step-size mutation that had beenintrodued in the non-noisy ase for the theoretial studies in the ontext of the progressrate theory (see Setion 1.5.2). Using these normalizations, Arnold and Beyer [8℄ approx-imate the standard deviation of the noise at the o�spring loation by that at its parentloation. Their argument is that, in very large dimension, the parent and its o�springare so lose that the �tness has the same noise level at both loations. Mathematiallyspeaking, if we denote y an o�spring of a parent x, the expression of the �tness of theo�spring whih, aording to Eq. 1.25, writes as f(y) = ‖y‖2 + 2σ∗ǫ

d
‖y‖2N(0, 1) is well ap-proximated by f(y) = ‖y‖2 + 2σ∗ǫ

d
‖x|2N(0, 1). The random part 2σ∗ǫ

d
‖y‖2N(0, 1) is replaedby 2σ∗ǫ

d
‖x‖2N(0, 1).In�nite dimension resultsAs in the non-noisy ase, the sign of the limit of the normalized progress rate is su�ient toindiate whether the algorithm onverges or diverges, in the limit of in�nite dimension for9Note that the study in [10℄ does not assume a Gaussian noise. 39



Chapter 1. Non linear ontinuous optimizationthe noisy sphere funtion. The �rst (expeted) result that an be seen in the plots of thelimit of the normalized progress rate as a funtion of the normalized step-size mutation fordi�erent normalized noise strengths (see for example [25, Fig 3.10℄, [8, Fig 6℄, [7, Fig 4℄) isthat the normalized progress rate dereases when the normalized noise strength inreases.In partiular, the best normalized progress rate orresponds to the non-noisy ase (forwhih the noise strength σǫ equals 0). For omma strategies, it is proved in [25, Fig 3.10℄for the (1, 5)-ES that :
• For 'small' values of the normalized noise strength, the algorithm onverges for smallvalues of the normalized step-size mutation and diverges for su�iently 'large' valuesof the normalized step-size mutation, and
• For 'large' values of the normalized noise strength: the algorithm diverges for anyvalue of the normalized step-size mutation.For plus strategies, the urves in [8, Fig 6℄, plotted using some normalized noise strengthvalues, suggest that the (1+1)-ES whih does not use reevaluation of the parent onvergesfor any value of the normalized step-size mutation. For plus strategies, and using thereevaluation of the parent at every iteration, the plots in [25, Fig 3.12℄ and [8, Fig 6℄suggest that for 'small' values of the normalized noise strength the algorithm onvergesand that it an diverge for large normalized noise strengths.The performane of these di�erent ES strategies (whih do not use reombination) hasbeen ompared in [7, Fig 6℄ as a funtion of the normalized noise strength. It is shownthat for small normalized noise strength values, plus strategies perform better than ommastrategies, and that the opposite happens for large normalized noise strength values.Moreover, some omputations in the in�nite dimension setting were used to deidewhether re-sampling and/or inreasing the population size an improve the performaneof the ES in noisy environments: the (µ, µλ)-ES performs slightly better than the (1, λ)-ES when using re-sampling [24℄. For 'large' noise strengths, the expressions of the progressrate derived by Arnold and Beyer [25, 6℄ suggests that it is better to reevaluate and re-sample than to inrease λ for the (1, λ)-ES, and that one should inrease µ when usingthe (µ/µ, λ)-ES.Finally, the adaptation of the mutation step-size when optimizing noisy objetivefuntions was studied. The usefulness of the one-�fth rule was disussed in [8℄ and thatof a self-adaptive strategy with a resaled mutation in [24℄. An interesting result wasderived in [6℄ where the e�ieny of umulative step length adaptation when dealing withnoisy environments was shown for the (µ/µ, λ)-ES minimizing the noisy sphere funtion.More preisely, the study suggests that umulative step length adaptation generates steplengths in the viinity of optimal ones provided that population sizes are su�iently large.However, a limitation of this results, whih has been done in the limit of in�nite searhspae dimension, is that it requires at the same time su�iently large population sizesand λ << d.In our theoretial and numerial study, we investigate �rst (Chapter 2) the optimiza-tion using the (1 + 1)-ES of non noisy objetive funtions. Then in Chapters 3 and4, we investigate the behavior, when minimizing noisy objetive funtions, of the sale-invariant (1 + 1)-ES (Chapter 3) and of the sale-invariant (1, λ)-ES (Chapter 4). For40



1.7. Disussionthe studies in noisy environments, the noisy objetive funtion model is similar to theone investigated by Arnold and Beyer given in Eq. 1.25 but the noise distribution is notneessary supposed to be Gaussian. In fat, the distribution of the random part of noisyobjetive funtions investigated here inlude lower bounded and unbounded distributions.Moreover, we uses mild assumptions on the noise distribution. Finally, we theoretiallyinvestigate the reliability of some approximations used by Arnold and Beyer.1.7 DisussionIn previous setions (Setions 1.4.4 and 1.4.5), we have shown that ESs and in partiularCMA-ES are e�ient to solve di�ult optimization problems. We give a partiular inter-est to the di�ulties that an be aused by noisy objetive funtions whih are frequentlyenountered in pratie. In partiular, ESs using reombination, have been empiriallyshown [9, 106℄ to be more robust than other deterministi or randomized searh methodsin noisy environments. A �rst goal of this thesis is then to study theoretially and nu-merially the behavior of some simple ESs (simpler than CMA-ES) in noisy environmentsas they performed better in noisy environments. We are onvined that both theoretialand numerial approahes have to be investigated in a omplementary approah. In fat,theoretial studies are helpful to explain the behavior of a given method but they needstrong assumptions on objetive funtions, that are not satis�ed in pratie. Numerialapproahes are also helpful in order to improve our understanding of the behavior of thealgorithms, but one has to be areful not to hastily turn some behaviors that have beenobserved in very partiular ases into general truths. Here again, a theoretial studyan help understanding the experimental fats. For this reason, our studies are based onestablishment of onvergene theorems with numerial simulations that illustrate resultsand that helped us for the understanding of the behavior of the algorithms and wee guide-lines for our theoretial results. Previous theoretial studies of ES in noisy environments(see Setion 1.6) lie on the limit of in�nite dimension of the searh spae. This hypothesisallow to use some approximations. Moreover, some normalizations have been frequentlyused. The noise distribution is also restrited to the Gaussian model (see Eq. 1.25). Inour work, we want to investigate theoretially ESs (in partiular, in noisy environments)when the dimension of the searh spae is �nite and ompare our results to to in�nitedimension results. In the partiular ase of noisy objetive funtions, the noise is notalways assumed to be Gaussian. Another motivation for this study is that, as pointed outin [17℄, in�nite dimension results [17℄ usually provide onvergene in mean results and inthis work we want to give almost sure onvergene results.In the seond part of this thesis, CMA-ES is applied to solve a real-world optimizationproblem. The problem had been previously takled using gradient-based strategies [74,73℄ and one of the goals of this study is to ompare performanes of randomized anddeterministi searh methods in this spei� study and see whether it is true or not thatrandomized searh methods seem to be more robust that deterministi searh methods insolving real-world optimization problems. 41
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Chapter 2Log-linear Convergene and OptimalBounds for the (1 + 1)-ESThe material in this Chapter is mainly ontained in the paper [77℄ that has been publishedin a Springer Verlag LNCS volume ontaining a seletion of papers presented at theonferene Evolution Arti�ielle 2007. This work has been done in ollaboration withPierre Liardet.In this paper, we have studied the (1 + 1) isotropi ES for minimizing real valuedobjetive funtions de�ned in R
d (d ≥ 1). We have shown two main results:

• Theorem 2.4: The onvergene of the (1 + 1) isotropi ES is at most log-linear andthe optimal onvergene rate is derived.
• Theorem 2.10: The onvergene of the spei� (1 + 1)-ES using a sale-invariantadaptation rule is log-linear when the objetive funtions are the so-alled spherialfuntions, f(x) = g(‖x‖2) where x ∈ R

d, g : [0,+∞[7→ R is an inreasing funtionand ‖.‖ the eulidean norm on R
d. Moreover, the optimal onvergene rate, thatan be rahed when the (1 + 1) isotropi ES optimize any objetive funtion usingany adaptation rule, is obtained when the adaptation rule of the step-size is thesale-invariant adaptation rule and the objetive funtion is the spherial funtion.The log-linear behavior of the sale-invariant (1 + 1)-ES is established using the Law ofLarge Numbers (LLN) for orthogonal random variables (Theorem 2.9). This theorem hasbeen derived from [93, p. 458℄.Similar results had been previously proved in the ase of the (1, λ)-ES: The log-linearbehavior (onvergene or divergene) of the sale-invariant (1, λ)-ES minimizing spherialfuntions have been previously shown in [27, 17℄. The result has been derived using theLLN for independent random variables and suggests that the onvergene results obtainedhold in probability. In [12℄, it is stated that almost sure onvergene is obtained usingsimilar tehniques as in [13℄ where the proof relies on the LLN for Markov hains. Forspei� lasses of twie ontinuously di�erentiable objetive funtions, it has been shownin [14℄, that almost sure onvergene holds for adaptive (1, λ)-ES with the sale-invariantadaptation rule of the step-size mutation σn i.e., σn = σ‖Xn‖ or with di�erent step-sizemutations at eah diretion (σn)

i = σ|∂f(Xn)
∂xi

|, where for i ∈ {1, . . . , d}, ∂f
∂xi

is the i-th45



Chapter 2. Log-linear Convergene and Optimal Bounds for the (1 + 1)-ESpartial derivative of f and Xn is the solution at an iteration n. Those results were derivedusing tools of martingale theory. For the (1, λ)-ES using a realisti self-adaptation rule,the log-linear behavior on spherial funtions has been shown in [13℄ using the LLN forMarkov hains. The optimality of the sale-invariant adaptation rule when minimizingspherial funtions has been already rigorously derived for omma strategies in [17℄.The ontribution of this study is that it provides tight bounds for (1+1)-ES algorithms.The optimal bounds derived in this work an be used to assess the performanes of a given(realisti) step-size adaptation strategy omparing the onvergene rate ahieved by thestrategy with the optimal one, given by the (arti�ial) sale-invariant algorithm on spherefuntion.The optimal onvergene rate that an be reahed by a (1+1)-ES algorithm is given by thevalue of σ maximizing the funtion F de�ned in Lemma 2.1. The theoretial omputationof the optimal σ value is presumably impossible. However, as the onvergene rate F isexpressed as a funtion of an expetation, its omputation (and then that of the optimal
σ value) is investigated using Monte Carlo simulations when the searh spae dimension
d is �nite.In the onlusion of the paper (Setion 2.5), we state that the omputation of the valueof σ maximizing the onvergene rate is equivalent to that of σ maximizing the log-progress
E(ln ‖Xn‖)−E(ln ‖Xn+1‖). We also state that, when the searh spae dimension d goes toin�nity, the quantities d(E(ln ‖Xn‖)−E(ln ‖Xn+1‖)) and the so-alled normalized progressrate d(E(‖Xn‖)−E(‖Xn+1‖)) are equal when replaing σ by σ∗/d (σ∗ > 0), having a limitthat only depends on σ∗ that we an denote l(σ∗) and whose expression is the oppositevalue of the one given in [25, Eq. 3.88℄. The limit l(σ∗) is also the limit, when d goes toin�nity, of the normalized onvergene rate dF (σ∗/d) where F is de�ned in Lemma 2.1.These statements ould be rigorously shown using the same tehnique used in Chapter 4where a more ompliate result is given in the spei� ase of omma strategies. Morevoer,the result will enable us to state the onvergene rate varies asymptotially linearly withthe inverse of the searh spae dimension. On the other hand, it is worth notiing, thatin the similar ontext of a (1+1)-ES using isotropially distributed mutation vetors andminimizing spherial funtions, an algorithmi analysis of how the runtime of the (1+1)-ES depends on the searh spae has been performed by J. Jägersküpper [71℄. In partiular,Jens shows for the one-�fth adaptation rule that, the time to halve the distane to theoptimum is linear in the dimension. This is an other way to state the result (shown here)that the dependene of the onvergene rate is inversely proportional to the dimension.However, Jens studies being asymptoti in the dimension, no onvergene rates for �nitedimension an be derived.
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Proeedings of Evolution Arti�ielle 2007, pp 207-218.The original publiation is available at http://www.springerlink.om
Errata :There are few errata in the published paper:

• Proof of Lemma 2.1: The surfae area of the d-dimensional unit ball should read
Sd = 2πd/2/Γ(d

2
).

• Proof of Proposition 2.7: 1) The quantities Yn and Y ′
n are random variables, notrandom vetors. 2) Last equation: The right hand side of the �rst line should be

1
(2π)d/2

∫

Rd

(

ln− (∥
∥

Xm

‖Xm‖ + σx
∥

∥

)

)

e−
‖x‖2

2 dx− F (σ).
• In Fig 2.1, the plots are rather related to the de�nition of F given in Eq. 2.3 thanto Eq. 2.4 whih is a onsequene of Eq. 2.3.
• A spelling mistake in the sentene just after Eq. 2.1, the world �eulidian� shouldbe written as �eulidean�.48



• The word �independeny� appears twie in the hapter (in the proofs of Lemma 2.2and of Proposition 2.7) and should be replaed by �independene�.
• In the proof of Lemma 2.2, one should have �Using the independene of σ‖X‖−1and N . . . �.
• Before Theorem 2.8, one should have � But the random vetors Y ′

n are i.i.d. . . . �instead of � But the random vetors Yn are i.i.d. . . . �.
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AbstratThe (1 + 1)-ES is modeled by a general stohasti proess whose asymptoti behavior isinvestigated. Under general assumptions, it is shown that the onvergene of the relatedalgorithm is sub-log-linear, bounded below by an expliit log-linear rate. For the spei�ase of spherial funtions and sale-invariant algorithm, it is proved using the Law ofLarge Numbers for orthogonal variables, that the linear onvergene holds almost surelyand that the best onvergene rate is reahed. Experimental simulations illustrate thetheoretial results.2.1 IntrodutionEvolutionary algorithms (EAs) are bio-inspired stohasti searh algorithms that itera-tively apply operators of variation and seletion to a population of andidate solutions.Among EAs, adaptive Evolution Strategies (ESs) are reognized as state of the art algo-rithms when dealing with ontinuous optimization problems. Adaptive ESs sequentiallyadapt the parameters of the searh distribution, usually a multivariate normal distribu-tion, based on the history of the searh. Several adaptation shemes have been introduedin the past. The one-�fth suess rule [114, 82℄ onsiders the adaptation of one parameter,referred as the step-size, based on the suess probability. The most advaned adaptationsheme, the Covariane Matrix Adaptation (CMA), adapts the full ovariane matrix ofthe multivariate normal distribution [61℄.The �rst theoretial works arried out in the ontext of Evolution Strategies foused onthe so-alled progress rate de�ned as a one-step expeted progress towards the optimum[114, 25℄. The progress rate approah onsists in looking for step-sizes maximizing the50



2.2. Mathematial model for the (1 + 1)-ESexpeted progress. This amounts to investigating an arti�ial step-size adaptation shemealled sale-invariant, in whih, at eah iteration, the step-size is proportional to thedistane to the optimum. The results derived in the ontext of the progress rate theoryhold asymptotially in the dimension of the searh spae and the tehniques used do notallow to obtain �nite dimension estimations.Finite dimension results were obtained in the ontext of 'omma' strategies on thelass of the so-alled sphere funtions, mapping R
d into R (d being the dimension of thesearh spae) and de�ned as

f(x) = g(‖x‖2) , (2.1)where g : [0,+∞[7→ R is an inreasing funtion and ‖.‖ denotes the usual eulidian normon R
d. On this lass of funtions, sale-invariant ESs [27℄ and self-adaptive ESs (whih usea real adaptation rule) [27, 13℄ do onverge (or diverge) with order one, or log-linearly1.In this paper, �nite dimension results are investigated and the fous is on the simplestES, namely the (1 + 1)-ES. Setion 2.2 introdues the mathematial model assoiated tothe algorithm in a general framework and provides preliminary results. In Setion 2.3,a sharp lower bound of the log-onvergene rate is proved. In Setion 2.4, it is shownthat this lower bound is reahed for a saled-invariant algorithm on the lass of spherefuntions. The proof of onvergene on the lass of sphere funtions uses the Law of LargeNumbers for orthogonal random variables. A entral limit theorem is also derived fromthis analysis. In Setion 2.5 our results are disussed and related to previous works. Somenumerial experiments illustrating the theoretial results are presented.2.2 Mathematial model for the (1 + 1)-ESLet R
d be equipped with the Borel σ-algebra and the Lebesgue measure. In the sequelwe always assume that (Nn)n denotes a sequene of random vetors (r.ve.) independentand identially distributed (i.i.d.), de�ned on a suitable probability spae (Ω, P ), withommon law the multivariate isotropi normal distribution on R

d denoted by N(0, Id)
(2). Let (σn)n be a given sequene of positive random variables (r.var.). We also assumethat for eah index n, σn is de�ned on Ω and is independent of Nn; further we willalso require that the sequenes (σn)n and (Nn)n are mutually independent. Finally, let
f : R

d → R be an objetive funtion (whih is always assumed to be Lebesgue measurable)and let δn : R
d × Ω → {0, 1} (n ≥ 0) be the measurable funtion de�ned by δn(x, ω) :=

1{f(x+σn(ω)Nn(ω))6f(x)}. In this paper, (1 + 1)-ES algorithms are modeled by the R
d-valuedrandom proess (Xn)n>0 de�ned on Ω by the reurrene relation

Xn+1 = Xn + δn(Xn, IΩ)σnNn , (2.2)where IΩ is the identity funtion ω 7→ ω on Ω and X0 is given.1We say that the sequene (Xn)n onverges log-linearly to zero (resp. diverges log-linearly) if thereexists c < 0 (resp. c > 0) suh that limn
1
n

ln ‖Xn‖ = c.2N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R
d and ovariane matrix theidentity Id. 51



Chapter 2. Log-linear Convergene and Optimal Bounds for the (1 + 1)-ESThe lassial terminology used for algorithms de�ned by (2.2) stresses the parallelwith the biology: the iteration index n is referred as generation, the random vetor Xnis alled the parent, the perturbed random vetor X̃n = Xn + σnNn is the n-th o�spring.The salar r.var. σn is alled step-size. The r.var. δn translates the plus seletion �+� inthe (1 + 1)-ES: the o�spring is aepted if and only if its �tness value is smaller than the�tness of the parent. Several heuristis have been introdued for the adaptation of thestep-size σn, the most popular being the one-�fth suess rule [114, 82℄.Notations and preliminary resultsFor a real valued funtion x 7→ h(x) we introdue its positive part h+(x) := max{0, h(x)}and negative part h− = (−h)+. In other words h = h+ − h− and |h| = h+ + h−. In thesequel, we denote by e1 a unitary vetor in R
d. The following tehnial lemmas will beuseful in the sequel.Lemma 2.1. Let N be a r.ve. of distribution N(0, Id). The map F : [0,∞] → [0,+∞]de�ned by F (+∞) := 0 and

F (σ) := E
[

ln− (‖e1 + σN‖)
]

=
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e− ‖x‖2

2 dx (2.3)otherwise, is ontinuous on [0,+∞] (endowed with the usual ompat topology), �nitevalued and stritly positive on ]0,∞[.Proof :The integral (2.3) always exists but ould be in�nite. In any ase, F (σ) is independent ofthe hoie of e1 due to the invariane of N under rotations. For onveniene we hoose
e1 = (1, 0, . . . , 0) so that ln−(‖e1 + σx‖) = 0 if x = (x1, . . . , xd) with x1 > 0. Let
f1 : R

d × [0,∞] → [0,+∞] be de�ned by
f1(x, σ) = ln−(‖e1 + σx‖2)e−

‖x‖2

2for x 6= (−1/σ, 0, . . . , 0) and f1((−1/σ, 0, . . . , 0), σ) = +∞ (with σ > 0) and �nally
f1(x,+∞) = 0 (= limσ→+∞ f1(x, σ)). Notie that f1(x, σ) = 0 if x1 > 0 and readily
f1((x1, x2, . . . , xd), σ) = f1((x1, ǫ2x2, . . . , ǫdxd), σ) for any (ǫ2, . . . , ǫd) in {−1,+1}d−1 sothat we an restrit the integration giving F (σ) to the domain D :=] −∞, 0[×]0,∞[d−1,more preisely one has

F (σ) =
1

4

( 2

π

)d/2
∫

D
f1(x, σ)dx (2.4)with in addition f1 is �nite everywhere in D. From the de�nition of F (+∞) and f1one has 1

4
(2/π)d/2

∫

D f1(x,+∞)dx = 0 = F (+∞) so that (2.4) holds also for σ = +∞.Now, for any real number σ > 0 �xed, the inequality f1(x, σ) > 0 holds on Bσ := {x ∈
D ; ‖e1 + σx‖ < 1} whih is a nonempty open set, therefore F (σ) > 0. In addition,52



2.2. Mathematial model for the (1 + 1)-ES
f1(x, 0) = 0 for all x and so, F (0) = 0. Passing to spherial oordinates (with d > 2)weobtain after partial integration

∫

D
f1(x)dx = 2cd

∫ +∞

0

∫ π/2

0

ln−(|σr − eiθ1 |)rd−1e−
r2

2 sind−2 θ1dr dθ1where
cd =

∫ π/2

0

· · ·
∫ π/2

0

sind−3(θ2) . . . sin(θd−2)dθ2 . . . dθd−1for d > 3 and c2 = 1. With the lassial Wallis integral Wd−2 =
∫ π/2

0
sind−2 θ dθ and thesurfae area of the d-dimensional unit ball Sd = 2πd/2/Γ(n

2
) we have Sd = 2dcdWd−2 andafter olleting the above results we get

F (σ) =
( 1

2π

)d/2 1

Wd−2Γ(d
2
)

∫ +∞

0

∫ π/2

0

ln−(|σr − eiθ|)rd−1e−
r2

2 sind−2(θ) dr dθ .The integrand g : (r, θ, σ) 7→ ln−(|σr − eiθ|)rd−1e−
r2

2 sind−2(θ) de�ned on the set
]0,+∞[×[0, π/2] × [0,∞] (with g(r, θ,+∞) = 0) is ontinuous. In fat, the ontinu-ity is lear at eah point (r, θ, σ) with σ 6= +∞ and for the points (r, θ,+∞), one has
g(ρ, α, σ) = 0 on ]r/2,+∞[×[0, π/2]×]4

r
,+∞]. Moreover, g is dominated by g1 : (r, θ) 7→

ln−(sin θ)rd−1e−r
2/2 i.e., g(r, θ, σ) 6 g1(r, θ) for all (r, θ, σ) in ]0,+∞[×[0, π/2] × [0,+∞].Sine g1 is integrable, the ontinuity of F on [0,+∞] follows from the Lebesgue dominatedonvergene theorem. For the remaining ase d = 1 the onlusions of the lemma followeasily from (2.4) that gives F (σ) = 1

2
√

2π

∫∞
0

ln−(|1 − σr|)e− r2

2 dr. �Corollary 1. The supremum τ := supF ([0,+∞]) is reahed and σF := minF−1(τ)exists. Moreover 0 < σF < +∞ and 0 < τ < +∞.Proof :This orollary is a straightforward onsequene of the ontinuity of F aording to Lemma 2.1whih implies that F−1(τ) is nonempty and ompat. �Lemma 2.2. Let X denote a r.ve. in R
d suh that ‖X‖−1 is �nite almost surely. Let σbe a non negative random variable and let N be a random vetor in R

d with distribution
N (0, Id) and independent of σ‖X‖−1. Assume that

E
(

ln
(

1 + r
σ

‖X‖
))

∈ O(ecr)with a onstant c > 0, then the expetation of ln+(‖X‖−1‖X + σN‖) is �nite.Proof :Obviously E(ln+(‖X‖−1‖X + σN‖)) 6 E(ln(1 + σ
‖X‖‖N‖)). Using the independeny of53



Chapter 2. Log-linear Convergene and Optimal Bounds for the (1 + 1)-ES
σ‖X‖ and N , and passing to the spherial oordinates, one gets

E
(

ln
(

1 +
σ

‖X‖‖N‖
))

6 E
(

∫

Rd

ln(1 +
σ

‖X‖‖x‖)e
− ‖x‖2

2 dx
)

= SdE
(

∫ +∞

0

ln(1 + r
σ

‖X‖)rd−1e−
r2

2 dr
)

= Sd

∫ +∞

0

E(ln(1 + r
σ

‖X‖))rd−1e−
r2

2 dr

<<

∫ +∞

0

rd−1ecr−
r2

2 dr < +∞ .

�Remark 2.2.1. The assumption E(ln(1+r σ
‖X‖)) ∈ O(ecr) (with c = 0) is veri�ed if thereexists α > 0 suh that the expetation of the r.var. (σ/‖X‖)α is �nite.2.3 Lower bounds for the (1 + 1)-ESIn this setion, we onsider a general measurable objetive funtion f : R

d → R. Weprove that the (1 + 1)-ES de�ned by (2.2) for minimizing f , under suitable assumptions,satis�es for all x∗ in R
d and all indies n > 0:

−∞ < E(ln ‖Xn − x∗‖) − τ 6 E(ln ‖Xn+1 − x∗‖) < +∞ (2.5)where τ is de�ned in Corollary 1.If x∗ is a limit point of (Xn) (that ould be a loal optimum of f), (2.5) means that theexpeted log-distane to x∗ annot derease more than τ , in other words, −τ is a lowerbound for the onvergene rate of (1 + 1)-ES. The proof of this result uses the followingeasy Lemma whose proof is left to the reader.Lemma 2.3. Let Z and V be r.ve. and let Θ be any r.var. valued in {0, 1}. Assumethat the r.var. ln(‖Z‖) is �nite almost surely. Then the following inequalities
ln(‖Z‖) − ln−(‖Z‖−1‖Z + V ‖) ≤ ln(‖Z + ΘV ‖)

≤ ln(‖Z‖) + ln+(‖Z‖−1‖Z + V ‖) (2.6)hold almost surely.We are ready to prove the following general theorem.Theorem 2.4 (Lower bounds for the (1 + 1)-ES). Let (Xn)n be the sequene of randomvetors verifying (2.2) with a given objetive funtion f as above. Assume that for eahstep n = 0, 1, 2, . . . the random vetor Nn is independent of both the random variable σn54



2.3. Lower bounds for the (1 + 1)-ESand the random vetor Xn. Let x∗ be any vetor in R
d and suppose that E(

∣

∣ ln(‖X0 −
x∗‖)

∣

∣) < +∞ and for all n > 0,
E
(

ln(1 + r
σn

‖Xn − x∗‖)
)

∈ O(ecnr)with a onstant cn > 0. Then
E (| ln (‖Xn − x∗‖) |) < +∞ ,and

E(ln(‖Xn − x∗‖)) − τ ≤ E(ln(‖Xn+1 − x∗‖)) , (2.7)for all n > 0, where τ is de�ned in Corollary 1. In partiular, the onvergene of the
(1 + 1)-ES is at most linear, in the sense that

inf
n∈N

1

n
E
(

ln
(

‖Xn − x∗‖/‖X0 − x∗‖
))

≥ −τ . (2.8)Proof :Set Zn = Xn − x∗, X̃n = Xn + σnNn and Z̃n = X̃n − x∗. We prove the integrability of
ln (‖Zn‖) by indution. By assumption E( ln(‖Z0‖)

) is �nite. Suppose that E( ln ‖Zn‖
) is�nite, then 0 < ‖Zn‖ < +∞ almost surely, hene ln

(

‖Zn+1‖
) is also �nite almost surely.We laim that E( ln(‖Zn+1‖)

) is �nite. By applying Lemma 2.3 we get (2.6) and derive
ln+ (‖Zn+1‖) ≤ ln+ (‖Zn‖) + ln+

(

‖Zn‖−1(‖Zn + σnNn‖)
)

. (2.9)By Lemma 2.2 the expetation of ln+
(

‖Zn‖−1(‖Zn +σnNn‖)
) is �nite and using (2.9) weonlude that E( ln+ (‖Zn+1‖)

)

< +∞. It remains to show that E( ln−(‖Zn+1‖)
) is also�nite. Using the �rst inequality in (2.6) we obtain

ln− (‖Zn+1‖) ≤ − ln (‖Zn‖) + ln−
(∥

∥

∥

Zn
‖Zn‖

+
σn

‖Zn‖
Nn

∥

∥

∥

)

+ ln+ (‖Zn+1‖) . (2.10)For eah n ≥ 0, let Fn denote the σ-algebra generated by the r.ve. Xn and the r.var. σn.Taking the onditional expetation we obtain
E[ln−(‖Zn+1‖) | Fn]

≤ − ln(‖Zn‖) + E
[

ln−
(∥

∥

∥

Zn
‖Zn‖

+
σn

‖Zn‖
Nn

∥

∥

∥

)

| Fn

]

+ E
[

ln+
(

‖Zn+1‖
)

| Fn

]

.Sine the distribution Nn is invariant under rotation and independent of Fn,
E
(

ln−
(∥

∥

∥

Zn
‖Zn‖

+
σn

‖Zn‖
Nn

∥

∥

∥

)

| Fn

)

=
1

(2π)d/2

∫

Rd

ln−(‖e1 + tnx‖)e−
‖x‖2

2 dx

= F (tn)where e1 is any unit vetor on R
d, tn = σn/‖Zn‖ (and F is the map introdued inLemma 2.1). Using Lemma 2.1, we get 55
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E
[

ln− (‖Zn+1‖) | Fn

]

≤ − ln (‖Zn‖)+τ+E
[

ln+ (‖Zn+1‖) | Fn

] (reall that τ = maxF ([0,+∞])).Passing to the expetation we get
E
[

ln− (‖Zn+1‖)
]

≤ −E [ln (‖Zn‖)] + τ + E
[

ln+ (‖Zn+1‖)
]

< +∞ .Hene E[| ln(‖Zn+1‖)|] is �nite for all n > 0. Moreover, we also get
E(ln ‖Zn+1‖) > E(ln ‖Zn‖) − τand after summing suh inequalities we obtain

E (ln (‖Zn‖/‖Z0‖)) ≥ −τnand (2.8) follows. �When x∗ is a loal minimum of the objetive funtion, E(ln ‖Xn−x∗‖)−E(ln ‖Xn+1−
x∗‖) represents the expeted log-distane redution towards x∗ at the n-th step of iteration,alled log-progress in [17℄. Theorem 2.4 shows that the log-progress is bounded above by
τ = F (σF ).2.4 Spherial funtions and the sale-invariant algorithmIn this setion we prove that the lower bound −τ obtained in Theorem 2.4 is reahed forspherial objetive funtions when σn = σF‖Xn‖ (n > 0). Reall that sphere objetivefuntions are de�ned by f(x) = g(‖x‖2) where g is any inreasing map, so that theaeptane ondition f(Xn+1) 6 f(Xn) is equivalent to ‖Xn+1‖ 6 ‖Xn‖. It follows that
(‖Xn‖)n>0 is a non-inreasing sequene of positive random variables (�nite almost surely),hene onverges pointwise almost surely. For spherial funtions, Lemma 2.3 beomes:Lemma 2.5. Let X and W be any random vetors and let Θ = 1{f(X+W )6f(X)} andassume that the random variable ln(‖X‖) is �nite almost surely. Then the equality

ln(‖X + ΘW‖) − ln(‖X‖) = − ln+(‖X‖−1‖X +W‖) (2.11)holds almost surely.Proof :The equality (2.11) emphasizes the fat that ‖X + Θ‖ 6 ‖X‖ with equality on the event
{Θ = 0} (= {‖X +W‖ > ‖X‖}). �Proposition 2.6. Let (Xn)n be the sequene of random vetors valued in R

d satisfying thereurrene relation (2.2) involving spherial funtion f(x) = g(‖x‖2) where g : [0,∞[→ Ris an inreasing map. Assume that E(ln(‖X0‖) is �nite and that, at eah step n, therandom vetor Nn is independent of both the random variable σn and the random vetor
Xn. Then E(ln(‖Xn‖) is �nite for all indies n, the inequalities

E(ln(‖Xn‖) − τ 6 E(ln(‖Xn+1‖)hold, where τ is de�ned above in Corollary 1, and
ln(‖Xn‖) − ln(‖Xn+1‖) = ln−(‖Xn‖−1‖Xn + σnNn‖) < +∞ a.s. (2.12)56



2.4. Spherial funtions and the sale-invariant algorithmProof :By onstrution ‖Xn+1‖ 6 ‖Xn‖ 6 ‖X0‖ so that E(ln+(‖Xn+1‖)) 6 E(ln+(‖X0‖)) < +∞.Now assume that ln(‖Xn‖) is integrable, hene 0 < ‖Xn‖ < +∞ a.s. and so, byLemma 2.5, to obtain the inequalities and equality asserted in the proposition it is enoughto prove that E(ln−(‖Xn‖−1‖Xn+σnNn‖)) 6 τ . But similarly to the end part of the proofof Theorem 2.4 we have E(ln−(‖Xn‖−1‖Xn + σnNn‖)) = E(F (σn/‖Xn‖)) 6 τ . �Now we pay attention to the partiular ase where σn = σ‖Xn‖ with σ > 0 �xed. Theresulting (1 + 1)-ES is said to be sale-invariant, and is modeled by the d-dimensionalrandom proess
Xn+1 = Xn + δn(Xn, IΩ)σ‖Xn‖Nn (n > 0) . (2.13)For onveniene of the reader we ollet the hypothesis that govern the sale-invariantrandom proess (2.13):(HSI) The sequene of random vetors (Nn)n in R

d is i.i.d. with ommon law
N(0, Id), is independent of the initial random vetor X0 and ln(‖X0‖) has a �niteexpetation.Notie that Assumption (HSI) implies in partiular that for m > n > 0, Nm is independentof Xn and by Proposition 2.6, ln(‖Xn‖) has a �nite expetation. The update rule (2.13)is not so realisti beause in pratie, at eah step n, the distane of Xn to the optimumis unknown. Nevertheless, we will show that the stohasti proess de�ned by (2.13)onverges log-linearly for sphere funtions and that for σ = σF the onvergene rate inlog is equal to −F (σF ) (= −τ). In other words, the hoie σn = σF‖Xn‖ orrespondto the adaptation sheme that gives the optimal onvergene rate for isotropi EvolutionStrategies.It is usual for studying stohasti searh algorithms to onsider log-linear onvergeneof Xn by investigating the stability of ln (‖Xn+1‖/‖Xn‖). This idea was introdued in theontext of ESs by Bienvenüe and François [27℄ and exploited in [13℄. The proess Xn givenby (2.13) has a remarkable property expressed in terms of orthogonality of the randomsequenes Yn = ln−

(∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

)

− F (σ):Proposition 2.7. Consider the random variables
Yn := ln−

(∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

)

− F (σ)where F is de�ned by (2.4) and let σ > 0. Under the hypothesis (HSI) the followingshold:1. For n ≥ 0, E(Yn) = 0 and E(|Yn|2) < +∞.2. Let (Y ′
n)n≥0 be the sequene of random variables

Y ′
n := ln−(‖e1 + σNn‖) − F (σ).The random variables Yn (n ≥ 0) are identially distributed and for every n ≥ 0,

Yn and Y ′
n follow the same distribution. 57



Chapter 2. Log-linear Convergene and Optimal Bounds for the (1 + 1)-ES3. The sequene of random variables (Yn)n≥0 is orthogonal, i.e. for all indies i, j, with
i 6= j one has E(Yi) = 0, E(Y 2

i ) < +∞ and E(YiYj) = 0.Proof :The isotropy of the standard d-dimensional normal distribution gives
E
(

ln−
(∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

)

|Xn

)

=
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e− ‖x‖2

2 dx

= F (σ)hene E [ln−
(∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

)]

= E [F (σ)] and so, E(Yn) = 0. Let F2 : [0,∞] → [0,+∞[be de�ned by F2(∞) = 0 and, for t ∈ [0,+∞[,
F2(t) :=

1

(2π)d/2

∫

Rd

[

ln−(‖e1 + tx‖)
]2
e−

‖x‖2

2 dx . (2.14)Similarly to the proof of Lemma 2.1, we prove that F2 is ontinuous, hene bounded.Now, from the de�nitions of F and F2 one has
E(|Yn|2) = F2(σ) − (F (σ))2 < +∞ . (2.15)This ends the proof of the �rst point.The random vetors Yn and Y ′

n have the same distribution if their harateristi fun-tions are idential. But suessively
E(eitYn |Xn) = e−itF (σ)E

(

eit ln
−
(∥

∥ Xn
‖Xn‖

+σNn

∥

∥
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|Xn

)
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e−itF (σ)

(2π)d/2

∫
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it ln−
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e−‖x‖2/2dx
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e−itF (σ)

(2π)d/2

∫

Rd

eit ln
−
(∥

∥e1+σx

∥

∥

)

e−‖x‖2/2dx

= E(eitY
′
n) .Therefore E(eitYn) = E(E(eitYn |Xn)) = E(eitY

′
n). To �nish the proof we show the orthog-onality property of the Yn (n ≥ 0). Let n and m be indies suh that n < m. The randomvetor Yn is σ(Xn,Nn)-measurable, so that

E(YmYn |Xn,Xm,Nn) = YnE(Ym|Xn,Xm,Nn) .Using the independeny of Nm with the random vetors. Xn, Nn and Xm, we get
E(Ym|Xn,Xm,Nn) =

1

(2π)d/2

∫

Rd

(

ln− (∥
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Xn

‖Xn‖
+ σx

∥

∥

)

)

e−
‖x‖2

2 dx− F (σ)

=
1

(2π)d/2

∫

Rd

(

ln−(‖e1 + σx‖)
)

e−
‖x‖2

2 dx− F (σ) = 0 ,that implies E(YmYn) = 0. �58



2.4. Spherial funtions and the sale-invariant algorithmWith the above notations de�ne the random vetors Sn = Y0 + · · · + Yn and S ′
n =

Y ′
0 + · · ·+Y ′

n. Under the hypothesis (HSI), the harateristi funtion of Sn an be writtenas E(itSn) = E(E(itSn |X0,N0, . . . ,Nn−1)) and so, E(itSn) = E(itS ′
n) = (E(itY ′

0))
n+1.But the random vetors Yn are i.i.d. with expetation 0 and variane F2(σ) − F (σ)2(see (2.15)). As a onsequene, the entral limit theorem holds for both (Yn)n and (Y ′
n)n:Theorem 2.8. Under the hypothesis (HSI) one has

lim
n→+∞

P

(

ln(‖Xn‖) − ln(‖X0‖) + F (σ)n
√

(F2(σ) − F (σ)2)n
6 t

)

=
1√
2π

∫ t

−∞
e−

u2

2 du .The pointwise stability of ln (‖Xn+1‖/‖Xn‖) is obtained by applying the following Lawof Large Numbers (LLN) for orthogonal random variables (see [93, p. 458℄ where a moregeneral statement is given).Theorem 2.9 (LLN for Orthogonal Random Variables). Let (Yn)n≥0 be a sequene ofidentially distributed real random variables with �nite variane and orthogonal, i.e., forall indies i, j, with i 6= j one has E(Yi) = 0, E(Y 2
i ) < +∞ and E(YiYj) = 0. Then

lim
n

1

n

n−1
∑

k=0

Yk = 0 a.s.We are now ready to prove the following main resultTheorem 2.10. Let σ > 0 and let (Xn)n be the sequene of random vetors satisfyingthe reurrene relation (2.13) with f(x) = g(‖x‖2) where g is an inreasing map. Assumethat the hypothesis (HSI) holds. Then (Xn)n onverges log-linearly to the minimum, inthe sense that
lim
n

1

n
ln
(‖Xn‖
‖X0‖

)

= −F (σ)(< 0) a.s. (2.16)where F is de�ned by (2.4). The optimal onvergene rate is obtained for σ = σF :=
minF−1(maxF ) (see Corollary 1).Proof :In ase σn = σ‖Xn‖ for all indies n the equality (2.12) beomes

ln ‖Xn+1‖ − ln ‖Xn‖ = − ln−
(∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

)

.and after summing the equations for k = 0, . . . , n− 1, we obtain
1

n
(ln ‖Xn‖ − ln ‖X0‖) = −1

n

n−1
∑

k=0

ln−
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Xk
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+ σNk

∥

∥

∥

)

.Proposition 2.7 and Theorem 2.9 end the proof. �59



Chapter 2. Log-linear Convergene and Optimal Bounds for the (1 + 1)-ES2.5 Disussion and onlusionTheorems 2.4 and 2.10 show that optimal bounds for the onvergene rate of an isotropi
(1 + 1)-ES with multivariate normal distribution are reahed for the sale-invariant algo-rithm with σn = σF‖Xn‖ for the sphere funtion, where σF maximizes

F (σ) = E(ln− ‖e1 + σN‖) =
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e− ‖x‖2

2 dx .From (2.12) and from the isotropy of the multivariate normal distribution N , it fol-lows that �nding σ maximizing F amounts to �nding σ maximizing the log-progress
E(ln ‖Xn‖) − E(ln ‖Xn+1‖).Most of the works based on the progress rate, onsist in �nding σ maximizing estima-tions of the expeted progress E(‖Xn‖) − E(‖Xn+1‖) (when d goes to in�nity) [114, 25℄.Note that the de�nition of progress in those works does not onsider ln ‖Xn‖ and so isdi�erent from the one underlying our study. Assuming that both de�nitions mathes3, ourresults give an interpretation of this approah in terms of lower bounds for onvergeneof ESs.The lower bounds derived in this paper are tight. Consequently they an be used inpratie to assess the performanes of a given step-size adaptation strategy omparingthe onvergene rate ahieved by the strategy with the optimal one, given by the sale-invariant algorithm.The numerial estimation of the optimal onvergene rate −τ an be ahieved with aMonte Carlo integration: for di�erent σ, F (σ) equals the expetation E(ln− ‖e1 + σN‖).This expetation an be estimated by summing independent samplings of the randomvariable ln− ‖e1 + σN‖. This is illustrated in Fig 2.1.The analysis of the log-linear onvergene arried out in this paper relies on the appli-ation of the Strong Law of Large Numbers for orthogonal random variables. This studyuses deeply the invariane under rotations of the standard d-dimensional multivariatenormal distribution and does not over diretly the usual ase of stable Markov hainsthat will be investigated in future works.AknowledgmentsThe authors thank the referees for their onstrutive remarks on the previous version thatlead to this new version and are very grateful to Niolas Monmarhé for his enourage-ments. This work reeives partial supports from the ANR/RNTL projet OptimisationMultidisiplinaire (OMD) and from the ACI CHROMALGEMA.

3This will be true asymptotially in the dimension d, though we do not prove it rigorously in thispaper.60



2.5. Disussion and onlusion

Figure 2.1: Left: Plot of the funtion σ 7→ dF (σ/d) (Eq. (2.4)) versus σ for d = 5 (resp.
10, 30) and 0 ≤ σ ≤ 8. The upper urve orresponds to d = 5, the middle one to d = 10and the lower one to d = 30. Note that the funtion F de�ned in (2.4) impliitly dependson d. Using the more expliit notation Fd instead of F , the plots represent atually
σ 7→ dFd(σ/d). For d = 10, we see that σF maximizing F (de�ned in Corollary 1)approximately equals 0.13. The plots were obtained doing Monte Carlo estimations of Fusing 106 samples.Right: Twenty realizations of the sale-invariant algorithm on the sphere funtion for
d = 10. The y-axis shows the distane to the optimum (in log-sale) and the x-axis thenumber of iterations n. The twenty urves below orrespond to the optimal algorithm,ie. σn = σF‖Xn‖ for all n where σF equals to 0.13 (value maximizing the urve of Fon the left for d = 10). The twenty urves above orrespond to 20 realizations of thesale-invariant algorithm for σn = 0.3‖Xn‖. Observed, the log-linear onvergene as wellas the optimality of the sale-invariant algorithm for σ = σF .
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Chapter 3Study of the Sale-invariant (1 + 1)-ESin Noisy Spherial EnvironmentsIn real-world optimization problems, objetive funtions are noisy. The noise an stemfrom physial measurement limitations or Monte Carlo simulations . . . . In Chapter 2, wehave established that the sale-invariant (1 + 1)-ES onverges log-linearly when minimiz-ing sphere funtions. The goal of this hapter is to see how the behavior of the (1+1)-ESis a�eted when the sphere funtion is disturbed by noise. We investigate the (1 + 1)-ESwith the arti�ial sale-invariant adaptation rule beause this rule is optimal in the aseof non-noisy spherial funtions, as shown in Chapter 2. The noise model investigatedhere is multipliative, i.e., the noisy objetive funtion result from the multipliation ofthe non-noisy objetive funtion by the random variable 1 +N where N is the noise ran-dom variable. Theoretial studies of minimization of noisy objetive funtions using EShave been mainly performed by Arnold and Beyer [23, 24, 7, 25, 5, 8, 10℄. These studiesrely on the approximation of an in�nite dimension of the searh spae and use lassialnormalizations previously used in the �eld of progress rate theory for the step-size of themutation and the progress rate. Moreover, Arnold and Beyer used an additional normal-ization for the noise strength whih represents the variane of the random variable N .The hapter is omposed of three parts:The �rst part (Setion 3.1) is the paper [76℄, that has been published in the proeed-ings of the onferene Parallel Problem Solving From Nature (PPSN 2008). The noisysphere funtion model used in this part is similar to the one studied by Arnold and Beyerin [23, 24, 7, 25, 5, 8, 10℄. It an be written as
Fs(x) = ‖x‖2(1 + N ) (3.1)where we assume that the random variable N has a �nite expetation suh that E(N ) >

−1 and admits a density funtion pN whih lies in the range [mN ,MN [ (−∞ < mN <
MN ≤ +∞, MN > −1 and mN 6= −1). Arnold and Beyer's model is similar (see Eq. 3.2)exept that they used a normalization for the variane of the noise. Moreover, most of thestudies of Arnold and Beyer use the assumption of Gaussian noise. A notable exeptionis the study in [10℄ whih investigates the behavior of a lass of ES using reombination,63



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentsunder the assumption of a general noise distribution. In this paper, we prove (Theorem3.1), that the behavior of the sale-invariant (1 + 1)-ES minimizing the noisy sphere(Eq. 3.1) depends on the in�mum of the (support of the) noise mN . More preisely, weprove that the sequene of solutions generated by the algorithm onverges almost surelyto zero if mN > −1 and diverges to in�nity when −∞ < mN < −1. The result isdemonstrated using the Borel-Cantelli Lemma (Lemma 3.2). The study does not inludethe ase mN = −1.The seond part (Setion 3.2) is the main material for a paper that we intend to submitsoon. The goal of this part is to see if the log-linear behavior that we have proved inChapter 2 for (non-noisy) sphere funtions also holds for noisy spherial funtions. Thisseond part uses the same ontext as the �rst part (Setion 3.1), i.e., the same noisyobjetive funtion given by Eq. 3.1 and a sale-invariant (1 + 1)-ES. Therefore, the mainresult derived in Theorem 3.1 is also used in this part. It is shown (Theorem 3.18) that theonvergene (ifmN > −1) or divergene (if−∞ < mN < −1) of the (1+1)-ES minimizingthe noisy sphere (Eq. 3.1) holds in the sense: 1
n

ln ‖Xn‖ onverges in probability to γ (seeEq. 3.20) where γ is �nite and (Xn)n is the solution of the algorithm at an iteration nde�ned in Eq. 3.5. However, aording to the de�nition of the log-linear behavior givenin Eq. 3.7, one has to show that γ 6= 0 whih is not proven in our study.The main result of this part (Theorem 3.18) has been established using the Law ofLarge Numbers (LLN) for Markov hains (Theorem 3.12).The third part (Setion 3.3) is made of some additional theoretial results that were notinluded in paper [76℄ that they generalize. They are related to 'spatial' onvergene (ordivergene) of the sale-invariant (1 + 1)-ES for the shifted noisy sphere funtion de�nedby Fα(x) = (‖x‖2 + α)(1 + N ) where α is a positive onstant 4. Moreover, in thesestudies, non lower-bounded noise distributions, i.e., mN = −∞, are also investigated (In[76℄, only lower bounded noise distributions had been investigated). Therefore our studyinludes the partiular ase of Gaussian noise that has been investigated by Arnold andBeyer. It is shown in Setion 3.3.1 that if mN > −1 the algorithm onverges. However,if −∞ ≤ mN < −1, it is shown in Setion 3.3.2 that the algorithm annot onverge(in the sense that the L2-norm of the distane to the optimum of the noiseless part ofthe objetive funtion annot onverge to zero), as negative objetive funtion values aresampled after a �nite number of iterations.Comparison with results in [8℄ In [8℄, the sale-invariant (1 + 1)-ES has been inves-tigated using the following model of noisy sphere funtion:
f(x) = ‖x‖2 +

2σ∗
ǫ

d
‖x‖2N(0, 1) (3.2)where d is the searh spae dimension, σ∗

ǫ is a stritly positive onstant alled the normal-ized noise strength and N(0, 1) is the Gaussian random variable with mean 0 and variane
1. The expeted progress rate omputed in [8℄ is positive and onvergene ours for all
σ∗
ǫ values. On the other hand, our theoretial study shows (see Setion 3.3.2) that fornoise distributions with mN = −∞, whih is the ase of a Gaussian noise, no onvergene4For α = 0, Fα(x) simpli�es to Fs(x) de�ned in Eq. 3.1.64



ours. This result is also illustrated by experimental observations: In Fig. 3.3, it an beseen that divergene happens for su�iently large noise strength values. Therefore ourresults may seem in ontradition with Arnold and Beyer's results. The reason for thisapparent ontradition is that, in [8℄, the expression 2σ∗ǫ
d

for the noise level implies a smallnoise strength for large searh spae dimensions. For example, in [8, Fig 8℄, and for σ∗
ǫ = 2and d = 80, the noisy sphere funtion an be written as f(x) = ‖x‖2(1 + 0.05N(0, 1)).Therefore, the probability to sample a negative �tness, whih is the event that leads tonon onvergene, is upper bounded by 10−88. Sampling a negative �tness value is then anevent that will 'never' happens in pratial simulations as it has a probability less that

10−88 to happen, and, the algorithm is observed to onverge.Future work Our study an be ompleted by investigating the ase mN = −1 whihwas not solved here. Moreover, in the seond part of the study, we have only shown thatonverge rates (for mN > −1) and divergene rates (for −∞ < mN < −1) is positiveor negative without exluding the ase of null onvergene or divergene rate to provethe log-linear behavior as de�ned in Eq. 3.7. Fortunately, the onvergene rate given inEq. 3.7 an be easily omputed using Monte Carlo simulations. Therefore, one has toompute numerially this onvergene rate. It seems that the ase mN = −1 is equivalentto having 1
n

ln ‖Xn‖ → 0 in Eq. 3.20. Furthermore, the onvergene established in Eq. 3.20holds in probability and one has to investigate almost sure onvergene in this equation.Another issue to larify is the reliability of an approximation that has been done in [8℄,stating that an o�spring and its parent have similar noise levels in large dimensions. Foromma strategies, we on�rm in Chapter 4 that suh an approximation is reliable, but inthe limit of in�nite dimension of the searh spae.The (1+1)-ES with reevaluation of the parent, and link with Chapter 4 In thishapter, we investigate the behavior of the (1 + 1)-ES when minimizing noisy objetivefuntions with positive ideal funtion values. The (1 + 1)-ES does not onverge for noisedistributions allowing the sampling of negative �tness values and for the spei� sale-invariant adaptation rule. In fat, after a ertain number of iterations, a stritly negativeobjetive funtion value will happens almost surely. Then, as the seletion sheme usedin the (1 + 1)-ES is elitist, the sequene of (negative) �tness funtions dereases and willprobably have as a limit −∞. The same reasoning applies for a (1 + λ)-ES where λ ≥ 1.This means that inreasing the number of o�spring λ is not a solution to avoid divergene.To avoid divergene ases, an alternative is to use the (1 + 1)-ES with a reevaluation ofthe parent in the seletion step [25, 8℄. Another possible solution is to use a non elitistES suh as the (1, λ)-ES whih will be investigated in the next hapter. Note that thebehavior of the (1 + 1)-ES with reevaluation will be very similar to a (1, 2)-ES espeiallyfor high dimensions of the searh spae, as suggested by relative progress rates omputedin [25℄. Moreover, the study that we present in the next hapter (Chapter 4) uses theLLN for orthogonal random variables and the same tehniques an also be applied for thevariant of (1 + 1)-ES reevaluating the parent.
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Errata :All over Setion 3.1 of the hapter, the quantity mN should be referred to as the in�mumof the support of the noise and not the lower bound of the noise (even if mN = −∞).This implies, in the abstrat of the �rst part of the hapter for example, that the sentene�. . . the (1 + 1)-ES diverges when the lower bound allows to sample negative �tness . . . �should write �. . . the (1 + 1)-ES diverges when the in�mum of the support of the noisedistribution allows to sample negative �tness . . . �. Similarly, the quantity MN should bereferred to as the supremum (whih an be in�nite) of the support of the noise instead ofupper bound of the noise.In Lemma 3.6, an additional hypothesis is neessary to establish the result. we have tosuppose that : for all n ≥ 0, the random vetors Un and Nn are independent. Moreover,there are two errata in the seond paragraph of the onlusion of the published paper:
• In the seond paragraph of the onlusion, in the sentene �. . . the normalization ofthe standard deviation of the noise implies a so small probability to sample 1 + N67



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentsbelow −1 . . . �, one should have �1 + N below 0� instead of 1 + N below −1

• In the seond paragraph of the onlusion, in the sentene �. . . where the standarddeviation of 0.1 orresponds to a probability to have (1+0.1N ) < 0 lower boundedby 10−23.�, one should have �upper bounded� instead of �lower bounded�.
• In the abstrat of the paper �dimensionality� should be replaed by �dimension�.
• A spelling mistake in Setion 3.1.2 (paragraph Experimental observations): �re-speitvely� should be written as �respetively�.
• A spelling mistake in the sketh of the proof of Proposition 3.4: �strilty� should bewritten as �stritly�.
• In the beginning of the Setion �Mathematial model for the (1 + 1)-ES�, �pertur-bated� should be written as �perturbed�.
• The word �independeny� at the end of the proof of Lemma 3.5 in the SetionAppendix and the word �independane� in the proof of Lemma 3.6 in the SetionAppendix should be written as `independene�.
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3.1 OnMultipliative Noise Models for Stohasti Searh

On Multipliative Noise Models for Stohasti SearhMohamed Jebalia1 and Anne Auger1,2
1 TAO Team, INRIA SalayUniversité Paris Sud, LRI, 91405 Orsay edex, Frane

2 Mirosoft Researh-INRIA Joint Centre28, rue Jean Rostand, 91893 Orsay Cedex, Franemohamed.jebalia�lri.fr, anne.auger�inria.fr
AbstratIn this paper we investigate multipliative noise models in the ontext of ontinuous op-timization. We illustrate how some intrinsi properties of the noise model imply thefailure of reasonable searh algorithms for loating the optimum of the noiseless part ofthe objetive funtion. Those �ndings are rigorously investigated on the (1 + 1)-ES forthe minimization of the noisy sphere funtion. Assuming a lower bound on the supportof the noise distribution, we prove that the (1 + 1)-ES diverges when the lower boundallows to sample negative �tness with positive probability and onverges in the oppositease. We provide a disussion on the pratial appliations and non appliations of thoseoutomes and explain the di�erenes with previous results obtained in the limit of in�nitesearh-spae dimensionality.3.1.1 IntrodutionIn many real-world optimization problems, objetive funtions are perturbed by noise.Evolutionary Algorithms (EAs) have been proposed as e�etive searh methods in suhontexts [9, 79℄. A noisy optimization problem is a rather general optimization problemwhere for eah point x of the searh spae, we an observe f(x) perturbed by a randomvariable or in other words for a given x we an observe a distribution of possible objetivevalues. The goal is in general to onverge to the minimum of the averaged value of the69



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentsobserved random variable. One type of noise enountered in real-world problems is theso-alled multipliative noise where the noiseless objetive funtion f(x) is perturbed bythe addition of a noise term proportional to f , ie. the noisy objetive funtion F reads
F(x) = f(x)(1 + N ) (3.3)where N is the noise random variable, sampled independently at eah new evaluationof a point. Suh noise models are in partiular used to benhmark robustness of EAswith respet to noise [134℄. The fous here is ontinuous optimization (that will be min-imization) where f maps a ontinuous searh spae, ie. a subset of R

d, into R. TheEAs spei�ally designed for ontinuous optimization are usually referred as EvolutionStrategies (ES), where a set of andidate solutions evolves by �rst applying Gaussian per-turbations (mutations) to the urrent solutions then seletion. ES in noisy environmentshave been studied by Arnold and Beyer [25, 7, 5℄. Multipliative noise has been investi-gated in the ase of N being normally distributed with a standard deviation saled by
1/d for a (1+1)-ES [8℄, (µ, λ)-ES [7, 24℄, (µ/µI, λ)-ES [6℄ and f being the sphere funtion
f(x) = ‖x‖2. Under the assumption that d goes to in�nity, Arnold and Beyer show, for
f(x) = ‖x‖2, positive expeted �tness gain for the elitist (1 + 1)-ES (if the �tness of theparent is not reevaluated in the seletion step whih is the ase of our study). This impliesa derease of the expetation of the square distane to the optimum (here zero). However,onvergene of the (1 + 1)-ES to the optimum of the noiseless part of the noisy objetivefuntion seems to be unlikely if the noise random variable takes values smaller than −1as we illustrate now on a simple example. Assume indeed that N takes three distintvalues (eah with probability 1/3) +γ, 0 and −γ where γ satis�es γ > 1. For a given
x ∈ R

d, the objetive funtion F(x) takes 3 di�erent values (eah with probability 1/3)
(1 + γ)‖x‖2, ‖x‖2, (1− γ)‖x‖2. The last term is stritly negative for x non equal to zero.Therefore, if one negative objetive funtion value is reahed, the (1+1)-ES that an onlyaept solutions having a lower objetive funtion value will never aept solutions loserto the optimum sine they have higher objetive funtion values1. On the ontrary the
(1 + 1)-ES will diverge log-linearly 2, i.e. the logarithm of the distane to the optimumwill inrease linearly.Starting from this observation, we investigate how the properties of the support of thenoise distribution relate to onvergene or divergene of stohasti searh algorithms andan make the onvergene to the optimum of the noiseless part of the objetive funtionhopeless for reasonable searh algorithms. Compared to previous approahes, we do notmake use of asymptoti assumptions, trying to apture e�ets that were not observedbefore [8℄. In Setion 3.1.2, we detail the noise model onsidered and show experimentallyon a (1 + 1)-ES that divergene and onvergene is determined by the probability tosample noise values smaller than −1. In Setion 3.1.3, we provide some simple proofs ofonvergene and divergene for the (1+1)-ES. In Setion 3.1.4 we disuss the results andexplain where the di�erene with the results in [8℄ stems from.1Their absolute value is smaller though. However, trying to minimize the absolute value of F insteadis not a solution in general, onsider for instane the funtion f(x) = (‖x‖2 + 1)(1 + N ).2We will say that a sequene (dn)n diverges (resp. onverges) log-linearly if there exists c > 0 (resp.
c < 0) suh that limn

1
n

ln(dn) = c .70



3.1. On Multipliative Noise Models for Stohasti Searh
−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

θ
−3 −2 −1 0 1 2 3

−5

0

5

10

AFigure 3.1: [Dashed Line℄ One dimensional ut of f(x) = ‖x‖2 along one arbitrary unitvetor. [Straight line℄ Left: One dimensional ut of g−0.5(x) = ‖x‖2(1− 0.5). Right: Onedimensional ut of g−1.5(x) = ‖x‖2(1 − 1.5). For a given x, the noisy-objetive funtionan, in partiular, take any value between the dashed urve and the straight urve.3.1.2 MotivationsElementary remarks on the noise model We investigate multipliative noise modelsas de�ned in Eq. 3.3 where N is a random variable with �nite mean and f(x) is thenoiseless funtion that we assume positive in the sequel. We also assume that 1+E(N ) > 0suh that the argmin3 of the expeted value of F(x) is the argmin of f(x). Often, thedistribution of N is assumed symmetri, implying then that 1 + E(N ) = 1 > 0. Thoughone might think that this ondition is su�ient suh that minimizing F(x) amounts tominimizing f(x), we sketh now, why divergene to ∞ of the distane to the optimumhappens if 1 + N an take negative values.Assume that f(x) onverges to in�nity when ‖x‖ goes to ∞; typially f(x) an be thefamous sphere funtion f(x) = ‖x‖2 and assume that the random variable N admits adensity funtion pN (t), t ∈ R whose support is an interval [mN ,MN [, i.e. N ∈ [mN ,MN [and the probability that N ∈ [a, b] for any mN ≤ a < b ≤ MN is stritly positive. Thefuntion gmN
(x) = f(x)(1+mN ) gives a lower bound of the values that an be reahed bythe noisy �tness funtion for di�erent instantiations of the random variable N (beause

f is positive). For a given x, F(x) an take values with positive probability in any openinterval of ]gmN
(x), f(x)[ (4).In Fig. 3.1 are depited a ut of f(x) = ‖x‖2 and gmN

(x) = f(x)(1 + mN ) for mNequals −0.5 and −1.5. The position ofmN with respet to −1 determines whether gmN
(x)is onvex or onave: for mN > −1, gmN

(x) is onvex, onverging to in�nity when ‖x‖goes to ∞ and for mN < −1, gmN
(x) is onave, onverging to minus in�nity when ‖x‖goes to ∞. Minimizing gmN

(x) in the ase of mN < −1 means that ‖x‖ is diverging to
+∞ and gmN

(x) is diverging to −∞ whih is the opposite of the behavior one would likesine we are aiming at minimizing the non-noisy funtion f(x) = ‖x‖2. Note that in theexample skethed in the introdution with N taking the values γ, −γ and 0, the plot of
‖x‖2 and (1 − γ)‖x‖2 for γ = 1.5 are the urves represented in Fig 3.1 (right).Experimental observations We investigate now numerially how the �shape� of thelower bound might a�et the onvergene. For this purpose we use a (1, 5)-ES and a3The argmin of an objetive funtion x 7→ h(x) are de�ned as h(argminx h) = minx h(x)4Note that gmN

(x) < f(x) i� mN < 0. 71
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Figure 3.2: Distane to the optimum (in log-sale) versus number of evaluations. Tenindependent runs for the sale-invariant (1, 5)-ES (10 upper urves of eah graph) and
(1 + 1)-ES (10 lower urves of eah graphs) with d = 10 and σ = 1/d. Left: f(x) = ‖x‖2.Middle: f(x) = ‖x‖2(1 + U[−0.5,0.5]). Right: f(x) = ‖x‖2(1 + U[−1.5,1.5]).
(1 + 1)-ES using sale-invariant adaptation sheme for the step-size5.We investigate the funtion Fs(x) = ‖x‖2(1 + N ) when the noise N is uniformlydistributed in the ranges [−0.5, 0.5] and [−1.5, 1.5] respeitvely denoted U[−0.5,0.5] and
U[−1.5,1.5]. This latter noise orresponds to the onave lower bound g−1.5(x) = −0.5‖x‖2plotted in Fig. 3.1. In Figure 3.2, the result of 10 independent runs of the (1, 5)-ES (10upper urves of eah graph) in dimension d = 10 are plotted for the non-noisy sphere(left), f(x) = ‖x‖2(1 + U[−0.5,0.5]) (middle) and f(x) = ‖x‖2(1 + U[−1.5,1.5]) (right). Nottoo surprisingly, we observe a drasti di�erene in the last two ases: the algorithmonverges to the optimum for the noise U[−0.5,0.5] whereas the distane to the optimuminreases (log)-linearly for the noise having a lower bound smaller than −1 6. Comparingthe left and middle graphs we also observe, as expeted, that the presene of noise slowsdown the onvergene. On the same �gure (lower urves of the graphs), the results of 10independent runs of the (1 + 1)-ES are plotted for the three same funtions. As in thease of the omma strategy we observe that the (1+1)-ES diverges in the ase of the noise
U[−1.5,1.5] and that, when onvergene ours, the onvergene rate is slower in preseneof noise. Last, we investigate numerially the (1+1)-ES where N is normally distributedand in partiular unbounded. This orresponds to the ase investigated in [8℄. We arryout tests for a standard deviation of the Gaussian noise equals 0.1, 2 and 10. Results arepresented in Fig. 3.3. We observe onvergene when the standard deviation of the noiseequals 0.1 and divergene in the last two ases.5In a sale-invariant ES, the step-size is set at eah iteration as a (stritly positive) onstant σ times thedistane to the optimum. This arti�ial adaption sheme (sine in pratie one does not know the distaneto the optimum!) allows to ahieve optimal onvergene rate for ES and is therefore very interesting froma theoretial point of view. The algorithm is mathematially de�ned in Setion 3.1.3.6However, ontrary to what we will see for the (1 + 1)-ES, we do not state that �-1� is a limit valuebetween onvergene and divergene in the ase of (1, λ)-ES. Indeed onvergene and divergene dependson the intrinsi properties of the noise and on λ and σ as well (see [25℄).72
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Figure 3.3: Ten independent runs for the sale-invariant (1 + 1)-ES with a normallydistributed noise: on f(x) = ‖x‖2(1 + σǫN (0, 1)) with σǫ equals 0.1 (left), 2 (middle) and
10 (right) for d = 10 and σ = 1/d.3.1.3 Convergene and divergene of the (1 + 1)-ESIn this setion, we provide a simple mathematial analysis of the onvergene and diver-gene of the (1 + 1)-ES experimentally observed in the previous setion. We fous forthe sake of simpliity on lower bounded noise, i.e. the support of the noise is inludedin [mN ,+∞[. We prove that the (1 + 1)-ES minimizing the noisy sphere onverges if
mN > −1 and diverges if mN < −1. The proofs are rather simple and rely on the Borel-Cantelli Lemma. For the sake of readability we provide here a sketh of the demonstrationsand send the proofs with the tehnial details in the Appendix of the paper.Mathematial model for the (1 + 1)-ESThe (1 + 1)-ES is a simple ES whih evolves a single solution. At an iteration n, thissolution denoted Xn, is alled parent. The minimization of a given funtion f mapping
R
d (d ≥ 1) into R using the (1 + 1)-ES algorithm is as follows: At every iteration n,the parent Xn is perturbated by a Gaussian random variable σnNn, where σn is a stritlypositive value alled step-size and (Nn)n ∈ R

d are independent realizations of a multivari-ate isotropi normal distribution on R
d denoted by N(0, Id)

(7). The resulting o�spring
Xn + σnNn is aepted if and only if its �tness value is smaller than the one of its parent
Xn. One of the key points in minimization using isotropi ES8 is how to adapt the se-quene of step-sizes (σn). Convergene of the (1 + 1)-ES is sub-log-linear bounded belowby an expliit log-linear rate. This lower bound for the onvergene rate is attained forthe spei� ase of the sphere funtion and sale-invariant algorithm where the step-size ishosen proportional to the distane to the optimum, i.e. σn = σ‖Xn‖ where σ is a stritlypositive onstant [17, 77℄. The sale-invariant algorithm has a major plae in the theoryof ES sine it orresponds to the dynami algorithm impliitly studied in the one-stepanalysis omputing progress rate or �tness gain [113, 25℄. Using this adaptation sheme,the algorithm is referred to as the sale-invariant (1 + 1)-ES and the o�spring writes as7N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R

d and ovariane matrix theidentity Id.8ES are alled isotropi when the ovariane matrix of the distribution of the random vetors (Nn)nis Id. 73



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environments
Xn + σ‖Xn‖Nn. The noisy sphere funtion is denoted

Fs(x) = ‖x‖2(1 + N ) (3.4)where we assume that the random variable N has a �nite expetation suh that E(N ) >
−1 and admits a density funtion pN whih lies in the range [mN ,MN [ where −∞ < mN <
MN ≤ +∞, MN > −1 and mN 6= −1. The normalized noisy part N of the noisy spherefuntion will be alled normalized overvaluation of x. The term normalized overvaluationwas already de�ned in [8℄ where it orresponds to the opposite of the quantity onsideredhere up to a fator d/2. The minimization of this funtion using the sale-invariant (1+1)-ES is mathematially modeled by the sequene of parents (Xn) with their relative noisyobjetive funtions (Fs(Xn)) and normalized overvaluations (On). At an iteration n, the�tness of the parent is Fs(Xn) = ‖Xn‖2 (1 +On) and the �tness of an o�spring equals
‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) where (Nn)n is a sequene of independent random variableswith N as a ommon law. Let X0 ∈ R

d be the �rst parent with a normalized overvaluation
O0 sampled from the distribution of N . Then the update of Xn for n ≥ 0 writes as:

Xn+1 = Xn + σ‖Xn‖Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) < ‖Xn‖2 (1 +On) ,

= Xn otherwise , (3.5)and the new normalized overvaluation On+1 is then:
On+1 = Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) < ‖Xn‖2 (1 +On) ,

= On otherwise . (3.6)The (1 + 1)-ES algorithm ensures that the sequene relative to the funtion to minimize(whih is (Fs(Xn)) in our ase) dereases. This property makes the theoretial study ofthe (1 + 1)-ES easier than that of omma strategies. Our study shows that the behaviorof the sale-invariant (1 + 1)-ES on the noisy sphere funtion (3.4) depends on the lowerbound of the noise mN .Theorem 3.1. The (1 + 1)-ES minimizing the noisy sphere (Eq. 3.4) de�ned in Eq. 3.5onverges to zero if mN > −1 and diverges to in�nity when mN < −1.Proof :The proof of this theorem is split in two ases mN > −1 and mN < −1 respetivelyinvestigated in Proposition 3.3 and Proposition 3.4.The proofs heavily rely on the seond Borel-Cantelli Lemma that we reall below. But�rst, we need a formal de�nition of `in�nitely often (i.o.)': Let qn be some statement,eg. |an − a| > ǫ. We say (qn i.o.) if for all n, ∃ m ≥ n suh that qm is true. Similarly,for a sequene of events An in a probability spae, (An i.o.) equals {w|w ∈ An i.o.} =
∩n≥0 ∪m≥n Am := lim An. The seond Borel-Cantelli Lemma (BCL) states that:Lemma 3.2. Let (An)n≥0 be a sequene of events in some probability spae. If the events
An are independent and verify ∑n≥0 P (An) = +∞ then P (lim An) = 1.74



3.1. On Multipliative Noise Models for Stohasti SearhProposition 3.3 (Convergene for mN > −1). If mN > −1, the sequenes (Fs(Xn)) and
(‖Xn‖) onverge to zero almost surely.Sketh of the proof (see detailed proof in Appendix) The ondition mN > −1 ensuresthat the dereasing sequene (Fs(Xn)) is positive. Therefore it onverges. Besides thesequene (‖Xn‖) is upper bounded by θ := Fs(X0)/(1 +mN ) as shown in Fig. 3.1 (left).Consequently, the probability to hit, at eah iteration n, a �xed neighborhood of 0 islower bounded by a stritly positive onstant. Applying BCL we dedue the onvergeneof the sequene (Fs(Xn)) (and then that of (‖Xn‖)) to zero.Proposition 3.4 (Divergene for mN < −1). If mN < −1, the sequene (Fs(Xn)) di-verges to −∞ almost surely and the sequene (‖Xn‖) diverges to +∞ almost surely.Sketh of the proof (see detailed proof in Appendix) As 1 + mN < 0, the probabilityto sample a noise Nn suh that 1 + Nn < 0 is strilty positive. Therefore there exists aninteger n1 suh that for all n ≥ n1, Fs(Xn) < 0. Consequently (‖Xn‖) is lower boundedby A as illustrated in Fig. 3.1 (right) where the straight horizontal line represents theslope y = Fs(Xn1). Besides, the probability to have Fs(Xn) as small as we want islower bounded by a stritly positive onstant whih gives with BCL the divergene of thesequene (Fs(Xn)) to −∞, i.e. the sequene (‖Xn‖) diverges to +∞.Remark that for the example skethed in the introdution where N takes the 3 di�erentvalues γ, 0 and −γ and under the ondition γ > 1 the proof of divergene will follow thesame lines.3.1.4 Disussion and onlusionWe onlude from Theorem 3.1 that what matters for onvergene or divergene of the
(1+1)-ES in the ase of noisy objetive funtion with positive noiseless part is the positionof the lower bound mN of the noise distribution N with respet to −1 or in other wordsthe existene or not of possible negative �tness values. This result applies in partiularwhen N equals a trunated normal distribution, i.e. N = σǫN (0, 1)1[−a,a]

9 for any a and
σǫ positive. Whenever σǫa > 1, Proposition 3.4 applies and the (1 + 1)-ES diverges.Those results might appear in ontradition with those of Arnold and Beyer [8℄ provingthat the expeted �tness gain is positive−and therefore onvergene in mean holds for thesale-invariant ES−for a noise distributed aording to a normal distribution. In theirmodel, Arnold and Beyer sale the standard deviation of the noise σǫ with 1/d, i.e. when
d → ∞, σǫ onverges to 0. The largest value for the normalized σ∗

ǫ in [8, Fig 5, 6, 8℄,for d = 80 orresponds to a standard deviation of 0.05 for whih the probability to have
(1+0.05N ) < 0 is upper bounded by 10−88 (10), i.e. relatively unlikely! Therefore thoughthey onsider some unbounded noise having a support in R, the normalization of thestandard deviation of the noise implies a so small probability to sample 1 + N below −1that the unbounded noise redues to the ase of onvergene where mN > −1. The sameonlusion holds for the numerial example given in Setion 3.1.2, Fig. 3.3 (left) where9The indiator funtion 1[−a,a](x) equals 1 if x ∈ [−a, a] and 0 otherwise.10For omputing the lower bound we use the fat that P (N (0, 1) < x) ≤ exp(−x2/2)/|x|

√

(2π) for
x < 0. 75



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentsthe standard deviation of 0.1 orresponds to a probability to have (1 + 0.1N ) < 0 lowerbounded by 10−23. Therefore though the theory predits divergene as soon as mN < −1,what matters in pratie is how likely the probability to sample N < −1 is.In onlusion, we have illustrated that onvergene but also divergene an happen forthe multipliative noise model. Those results are due to the probability to sample 1 + Nsmaller than 0 and are therefore intrinsi to the noise model and not to the '+' strategy.The probability that 1 + N an be very small, in whih ase theory predits divergenethat will not be observed in simulations. We deided to present simple proofs relyingon Borel-Cantelli Lemma. As a onsequene, those proofs do not show the log-linearonvergene and divergene observed in Setion 3.1.2. Obtaining the log-linear behavioran be ahieved using the theory of Markov hain on ontinuous state spae. Last, wedid not inlude results onerning a translated sphere f(x) = ‖x‖2 + α with α ≥ 0 forwhih our proofs of onvergene an be extended but where linear onvergene does nothold anymore due to the fat that the variane of the noise distribution does not redueto zero lose to the optimum.AknowledgmentsThe authors would like to thank Nikolaus Hansen for many valuable disussions. Thiswork reeives partial supports from the ANR/RNTL projet Optimisation Multidisi-plinaire (OMD).AppendixProof of Proposition 3.3 The sequene (Fs(Xn)) is dereasing and is lower boundedby 0 as Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 . Therefore it onverges to a limit l ≥ 0. Let usshow that l = 0. Let ǫ > 0, we have to show that ∃ n0 ≥ 0 suh that Fs(Xn) ≤ ǫ for n ≥ n0.Sine the sequene (Fs(Xn)) is dereasing, we only have to show that ∃ n0 ≥ 0 suh that
Fs(Xn0) ≤ ǫ . Let β > 1 and suh that [1+mN , β(1+mN )[⊂ supp(1+N ). In Lemma 3.5,we have de�ned the event An,ǫ,β, shown that it is inluded in the event {Fs(Xn+1) ≤ ǫ} andproved that the events (An,ǫ,β)n are independent. Moreover, P (An,ǫ,β) = P (‖e1 + σN‖2 ≤

ǫ
(1+β)θ2(1+mN )

)P (1+N ≤ β(1+mN )) (where θ is de�ned in Lemma 3.5) is a stritly positiveonstant for all n. Then ∑+∞
n=0 P (An) = +∞. This gives by BCL that P (lim An) = 1.Therefore P (lim {Fs(Xn+1) ≤ ǫ}) = 1, i.e. ∃n0 suh that ∀n ≥ n0, Fs(Xn) ≤ ǫ. Therefore

Fs(Xn) onverges to 0. The sequene (‖Xn‖) onverges also to 0 as ‖Xn‖2 ≤ Fs(Xn)
1+mN

.Lemma 3.5. If mN + 1 > 0, the following points hold:1. The sequene (‖Xn‖) is upper bounded by θ :=
√

Fs(X0)
1+mN

> 0.2. Let ǫ > 0 and β > 1 suh that β(1 + mN ) ∈ supp(1 + N ). For n ≥ 0, theevent An,ǫ,β :=

({

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ ǫ
(1+β)θ2(1+mN )

}

∩ {1 + Nn ≤ β(1 +mN )}
)

(11)veri�es An,ǫ,β ⊂ {Fs(Xn+1) ≤ ǫ}. Moreover, the events (An,ǫ,β)n are independent.11The multivariate Gaussian distribution is absolutely ontinuous with respet to the Lebesgue measuresuh that P (‖Xn‖ = 0) = 0 and then we an divide by ‖Xn‖ almost surely.76



3.1. On Multipliative Noise Models for Stohasti SearhProof :1. For n ≥ 0, Fs(Xn) = ‖Xn‖2 (1 +On) = ‖Xn‖2
(

1 + Nφ(n)

) where φ(n) is the index ofthe last aeptane (obviously φ(n) ≤ n). Then, for n ≥ 0

Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 and onsequently ‖Xn‖2 ≤ Fs(Xn)
1+mN

≤ Fs(X0)
1+mN

.2. Let ǫ > 0 and β > 1 suh that [1 +mN , β(1 +mN )[⊂ supp(1 + N ) (with βmN < MNif MN < +∞). For n ≥ 0, the event
{(

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

< ǫ
(1+β)θ2(1+mN )

)

∩ (1 + Nn < β(1 +mN ))

} implies for the o�spring
X̃n := Xn + σ‖Xn‖Nn reated at the iteration n that
Fs(X̃n) = ‖Xn‖2

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

(1 + Nn) ≤ θ2 ǫ
(1+β)(1+mN )θ2

β(1 +mN ) .Then Fs(X̃n) ≤ β
β+1

ǫ < ǫ. If this o�spring is aepted then Fs(Xn+1) < ǫ, otherwise the�tness is already less than ǫ and we have also Fs(Xn+1) < ǫ. Finally, the independenyof the events (An,ǫ,β)n result from Lemma 3.6 applied to the sequene (Xn).Lemma 3.6. Let (Un) be a sequene of random vetors in R
d suh that P (‖Un‖ = 0) = 0and Nn independent random vetors distributed as N(0, Id). Then the variables Yn :=

∥

∥

∥

Un

‖Un‖ + σNn

∥

∥

∥
are independent.Proof :The independane of the random variables Yn is due to the fat that the multivariateGaussian variable N(0, Id) is isotropi and is therefore invariant by rotation. The lengthof the vetor Un

‖Un‖ + σNn will therefore be independent of where we start on the unithypersphere, i.e., independent of the vetor Un

‖Un‖ .Proof of Proposition 3.4 Let n ≥ n1 (n1 de�ned in Lemma 3.7). We have to show thatfor any m < Fs(Xn1) < 0, ∃ n ≥ n1 suh that Fs(Xn) ≤ m, or equivalently |Fs(Xn)| ≥
|m|. Similarly to the proof of Proposition 3.3, by BCL we have (Bn,m,β i.o.) ((Bn,m,βbeing de�ned in Lemma 3.7) therefore Lemma 3.7 gives that (Fs(Xn+1) ≤ m i.o.). Then
Fs(Xn) = ‖Xn‖2 (1 +On) tends to −∞. For all n ≥ n1, 0 ≥ 1 + On ≥ 1 + mN , then
|Fs(Xn)|
|1+mN | ≤ ‖Xn‖2 for n ≥ n1. Consequently (‖Xn‖) onverges to +∞ almost surely.Lemma 3.7. Assume that mN + 1 < 0. The following points hold:1. There exists n1 ≥ 0 and A :=

√

|Fs(Xn1 )|
|1+mN | > 0 suh that Fs(Xn) < 0 and ‖Xn‖ ≥ Afor n ≥ n1 almost surely.2. Let m < Fs(Xn1) < 0 and β > 1. For n ≥ n1, the event Bn,m,β de�ned by Bn,m,β :=

({

|1 − σ‖Nn‖|2 ≥ |m|
|mN+1|

β+1
A2

}

∩
{

1 + Nn ≤ 1+mN

β

}) veri�es Bn,ǫ,β ⊂ (Fs(Xn+1) ≤ m).Proof :1. We �rst prove that the event A := { ∃ n1 ≥ 0 suh that ∀ n ≥ n1,
Fs(Xn) < 0} is equivalent to the event B := { ∃ p0 ≥ 0 suh that Np0 < −1 }.Proving that A ⊂ B is equivalent to show that Bc ⊂ Ac. Suppose that ∀p ≥ 0, Np ≥ −1.Then ∀p ≥ 0, Op ≥ −1. Therefore ∀p ≥ 0, Fs(Xp) = ‖Xp‖2 (1 +Op) ≥ 0. Now wehave to show that B ⊂ A: Suppose that ∃ p0 ≥ 0 suh that Np0 < −1. We denote77



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environments
p1 ≥ 0 the integer de�ned by p1 = min{p ∈ N suh that Np < −1}. Then Fs (Xp1) < 0and Fs (Xp) ≥ 0 for all 0 ≤ p ≤ p1 − 1. Sine (Fs (Xn)) is a dereasing sequene,
Fs(Xn) < 0 ∀ n ≥ p1. This implies that P (A) = P (B). Now, we have for all n ≥ 0,
P (Bc) = P (∩+∞

p=0 (Np ≥ −1)) ≤ Πn
p=0P (Np ≥ −1) = (P (N ≥ −1))n .Let a := P (N ≥ −1)(12). As mN < −1, then a < 1 whih gives P (Bc) = 0 and therefore

P (A) = 1. Then ∃ n1 ≥ 0 suh that Fs(Xn) < 0 for n ≥ n1 almost surely. Thesequene (Fs(Xn))n is dereasing (beause of the elitist seletion). Then for n ≥ n1,
Fs(Xn) ≤ Fs(Xn1) < 0 . This gives |Fs(Xn)| ≥ |Fs(Xn1)| > 0. It is easy to see (fromEq. 3.6) that for all n ∈ N , On = Nψ(n) where ψ(n) is the last aeptane index beforethe iteration n. Combining this with the fat if 1 + mN ≤ 1 + Nψ(n) < 0 one gets 0 <

|Fs(Xn1)| ≤ |Fs(Xn)| = ‖Xn‖2|1 +Nψ(n)| ≤ ‖Xn‖2|1 +mN | . Then ‖Xn‖2 ≥ |Fs(Xn1 )|
|1+mN | > 0 .2. By the �rst result of the Lemma, ∃ n1 ≥ 0, A > 0 suh that Fs(Xn) < 0 and ‖Xn‖ ≥

A ∀n ≥ n1. We onsider n ≥ n1, then ‖Xn‖ > A. We notie that ∀ y ∈ R
d\{(0, 0)},

∥

∥

∥

y
‖y‖ + σN

∥

∥

∥
≥ |1 − σ‖N‖|. Let β > 1. As the upper bound MN veri�es 1 + MN > 0,

1+mN

β
∈ supp(1+N )∩R

−. Suppose that we have |1−σ‖Nn‖|2 ≥ (β+1)|m|
A2|1+mN | and |1+Nn| ≥

|1+mN |
β

, then the o�spring X̃n := Xn + σ‖Xn‖Nn is suh that
|Fs(X̃n)| = ‖Xn‖2

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

|1 +Nn| ≥ ‖Xn‖2|1− σ‖Nn‖|2|1+Nn| . Then |Fs(X̃n)| ≥
β+1
β
|m| > |m| whih gives Fs(Xn+1) ≤ Fs(X̃n) ≤ m. Consequently, for n ≥ n0, the event

Bn,m,β :=
{

|1 − σ‖Nn‖2| ≥ (β+1)|m|
A2|1+mN |

}

∩
{

|1 + Nn| ≥ |1+mN |
β

} is inluded in {Fs(Xn+1) ≤
m}.

12We apply the same reasoning with a = 2/3 for the example given in the introdution where N takevalues in {−γ, 0, γ} (with γ > 1) .78



3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noise
3.2 Convergene and divergene rates of the (1 + 1)-ESunder multipliative noiseIt is generally observed in the ase of optimization with Evolution Strategies (ES) andtheoretially proven, in the ase of minimization of non-noisy sphere funtions, using eitherthe arti�ial sale-invariant adaptation rule 1 [27, 17, 77℄ or the real Self-Adaptation rule[27, 13℄ that ESs onverge (or diverge) log-linearly. This means that, after an adaptationtime, the logarithm of the distane to the optimum dereases (or inreases) linearly withthe number of iterations. Let dn denote the distane, at the iteration n, of the urrentsolution to the optimum. The log-linear behavior of the algorithm is here mathematiallyexpressed as:

∃ c ∈ R
∗ suh that lim

n→∞
1

n
ln (dn) = c . (3.7)The limit c is alled onvergene rate. The term �onvergene� has to be onsidered inthe mathematial sense relative to the onvergene of the sequene 1

n
ln (dn). In fat, if

c > 0, the algorithm diverges. If c < 0, the algorithm onverges.Spei� results have been derived in the ase of minimization using the simplest ES, the
(1+1)-ES. When minimizing the non-noisy sphere funtion, the sale-invariant (1+1)-ESonverges log-linearly with a stritly negative onvergene rate [77℄. When the objetivefuntion is the sphere funtion with multipliative noise lower bounded, the (1 + 1) sale-invariant ES onverges or diverges (aording to the in�mum of the noise) as we haveshown in Setion 3.1. Moreover, a log-linear behavior has been observed in Figure 3.2 butonly the onvergene or divergene have been proven and not the log-linear behavior.The aim of this setion is to generalize the theoretial result of log-linear behavior of the
(1+1)-ES minimizing sphere funtions to noisy sphere funtions First, in Setion 3.2.1, wereall the mathematial de�nition of the algorithm, of the objetive funtion model andprevious results of onvergene and divergene obtained (This setion may seem redundantwith de�ntions and results of Setion 3.1, but it will be useful for the paper that we intendto submit and whih will be onstituted of the whole Setion 3.2.). Then, in Setion 3.2.2,we investigate the log-linear behavior of the algorithm and show that there exists c ∈ Rsuh that limn→∞

1
n

ln (dn) = c where c is given in terms of the expetation, with respet tothe probability measure relative to the stationary state of the algorithm, of the di�ereneof the logarithms of two onseutvie distanes to the optimum. The proofs of all resultsof this setion are in the appendix setion1The sale-invariant rule is not realisti as it assumes the knowledge of the optimum loation. 79



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environments3.2.1 Mathematial formulation of the problem and (spatial) on-vergene and divergene of the (1 + 1)-ESIn this setion, we present the model of the noisy sphere funtion and the mathematialmodel of the (1+1)-ES used for �nding the optimum of the noiseless part of this funtion.Then we reall the results derived in [76℄ relative to the sale-invariant (1 + 1)-ES mini-mizing this noisy funtion: The sale-invariant (1+1)-ES onverges or diverges relativelyto the in�mum of the noise distribution support.Noisy objetive funtion model : Sphere funtion with multipliative noiseThe noisy sphere funtion mapping R
d into R is de�ned as:

Fs(x) = ‖x‖2(1 + N ) (3.8)where N is the noise random variable, sampled independently at eah new evaluation of apoint. The noisy part of Fs(x) is ‖x‖2N . Therefore, the termN represents the normalizednoisy part of the noisy sphere funtion whih will be alled normalized overvaluation of
x. The term normalized overvaluation has been introdued in [8℄ where it orresponds tothe normalized di�erene between the ideal and the noisy objetive funtion. We assumethat N has a �nite expetation and that E(N ) > −1. Therefore, our study inludes thepartiular ase of white noise where E(N ) = 0. We also assume that N admits a densityfuntion pN with support [mN ,MN [ where −∞ < mN < MN ≤ +∞, MN > −1 and
mN 6= −1.Mathematial model for the sale-invariant (1 + 1)-ES minimizing Fs (Eq. 3.8)The (1+1)-ES is a simple ES evolving a unique solution. At every iteration n, this solutiondenoted Xn and alled parent is perturbed by the addition of a entered multivariatenormal distribution to reate a new andidate solution alled o�spring. The o�springwrites as Xn + σnNn, where σn is a stritly positive real number alled step-size and
(Nn)n ∈ R

d are independent realizations of a multivariate isotropi normal distributionin R
d denoted by N(0, Id)

(2). The density of N(0, Id) is denoted pN. In the spei� aseof random variables (Nn)n ∈ R
d following the spherial multivariate normal distribution

N(0, Id), the algorithm is alled isotropi ES. The e�ieny of an isotropi ES is loselyrelated to the adaptation rule of the sequene (σn)n. The best adaptation sheme is theso-alled sale-invariant adaptation rule for whih the step-size is set proportionally to thedistane to the optimum, i.e., σn = σ‖Xn‖ where σ is a stritly positive onstant. Theoptimality of this arti�ial rule in spherial environments has been derived in [17, 77℄.The algorithm using this adaptation rule is referred to as the sale-invariant (1 + 1)-ESfor whih the o�spring writes as Xn + σ‖Xn‖Nn.Let X0 ∈ R
d be the �rst parent randomly hosen suh that ‖X0‖ > 0 almost surely andwith a normalized overvaluation O0 sampled from the distribution ofN . At an iteration n,and for the objetive funtion investigated here (Eq. 3.8), the �tness of a parent Xn with a2N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R

d and ovariane matrixidentity Id.80



3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noisenormalized overvaluation On equals ‖Xn‖2 (1 +On) and the �tness of an o�spring equals
‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) where (Nn)n is a sequene of random variables independentwith N as a ommon law. The new parent Xn+1 is the o�spring Xn + σ‖Xn‖Nn i� its�tness value is smaller than the one of its parent Xn, otherwise Xn+1 equals Xn. Therefore,this aeptane ondition implies, for n ≥ 0, that:

Xn+1 = Xn + σ‖Xn‖Nn if [∥∥
∥
Xn + σ‖Xn‖Nn

∥

∥

∥

2
]

(1 + Nn) < ‖Xn‖2 (1 +On) ,

= Xn otherwise , (3.9)and the normalized overvaluation On+1 of the new parent Xn+1 is then:
On+1 = Nn if [∥∥

∥
Xn + σ‖Xn‖Nn

∥

∥

∥

2
]

(1 + Nn) < ‖Xn‖2 (1 +On) ,

= On otherwise . (3.10)Convergene and divergene of the (1 + 1)-ESThe behavior of the algorithm de�ned by Eq. 3.9 and Eq. 3.10 designed for the minimiza-tion of the objetive funtion (Eq. 3.8) was established in [76℄. The result is realled inthe following theorem.Theorem 3.8 ([76℄). The (1 + 1)-ES de�ned in Eq. 3.9 minimizing the noisy sphere(Eq. 3.8) onverges to zero if mN > −1 and diverges to in�nity when mN < −1.This theorem states that the behavior of the algorithm depends on the in�mummN of thenoise N . If mN < −1, there is a stritly positive probability to sample negative �tnessvalues and the algorithm diverges sine the best �tness, whih beomes negative aftersome iterations, is dereasing. If mN > −1, the algorithm onverges. In the followingsetion, we theoretially investigate the log-linear behavior of the algorithm de�ned byEq. 3.9 and Eq. 3.10.3.2.2 Convergene and divergene rates of the (1 + 1)-ESTheoretial results of onvergene of stohasti searh algorithms an be obtained usingmathematial tools suh as Law of Large Numbers (LLN) for independent or orthogonalrandom variables or LLN for Markov hains. In the spei� ase of the noisy spherefuntion, Eq. 3.9 and Eq. 3.10 show that the variables are orrelated and suggest the useof Markov hains to investigate the stability of these dynamis.MotivationsThe log-linear behavior means that, after an adaptation time, the sequene (ln (‖Xn‖))n�where (‖Xn‖)n is de�ned in Eq. 3.9� inreases or dereases linearly with the number ofiterations. This means that one has to investigate the sequene (ln (‖Xn‖))n. The follow-ing proposition is a basi step for proving the log-linear behavior expressing 1
n

ln
(

‖Xn‖
‖X0‖

)81



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentsas the sum of n random variables divided by n. The same idea has been previously usedin [27, 13, 17, 77℄.Proposition 3.9. Let (Xn)n be the sequene of random vetors valued in R
d satisfyingthe reurrene relation (3.9). Then for all indies n, we have

1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σNk1


∥

∥

Xk
‖Xk‖

+σNk

∥

∥

2

(1+Nk)<1+Ok

ff

∥

∥

∥

)

a.s. (3.11)Proposition 3.9 states that the limit of 1
n

ln
(

‖Xn‖
‖X0‖

) is given by the limit of the right handside of Eq. 3.11. The right hand side of Eq. 3.11 an be simpli�ed using the invarianeby rotation of the multivariate normal distribution. For this purpose, we will introduethe sequenes (Zn)n and (F (Zn))n:De�nition 3.10. Consider a sequene of independent identially distributed (i.i.d.) ran-dom vetors (N′
n)n in R

d with ommon law N(0, Id) and a sequene of random variables
(N ′

n)n also i.i.d. with N as ommon law. Let e1 ∈ R
d be equal to (1, 0, . . . , 0). We de�ne1. the Markov hain (Zn)n as follows: Z0 = N∗ where N∗ is a random variable dis-tributed as N , and, for all n ≥ 0,

Zn+1 = δn(Zn)N ′
n + (1 − δn(Zn))Zn (3.12)where δn(Zn) equals 1 if ‖e1 + σN′

n‖2 (1 + N ′
n) − 1 ≤ Zn and 0 otherwise.2. the sequene (F (Zn))n≥0 as follows: for n ≥ 0,

F (Zn) := ln
(

‖e1 + σN′
n1{‖e1+σN′

n‖2(1+N ′
n)<1+Zn}‖

)

. (3.13)Using these de�nitions, we an state the key point of our study in the following Propo-sition.Proposition 3.11 (Link between the stability of (Zn)n and log-linear onvergene). Let
(Zn)n and (F (Zn))n be the Markov hains introdued in De�nition 3.10. Then the fol-lowing equality

1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

F (Zk) (3.14)holds in distribution.Therefore, if 1
n

∑n−1
k=0 F (Zk) onverges almost surely to a �nite valuethat we will denote γ, 1

n
ln
(

‖Xn‖
‖X0‖

) will onverge (in probability) to the same value γ.The ondition 1
n

∑n−1
k=0 F (Zk) → γ given in Proposition 3.11 holds if the LLN holds forthe Markov hain (Zn)n. If in addition γ 6= 0, then the log-linear behavior holds, at leastin probability, for the sequene (‖Xn‖)n given in Eq. 3.9. In the following setion, weinvestigate the establishment of a LLN for the Markov hain (Zn)n.82



3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noiseStabilityIn Proposition 3.11, we have seen that log-linear onvergene an be implied from thestability of the hain (Zn)n introdued in De�nition 3.10. The goal is to prove that thehain (Zn)n is su�iently stable so that a LLN an be stated. Before investigating the sta-bility of (Zn)n we reall some de�nitions and results about ϕ-irreduible Markov Chainsthat will be used in the sequel. We refer to the Meyn and Tweedie book for a ompletepresentation of this theory [97℄. In the following B(R) will denote the Borel σ-algebra on
R and for a subset S ⊂ R, B(S) will denote the Borel σ-algebra on S.Basis about Markov hains and de�nitions For a Markov hain (Zn)n ⊂ R, thetransition kernel P (., .) is de�ned for all z ∈ R, for all A ∈ B(R) as

P (z, A) = P (Z1 ∈ A|Z0 = z).A hain (Zn)n is irreduible with respet to a measure ϕ if:
∀(z, A) ∈ R × B(R) suh that ϕ(A) > 0, ∃ n0 ≥ 0 suh that P n0(z, A) > 0 , (3.15)where P n0(z, A) equals P (Zn0 ∈ A|Z0 = z). Another equivalent de�nition for the ϕ-irreduibility of the Markov hain (Zn)n is: ∀z ∈ R, ∀A ∈ B(R) suh that ϕ(A) >

0, P (τA <∞|Z0 = z) > 0 where, τA is the hitting time of Zn on A, i.e.,
τA = min{n ≥ 1 suh that Zn ∈ A}.If the last term of Eq. 3.15 is equal to one, the hain is reurrent. A ϕ-irreduible hain

(Zn)n is Harris reurrent if:
∀A ∈ B(R) suh that ϕ(A) > 0;Pz(ηA = ∞) = 1, z ∈ R ,where ηA is the oupation time of A, i.e., ηA =

∑∞
n=1 1{Zn∈A}.A hain (Zn)n whih is Harris-reurrent admits an invariant measure, i.e., a measure πon B(R) satisfying:

π(A) =

∫

R

π(dz)P (z, A), A ∈ B(R) .If in addition this measure is a probability measure, the hain is alled positive. Positive,Harris-reurrent hains satisfy the Strong Law of Large Numbers (LLN) as stated in [97,Theorem 17.0.1℄ and realled here.Theorem 3.12 (LLN for Harris positive hains). Suppose that (Zn)n is a positive Har-ris hain with invariant probability measure π, then the LLN holds for any funtion Gsatisfying π(G) =
∫

Gdπ <∞, i.e.,
lim
n→∞

1

n

n
∑

k=1

G(Zk) = π(G) . (3.16)83



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial EnvironmentsTo show the di�erent stability notions suh as reurrene, Harris-reurrene or posi-tivity of (Zn)n it is possible to make use of pratial drift onditions. Stronger stabilityriteria are alled uniform ergodiity and geometri ergodiity (see [97, Eq. 16.6, Eq. 15.7℄for the de�nitions). These stability notions imply the positivity and Harris reurrene ofthe hain. Drift onditions an be used to prove the geometri ergodiity of ϕ-irreduiblehain. Uniform ergodiity an be obtained without the need to verify the ϕ-irreduibility,using the following theorem whih is derived from a spei� ase of [97, Theorem 16.2.1,Theorem 16.2.4℄.Theorem 3.13 (Condition for uniform ergodiity). Suppose that there exists a �nitemeasure ν on B(R) suh that a Markov hain (Zn)n satis�es P (z, A) ≥ ν(A) for all z ∈ Rand A ∈ B(R). Then (Zn)nis uniformly ergodi.Using the equivalent property of uniform ergodiity (assertion (vi) in [97, Theo-rem 16.0.2℄) in the assertion (ii) of [97, Theorem 10.4.10℄ one an onlude that if aMarkov hain (Zn)n is uniformly ergodi then it is ϕ-irreduible, aperiodi (see de�nitionin [97, p. 121℄) positive Harris-reurrent. Combining this with Theorem 3.13, we have thefollowing orollary.Corollary 2. Suppose that there exists a �nite measure ν on B(R) suh that a Markovhain (Zn)n satis�es P (z, A) ≥ ν(A) for all z ∈ R and A ∈ B(R). Then (Zn) is ϕ-irreduible, aperiodi, positive Harris-reurrent.Stability of Zn In the following, we will study the Markov hain (Zn)n introdued inDe�nition 3.10. Its stability will follow from the use of Corollary 2 and onsequently the(LLN) given in Theorem 3.12 holds for (Zn)n.Lemma 3.14.
Zn ∈ supp(pN ) = [mN ,MN [ .Proposition 3.15 (Transition Kernel). The transition kernel P (., .) of Zn is split into anabsolutely ontinuous part P1 and a singular part P2:

∀z ∈ [mN ,MN [, ∀A ∈ B([mN ,MN [), P (z, A) = P1(z, A) + δ{z}(A)P2(z) (3.17)where P1(z, A) equals P ({N ∈ A} ∩ {‖e1 + σN‖2 (1 + N ) < 1 + z}), δ{z} is the Dirameasure onentrated in {z} and P2(z) = P (‖e1 + σN‖2 (1 + N ) ≥ 1 + z). An otherexpression for P1 is
P1(z, A) =

∫

Rd

∫ MN

mN

1A(u)1{‖e1+σt‖2(1+u)<1+z}(u, t)pN(t)pN (u)dudt . (3.18)Proposition 3.16 (Doeblin ondition or minoration ondition). In the ase mN 6= −1,
∀z ∈ [mN ,MN [, ∀A ∈ B([mN ,MN [), P1(z, A) ≥ ν(A)where ν is the measure de�ned as

ν(A) =

∫

Rd

∫ MN

mN

1A(u)1{‖e1+σt‖2(1+u)<1+mN }(u, t)pN(t)pN (u)dudt84



3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noiseThe following orollary holds as a diret onsequene of the appliation of Corollary 2using the result of Proposition 3.16.Corollary 3. If mN 6= −1, the hain (Zn)n is positive Harris reurrent.The following Proposition will be useful when establishing the LLN for the Markovhain (Zn)n.Proposition 3.17. Suppose that the Markov hain (Zn)n admits an invariant probabilitymeasure denoted µ. Let γ be the quantity de�ned by
γ :=

∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) , (3.19)where δ(z) equals 1 if ‖e1 + σN(0, Id)‖2 (1 + N )− 1 ≤ z and 0 otherwise. Then γ is �nitefor all σ > 0. Moreover, the appliation σ 7→ γ(σ) is ontinuous on ]0,+∞[.We are now ready to state the main result of this setionTheorem 3.18. The (1 + 1)-ES minimizing the noisy sphere (Eq. 3.8) de�ned in Eq. 3.9(and Eq. 3.10) onverges almost surely to zero if mN > −1 and diverges almost surelyto in�nity when mN < −1. The onvergene (or divergene) rate ver�es the followingequation
1

n
ln ‖Xn‖ → γ :=

∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) (3.20)whih holds in probability and where δ(z) equals 1 if ‖e1 + σN(0, Id)‖2 (1 + N ) − 1 ≤ zand 0 otherwise and µ is the invariant probability measure of the Markov hain (Zn)n.Moreover, if 1+mN > 0 then the onvergene rate γ ≤ 0 and if 1+mN < 0 then γ ≥ 0 .Remark 3.2.1. Theorem 3.18 does not state that the log-linear behavior holds for thesequene (‖Xn‖)n where (Xn)n is de�ned in Eq. 3.9. It gives only the expression of theonvergene (or divergene) rate of the sequene ln((‖Xn‖))n. To show rigorously thelog-linear behavior, one has to show that the onvergene rate given in Eq. 3.20 is notequal to 0 when mN 6= −1. However, a bene�t of our study is that the onvergene ratederived in Eq. 3.20 is easy to ompute numerially using Monte Carlo simulations. Note�nally that Figure 3.2 suggests that the onvergene (or divergene) rate is not equal tozero for the value of σ represented.3.2.3 ConlusionThe theoretial study using LLN for Markov hains shows that the sale-invariant (1+1)-ES minimizing the noisy sphere funtion with lower bounded noise satis�es 1
n

ln ‖Xn‖ P→ γwhere γ is a �nite onvergene (or divergene) rate whih orresponds to the expetation
∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) where δ(z) equals 1 if ‖e1+σN(0, Id)‖2 (1 + N )−1 ≤ zand 0 otherwise and µ is the invariant probability measure of the Markov hain (Zn)n.However, we have not been able to exlude the ase of the onvergene rate γ equal to85



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentszero to state that the behavior of the algorithm investigated is log-linear aording to thede�nition given in Eq. 3.7. Figure 3.2 suggests that the algorithm onverges or divergeslog-linearly if the in�mum of the noise,mN , is suh thatmN 6= −1. Numerial simulationsof the onvergene rate derived in Theorem 3.18 an be used to exlude numerially thease of null onvergene rate whih seems to be equivalent to the ase mN = −1. Finally,another point whih has to be investigated in a future work is to show that the onvergenegiven in Eq. 3.7 i.e., 1
n

ln ‖Xn‖ → γ holds also almost surely.
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3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noiseAppendixThe following Lemma will be useful for proofs.Lemma 3.19. The sequene (Xn)n introdued in Eq. 3.9 satis�es: for every n ≥ 0,
‖Xn‖ 6= 0 almost surely.Proof :The result is demonstrated indutively. The �rst parent is hosen randomly with P (‖X0‖ =
0) = 0. Suppose that P (‖Xn‖ = 0) = 0. As the o�spring X̃n is obtained by adding to
Xn a random vetor admitting an absolutely ontinuous distribution with respet to theLebesgue measure then P (‖X̃n‖ = 0) = 0. Consequently, if the o�spring is aepted then
P (‖Xn+1‖ = 0) = P (‖X̃n‖ = 0) = 0, otherwise P (‖Xn+1‖ = 0) = P (‖Xn‖ = 0) = 0.Proof of Proposition 3.9Taking the norm in Eq. 3.9, we have for n ≥ 0

‖Xn+1‖ = ‖Xn + σ‖Xn‖Nn1{‖Xn+σ‖Xn‖Nn‖2(1+Nk)<(1+On)‖Xn‖}‖Lemma 3.19 states that n ≥ 0, ‖Xn‖ 6= 0 almost surely. Then the previous equation anbe rewritten as
‖Xn+1‖ = ‖Xn‖

∥

∥

∥

Xn

‖Xn‖
+ σNn1


∥

∥ Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)<(1+On)

ff

∥

∥

∥
a.s.Taking the logarithm of the previous equation, one has for n ≥ 0

ln(‖Xn+1‖) = ln(‖Xn‖) + ln

(

∥

∥

∥

Xn

‖Xn‖
+ σNn1


∥

∥ Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)<(1+On)

ff

∥

∥

∥

) a.s. (3.21)Summing the equations (3.21) from 0 to n− 1 and dividing by n, one gets
1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(‖Xk+1‖
‖Xk‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σNk1


∥

∥

Xk
‖Xk‖

+σNk

∥

∥

2

(1+Nk)<1+Ok

ff

∥

∥

∥

)

.

Proof of Proposition 3.11Step 1: We show that the random variables Zn (introdued in De�nition 3.10) and On(de�ned in Eq. 3.10) follow the same distribution. We are going to prove indutively thisresult. For n = 0, the random variables O0 and Z0 = N∗ follow the same noise distribution87



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environments
N . For n ≥ 0, suppose that On and Zn follow the same distribution. We have to showthat E(eitOn+1) = E(eitZn+1). Aording to Eq. 3.10 and using Lemma 3.19, we have
E(eitOn+1 |Xn, On) = E

{

eitNn1{∥
∥

Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)<1+On

}|Xn, On

}

+ E

{

eitOn
1{∥
∥

Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)≥1+On

}|Xn, On

}

.Let Rn : R
d 7→ R

d be an orthogonal transformation (rotation) suh that Rn

(

Xn

‖Xn‖

)

= e1.Then, ‖ Xn

‖Xn‖ + σNn‖ = ‖Rn

(

Xn

‖Xn‖ + σNn

)

‖ = ‖e1 +Rn(Nn)‖ whih gives
E(eitOn+1 |Xn, On) = E

{

eitNn
1{∥
∥e1+σRn(Nn)

∥

∥

2

(1+Nn)<1+On

}|Xn, On

}

+ E

{

eitOn1{∥
∥e1+σRn(Nn)

∥

∥

2

(1+Nn)≥1+On

}|Xn, On

}

.This equation an be rewritten as:
E(eitOn+1 |Xn, On) =

∫

[mN ,MN [

∫

Rd

eity1{∥
∥e1+σRn(x)

∥

∥

2

(1+y)<1+On

}pN(x)dx pN (y)dy

+

∫

[mN ,MN [

∫

Rd

eitOn1{∥
∥e1+σRn(x)

∥

∥

2

(1+y)≥1+On

}pN(x)dx pN (y)dy .Let us apply the hange of variables z = Rn(x). As the isotropi multivariate normaldistribution is invariant by orthogonal transformation, the new variable follows also thesame multivariate normal distribution and one an write
E(eitOn+1 |Xn, On) =

∫

[mN ,MN [

∫

Rd

eity1{∥
∥e1+σz

∥

∥

2

(1+y)<1+On

}pN(z)dz pN (y)dy

+

∫

[mN ,MN [

∫

Rd

eitOn1{∥
∥e1+σz

∥

∥

2

(1+y)≥1+On

}pN(z)dz pN (y)dy .Therefore, one gets:
E(eitOn+1 |Xn, On) =

E

{

eitNn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)<1+On

} + eitOn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)≥1+On

}|On

}

.The right hand side of the previous equation an be written as gn(On) with gn ontinuous3and bounded (|gn(On)| ≤ 1). As On and Zn follow the same distribution (reurrene3The ontinuity follows from the Lebesgue dominated onvergene Theorem for ontinuity.88



3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noisehypothesis), then E(gn(On)) = E(gn(Zn)) whih means that by taking the expetation ofthe previous equation, one gets
E(eitOn+1) =

E

{

eitNn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)<1+Zn

}

}

+ E

{

eitZn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)≥1+Zn

}

}

= E(eitZn+1) .Step 2: We have shown that the random variables Zn and On follow the same distribution.In the same manner, we want to show that, for n ≥ 0, the random variables
Un := ln

(

∥

∥

∥

Xn

‖Xn‖ + σNn1

∥

∥
Xn

‖Xn‖
+σNn

∥

∥

2

(1+Nn)<1+On

ff

∥

∥

∥

) and
F (Zn) := ln

(

‖e1 + σN′
n1{‖e1+σN′

n‖2(1+N ′
n)<1+Zn}‖

) are equal in distribution.
E(eitUn |Xn, On) = E











e

8

<

:

it ln(‖ Xn
‖Xn‖

+σNn‖)1

‖ Xn
‖Xn‖

+σNn‖2
(1+Nn)<1+On

ff

9

=

;|Xn, On











.Again, the invariane of the multivariate normal distribution by any orthogonal transfor-mation R and the fat that ‖R(x)‖ = ‖x‖ for any x ∈ R
d gives

E(eitUn |Xn, On) = E

{

e

n

it ln(‖e1+σNn‖)1{‖e1+σNn‖2(1+Nn)<1+On}
o

|On

}

.The onditional expetation E(eitUn |Xn, On) redues then to a funtion of On and an bewritten as hn(On) where hn is real valued bounded funtion and for whih the ontinuityfollows from the Lebesgue dominated onvergene Theorem. As On and Zn follow thesame distribution, one has E(hn(On)) = E(hn(Zn)) whih gives E [eitUn
]

= E
[

eitF (Zn)
].Therefore, for n ≥ 0, Un and F (Zn) follow the same distribution.Step 3: Now, we have to show that, for n ≥ 1, ∑n−1

k=0 Uk and ∑n−1
k=0 F (Zk) are equal indistribution. We are going to prove the result indutively. For n = 1, ∑0

k=0 Uk = U0 and
∑0

k=0 F (Zk) = F (Z0) are equal in distribution aording to step 2. Suppose that, for
n ≥ 1, Sn :=

∑n−1
k=0 Uk and Tn :=

∑n−1
k=0 F (Zk) are equal in distribution. Let us prove that

Sn+1 and Tn+1 are equal in distribution. We have to show that E (eitSn+1
)

= E
(

eitTn+1
).We de�ne the �ltration Tn as

Tn := σ (X0, . . . ,Xn, O0, . . . , On,N0, . . . ,Nn−1,N0, . . . ,Nn) . We have
E
(

eitSn+1 |Tn
)

= eitSnE
(

eitUn |Tn
)

= eitSnE









e

it ln

0

@

∥

∥

∥

Xn
‖Xn‖

+σNn1{∥
∥ Xn

‖Xn‖
+σNn

∥

∥

2

(1+Nn)<1+On

}

∥

∥

∥

1

A

|Tn









= eitSnE
(

eit ln(‖e1+σNn1{‖e1+σNn‖2(1+Nn)<1+On}‖)|Tn
)

= eitSnE
(

eitF (Zn)|Tn
) 89



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial EnvironmentsThis gives E (eitSn+1 |Tn
)

= E
(

eitSn+F (Zn)|Tn
). Taking the expetation of this equation,one gets E (eitSn+1

)

= E
(

eitSn+F (Zn)
). This an be rewritten as

E
(

eitSn+1
)

= E
[

E
(

eitSn+F (Zn)|N′
n,N ′

n, Zn
)]

= E
[

E
(

eitSn |N′
n,N ′

n, Zn
)

eitF (Zn)
]

= E
[

E
(

eitSn
)

eitF (Zn)
]

= E
[

E
(

eitTn
)

eitF (Zn)
]

= E
(

eitTn+1
)Consequently, for n ≥ 1, 1

n

∑n−1
k=0 Uk and 1

n

∑n−1
k=0 F (Zk) are equal in distribution.By Proposition 3.9, one has

1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σNk1

{∥

∥

Xk
‖Xk‖

+σNk

∥

∥

2

(1+Nk)<1+Ok

}

∥

∥

∥

)

a.s.Then 1
n

ln
(

‖Xn‖
‖X0‖

) equals in distribution 1
n

∑n−1
k=0 F (Zk). Consequently if the Markov hain

(Zn)n is stable suh that it veri�es the (LLN) for Markov hains, the result holds in thesense that 1
n

∑n
k=1 F (Zk) onverges to some γ a.s. It follows that 1

n
ln ‖Xn‖ onverges to

γ in probability.Proof of Lemma 3.14The result is proven indutively. For n = 0, by De�nition 3.10, Z0 = N∗ ∈ [mN ,MN [.For n ≥ 0, suppose that Zn ∈ supp(pN ) = [mN ,MN [. By Eq. 3.12, Zn+1 equals N ′
n ∈

supp(pN ) = [mN ,MN [ or Zn+1 equals Zn whih is in supp(pN ) = [mN ,MN [ by thereurrene hypothesis. Then Zn+1 ∈ supp(pN ) = [mN ,MN [.Proof of Proposition 3.15The transition kernel P (z, A) is the probability that Z1 belongs to A onditionally to
Z0 = z. By Eq. 3.12, Z1 equals N ′

0 if ‖e1 + σN‖2 (1 + N ) < 1 + z, otherwise Z1 equals z.Let P1(z, A) represent the probability to have Z1 = N ′
0 and Z1 ∈ A and P2(z) representthe probability to have ‖e1 + σN‖2 (1 + N ) ≥ 1 + z. The expression of P (z, A) given inEq. 3.18 follows.Proof of Proposition 3.16Let us show that ν : B([mN ,MN [) 7→ R

+ ∪ {+∞} de�ned as
ν(A) =

∫

Rd

∫ MN

mN

1A(u)1{‖e1+σt‖2(1+u)<1+mN }(u, t)pN(t)pN (u)dudtis a �nite measure. First, we have ν(∅) = 0. Seond, if E1 and E2 are two disjoint setsthen ν(E1 ∪E2) = ν(E1) + ν(E2) as the funtion 1E1∪E2 is identially equal to 1E1 + 1E290



3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noisewhen E1 ∩ E2 = ∅. Third,
ν([mN ,MN [) =

∫

Rd

∫ MN

mN

1{‖e1+σt‖2(1+u)<1+mN }(u, t)pN(t)pN (u)dudt ≤ 1 .Now, if mN = −1 then the indiator funtion 1{‖e1+σt‖2(1+u)<1+mN }(u, t) equals zero forany t ∈ R
d and u ∈ [−1,MN [ almost surely. Therefore, ν is identially equal to zero.However, if mN 6= −1, then, for A ∈ B([mN ,MN [) with a stritly positive Lebesguemeasure, the set

A := {(u, t) ∈ ([mN ,MN [∩A) × R
d suh that ‖e1 + σt‖2 (1 + u) < 1 +mN}has a strilty positive measure with respet to a Lebesgue measure de�ned on B(Rd ×

[mN ,MN [). This implies that ν is non identially equal to zero if and only if mN 6= −1.Moreover, for t ∈ R
d, (u, z) ∈ [mN ,MN [2

‖e1 + σt‖2 (1 + u) < 1 +mN ⇒ ‖e1 + σt‖2 (1 + u) < 1 + zwhih gives that ∀z ∈ [mN ,MN [, ∀A ∈ B([mN ,MN [), P1(z, A) ≥ ν(A).Proof of Proposition 3.17Let g : R
d × R

∗
+ × R × R be de�ned for (x, σ, y, z) in R

d × R
∗
+ × R × R by

g(x, σ, y, z) = ‖e1 + 1{‖e1+σx‖2(1+y)−1<z}(x, y, z)σx‖ .The quantity γ de�ned in Eq. 3.19 results from the integration of the funtion ln(g)with respet to the variables x, y and z. We notie that g((x1, x2, . . . , xd), σ, y, z) =
g((x1, ǫ2x2, . . . , ǫdxd), σ, y, z) for all (ǫ2, . . . , ǫd) in {−1,+1}d−1 and (x1, x2, . . . , xd) in R

d.Therefore, we an restrit the integration with respet to the variable x to the domain
D := R

∗×]0,+∞[d−1, more preisely the quantity γ an be rewritten as
γ =

1

(2π)d/2

∫

D

∫ MN

mN

∫ MN

mN

ln (g(x, σ, y, z)) e−
‖x‖2

2 pN (y)dxdydµ(z) .where µ is the invariant probability measure of the Markov hain (Zn)n introdued inDe�nition 3.10 whih we supposed that it exists in the hypothesis of Proposition 3.17.We introdue γ+ as:
γ+ =

1

(2π)d/2

∫

D

∫ MN

mN

∫ MN

mN

ln+ [g(x, σ, y, z)] e−
‖x‖2

2 pN (y)dxdydµ(z)and γ− as:
γ− =

1

(2π)d/2

∫

D

∫ MN

mN

∫ MN

mN

ln− [g(x, σ, y, z)] e−
‖x‖2

2 pN (y)dxdydµ(z) 91



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentssuh that γ = γ+ − γ−. The quantities γ+ and γ− are well de�ned but ould be in�nite.Using spherial oordinates (with d ≥ 2) we obtain after partial integration
γ− =

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π
2

0

∫ MN

mN

∫ MN

mN

ln− [h(r, θ, σ, y, z)] rd−1e−
r2

2 sind−2(θ)pN (y) dr dθdydµ(z) ,and
γ+ =

(

1

2

) d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π

0

∫ MN

mN

∫ MN

mN

ln+ [h(r, θ, σ, y, z)] rd−1e−
r2

2 sind−2(θ)pN (y) dr dθdydµ(z) ,where h is the positive funtion de�ned on R
+ × [0, π] × R

∗
+ × R × R by

h(r, θ, σ, y, z) = ‖1{‖σr−eiθ‖2(1+y)−1<z}(r, θ, y, z)σr − eiθ‖ .For (r, θ, σ, y, z) in R
+ × [0, π] × R

∗
+ × R × R, we have

ln+(h(r, θ, σ, y, z)) ≤ ln+(1 + σr) ≤ σr (3.22)and
ln−(h(r, θ, σ, y, z)) ≤ ln−(sin(θ)) . (3.23)This gives

γ+ ≤
(

1

2

)
d
2 σπ

Wd−2Γ
(

d
2

)

∫ +∞

0

rde−
r2

2 dr < +∞ ,and
γ− ≤

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π
2

0

ln− (sin(θ)) rd−1e−
r2

2 sind−2(θ) dr dθ

≤
(

1

2

)
d
2 2

Wd−2Γ
(

d
2

)

∫ +∞

0

rd−1e−
r2

2 dr

∫ π
2

0

sind−
5
2 (θ) dθ < +∞ .For the remaining ase d = 1, we have

γ+ ≤ σ√
2π

∫

R

|x|e−x2

2 dx =
2σ√
2π

∫

R+

xe−
x2

2 < +∞ ,For γ−, after a hange of variables (v = σx), we get
γ− ≤ e−

1
2√

2π

∫ MN

mN

∫ 0

−2

∫ MN

mN

ln
(

|1 + 1{|1+v|2(1+y)−1<z}(v, y, z)v|
)

v
pN (y)dvdydµ(z)

=
e−

1
2√

2π

∫ MN

mN

∫ 0

−2

∫ MN

mN

ln (|1 + v|)
v

1{|1+v|2(1+y)−1<z}(v, y, z)pN (y)dvdydµ(z)

≤ e−
1
2√

2π

∫ MN

mN

∫ 0

−2

∫ MN

mN

ln (|1 + v|)
v

pN (y)dvdydµ(z)

=
e−

1
2√

2π

∫ 0

−2

ln (|1 + v|)
v

dv < +∞ .92



3.2. Convergene and divergene rates of the (1 + 1)-ES under multipliative noiseThe ontinuity with respet to σ is shown , using the Lebesgue dominated onvergenetheorem (for ontinuity), on every range ]0,M [ and then for the whole ]0,+∞[ thanks tothe inequalities given in Eq. 3.22 and Eq. 3.23. This gives the result for d > 1.For the ase d = 1, the integrand in γ+ is ontinuous with respet to σ for almost all
(x, y, z) in R × [mN ,MN [×[mN ,MN [ and is dominated by 2√

2π
Sxe−

x2

2 for (x, σ, y, z) ∈
R

+×]0, S]× [0,+∞[×[mN ,MN [×[mN ,MN [ whih gives the ontinuity of γ+ with respetto σ by the Lebesgue dominated onvergene Theorem. For γ−, and after the hangeof variables v = σx, the integrand will be dominated by e−
1
2√

2π

ln(|1+v|)
v

for (v, σ, y, z) ∈
]−2, 0]×]0,+∞[×[mN ,MN [×[mN ,MN [ and the ontinuity of γ− with respet to σ followsfrom the dominated onvergene Theorem.Proof of Theorem 3.18The almost sure onvergene or divergene was already given in Theorem 3.8. Now, wegive interest to the onvergene (or divergene) rate.Corollary 3 states that, formN 6= −1,the Markov hain (Zn)n is positive and Harris reurrent. Therefore it satis�es the (LLN)given in Theorem 3.12. Let µ the invariant probability measure of the hain(Zn)n. Then,we an de�ne the quantity γ :=

∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) where δ(z) equals 1if ‖e1 + σN(0, Id)‖2 (1 + N )− 1 ≤ z and 0 otherwise. By Proposition 3.17, γ is �nite. As
(Zn)n satis�es the onditions of the LLN and γ < +∞, the right hand side of Eq. 3.14onverges almost surely to γ. Then the sequene 1

n
ln(‖Xn‖)n onverges in distributionto γ. As γ is a onstant, the onvergene of the sequene 1

n
ln(‖Xn‖)n to γ holds also inprobability.The onvergene in probability of the sequene 1

n
ln(‖Xn‖) (when mN 6= −1) implies thatthere is a subsequene whih writes as ( 1

φ(n)
ln(‖Xφ(n)‖)

)

n
and whih onverges almostsurely to the same limit γ.Moreover, by Theorem 3.8, the sequene (ln(‖Xn‖))n onverges almost surely to +∞if mN < −1 and to −∞ if mN > −1. Combining this with the fat that the sequene

(

1
φ(n)

ln(‖Xφ(n)‖)
)

n
onverges almost surely to γ, we dedue that γ ≥ 0 if mN > −1 and

γ ≤ 0 if mN > −1.
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Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environments3.3 Additional onvergene/divergene resultsIn this setion, we generalize onvergene/divergene results that have been derived in[76℄ (Setion 3.1) for the objetive funtion de�ned by Eq. 3.4 to the following (noisy)objetive funtion:
Fα(x) = (‖x‖2 + α)(1 + N ) (3.24)where α is a positive onstant. The noise random variable N has a �nite expetationsuh that E(N ) > −1 and has a density funtion pN whih lies in the range [mN ,MN [where −∞ ≤ mN < MN ≤ +∞4 , MN > −1 and mN 6= −1. Some of the proofs ofthe following results are based on the seond Borel-Cantelli Lemma (see Lemma 3.2).It is worth notiing that the log-linear behavior observed in Figures 3.2 and 3.3 andtheoretially shown in Setion 3.2 when α = 0 does not hold anymore for α > 0 as thevariane of the noise random variable does not redue to zero lose to the optimum. Wereall here that:

• The random vetor N(0, Id) is the multivariate isotropi normal distribution on R
dwith mean (0, . . . , 0) ∈ R

d and ovariane matrix the identity Id.
• The random vetors Nn (n ≥ 0) are independent realizations of N(0, Id).
• The random variables Nn (n ≥ 0) are independent realizations of N .
• The vetor e1 is a unit vetor in R

d whih equals (1, 0, . . . , 0).In the ase of the minimization of the objetive funtion (Eq. 3.24) using a sale-invariant
(1 + 1)-ES, the solution at an iteration n, Xn, is updated as follows:

Xn+1 = Xn + σ‖Xn‖Nn if [∥∥Xn + σ‖Xn‖Nn

∥

∥

2
+ α

]

(1 + Nn) < (‖Xn‖2 + α) (1 +On) ,

= Xn otherwise , (3.25)and the new normalized overvaluation On+1 is then:
On+1 = Nn if [∥∥Xn + σ‖Xn‖Nn

∥

∥

2
+ α

]

(1 + Nn) < (‖Xn‖2 + α) (1 +On) ,

= On otherwise . (3.26)The results depend, similarly to the ase of the noisy objetive funtion given by Eq. 3.4,on the in�mum of the noisemN . The results are summarized in the two following setions.3.3.1 Convergene in the ase mN > −1The result is stated in the following proposition.4Note that, omparing to Setion 3.1, the hypothesis on the variable N are more general in thissetion: The in�mum of the noise an be in�nite, i.e., mN = −∞.94



3.3. Additional onvergene/divergene resultsProposition 3.20 (Convergene formN > −1). Consider the sequenes (On)n and (Xn)nde�ned by the reurrene relations Eq. 3.25 and Eq. 3.26 for the minimization of theobjetive funtion de�ned in Eq. 3.24. If mN + 1 > 0 then the sequenes (Fα(Xn))n and
(‖Xn‖)n onverge respetively to α(1 +mN ) and zero almost surely.Proof :The onvergene in the ase α = 0 has been already stated in Proposition 3.3. Let usnow demonstrate the result for α > 0.Step 1: Note in the beginning that the sequene (Fα(Xn))n is dereasing due to theaeptane ondition used in the (1 + 1)-ES. Let us show that the sequene (Fα(Xn))n ispositive, lower bounded and that the sequene (‖Xn‖)n is upper bounded. The dereaseof the sequene (Fα(Xn))n and the fat the random variable N is lower bounded by
mN > −1 imply, for n ≥ 0, that:
Fα(X0) ≥ Fα(Xn) =

(

‖Xn‖2 + α
)

(1 +On) ≥
(

‖Xn‖2 + α
)

(1 +mN ) ≥ α(1 +mN ) ≥ 0 .(3.27)The dereasing sequene (Fα(Xn))n is then positive and lower bounded. Therefore itonverges almost surely. Moreover, by the previous equation, one gets
‖Xn‖2 ≤M (3.28)where M is de�ned as M := Fα(X0)−α(1+mN )

1+mN
. This means that the sequene (‖Xn‖)n isupper bounded by M .Step 2: Let us show that the sequene (Fα(Xn))n onverges almost surely to α(1+mN ).Let ǫ > 0, we are going to show that ∃ n0 ≥ 0 suh that Fα(Xn) < α (1 +mN ) +

ǫ, ∀n ≥ n0. Let n ≥ 0. For ǫ > 0, ∃ K(ǫ) > 1 suh that the probability to have
Nn ∈ supp(pN ) and α(1 + Nn) < α(1 + mN ) + ǫ

K(ǫ)
is stritly positive. Let a :=

K(ǫ)−1
K(ǫ)

1+mN

1+mN+ ǫ
K(ǫ)α

ǫ
Fα(X0)−α(1+mN )

> 0 and b := 1+mN + ǫ
K(ǫ)α

> 0. Suppose that the events
(

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

) and (1 + Nn < b) hold. Therefore, using in addition Eq. 3.28, the�tness of the o�spring Xn + σ‖Xn‖Nn at an iteration n veri�es
Fα(Xn + σ‖Xn‖Nn) = ‖Xn‖2

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

(1 + Nn) + α (1 + Nn)

≤Mab + αb

= ǫ
K(ǫ) − 1

K(ǫ)
+ α (1 +mN ) +

ǫ

K(ǫ)
= α (1 +mN ) + ǫ .Then, for n ≥ 0, the event An =

((

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

)

∩ (1 + Nn ≤ b)

) impliesthe event Fα(Xn + σ‖Xn‖Nn) ≤ α (1 +mN ) + ǫ and therefore Fα(Xn+1) ≤ Fα(Xn +95



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environments
σ‖Xn‖Nn) ≤ α (1 +mN ) + ǫ. Moreover, the event An has a probability whih veri�es:

P (An) = P

((

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

≤ a

)

∩ (1 + Nn ≤ b)

)

= P

(

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

≤ a

)

P (1 + Nn ≤ b)

= P

(

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

≤ a

)

P (1 + N ≤ b) .

(3.29)
By Lemma 3.21, the quantity P (∥∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

) equals P (‖e1 + σN‖2 ≤ a). There-fore, P (An) equals the onstant value P (‖e1 + σN‖2 ≤ a)P (1 + N ≤ b) whih impliesthat ∑n≥0 P (An) = +∞. Moreover, by the same Lemma, we have the independene ofthe events (∥∥
∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

) and therefore that of the events An. Thus, the Borel-Cantelli Lemma (Lemma 3.2) an be applied and shows that the event An happens almostsurely and then the event Fα(Xn+1) ≤ α (1 +mN ) + ǫ happens almost surely. Therefore,the sequene (Fα(Xn))n onverges almost surely to α (1 +mN ).Step 3: Now we have to show that the sequene (‖Xn‖)n onverges to 0 almost surely.From Eq. 3.27, we have for n ≥ 0,
Fα(Xn) ≥

(

‖Xn‖2 + α
)

(1 +mN ) .Using the fat that mN + 1 > 0, the previous equation implies that, for n ≥ 0, 0 ≤
‖Xn‖2 ≤ Fα(Xn)

1+mN
− α. As both the right and left hand sides of this equation onverge tozero, the sequene (‖Xn‖)n onverges also to zero.Lemma 3.21. Let (Xn)n be the sequene of random vetors in R

d de�ned in Eq. 3.25 and
(Nn)n the relative sequene of independent random vetors following the same distribution
N(0, Id) used to de�ne the sequene (Xn)n as shown in Eq. 3.25. Then the variables
Yn :=

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥
are independent and follow the same distribution as ‖e1 +σN(0, Id)‖.Proof :In the beginning, let us show that, for n ≥ 0, the random variable Yn follows the samedistribution as ‖e1 + σN(0, Id)‖. Let t ∈ R, the expetation E(eitYn) writes as follows:

E(eitYn) = E
[

E
(

eit‖
Xn

‖Xn‖
+σNn‖|Xn

)] (3.30)Let Rn an orthogonal transformation (rotation) suh that Rn

(

Xn

‖Xn‖

)

= e1. The previousequation beomes:
E(eitYn) = E

[

E
(

eit‖e1+σRn(Nn)‖|Xn

)]

. (3.31)Applying a hange of variables Un = Rn (Nn), the variables Un and Nn follow the samedistribution due to the fat that the distribution of N(0, Id) is spherial. Therefore, onegets:
E(eitYn) = E

[

E
(

eit‖e1+σNn‖)] = E
(

eit‖e1+σN(0,Id)‖) . (3.32)96



3.3. Additional onvergene/divergene resultsNow, we have to show that the variables Yn (n ≥ 0) are independent. Let n, m in N suhthat m 6= n. We suppose, without loss of generality, that n < m. Let t1, t2 ∈ R. We aregoing to show that E (eit1Yn+it2Ym
)

= E
(

eit1Yn
)

E
(

eit2Ym
). We have

E
(

eit1Yn+it2Ym
)

= E
[

E
(

eit1Yn+it2Ym |Xn,Xm,Nn

)]

. (3.33)The random variable Yn is σ(Xn,Nn)-measurable, so that
E
(

eit1Yn+it2Ym
)

= E
[

eit1YnE
(

eit2‖
Xm

‖Xm‖
+σNm‖|Xn,Xm,Nn

)] (3.34)Using the independene of Nm with the random vetors Xn, NNn and Xm, we get
E
(

eit2‖
Xm

‖Xm‖
+σNm‖|Xn,Xm,Nn

)

=
1

(2π)d/2

∫

Rd

eit2‖
Xm

‖Xm‖
+σx‖e− ‖x‖2

2 dx

=
1

(2π)d/2

∫

Rd

eit2‖e1+σx‖e−
‖x‖2

2 dx

= E
[

eit2‖e1+σNm‖] .

(3.35)Therefore, we get
E
(

eit1Yn+it2Ym
)

= E
(

eit1YnE
(

eit2‖e1+σNm‖))

= E
(

eit2‖e1+σNm‖)E
(

eit1Yn
)

= E
(

eit1Yn
)

E
(

eit2Ym
)

.

(3.36)
3.3.2 Divergene in the ase −∞ ≤ mN < −1In the ase where −∞ ≤ mN < −1, the key idea is that objetive funtions are negativeafter a �nite number of iterations. This is stated in the following lemma.Lemma 3.22. Consider the sequenes (On)n and (Xn)n de�ned by the reurrene relationsEq. 3.25 and Eq. 3.26 for the minimization of the objetive funtion de�ned in Eq. 3.24. If
−∞ ≤ mN < −1, then objetive funtions are negative after a �nite number of iterationsi.e., ∃ n1 ≥ 0 suh that Fα(Xn) < 0 for n ≥ n1 almost surely.Proof :The proof is similar to the proof of the assertion 1 of Lemma 3.7 in the non shifted ase(i.e., relative to the objetive funtion given by Eq. 3.4). Let us show that the event
A := {∃ n1 ≥ 0 suh that ∀ n ≥ n1 Fα(Xn) < 0} is equal to the event B := {∃ p0 ≥
0 suh that Np0 < −1} .First, we show that A ⊂ B. This is equivalent to show that Bc ⊂ Ac. If ∀ p ≥ 0 , Np ≥ −1then ∀p ≥ 0 , Fα(Xp) ≥ 0 (beause
Fα(‖Xp‖) = (‖Xp‖2 + α) (1 +Op) = (‖Xp‖2 + α)

(

1 + Nψ(p)

) where ψ(p) ≤ p is the indexof last aeptane).Now we have to show that B ⊂ A : Suppose that ∃ p0 ≥ 0 suh that Np0 < −1. Wedenote by p1 ≥ 0 the integer de�ned by p1 = min{p ∈ N suh that Np < −1}. Then97



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environments
Fα (Xp1) < 0 and Fα (Xp) ≥ 0 for all 0 ≤ p ≤ p1 − 1. Then, as (Fα (Xn))n is a dereasingsequene, ∀n ≥ p1 Fα(Xn) < 0.This implies that P (A) = P (B). Now, we have for all n ≥ 0,

P (Bc) = P (∩+∞
p=0 (Np ≥ −1)) ≤ Πn

i=0P (N ≥ −1)) = (P (N ≥ −1))n.Let a := P (N ≥ −1). As −∞ ≤ mN < −1, then a < 1 and onsequently P (Bc) = 0and P (A) = 1. Then ∃ n1 ≥ 0 suh that Fα(Xn) < 0 for n ≥ n1 almost surely. Thesequene (Fα(Xn))n is dereasing (beause of the elitist seletion). Then for n ≥ n1,
Fα(Xn) ≤ Fα(Xn1) < 0 .We are now ready to state the main result.Proposition 3.23 (Divergene for −∞ ≤ mN < −1). Consider the sequenes (On)n and
(Xn)n de�ned by the reurrene relations Eq. 3.25 and Eq. 3.26 for the minimization ofthe objetive funtion de�ned in Eq. 3.24. If mN + 1 < 0 then:1. Objetive funtions are negative after a �nite number of iterations i.e., ∃ n1 ≥ 0suh that Fα(Xn) < 0 for n ≥ n1 almost surely.2. For n ≥ n1, the sequene of the expetations of the distanes squared to the optimumof the non noisy objetive funtion is inreasing in the sense that

E
(

‖Xn+1‖2

‖Xn‖2 |Xn, On,Nn

)

≥ 1.Therefore, for n ≥ n1, E(‖Xn‖2) ≥ E(‖Xn1‖2) > 0, and the sequene (E(‖Xn‖2))n annotonverge to zero.This result inlude the partiular ase of Gaussian noise (mN = −∞). Therefore, inthe ase of a Gaussian noise, the algorithm annot onverge in the sense that the L2-normof the sequene (‖Xn‖)n an not onverge to zero. This result seems in ontradition withthe result of Arnold and Beyer [8℄ in whih they show that onvergene (in expetation)ours due to a positive expeted progress rate. The reason for this apparent ontraditionis due to the model investigated by Arnold and Beyer. Arnold and Beyer's model writesas:
f(x) = ‖x‖2

(

1 +
2σ∗

ǫ

d
N(0, 1)

) (3.37)where d is the searh spae dimension, σ∗
ǫ is a stritly positive onstant alled the normal-ized noise strength and N(0, 1) is the Gaussian random variable with mean 0 and variane

1. Our study shows that whenever, a negative �ntess value is sampled, the algorithmstart to diverge. In [8, Fig 8℄, and for the values σ∗
ǫ = 2 and d = 80, the probabilitythat a negative �tness value is sampled is upper bounded by 10−88 as already stated inSetion 3.1.4. Therefore, the average value of the moment n1 de�ned in Lemma 3.22is 1088. As in pratie, the algorithm does not run suh a number of iterations, �tnessfuntions values sampled are positive and a onvergene is observed.Proof :Note that the ase α = 0 and −∞ < mN < −1 leads to a divergene of the algorithm as98



3.3. Additional onvergene/divergene resultsalready stated in Proposition 3.4. Now we investigate the more general result where α ≥ 0and −∞ ≤ mN < −1. The �rst point of the proof is demonstrated in Lemma 3.22. Thefat that ∃ n1 ≥ 0 suh that Fα(Xn) < 0 for n ≥ n1 almost surely implies that 1+On < 0for all n ≥ n1. For n ≥ 0, as P (‖Xn‖ = 0) = 0, one an divide the the aeptane eventinequality (see Eq. 3.25 and Eq. 3.26) by ‖Xn‖2. The resulting inequality writes as:
(

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

+
α

‖Xn‖2

)

(1 + Nn) <

(

1 +
α

‖Xn‖2

)

(1 +On) .In the sequel, we suppose n ≥ n1. We have:
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

=

E

(

1n“‖ Xn
‖Xn‖

+σNn‖2
+ α

‖Xn‖2

”

(1+Nn)>
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

+E

(

‖Xn‖2‖ Xn

‖Xn‖ + σNn‖2

‖Xn‖2
1n“‖ Xn

‖Xn‖
+σNn‖2

+ α
‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

.As the multivariate normal distribution is isotropi, we get
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

=

E

(

1n“‖e1+σNn‖2+ α
‖Xn‖2

”

(1+Nn)>
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

+ E

(

‖e1 + σNn‖2
1n“‖e1+σNn‖2+ α

‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

.Let Nn,1 denote the �rst oordinate of the variable Nn. The quantity ‖e1 + σNn‖2 equals
1 + 2σNn,1 + σ2‖Nn‖2 and we have
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

= 1

+ σ2E

(

‖Nn‖2
1n“‖e1+σNn‖2+ α

‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

+ 2σE

(

Nn,11
n“

‖e1+σNn‖2+ α
‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

.For n ≥ n1, we have 1 +On < 0. Therefore, the event
((

‖e1 + σNn‖2 +
α

‖Xn‖2

)

(1 + Nn) <

(

1 +
α

‖Xn‖2

)

(1 +On)

)is equivalent to the event
{

(1 + Nn < 0) ∩
(

‖e1 + σNn‖2 > A (On, ‖Xn‖,Nn)
)} 99



Chapter 3. Study of the Sale-invariant (1 + 1)-ES in Noisy Spherial Environmentswhere A (On, ‖Xn‖,Nn) is de�ned as A (On, ‖Xn‖,Nn) :=
(

1 + α
‖Xn‖2

)

1+On

1+Nn
− α

‖Xn‖2 . There-fore, we get:
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

= 1+

2σ1{Nn<0}E
(

Nn,11{1+2σNn,1+σ2‖Nn‖2>A(On,‖Xn‖,Nn)} |Xn, On,Nn

)

+ σ2
1{Nn<0}E

(

‖Nn‖2
1{1+2σNn,1+σ2‖Nn‖2>A(On,‖Xn‖,Nn)} |Xn, On,Nn

)Now, we will show thatM(Xn, On,Nn) := E
(

Nn,11{‖e1+σNn‖2>A(On,‖Xn‖,Nn)} |Xn, On,Nn

)

≥
0. The quantity M(Xn, On,Nn) an be rewritten as

M(Xn, On,Nn) =
1

(2π)
d
2

∫

Rd

x11{‖e1+σx‖2>A(On,‖Xn‖,Nn)}(x)dx . (3.38)Let On, ‖Xn‖ and Nn be �xed and let (x1, . . . , xd) ∈ R
d. If x1 is suh that

x1 < 0 and 1 + 2σx1 + σ2‖x‖2 > A (On, ‖Xn‖,Nn)then
1 + 2σ(−x1) + σ2

(

(x1)
2 +

d
∑

i=2

(xi)
2

)

≥ 1 + 2σx1 + σ2‖x‖2 > A (On, ‖Xn‖,Nn)Let B (On, ‖Xn‖,Nn, x) denote the quantity A(On,‖Xn‖,Nn)−1−σ2‖x‖2

2σ
. Then

B (On, ‖Xn‖,Nn, (x1, x2 . . . , xd)) = B (On, ‖Xn‖,Nn, (−x1, x2 . . . , xd)) , (3.39)and we haveif x1 < 0 then 1{x1>B(On,‖Xn‖,Nn,(x1,x2,...,xd))} ≤ 1{−x1>B(On,‖Xn‖,Nn,(−x1,x2,...,xd))} . (3.40)The quantity M(Xn, On,Nn) an be rewritten as
M(Xn, On,Nn) =

1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≤0}1{‖e1+σx‖2>A(On,‖Xn‖,Nn)}(x)dx1

]

dx2 . . . dxd

+
1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≥0}1{‖e1+σx‖2>A(On,‖Xn‖,Nn)}(x)dx1

]

dx2 . . . dxd .Applying a hange of variables in the seond term (u1 = −x1, u2 = x2, . . . , ud = xd), andusing Eq. 3.39, one gets
M(Xn, On,Nn) =

1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≤0}1{x1>B(On,‖Xn‖,Nn,x)}(x)dx1

]

dx2 . . . dxd

+
1

(2π)
d
2

∫

Rd−1

[∫

R

−u11{u1≤0}1{−u1>B(On,‖Xn‖,Nn,u)}(u)du1

]

du2 . . . dud .100



3.3. Additional onvergene/divergene resultsThis gives
M(Xn, On,Nn) =

1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≤0}
(

1{x1>B(On,‖Xn‖,Nn,x)}(x) − 1{−x1>B(On,‖Xn‖,Nn,x)}(x)
)

dx1

]

dx2 . . . dxd .By Eq. 3.40, one has x11{x1≤0}
(

1{x1>B(On,‖Xn‖,Nn,x)}(x) − 1{−x1>B(On,‖Xn‖,Nn,x)}(x)
)

≥ 0for all x ∈ R
d . ConsequentlyM(Xn, On,Nn) ≥ 0 whih implies thatE (‖Xn+1‖2

‖Xn‖2 |Xn, On,Nn

)

≥
1 for n ≥ n1.
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Chapter 4Log-linear Behavior of theSale-invariant (1, λ)-ES in NoisySpherial EnvironmentsThe material in this hapter is the basis for a journal paper that we intend to submitsoon. In Chapter 3, we investigated the e�et of the elitist seletion proedure of thesale-invariant (1 + 1)-ES when minimizing noisy objetive funtions. For a lass ofnoisy objetive funtions with positive non-noisy part, we have shown that almost sureonvergene annot our if negative noisy objetive funtions values an be sampledwith a stritly positive probability. In this hapter, we investigate the behavior of thenon elitist (1, λ) isotropi ES when minimizing noisy objetive funtions. The adaptationrule is the sale-invariant rule (i.e., σn = σ‖Xn‖) that had been previously shown to beoptimal for omma strategies [17℄. The general model of the noisy objetive funtion isgiven by the following equation
f(x) = ‖x‖(1 + σǫN ) (4.1)where x ∈ R

d, N is an independent random variable that models the noise and σǫ is astritly positive onstant whih represents a saling parameter for the noise level. Wewill refer to σǫ as the noise strength. The noise random variable N is supposed to beabsolutely ontinuous with respet to the Lebesgue measure.Moreover, we investigate two models relative to the omputation of the �tness of theo�spring that we denote model pf and model apf respetively. Let x ∈ R
d denotea parent and y ∈ R

d its o�spring. In the model pf, the �tness of the o�spring is
f(y) = ‖y‖+σǫ‖y‖N . In the model apf, the �tness of the o�spring is f(y) = ‖y‖+σǫ‖x‖N .The model apf was used in [8℄ as a reliable approximation in the limit of in�nite dimen-sion of the searh spae.The work an be divided into three parts, that we summarize below.Part 1: Log-linear behavior for �xed �nite dimension In this part, we investigatethe log-linear behavior of the algorithm for a �xed searh spae dimension. The log-linear103



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsbehavior of the algorithm is proven in Theorem 4.8 for the models pf and apf. The resultis established using the Law of Large Numbers for orthogonal random variables. Theresult is that limn
1
n

ln (‖Xn‖) = F(σ, σǫ) or F̃(σ, σǫ) where F(σ, σǫ) (respetively F̃(σ, σǫ))represents the onvergene rate for the model pf (respetively apf). This theorem not onlystates that the behavior of the algorithm is log-linear (whenever the quantites F(σ, σǫ) and
F̃(σ, σǫ) are nonzero), but also gives a quantitative information relative to the onvergene(or divergene) speed that an be numerially omputed (see Part 3)..Part 2: In�nite dimension study The hypothesis used in [8℄ suggests that the modelpf is well approximated by the model apf for in�nite dimension of the searh spae. Inthis part, we show rigorously that suh an approximation is reliable when the searh spaedimension goes to in�nity. Moreover, we investigate how the onvergene rate F(σ, σǫ) (or
F̃(σ, σǫ)) varies as a funtion of the searh spae dimension d. Therefore, we investigatethe limit of the so-alled normalized onvergene rates dF(σ, σǫ) and dF̃(σ, σǫ) with σequal to σ∗

d
and σǫ equal to σ∗ǫ

d
. The stritly positive onstants σ∗ and σ∗

ǫ are respetivelyalled normalized step-size mutation and normalized noise strength. The result of thisomputation relies on proving the uniform integrability of the underlying random variablesand is given in Theorem 4.9. It is proven that the quantities dF(σ
∗

d
, σ

∗
ǫ

d
) and dF̃(σ

∗

d
, σ

∗
ǫ

d
)have the same limit, depending on λ, σ∗ and σ∗

ǫ , that we will denote l(λ, σ, σ∗
ǫ ). Thisresult allows us to onlude that:1. The onvergene rate varies asymptotially linearly with the inverse of the searhspae dimension in the sense that F(σ

∗

d
, σ

∗
ǫ

d
) ∼

l(λ,σ,σ∗ǫ )
d

and F̃(σ
∗

d
, σ

∗
ǫ

d
) ∼

l(λ,σ,σ∗ǫ )
d

.2. The approximation used in [8℄ is reliable when the searh spae dimension goes toin�nity.Part 3: Spei� ase of Gaussian noise In this part, we fous on the partiularase of Gaussian noise. First, we give in Theorem 4.10 a simpli�ed expression of the limit
l(λ, σ, σ∗

ǫ ) of the normalized onvergene rates dF(σ
∗

d
, σ

∗
ǫ

d
) and dF̃(σ

∗

d
, σ

∗
ǫ

d
). The proof inTheorem 4.10 uses the same tehniques that were used in [25℄, and mainly relies on the fatthat mutations follow the multivariate normal distribution.The limit of the normalizedonvergene rate (given in Eq. 4.20) is found to be equal to the opposite of the limit ofthe progress rate derived in [25℄. This result generalizes the result derived in [17℄ for thenon-noisy sphere funtion. Moreover, the expression derived shows that:1. For su�iently large searh spae dimensions, if σ∗

ǫ < 2c(1, λ), the algorithm on-verges provided that σ∗2 +σ∗
ǫ
2 < 4c2(1, λ) (stritly negative normalized onvergenerate) and if σ∗

ǫ > 2c(1, λ) the algorithm diverges (stritly positive normalized on-vergene rate).2. For �xed σ∗ and λ, the limit of the normalized onvergene rate when the searhspae goes to in�nity is inreasing as a funtion of σ∗
ǫ , i.e., the noise slows downa possible onvergene of the algorithm or speeds up a possible divergene of thealgorithm.104



3. The limit of the normalized onvergene rate when the searh spae dimensiongoes to in�nity is a dereasing funtion of λ, i.e., inreasing λ speed up a possibleonvergene of the algorithm.Seond, in the divergene ase given by σ∗
ǫ > 2c(1, λ), we ompare the strategies of1. inreasing λ,2. re-sampling the o�spring �tness N times and averaging its �tness through the Nsamplings.By inreasing λ or averaging (whih dereases the normalized noise strength from σ∗

ǫ to
σ∗ǫ√
N
) one an be in the onvergene situation given by σ∗

ǫ < 2c(1, λ). It is established,for su�iently large values of σ∗
ǫ , that it is better for the (1, λ)-ES (in term of evaluationost per generation), to reevaluate the o�spring �tness than to inrease the number ofo�spring λ. Note that a similar study had been previously done in [25℄.Third, a ontribution of this study is Theorem 4.8, whih has been derived using a LLNfor orthogonal random variables, and gives the expliit expression of the onvergene (ordivergene) rate. This expression is given in terms of an expetation of an underlyingrandom variable and therefore, aording to the LLN, an be numerially omputed us-ing Monte Carlo simulations. Monte Carlo simulations of the normalized onvergenerates are plotted as a funtion of the normalized step-size mutation for di�erent normal-ized noise strengths, di�erent dimensions and both models pf and apf. Stritly positive(respetively negative) values of the normalized onvergene rate mean that the algo-rithm onverges (respetively diverges). In partiular, it an be seen that for almost allparameter settings (normalized step-size muation, normalized noise strength, number ofo�spring), the onvergene rate is nonzero, whih gives the log-linear behavior of the al-gorithm.Fourth, urves representing the normalized onvergene rates for �nite dimensions andthe in�nite dimension (d → +∞) are plotted (Figures 4.5 and 4.6) as a funtion of thenormalized step-size mutation for the models pf and apf and two values of the normal-ized noise strength. These plots reveal that, for same parameter values of the algorithmand of the normalized strength, �nite onvergene rates an have stritly negative sign,suggesting a onvergene of the algorithm, while the limit expression of the onvergenerate is stritly positive, suggesting the divergene of the algorithm in the limit of in�nitedimensions. Therefore, in�nite dimension results have to be taken with are in someases. Moreover, the omparison of the urves relative to the model pf to those relativeto the model apf reveals that, for the same parameter values and �nite dimensions, on-vergene an be predited for one of the two models, while divergene ours for the othermodel. These two observations prove the limits of adopting, for �nite dimensions, in�nitedimension results and for approximating the model pf by the model apf.Finally, optimal onvergene rates, optimal normalized step-size mutations, and upperbounds for the step-size mutation allowing to have a onvergene of the algorithm areplotted, for �nite and in�nite dimensions, as a funtion of the normalized noise strength

σ∗
ǫ . 105
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4.1. Introdution
Log-linear Behavior of the Sale-invariant (1, λ)-ES inNoisy Spherial Environments

4.1 IntrodutionOptimization is a reurrent task in engineering problems and a researh �eld investigatedby applied mathematiians and by omputer sientists as well. Mathematially speaking,the goal is to minimize (or maximize 1) a real valued funtion f , alled objetive fun-tion, and de�ned on a searh spae Ω. The general ontext of this hapter is non linearunonstrained ontinuous optimization. This means that f is non linear, the searh spae
Ω is non restrited and is (or ontains) one or many open subsets of R

d.The di�ulty of an unonstrained optimization problem is related to the dimension ofthe searh spae Ω and to the harateristis of the underlying objetive funtion f . Inreal-world optimization problems, objetive funtions an be non-onvex, non-smooth,disontinuous, noisy, multi-modals, ill-onditioned, non separable . . . . The algorithmsdeveloped to solve these problems explore the searh spae by generating, at eah iter-ation, new trial point(s) either deterministially or randomly using some searh distri-bution. Randomized searh methods are well known global methods whih prove to bemore robust than deterministi searh methods when optimization problems are 'di�ult'[9, 106, 78℄. Randomized searh methods designed for ontinuous optimization inludePure Random Searh (PRS) [31℄, Pure Adaptive Searh (PAS) [148℄, Evolution Strate-gies (ES) [25℄, Di�erential Evolution (DE) [131, 132, 133℄, Partile Swarm Optimization(PSO) [34, 81, 126, 127℄, (ontinuous) Estimation of Distribution Algorithms (ontinu-ous (EDA)) [91℄ and Simulated Annealing (SA) [3℄2. Aording to the omparison ofsome widely used ontinuous randomized searh methods whih has been done during theCongress of Evolutionary Computation (CEC 2005) [2℄, the state of the art of ES alledCovariane Matrix Adaptation-Evolution Strategy (CMA-ES) was highly ompetitive bysolving all problems inluding multi-modal problems and robust as its performane wasnot a�eted by non-separability or non-onvexity. Moreover, the performane of CMA-ESdegrades slower than performane of the other methods when the test funtion is beingless and less onditioned.Pure Random Searh is the simplest randomized searh method. At eah iteration,trial points are independent identially distributed (i.i.d.) and the best solution is re-tained. In partiular, points are always sampled around the same point and the searh1Minimizing a real valued funtion f is equivalent to maximize −f .2Simulated Annealing an be seen as a partiular ES with a randomized rule for the aeptane of anew trial point. 107



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsdistribution parameters suh as the radius and favorite diretions of the searh are un-hanged during the optimization proess. It has been proven [149℄ that this intuitiveproedure ensures a global onvergene in the sense that the algorithm onverges to theglobal minimum with probability 1 for every objetive funtion for whih the neighbor-hood of the global optimum an be reahed with stritly positive probability. However,the researh parameters of Pure Random Searh are not adapted relatively to the historyof the searh and/or the shape of the objetive funtion. Thus, its onvergene time isvery large inreasing exponentially with the searh spae dimension. This makes PureRandom Searh not useful in pratie on some problems presenting a struture that ouldbe exploited. This exponential dependeny of the onvergene time of the PRS withrespet to the dimension is dereased to a linear dependeny for the so-alled Pure Adap-tive Searh (PAS) [148℄ but the PAS is an algorithm, not only move i� a better point issampled but also does not adapt its researh parameters. The run time will be then verylarge in pratie.On the other hand, ES, whih are evolutionary algorithms (EA) designed for ontinuousoptimization, were suessful due to the adaptation mehanisms of researh parametersthey implement. ES, as other EA, use bio-inspired tehniques at eah iteration (alledalso generation) to evolve a set (or population) of solutions. Solutions in the beginningof an iteration n are alled parents. Then the searh step is based on the so-alled mu-tations. A mutation is a perturbation of a parent whih orresponds to adding a randomsampling of a multivariate normal distribution. The resulting point is alled o�spring. Atan iteration n, let Xn be the parent, the o�spring Yn equals
Yn = Xn + σnN(0, Cn), (4.2)where σn is a stritly positive onstant and N(0,M) denotes a sampling of the multi-variate normal distribution with mean (0, . . . , 0) ∈ R

d and a ovariane matrix M . Theparameter σn and the matrix Cn are the searh distribution parameters. The parameter
σn orresponds to the 'radius' of the searh and is alled the step-size mutation. Thematrix Cn gives the favorite diretions of the searh at the iteration n and is abusivelyalled the ovariane matrix of the mutation. An e�ient ES has to adapt its researhparameters (σn and Cn) based on the history of the searh. The simplest ES, is the so-alled (1 + 1)-ES, whih evolves a single solution and aept, at eah iteration, the newtrial point i� it is better than the previous sampled points. If the step-sizes σn (n ≥ 0) areset equals to a onstant σ0 and the ovariane matries Cn are set equal to the identitymatrix of R

d whih we denote Id3, it has been shown [117, 33℄ that almost sure onver-gene toward the global optimum holds when the objetive funtion is ontinuous. If thestep-sizes σn (n ≥ 0) are deterministially updated, it has been shown that global onver-gene4 holds for isotropi ES whenever a su�ient ondition on the sequene of step-sizesis satis�ed [150℄. Several adaptation shemes have been introdued. The one-�fth suessrule [114, 82℄ is the oldest known tehnique whih adapts only the step-size. Self-adaptiveStrategies [114℄ and Meta-ES [63℄ employ the evolution itself to adjust the searh param-eter values. The state of the art of adaptive ES is the CMA-ES [61, 59, 57, 16℄ in whih3ES with Cn = Id are alled isotropi ES.4Global onvergene studies refer to theoretial studies where objetive funtion is not subjet to manyhypothesis and in partiular these studies onern multi-modal funtions.108



4.1. Introdutionthe step-size and all the diretions of the searh are updated at eah iteration.The adaptation in ES makes them pratially more e�etive and more rapid than PRSas it is the ase of CMA-ES for whih it is stated in [16℄ that: �On Convex-quadratifuntions, the adaptation mehanisms for σ and C allow to ahieve log-linear onvergeneafter an adaptation time whih sales between 0 and the searh spae dimension squared�.The log-linear onvergene, numerially observed in many numerial studies of optimiza-tion using ES, means that the logarithm of the distane to the optimum dereases linearlywith the number of iterations after an adaptation time. Mathematially speaking, if wedenote dn the distane of the solution at an iteration n to the optimum, the (log)-linear(asymptoti) onvergene means that
lim
n→∞

1

n
ln(dn) = c (4.3)for some c 6= 0. The limit c is alled onvergene rate (of the sequene (ln(dn))n). Thesequene (dn)n onverges whenever c < 0. If c > 0, the algorithm diverges. It hasbeen proven [17, 77℄ for isotropi ES that the onvergene of ES on uni-modal objetivefuntions is at most log-linear for any adaptation sheme of the sequene (σn) and thatthe optimal onvergene rate is reahed for a spei� objetive funtion and a spei�adaptation rule of the sequene (σn). The spei� objetive funtion is the so-alled spherefuntion whih is the funtion mapping R
d into R and de�ned as f(x) = ‖x‖2 for x ∈ R

dwhere ‖.‖ denotes the eulidean norm on R
d. The minimum of this funtion is reahedon (0, . . . , 0). The spei� adaptation rule is the so-alled sale-invariant tehnique forwhih the step-size is set proportionally to the distane to the optimum at eah iteration5in the sense that, in the ase of an optimum in (0, . . . , 0), this rule writes as

σn = σ‖Xn‖ , (4.4)where σ is a stritly positive onstant alled normalized step-size mutation. This adap-tation rule has been widely investigated in the ontext of progress rate theory [114, 25℄in whih the exat expression of the sale-invariant mutation is to set σ in Eq. 4.4 equalto σ∗

d
where σ∗ is a stritly positive onstant alled the normalized step-size mutation6.In progress rate theory, the goal is to maximize the expeted progress to the optimumat eah iteration (alled progress rate) and the results derived hold asymptotially in thedimension of the searh spae. In the ase of a realisti adaptation rule, an idea proposedin [27℄ of investigating the stability of Markov hains relative to the ES dynamis to studytheir behavior was exploited in [13℄ to rigorously prove that isotropi ES do onverge (ordiverge) log-linearly when minimizing the sphere funtion.Noisy objetive funtions are frequently enountered in real-world optimization prob-lems. Noise an have various origins as physial measurement limitations or the use ofstohasti simulation proedures suh as Monte-Carlo simulations. Note that these exam-ples share the property that a reevaluation of a same solution lead to di�erent objetive5This rule is arti�ial as in pratie one does not know the optimum loation.6Note that we used the same terminology 'normalized step-size mutation' to denote σ in Eq. 4.4 and

σ∗ when σ is replaed by σ∗

d
. 109



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsfuntion values. Therefore, the noise investigated here is random.The problem when dealing with noisy objetive funtions is that the noisy part of thefuntion an deeive the deision making. The omparison of two solutions is no morereliable: the noisy objetive funtion of a solution with low noise value an be betterthan the objetive funtion value of a solution with a better (ideal) funtion value butlarge noise value. If this event happens frequently, the algorithm may diverges. Beyer[24℄ notied that the behavior of evolutionary algorithms in noisy environments is similar,independently of the nature of the searh spae (ontinuous or disrete): noisy objetivefuntions lead to the derease of the onvergene speed and to a deterioration of the �-nal optimum loation quality. ES are robust when solving noisy optimization problems[9, 106℄ ompared to other deterministi or randomized searh methods. In [9℄, it is shownthat ES perform better than some deterministi method whih an stagnate. In parti-ular, it is shown that, for large values of noise, ES an perform even better than theimpliit �ltering method [47, 80℄ whih belongs to the �eld of stohasti approximationalgorithms [115, 83, 86, 87℄ whih are optimization methods spei�ally designed for theoptimization of stohasti and in partiular noisy objetive funtions. In [106℄, it is statedthat ES perform the best among population-based methods on noisy environments. How-ever, there are few rigorous mathematial studies of the onvergene of ES with respet tothe noise properties. Theoretial studies of ES in presene of noise have been arried outby Rehenberg [114℄, Arnold and Beyer [25, 7, 5, 10, 6, 8, 24℄, using asymptoti estima-tions when the dimension of the searh spae tends to in�nity. In [8℄, the noisy objetivefuntion used by the authors is
‖x‖2

(

1 +
2σ∗

ǫ

d
N
) (4.5)in whih the term σ∗

ǫ is a stritly positive onstant alled normalized noise strength and
N is a Gaussian variable. Note that the noise model here is multipliative, i.e., the noiseis the ratio between the noisy and ideal objetive funtion. It is worth notiing that amultipliative noise model is a realisti model for modeling the noise, as the performaneof the algorithm depends on how the noisy value of the objetive funtion ompares to theideal value. Moreover, an hypothesis of an additional noise with a �xed variane will leadto a random behavior of the algorithm when the ideal objetive funtions values beome,after some iterations, very small ompared to the noise variane. In our study, we theoret-ially investigate the behavior of the so-alled (1, λ)-ES7 using the optimal sale-invariantadaptation rule on the minimization of an objetive funtion perturbed by a multipliativenoise. The noisy objetive funtion investigated here has a similar expression to that ofEq. 4.5 and simpli�es to the funtion f(x) = ‖x‖ in the absene of noise. We will denotethe non-noisy funtion f(x) = ‖x‖ the sphere funtion and the relative noisy funtion,that we will investigate here, noisy sphere funtion. Note that in general, the terminology'sphere funtion' is in general used to denote the funtion f(x) = ‖x‖2, but in our ase weused this terminology to refer to f(x) = ‖x‖. The study is similar for the two funtions.We investigate two noise models relative to two ways the o�spring objetive funtion7In an iteration of the (1, λ)-ES, the new parent is the best o�spring among the λ o�spring newlygenerated.110



4.2. Mathematial model for the sale-invariant (1, λ)-ES minimizing noisy sphere funtionsomputation is done. In the �rst model, the noise level of the o�spring is proportional toits (ideal) objetive funtion f(x) = ‖x‖. The seond model has been used by Arnold andBeyer in [8℄ as a reliable approximation of the �rst one for high searh spae dimensions:using the sale invariant algorithm with a Gaussian noise distribution for the noisy ob-jetive funtion, they laim that the noise level of an o�spring (whih orresponds to thestandard deviation of the noise distribution) is well approximated by that of its parentwhen the searh spae dimension d goes to in�nity. The �rst model will be referred to asmodel pf and the seond one will be denoted model apf.The behavior of ES on noisy objetive funtions is important to study. The randomizedpart of these funtions overs many real objetive funtion ases for whih a little infor-mation is given and therefore any kind of irregularity is inluded on this kind of funtions.In this hapter, we want to see if, similarly to the non-noisy ase, the behavior of thesale-invariant (1, λ)-ES is log-linear on the noisy spherial objetive funtions. For thispurpose, we introdue in Setion 4.2 the mathematial model for the objetive funtionand the sale-invariant (1, λ)-ES minimizing this funtion with its two versions relative tothe models pf and apf. In Setions 4.3 and 4.4 we investigate the log-linear behavior ofthe algorithm and derive the onvergene (or divergene) rate in Theorem 4.8. Setion 4.5is dediated to the study of the dependeny of the onvergene rate of the algorithm withrespet of the searh spae dimension: we ompute a ommon limit (Theorem 4.9) forthe two models pf and apf of the so-alled normalized onvergene (or divergene) ratewhen the searh spae dimensions goes to in�nity and derive its expression on the spei�ase of Gaussian noise (Theorem 4.10). In Setion 4.6, the distintion between the aseswhere onvergene or divergene happens is investigated theoretially and numerially for�nite and in�nite dimension ases. Note �nally that for the sake of readability, most ofthe proofs of this hapter are sent into an appendix setion.4.2 Mathematial model for the sale-invariant (1, λ)-ES minimizing noisy sphere funtions4.2.1 Objetive funtion modelThe general noisy spherial model investigated here is the multipliative noise modelwhih writes as
f(x) = ‖x‖(1 + σǫN ) (4.6)where x ∈ R

d, N is an independent random variable that models the noise and σǫ isa stritly positive onstant whih represents the saling parameter for the noise level.We will refer to σǫ as the noise strength. The noise random variable N is supposed tobe absolutely ontinuous with respet to the Lebesgue measure. Its probability densityfuntion is denoted pN . The expression of the noise level σǫ‖x‖ onveys the idea of settingthe variane of the noise proportional to the (ideal) objetive funtion whih is the spherefuntion ‖x‖ here.In our study, we investigate two noise models relative to two di�erent expressions for111



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsthe omputation of the o�spring objetive funtion. Let x denote the parent and y itso�spring. The model pf is the original model given by Eq. 4.6 and then verifying that thenoise level of the o�spring is proportional to its (ideal) objetive funtion, i.e., the �tnessof the o�spring y writes as ‖y‖ + σǫ‖y‖N . The model apf is relative to the approxima-tion used by Arnold and Beyer in [8℄. In fat, Arnold and Beyer [8℄ state that for highdimension of the searh spae the parent and its o�spring are so lose that the noise levelof the o�spring (whih is σǫ‖y‖N in the original model pf) will be well approximated bythat of its parent, i.e., σǫ‖x‖N . Thus, the �tness of the o�spring y in model apf equals
‖y‖ + σǫ‖x‖N . The model ( apf ) was also investigated in [136℄ as a model where thenoise level is saled proportionally to the step-size mutation.4.2.2 The algorithm: the sale-invariant (1, λ)-ES minimizing theobjetive funtion de�ned in Eq. 4.6In the ontext of minimization of a real valued funtion de�ned on a ontinuous subsetof R

d (d ≥ 1), the (1, λ)-ES is a simple ES whih evolves a single solution. The solutionat an iteration n is the parent denoted Xn. An iteration n of a (1, λ)-ES is omposed ofthree steps:
• Searh step:In this step, λ mutations are performed as in Eq. 4.2 resulting on λ new trial points(the o�spring) Yi,n := Xn + σnNi,n(0, Id) , i = 1, . . . , λ . The quantities Ni,n(0, Id) , i =
1, . . . , λ are independent realizations of the multivariate isotropi normal distribution on
R
d, N(0, Id), whih we will denote N(d). For d = 1, N(1) will be simply denoted NUsinga sale-invariant mutation desribed in Eq. 4.4, the expressions of the o�spring an berewritten as: Yi,n = Xn + σ‖Xn‖Ni,n(0, Id) , i = 1, . . . , λ.

• Evaluation step:In this step, objetive funtions of the o�spring reated are omputed. The noisy objetivefuntion of an o�spring Yi,n denoted, aording to the model used, f̃(Yi,n) or f(Yi,n) isthen de�ned as
f(Yi,n) = ‖Yi,n‖ + σǫ‖Yi,n‖Ni,n , (4.7)for the model pf, and
f̃(Yi,n) = ‖Yi,n‖ + σǫ‖Xn‖Ni,n , (4.8)for the model apf where, for n ∈ N and i an integer in [1, λ], the random variables Ni,nare independent realizations of the (noise) random variable N . In Eq. 4.8, we have useda tilde for the notation of the �tness funtion of the o�spring for the model apf, whih isdenoted without a tilde for the model pf. In the sequel, we will use the same onvention,i.e., use tilde for quantities relative to the model apf.

• Seletion step:In this step, only the best o�spring (aording to its objetive funtion value) is keptas the new parent Xn+1. This means that Xn+1 equals Y∗,n whih veri�es f(Y∗,n) =112



4.3. De�nitions and preliminary results
min{f(Yi,n) , i = 1, . . . , λ} if model pf is used and f̃(Y∗,n) = min{f̃(Yi,n) , i = 1, . . . , λ}if model apf is used. For this hosen o�spring the random vetor (r.ve.) N

(d)
∗,n and therandom variable (r. var.) N∗,n are then impliitely de�ned by

∥

∥Xn + σ‖Xn‖N(d)
∗,n
∥

∥ (1 + σǫN∗,n) = min
1≤i≤λ

{
∥

∥Xn + σ‖Xn‖N(d)
i,n

∥

∥ (1 + σǫNi,n)} (4.9)if the model pf is used. For the model apf the previous equation writes
∥

∥Xn + σ‖Xn‖N(d)
∗,n
∥

∥+ σǫ‖Xn‖N∗,n = min
1≤i≤λ

{
∥

∥Xn + σ‖Xn‖N(d)
i,n

∥

∥+ σǫ‖Xn‖Ni,n} . (4.10)In other words, the random vetor N
(d)
∗,n and the random variable N∗,n are the instanethat gave the best o�spring. Aording to this three steps, the mathematial formulationof the algorithm is as follows: let X0 ∈ R

d be the �rst parent randomly hosen with theondition P (X0 = 0) = 0. Then an iteration of the sale-invariant (1, λ)-ES algorithmdesigned for the minimization of the funtion de�ned in Eq. 4.6 writes for n ≥ 0 as:
Xn+1 = Xn + σ‖Xn‖N(d)

∗,n , (4.11)where N
(d)
∗,n is de�ned in Eq. 4.9 and Eq. 4.10 aording to the model used.In setion 4.4, we investigate the stability of the sequene Xn for the models apf andpf and derive the onvergene theorem (Theorem 4.8). In setion 4.5, we ompute thelimit for d going to in�nity of the so-alled normalized onvergene rate derived fromthe expetation given in Theorem 4.8 using normalizations of the progress rate theoryinluding Arnold and Beyer [25, 8℄ normalizations for the noise.4.3 De�nitions and preliminary resultsIn the sequel, e1 will denote the unitary vetor in R

d (1, 0, . . . , 0) and Pr (E) the probabilityof an event E. Moreover, let λ ∈ N
∗, (Mi)1≤i≤λ be λ random variables (or vetors) and Rbe a random variable or a real valued funtion. The argmin of the variables R(Mi) (i ∈

{1, . . . , λ}) is the random variable (or vetor) M∗ whih lies in the set {Mi, i = 1, . . . , λ}and whih veri�es R(M∗) = min{1≤i≤λ}{R(Mi)}.will also use the following de�nition.De�nition 4.1.1. We de�ne the maps H (relative to the model pf) and H̃ (relative to the model apf)on N
∗ × R

d × [0,+∞[×[0,+∞[ into R
+ as the following:

H(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1
[

‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN(d)‖ (1 + σǫN )
]

pN (y)dy ,and̃
H(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1
[

‖e1 + σx‖ + σǫy ≤ ‖e1 + σN(d)‖ + σǫN
]

pN (y)dy .113



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environments2. Let (N
(d)
i )i∈[1,λ] (resp. (Ni)i∈[1,λ]) be λ independent samplings of N(d) (resp. N ).We de�ne the random vetor (N

(d)
∗ ,N∗) as the argmin of the variables {‖e1 +

σN
(d)
i ‖ (1 + σǫNi) , i = 1, . . . , λ} if model pf and as the argmin of the variables

{‖e1 + σN
(d)
i ‖ + σǫNi, i = 1, . . . , λ} if model apf.In this ontext, we have the following lemma.Lemma 4.2. Let H and H̃ be the funtions introdued in De�nition. 4.1 and N

(d)
∗ therandom vetor introdued in the same De�nition. Then the probability density funtionof the random vetor N

(d)
∗ is de�ned, for a given (λ, σ, σǫ) ∈ N

∗ × [0,+∞[×[0,+∞[, as
1

(2π)d/2
e−

‖x‖2

2 H(λ, x, σ, σǫ), x ∈ R
d (4.12)if model pf and

1

(2π)d/2
e−

‖x‖2

2 H̃(λ, x, σ, σǫ), x ∈ R
d (4.13)if model apf. Moreover, we introdue the funtions F and F̃ mapping [0,+∞[×[0,+∞[into R as follows:

F(σ, σǫ) := E
[

ln(‖e1 + σN(d)
∗ ‖)

]

=
1

(2π)d/2

∫

Rd

ln(‖e1 + σx‖)e− ‖x‖2

2 H(λ, x, σ, σǫ)dx
(4.14)where N

(d)
∗ is de�ned aording to model pf and

F̃(σ, σǫ) := E
[

ln(‖e1 + σN(d)
∗ ‖)

]

=
1

(2π)d/2

∫

Rd

ln(‖e1 + σx‖)e− ‖x‖2

2 H̃(λ, x, σ, σǫ)dx
(4.15)where N

(d)
∗ is de�ned aording to model apf. Then the funtions F and F̃ are well de�ned,ontinuous on [0,+∞[×[0,+∞[ (endowed with the usual ompat topology).In order to take advantage of the fat that the random vetor N(d) has a spherial distri-bution, the following de�nition will be useful in the sequel.De�nition 4.3. Let (N{n,i})n,i ∈ R

d a sequene of independent random vetors on
R
d following the same distribution N(d). Let also (Ni,n)i,n (i an integer in [1, λ]) bea sequene of independent identially distributed random variables (i.i.d.) with om-mon law N . We de�ne the random vetor (U

(d)
∗,n,V∗,n) as the argmin of the variables

{‖e1 + σN
(d)
i,n‖ (1 + σǫNi,n) , i = 1, . . . , λ} if model pf and as the argmin of the variables

{‖e1 + σN
(d)
i,n‖ + σǫNi,n, i = 1, . . . , λ} if model apf. Let σ a positive onstant. We de�nethe random sequene (Zn)n≥0 as follows

Zn := ln(‖e1 + σU(d)
∗,n‖) − F×(σ, σǫ)where F×(σ, σǫ) is de�ned by Eq. 4.14 if model pf and by Eq. 4.15 if model apf.114



4.4. Log-Linear behavior of the sale-invariant (1, λ)-ES minimizing the objetive funtion (Eq. 4.6)Note that U
(d)
∗,n is distributed as N

(d)
∗ introdued in De�nition 4.1.Remark 4.3.1. Note that in De�nition 4.3, we have used the notation �F×(σ, σǫ)� torefer to the quantity F(σ, σǫ) for the model pf and to the quantity F̃(σ, σǫ) for the modelapf. In the sequel, we will use the same onvention, i.e., the notation A× will refer to aquantity A relative to the model pf and to a quantity Ã relative to the model apf.4.4 Log-Linear behavior of the sale-invariant (1, λ)-ESminimizing the objetive funtion (Eq. 4.6)The proof of the log-linear onvergene for ES relies on the appliation of the Strong Lawof Large Numbers (LLN) for independent or orthogonal random variables or for Markovhains.The following proposition is a key (lassial) idea for the study of the stability ofthe sequene (ln (‖Xn‖))n where (Xn)n is de�ned by Eq. 4.11.Proposition 4.4. Let (Xn)n be the sequene of random vetors valued in R

d satisfyingthe reurrene relation Eq. 4.11. Then for all indies n, we have
1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σN

(d)
∗,k

∥

∥

∥

)

a.s. (4.16)where the random vetors (N
(d)
∗,n)n satisfy Eq. 4.9 if the model is pf and Eq. 4.10 if themodel is apf.To ompute the limit of the right hand side of Eq. 4.16, we will apply the following LLNfor orthogonal random variables derived from [93, p. 458℄.Theorem 4.5 (LLN for Orthogonal Random Variables). Let (Yn)n≥0 be a sequene ofidentially distributed real random variables with �nite variane and orthogonal, i.e., forall indies i, j, with i 6= j one has E(Yi) = 0, E(Y 2

i ) < +∞ and E(YiYj) = 0. Then
lim
n

1

n

n−1
∑

k=0

Yk = 0 a.s.This theorem will be applied for the random variables (Yn)n≥0 that we introdue inthe following de�nition.De�nition 4.6. Let (Xn)n be the sequene of random vetors de�ned in Eq. 4.11, σ and
σǫ be strilty positive onstants. Let also F× be the funtion equal to the funtion Fgiven in Lemma 4.2 and (N

(d)
∗,n)n be the sequene of random variables given in in Eq. 4.9if model pf is used; and F× be the funtion equal to the funtion F̃ given in Lemma 4.2and (N

(d)
∗,n)n be the sequene of random variables given in in Eq. 4.10 if model apf is used.We introdue the sequene of random variables (Yn)n as the following: for n ≥ 0,

Yn := ln
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

− F×(σ, σǫ) . (4.17)115



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial EnvironmentsIn the following proposition, we show that the sequene (Yn)n introdued in De�ni-tion 4.6 satis�es the assumptions of Theorem 4.5.Proposition 4.7. Let (Yn)n be the sequene of random variables in De�nition 4.6. Thefollowings hold:1. For n ≥ 0, E(Yn) = 0 and E(|Yn|2) < +∞.2. The random variables Zn (n ≥ 0) introdued in De�nition 4.3 are identially dis-tributed and for every n ≥ 0, Yn and Zn follow the same distribution.3. The sequene of random variables (Yn)n≥0 is orthogonal, i.e., for all indies i, j, with
i 6= j one has E(Yi) = 0, E(Y 2

i ) < +∞ and E(YiYj) = 0.Then the following theorem holds as a onsequene of Theorem 4.5, Proposition 4.7 andProposition 4.4.Theorem 4.8 (Log-linear behavior of the sale-invariant (1, λ)-ES minimizing the obje-tive funtion (Eq. 4.6)). The sale-invariant (1, λ)-ES minimizing the noisy sphere funtionde�ned in Eq. 4.6 onverges (or diverges) log-linearly in the sense that for σ and σǫ stritlypositive the sequene (Xn)n of random vetors given by the reurrene relation Eq. 4.11veri�es the following equations
lim
n

1

n
ln (‖Xn‖) = F(σ, σǫ) if model pf is used,

lim
n

1

n
ln (‖Xn‖) = F̃(σ, σǫ) if model apf is used, (4.18)almost surely, with F and F̃ de�ned in Eq. 4.14 and Eq. 4.15.Theorem 4.8 states that the onvergene (or divergene) rate of the sale-invariant (1, λ)-ES minimizing the noisy sphere funtion given in Eq. 4.6 (or equivalently the onvergene(or divergene) rate of the sequene (ln (‖Xn‖))n) is F(σ, σǫ) if model pf and F̃(σ, σǫ) ifmodel apf. Aording to Eq. 4.3, the log-linear behavior holds if the onvergene (or di-vergene) rates F(σ, σǫ) and F̃(σ, σǫ) are non zero. If F×(σ, σǫ) < 0, the sequene (‖Xn‖)nonverges log-linearly to the optimum and if F×(σ, σǫ) > 0 the algorithm diverges log-linearly. Fortunately, these quantities an be numerially omputed using Monte Carlosimulations and Figures 4.2, 4.3 and 4.4 (see Setion 4.6), whih have been performedusing a Gaussian noise, show that for almost all parameter settings of the algorithm theyare not equal to zero. Therefore, the log-linear behavior of the algorithm holds. These�gures give also the sign of the onvergene (or divergene) rates F×(σ, σǫ). Moreover, thesign of these rates (multiplied by the searh spae dimension d and using some normal-izations) is investigated when the searh spae dimension goes to in�nity in the spei�ase of Gaussian noise (see Setion 4.5).An interesting question that arises now is how this onvergene speed given by a pos-sible negative value of F×(σ, σǫ) varies as a funtion of the dimension. In the ontext116



4.5. Approximation of the onvergene rate when the searh spae dimension goes to in�nityof progress rate theory, this question was addressed (for noisy and non noisy ases) [25℄by omputing the limit when the dimension goes to in�nity of the so-alled normalizedprogress rate. The normalized progress rate orresponds to the expeted progress madeby an ES algorithm in a single step multiplied by the dimension d of the searh spaei.e., d [E (‖Xn‖−‖Xn+1‖
‖Xn‖ |Xn

)]. These omputations have been done using the objetivefuntion with a Gaussian noise de�ned in Eq. 4.5, the model apf and the sale-invariantrule de�ned in Eq. 4.4 with σ = σ∗

d
. Using these expressions, the normalized progressrate simpli�es to d

(

1 − E
[

‖e1 + σ∗

d
N

(d)
∗ ‖
]) where N

(d)
∗ is given in De�nition 4.1.It isworth notiing that the quantity E [‖e1 + σN

(d)
∗ ‖
] is the ommon ratio of the geometrisequene E(‖Xn‖) where (Xn) is de�ned by Eq. 4.11 whih then onverges to zero i�

E
[

‖e1 + σN
(d)
∗ ‖
]

< 1. Therefore, as already pointed in [17℄ in the non noisy ase, theprogress rate determines if the algorithm onverges or not in expetation. The omputedlimit of the normalized progress rate shows that the progress rate varies asymptotiallylinearly as a funtion of the inverse of the searh spae dimension.In the next setion, and using normalizations of σ and σǫ as a funtion of d, we rigorouslyompute the limit of the normalized onvergene rate w.r.t to the dimension d of thequantity d× F×(σ(d), σǫ(d)) that we will refer to as the normalized onvergene rate.4.5 Approximation of the onvergene rate when thesearh spae dimension goes to in�nityIn non noisy ases, it has been theoretially proven in [17℄ that the onvergene rate ofES varies asymptotially linearly as a funtion of inverse of the dimension of the searhspae. This result is not spei� to ES but holds also for more general ases: it is true forany rank-based algorithm [137℄, or any Hit-and-Run diret searh method [75℄. In thissetion, the goal is to extend the result of asymptoti linear omplexity of the onvergenerate derived in the non noisy ase to the noisy ase. Moreover, we show rigorously thatthe approximation of the model pf by the model apf that has been done in [8℄ is reliablefor in�nite dimension of the searh spae. This is done by investigating the limit of thenormalized onvergene rate. For this sake, we adopt the expression of the sale-invariantmutation used in the ontext of progress rate theory i.e., σ = σ∗

d
and the normalizationsintrodued in [8, 25℄ for the noise strength i.e., σǫ = σ∗ǫ

d
8 where σ∗ > 0 and σ∗

ǫ > 0are respetively the normalized step-size mutation and the normalized noise strength.Theorem 4.9 summarizes the result of the limit, when d goes to in�nity, of the normalizedonvergene rate for any noise distribution. In Theorem 4.10, we give the simpli�edexpression of the limit of the normalized onvergene rate in the spei� ase of Gaussiannoise. The main di�ulty in establishing the proof of Theorem 4.9 is the veri�ation ofthe tehnial ondition of uniform integrability. This ondition was not veri�ed in [25℄.8In the general ase where the ideal objetive funtion equals ‖x‖α, (α > 0), Beyer [25℄ stated thatthe normalization should be σǫ =
ασ∗

ǫ

d
. 117



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial EnvironmentsTheorem 4.9. Consider the funtion F de�ned in Lemma 4.2. Let σ∗ and σ∗
ǫ be twostritly positive onstants. For σ(d) = σ∗

d
, σǫ(d) = σ∗ǫ

d
, the following holds

lim
d→∞

d× F̃(σ(d), σǫ(d)) = lim
d→∞

d× F(σ(d), σǫ(d)) = A(σ∗, σ∗
ǫ , λ) × σ∗ +

σ∗2

2with A(σ∗, σ∗
ǫ , λ) :=

∫

R

x
e−

x2

2√
2π
dx

(

λ

∫

R

Pr λ−1 [σ∗x+ σ∗
ǫ y ≤ σ∗N + σ∗

ǫN ] pN (y)dy

)

,(4.19)where N is the standard normal distribution with mean zero and variane one. Moreover
A(σ∗, σ∗

ǫ , λ) ≤ 0 for any (σ∗, σ∗
ǫ , λ) ∈ R

∗
+ × R

∗
+ × N

∗.Theorem 4.9 states that the onvergene rate of the (1, λ)-ES varies linearly as a funtion ofthe inverse of the searh spae dimension for noisy sphere funtions. Besides, this theoremis true for any absolutely ontinuous noise distribution. Therefore, it applies to thepartiular ase of Gaussian noise and then on�rms the reliability of the approximation,when the searh spae dimension goes to in�nity, of the original model pf by the modelapf made in [25, 8℄. The quantities d F(σ
∗

d
, σ

∗
ǫ

d
) and d F̃(σ

∗

d
, σ

∗
ǫ

d
) have the same limit:the models pf and apf are similar when the dimension goes to in�nity whih on�rm thereliability of suh an approximation.Spei� ase of Gaussian noise: Suppose that the random variable N modeling thenoise follows the standard normal distribution9. In this ase, the asymptoti expressionof the normalized onvergene rate is given by the following theorem. Note that forestablishing the proof, we used the same tehniques that have been used in [25℄ to derivethe limit of the normalized progress rate.Theorem 4.10. Consider the funtions F and F̃ de�ned in Lemma 4.2 for the models pfand apf respetively. Assume that the r.var N follows the standard normal distribution.For λ ≥ 1, we denote by c(1, λ) the expetation of λ independent random variables whihfollow the same standard normal distribution, then c(1, λ) = λ√

2π

∫ +∞
−∞ u e−

1
2
u2

[φ(u)]λ−1 duwhere φ is the distribution funtion of the standard normal distribution. For σ(d) = σ∗

d
,

σǫ(d) = σ∗ǫ
d
where σ∗ and σ∗

ǫ are stritly positive onstants, the following holds
lim
d→∞

d F×(σ(d), σǫ(d)) = −c(1, λ)σ∗ 1
√

1 +
(

σ∗ǫ
σ∗

)2
+
σ∗2

2
. (4.20)where F× stands for F if model pf and F̃ if model apf.9The standard normal distribution is the normal distribution with a mean of zero and a variane ofone.118



4.6. Study of the spei� ase of Gaussian noiseThe right hand side of Eq. 4.20 generalizes the limit of the normalized onvergene rateomputed in [17℄ for the non-noisy sphere funtions and orresponding to σ∗
ǫ = 0 inEq. 4.20. Besides, the limit of the normalized onvergene rate is equal to the oppositeof the limit of the normalized progress rate omputed by Beyer in [25℄. This result wasexpeted due to the mathematial approximation of ln(x) by x − 1 when x is lose to1. For the same reason, the limit of the normalized onvergene rate, omputed in [17℄for non-noisy sphere funtions, was found to be equal to the opposite of the limit of thenormalized progress rate omputed in [25℄. We an also see from Eq. 4.20 that, for �xed

σ∗, the normalized onvergene rate is an inreasing funtion of σ∗
ǫ . Besides, c(1, λ) isan inreasing funtion of λ as it orresponds to the expetation of the maximum of λindependent distributed random variables with a ommon law the standard normal dis-tribution. Thus, the normalized onvergene rate is a dereasing funtion of λ.4.6 Study of the spei� ase of Gaussian noiseIn this setion, the noise distribution N is supposed to be Gaussian. Moreover, σ and σǫare respetively set equal to σ∗

d
and σ∗ǫ

d
where σ∗ and σ∗

ǫ are stritly positive onstant. Theobjet of this setion is to study the onvergene and divergene ases of the algorithmin the ase of �nite searh spae dimension and when the searh spae dimension goes toin�nity.Convergene and divergene in the limit ase of in�nite searh spae di-mension : It is easy to see from Theorem 4.10 that, if σ∗2 + σ∗
ǫ
2 < 4c2(1, λ) then

limd→∞ F×
(

σ∗

d
, σ

∗
ǫ

d

)

< 0 and then the algorithm onverges if the dimension of the searhspae d is su�iently large. Otherwise, if σ∗2 + σ∗
ǫ
2 > 4c2(1, λ) then F×

(

σ∗

d
, σ

∗
ǫ

d

)

> 0and the algorithm diverges when d is su�iently large. Then if σ∗
ǫ < 2c(1, λ) (inludingin partiular the non-noisy ase σ∗

ǫ = 0), the algorithm onverges for some values of σ∗and su�iently large values of d. But if σ∗
ǫ > 2c(1, λ), then the algorithm diverges forany value of σ∗ if d is su�iently large. This means that one has to hoose λ su�ientlylarge suh that σ∗

ǫ < 2c(1, λ) to ensure that the algorithm onverges (provided that d issu�iently large). However, as the funtion λ 7→ c(1, λ) veri�es c(1, λ) ∼
√

2 ln(λ) [4℄, it inreases very slowly. This leads, for su�iently large values of σ∗
ǫ , to huge valuesof minimal numbers of o�spring needed for onvergene as already pointed in [25℄ andshown in Fig 4.1. As an example, for σ∗

ǫ = 8, the minimal number of o�spring neessaryfor satisfying the onvergene ondition σ∗
ǫ < 2c(1, λ) is 18477. Another way to satisfythe onvergene ondition (for large values of d) is to derease the noise level σ∗

ǫ by usingreevaluation of o�spring. Reevaluation means that the objetive funtion of an o�spring
y will be equal, for the model pf for example, to 1

n

∑N
k=1 fk(y) with fk(y) = ‖y‖+σǫ‖y‖Nkwhere Nk are independent realizations of the noise N . The reevaluation using the ompu-tation of the objetive funtion of an o�spring as the average over N evaluations, leads to119



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environments

Figure 4.1: Minimal number of o�spring λ needed to onverge as a funtion of σ∗
ǫ in thease of in�nite dimension.Table 4.1: Minimal number of evaluations needed per generation for di�erent σ∗
ǫ valuesand orresponding numbers of evaluations and o�spring.

σ∗
ǫ 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

N × λ 2 3 4 6 10 12 15 20 24 30 35 40 48 54 60

N 1 1 1 1 1, 2 2, 3 3 4, 5 4, 6 5, 6 5, 7 8, 10 8, 12 9 10, 12

λ 2 3 4 6 10, 5 6, 4 5 5, 4 6, 4 6, 5 7, 5 5, 4 6, 4 6 6, 5a derease of the noise level from σ∗
ǫ to σ∗

ǫ/
√
N . Then a �large� noise level value for whiha great number of o�spring is needed to onverge derease to a �small� value for whih areasonable number of o�spring is su�ient for onvergene. This happens at the expenseof an additional evaluation ost due to reevaluations of the o�spring. We omputed, fordi�erent values of σ∗

ǫ , the minimal number of evaluations needed (for onvergene) pergeneration and saw the orresponding (optimal) number of evaluations N ≥ 1 by o�-spring. Note that the ase N = 1 means that no reevaluation is used. Results are shownin Table 4.1. This table shows that as the normalized noise strength σ∗
ǫ inreases one hasto use more and more reevaluations of the o�spring. Table 4.1 does not show the gainin the ost of the number of evaluations that an be performed by using reevaluation.The minimal osts of evaluations needed for onvergene as a funtion of the number ofreevaluations of an o�spring for di�erent normalized noise strengths σ∗
ǫ is shown in Ta-ble 4.2. Aording to Table 4.2, it is better (in term of evaluation ost per generation),for su�iently large values of σ∗

ǫ , to reevaluate the o�spring �tness than to inrease thenumber of o�spring λ. This holds only for ES with single parents. For omma ES us-120



4.6. Study of the spei� ase of Gaussian noise
Table 4.2: Minimal number of evaluations N × λ needed per generation for di�erent σ∗

ǫvalues and di�erent number of evaluations N .
σ∗

ǫ 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
N × λ = λ 2 3 4 6 10 16 28 51 98 203 444 1031 2541 6649 18477

N × λ = 2 × λ 6 8 10 12 16 24 34 48 74 114 184 304 516

N × λ = 3 × λ 9 12 12 15 21 27 36 45 63 87 123 177

N × λ = 4 × λ 12 16 16 20 24 32 40 48 64 84 112

N × λ = 5 × λ 15 15 20 20 25 30 35 45 55 70 85

N × λ = 6 × λ 18 18 24 24 30 36 42 54 60 78

N × λ = 7 × λ 21 28 28 35 35 42 49 56 70

N × λ = 8 × λ 24 32 32 40 40 48 56 64

N × λ = 9 × λ 27 27 36 36 45 54 54 63

N × λ = 10 × λ 30 30 40 40 40 50 60 60

N × λ = 11 × λ 33 33 44 44 55 55 66

N × λ = 12 × λ 36 36 48 48 48 60 60

N × λ = 13 × λ 39 39 52 52 65 65

N × λ = 14 × λ 42 42 56 56 56 70

N × λ = 15 × λ 45 45 45 60 60 75

N × λ = 16 × λ 48 48 64 64 64

N × λ = 17 × λ 51 51 68 68 68

N × λ = 18 × λ 54 54 72 72

N × λ = 19 × λ 57 54 76 76

N × λ = 20 × λ 60 60 60 80

N × λ = 21 × λ 63 63 84

N × λ = 22 × λ 66 66 88

N × λ = 23 × λ 69 69 69

N × λ = 24 × λ 72 72 72

N × λ = 25 × λ 75 75

N × λ = 26 × λ 78 78

N × λ = 27 × λ 81 81

N × λ = 28 × λ 84

N × λ = 29 × λ 87

N × λ = 30 × λ 90
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Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environments

Figure 4.2: d = 3, λ = 5. Monte Carlo simulations of the normalized onvergene rate asa funtion of the normalized step-size σ∗ for the following σ∗
ǫ values : 0, 0.6 , 1.2, 1.8, 2.4,3.0, 10.0 (from bottom to top). Plots in the left orrespond to the normalized onvergenerate of the model pf ( i.e., d× F(σ

∗

d
, σ

∗
ǫ

d
) where F is de�ned in Eq. 4.14) and plots in theright orrespond to the normalized onvergene rate of the model apf ( i.e., d× F̃(σ

∗

d
, σ

∗
ǫ

d
)where F̃ is de�ned in Eq. 4.15).ing reombination of many parents (the so-alled (µ/µ, λ)-ES), the progress rate formuladerived in [25℄ suggests that it is preferable to inrease the number of o�spring than toreevaluate them.Convergene and divergene for �nite dimensions For d < +∞, if the normal-ized onvergene rate d F̃

(

σ∗

d
, σ

∗
ǫ

d

) (or d F
(

σ∗

d
, σ

∗
ǫ

d

)) is stritly negative, the algorithmonverges. If it is stritly positive, the algorithm diverges. We plot, using Monte Carlosimulations, the expetations d F̃
(

σ∗

d
, σ

∗
ǫ

d

) and d F
(

σ∗

d
, σ

∗
ǫ

d

) as a funtion of σ∗ for di�er-ent values of σ∗
ǫ . Figures 4.2, 4.3 and 4.4 represent these plots for the models pf and apfrespetively for dimensions 3, 10 and 30.Finite and in�nite normalized onvergene rates Using the expliit expressionof the limit of the normalized onvergene rate given in Eq. 4.20 for Gaussian noise,we plotted, for σ∗

ǫ = 1.2 (Fig 4.5) and σ∗
ǫ = 3 (Fig 4.6), the limit of the normalizedonvergene rate when the dimension d goes to in�nity with normalized onvergene ratesfor dimensions 3, 10 and 30 and models pf and apf as a funtion of the normalized step-size mutation σ∗.These plots use λ = 5 and on�rm results in Theorem 4.10. In fat, the urves aregetting loser to the limit expression of the onvergene rate given in Eq. 4.20 as thedimension inreases. This holds for the two models pf and apf. Moreover, these urvesreveals that the limit expression of the normalized onvergene rate is an upped bound fornormalized onvergene rates of �nite dimensions. This shows that the study of the limitof the onvergene rate is safe as whenever this limit is stritly negative (and the �limit�122



4.6. Study of the spei� ase of Gaussian noise

Figure 4.3: d = 10, λ = 5. Monte Carlo simulations of the normalized onvergene rate asa funtion of the normalized step-size σ∗ for the following σ∗
ǫ values : 0, 0.6 , 1.2, 1.8, 2.4,3.0, 10.0 (from bottom to top). Plots in the left orrespond to the normalized onvergenerate of the model pf ( i.e., d × F(σ

∗

d
, σ

∗
ǫ

d
) where F is de�ned in Eq. 4.14) and plots in theright orrespond to the normalized onvergene rate of the model apf ( i.e., d× F̃(σ

∗

d
, σ

∗
ǫ

d
)where F̃ is de�ned in Eq. 4.15).

Figure 4.4: d = 30, λ = 5. Monte Carlo simulations of the normalized onvergene rate asa funtion of the normalized step-size σ∗ for the following σ∗
ǫ values : 0, 0.6 , 1.2, 1.8, 2.4,3.0, 10.0 (from bottom to top). Plots in the left orrespond to the normalized onvergenerate of the model pf ( i.e., d × F(σ

∗

d
, σ

∗
ǫ

d
) where F is de�ned in Eq. 4.14) and plots in theright orrespond to the normalized onvergene rate of the model apf ( i.e., d× F̃(σ

∗

d
, σ

∗
ǫ

d
)where F̃ is de�ned in Eq. 4.15).
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Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environments

Figure 4.5: Normalized onvergene rates for dimensions 3, 10 and 30 and the limitexpression of the onvergene rate (d = +∞) as a funtion of σ∗ for σ∗
ǫ = 1.2, λ = 5and models pf (left) and apf (right). From bottom to top, the urves orrespond todimensions 3, 10, 30 and the limit d = +∞.

Figure 4.6: Normalized onvergene rates for dimensions 3, 10 and 30 and the limitexpression of the onvergene rate (d = +∞) as a funtion of σ∗ for σ∗
ǫ = 3, λ = 5 andmodels pf (left) and apf (right). From bottom to top, the urves orrespond to dimensions3, 10, 30 and the limit d = +∞
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4.7. Disussion and onlusionalgorithm onverges), not only the onvergene holds for su�iently large dimensions butfor all dimensions. In the ase of σ∗
ǫ = 3 , Eq. 4.20 implies that the algorithm divergesfor su�iently high values of d as σ∗
ǫ − 2 ∗ c(1, 5) is stritly positive. However, for smalldimensions, the algorithm an onverge for some σ∗ values as shown in Fig 4.6 (right)in the lower urve orresponding to d = 3. This represents a limit for the usefulnessof in�nite dimension results as in�nite dimension study predits divergene and the plotorrseponding to dimension 3 in Fig 4.6 (right) shows that the algorithm onverges forthe same settings of the algorithm and of the normalized noise strength. Another fatrevealed by the omparison of �nite dimension urves orresponding to the model pf (left)to those orresponding to the model apf (right) is that, for the same parameters values(i.e., σ∗, σ∗

ǫ , λ and d), the signs of the onvergene rates are sometimes di�erent. Thismeans that, while a onvergene is predited for one of the two models, a divergeneours for the other model. This is a limitation of the use, when the dimension is �nite,of the approximation of the model pf by the model apf.Optimal onvergene rates, optimal step-sizes and limit values for onvergenefor di�erent noise levels We plotted, using λ = 5 and the model pf, as a funtion ofthe normalized noise strength σ∗
ǫ the following quantities:

• optimal normalized onvergene rates (Fig 4.7)
• optimal normalized step-size mutations (Fig 4.8 (Left))
• upper values of the normalized step-size mutation for whih the algorithm onverges(Fig 4.8 (Right))The plots show that, for a given σ∗

ǫ these values derease as the dimension inreases andhave as limit the values orresponding to d = +∞. It is woth notiing that in Figures 4.7and 4.8, the urves relative to in�nite dimension an be found in [114, Fig. 14-2 and14-3℄.4.7 Disussion and onlusionIn this hapter we have analyzed the onvergene of the sale-invariant (1, λ)-ES for thenoisy sphere funtion. Two models for the noise have been analyzed: the model pf, wherethe noise is saled proportionally to the loation of the individual or to the non-noisypart of the objetive funtion and the model apf, introdued as an approximation of themodel pf in [25, 8℄, where the noise is saled proportionally to the norm of the parent andtherefore to the step-size.We prove rigorously that omma ES are more robust than plus ES in presene of noise:In Chapter 3, it is shown that the algorithm annot onverge (at least in expetation),if the noise is Gaussian. However, we have shown in this hapter that onvergene holdsalmost surely (also in expetation) for Gaussian noise but with small standard deviation(or noise strength). Moreover there is a robustness in the tehnique used for the proof:the onvergene in presene of noise is obtained using the same tools used for the analysisof onvergene of ES on non-noisy funtions. 125
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4.7. Disussion and onlusionThe onvergene rate obtained for �nite dimension is expressed as the expetation of arandom variable. Though it is di�ult to have a theoretial estimation of this onvergenerate without making an assumption (that the dimension is large for instane), our studyshows that it is fairly easy to simulate the onvergene rate with a Monte-Carlo method.We derive rigorously the limit of the normalized onvergene rate when the dimension
d goes to in�nity and meet the results obtained with the progress rate approah [25℄,bridging therefore the gap between �nite approximation results and in�nite approxima-tions results. As already observed in [25℄, the omputed expression is a generalization ofthe normalized progress rate (or normalized onvergene rate in our ase) in the ase ofnon-noisy omma ES but this omputation allowed us to prove: 1) the similarity of thetwo models for in�nite dimensions; 2) that the onvergene rate of the algorithm hangesasymptotially linearly with the inverse of the searh spae dimension. In the partiularase of Gaussian noise, the limit of the normalized onvergene rate has been expliitlyderived (the same expression has been previously derived in [25℄ for the progress rate)and we investigate the use of re-sampling versus inreasing the number of o�spring tomake the algorithm onverge when noise levels are large. Moreover, the spei� studyof the Gaussian noise ase: 1) show the usefulness of in�nite dimension studies wherenormalized onvergene rate an be quanti�ed expliitly, to learn about the behavior ofthe algorithm for �nite dimensions studies; 2) the limits of adopting, for �nite dimensions,in�nite dimension results and for approximating the model pf by the model apf.
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Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial EnvironmentsAppendixProof of Lemma 4.2Let (N
(d)
i )i∈[1,λ] (resp. (Ni)i∈[1,λ]) be λ independent samplings of N(d) (resp. N ). Therandom vetor (N

(d)
∗ ,N∗) veri�es, aording to De�nition 4.1,

‖e1 + σN(d)
∗ ‖ (1 + σǫN∗) = min

1≤i≤λ
{‖e1 + σN

(d)
i ‖ (1 + σǫNi)} (4.21)for the model pf, and

‖e1 + σN(d)
∗ ‖ + σǫN∗ = min

1≤i≤λ
{‖e1 + σN

(d)
i ‖ + σǫNi} (4.22)for the model apf. First, we give interest to the probability density funtion of the randomveotr N

(d)
∗ in the spei� ase of the model pf. The same reasoning holds for the modelapf. Let A ∈ B(Rd)10. Aording to Eq. 4.21, we have:

P (N(d)
∗ ∈ A) = ∪λi=1P (N

(d)
i ∈ A;∩{1≤j≤λ;j 6=i}‖e1+σN

(d)
i ‖ (1 + σǫNi) ≤ ‖e1+σN

(d)
j ‖ (1 + σǫNj))The random variables (N

(d)
i )i∈[1,λ] and (Ni)i∈[1,λ] play the same role. Therefore, we have,

P (N(d)
∗ ∈ A) = λP (N

(d)
1 ∈ A;∩{2≤j≤λ}‖e1 + σN

(d)
1 ‖ (1 + σǫN1) ≤ ‖e1 + σN

(d)
j ‖ (1 + σǫNj))This an be rewritten as

P (N(d)
∗ ∈ A) =

λ

(2π)
d
2

∫

A

e−
‖x‖2

2 P (∩2≤j≤λ‖e1+σx‖ (1 + σǫN1) ≤ ‖e1+σN
(d)
j ‖ (1 + σǫNj))dxThis gives

P (N(d)
∗ ∈ A) =

λ

(2π)
d
2

×
∫

A

∫

R

e−
‖x‖2

2 fN (y)
(

P (∩2≤j≤λ‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN
(d)
j ‖ (1 + σǫNj))

)

dxdy(4.23)The random vetors (N
(d)
i ,Ni)i∈[2,λ] are independent identially distributed. Therefore,for �xed (x, y) ∈ R

d × R, we have
P (∩2≤j≤λ‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN

(d)
j ‖ (1 + σǫNj)

= ∩2≤j≤λP (‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN
(d)
j ‖ (1 + σǫNj))

= P λ−1(‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σNd‖ (1 + σǫN )) .10
B(Rd) is the Borel σ-algebra on R

d.128



4.7. Disussion and onlusionCombining the last equation with Eq. 4.23, one gets
P (N(d)

∗ ∈ A) =
λ

(2π)
d
2

×
∫

A

∫

R

e−
‖x‖2

2 fN (y)
(

P λ−1(‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σNd‖ (1 + σǫN ))
)

dxdy (4.24)This gives
P (N(d)

∗ ∈ A) =
1

(2π)
d
2

∫

A

e−
‖x‖2

2 H(λ, x, σ, σǫ)dx , (4.25)where H is given in De�nition 4.1. This ends the proof for the probability density funtionof the random vetor N
(d)
∗ .Now, we de�ne the quantities F−

×(σ, σǫ) := E
[

ln−(‖e1 + σN
(d)
∗ ‖)

] and
F+
×(σ, σǫ) := E

[

ln+(‖e1 + σN
(d)
∗ ‖)

] where F−
×(σ, σǫ) (resp. F+

×(σ, σǫ)) stands for F−(σ, σǫ)(resp. F+(σ, σǫ)) with N
(d)
∗ given by Eq. 4.21 if model pf, and for F̃−(σ, σǫ) (resp.

F̃+(σ, σǫ)) with N
(d)
∗ given by Eq. 4.22 if model apf. Note that we have used the no-tation �F−

×� to refer to the quantity F− for the model pf and to the quantity F̃− for themodel apf. In the sequel, we will use the same onvention, i.e., the notation A× will referto a quantity A relative to the model pf and to a quantity Ã relative to the model apf.The quantities F−
× and F+

× exist but ould be in�nite. Let g+
×, g

−
× : N

∗ × R
d ×

[0,+∞[×[0,+∞[ be de�ned for (λ, x, σ, σǫ) in N
∗ × R

d × [0,+∞[×[0,+∞[ by
g+
×(λ, x, σ, σǫ) =

1

(2π)d/2
ln+(‖e1 + σx‖2)e−

‖x‖2

2 H×(λ, x, σ, σǫ)and
g−×(λ, x, σ, σǫ) =

1

(2π)d/2
ln−(‖e1 + σx‖2)e−

‖x‖2

2 H×(λ, x, σ, σǫ).We notie that for d ≥ 2 , g+
×(λ, (x1, x2, . . . , xd), σ, σǫ) = g+

×(λ, (x1, ǫ2x2, . . . , ǫdxd), σ, σǫ)(whih is also true for g−×) for all (ǫ2, . . . , ǫd) in {−1,+1}d−1 and (x1, x2, . . . , xd) in R
dthen we an restrit the integration giving F×(σ, σǫ) to the domain D := R

∗×]0,+∞[d−1,more preisely one has (for d ≥ 2)
F−
×(σ, σǫ) = 2d−2

∫

D
g−×(λ, x, σ, σǫ)dxand

F+
×(σ, σǫ) = 2d−2

∫

D
g+
×(λ, x, σ, σǫ)dx .Changing to spherial oordinates (with d ≥ 2) we obtain after partial integration

F−
×(σ, σǫ) =

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π
2

0

ln− (|σr − eiθ|
)

rd−1e−
r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ) dr dθ ,129



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsand
F+
×(σ, σǫ) =

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π

0

ln+
(

|σr − eiθ|
)

rd−1e−
r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ) dr dθ ,where for n ∈ N, Wn =
∫ π/2

0
sinn θ dθ is the lassial Wallis integral and for z ∈

C suh that Re(z) > 0,Γ(z) =
∫ +∞
0

e−uuz−1du is the Gamma funtion and K× is thefuntion de�ned on N
∗ × [0,+∞[×[0, π] × [0,+∞[×[0,+∞[ by

K(λ, r, θ, σ, σǫ) = λ

∫

R

Pr λ−1
[

|σr − eiθ| (1 + σǫy) ≤ ‖e1 + σN(d)‖ (1 + σǫN )
]

pN (y)dy,for the model pf and
K̃(λ, r, θ, σ, σǫ) = λ

∫

R

Pr λ−1
[

|σr − eiθ| + σǫy ≤ ‖e1 + σN(d)‖ + σǫN
]

pN (y)dy,for the model apf.The integrand h−× : (r, θ, σ, σǫ) 7→ ln−(|σr−eiθ|)rd−1e−
r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ) de�nedon the set ]0,+∞[×[0, π/2] × [0,+∞[×[0,+∞[ is ontinuous for almost all (r, θ, σ, σǫ) in
]0,+∞[×[0, π/2]×[0,+∞[×[0,+∞[. In partiular, for almost all (r, θ) in ]0,+∞[×[0, π/2],the map (σ, σǫ) 7→ h−×(r, θ, σ, σǫ) is ontinuous. Moreover, the funtion K× is dominatedby λ and |σr − eiθ| ≥ sin θ for all (r, θ) in ]0,+∞[×[0, π/2]. Then h−× is dominatedby h1 : (r, θ) 7→ ln−(sin θ)rd−1e−r

2/2 i.e., h−×(r, θ, σ, σǫ) h1(r, θ) for all (r, θ, σ, σǫ) in
]0,+∞[×[0, π/2]× [0,+∞[×[0,+∞[. Sine h1 is integrable, the mapping F−

× is �nite andontinuous w.r.t. the variables σ and σǫ on [0,+∞[×[0,+∞[ thanks to the Lebesguedominated onvergene theorem. Besides, we have
F+
×(σ, σǫ) ≤

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π

0

σrde−
r2

2 dr dθ < +∞.Then F+
× and F−

× are �nite meaning that the map F× is well de�ned. Now we have tolook at the ontinuity of F+
×. The integrand

h+
× : (r, θ, σ, σǫ) 7→ ln+(|σr − eiθ|)rd−1e−

r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ)de�ned on the set ]0,+∞[×[0, π] × [0,+∞[×[0,+∞[ veri�es that for almost all (r, θ) in
]0,+∞[×[0, π], the map (σ, σǫ) 7→ h+

×(r, θ, σ, σǫ) is ontinuous on every set [0, S]× [0,+∞[with 0 < S < +∞. Moreover, h+
× is dominated by h2 : r 7→ Srde−r

2/2 for (r, θ, σ, σǫ) in
]0,+∞[×[0, π] × [0, S] × [0,+∞[. Sine h2 is integrable, the ontinuity of F+

× w.r.t. thevariables σ and σǫ on [0, S] × [0,+∞[ follows from the Lebesgue dominated onvergenetheorem. This is true for any [0, S]× [0,+∞[ with 0 < S < +∞ then the ontinuity of F+
×holds also on [0,+∞[×[0,+∞[. For the remaining ase d = 1, the integrand in F+

×(σ, σǫ)will be dominated by Sxe−x2

2 for (x, σ, σǫ) ∈ R×[0, S]×[0,+∞[ whih gives the ontinuityof F+
×(σ, σǫ) on [0,+∞[×[0,+∞[. For F−

×, after a hange of variables y = σx, the integrandin F−
×(σ, σǫ) will be dominated by e−

1
2√

2π

ln(|1+y|)
y

for (y, σ, σǫ) ∈]−2, 0]×[0,+∞[×[0,+∞[.130



4.7. Disussion and onlusionProof of Proposition 4.4At eah iteration n, Eq. 4.11 gives
‖Xn+1‖ = ‖Xn + σ‖Xn‖N(d)

∗,n‖ ,where (N
(d)
∗,n)n is de�ned in Eq. 4.9 or in Eq. 4.10 aording to the model onsidered. Inthe beginning, we show indutively that, for all n ≥ 0, ‖Xn‖ > 0 almost surely:1) By de�nition P (‖X0‖ > 0) = 1. 2) Suppose that P (‖Xn‖ > 0) = 1 for n ≥ 0; then,by Eq. 4.11, the ith o�spring has a stritly positive non-noisy objetive funtion ( i.e.,

P (‖Yi,n‖ > 0) = 1 for all i in [1, λ]) as the multivariate normal distribution is absolutelyontinuous w.r.t. to the Lebesgue measure and in partiular P (‖Xn+1‖ > 0) = 1. Thisgives that for all n ≥ 0, ‖Xn‖ > 0 almost surely and we an write
‖Xn+1‖ = ‖Xn‖

∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥
a.s.Taking the logarithm of the previous equation, we get

ln (‖Xn+1‖) = ln (‖Xn‖) + ln

(

∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

a.s.and after summing suh equalities we obtain
ln (‖Xn‖) − ln (‖X0‖) =

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σN

(d)
∗,k

∥

∥

∥

)

a.s.

Proof of Proposition 4.7We will detail the proof for the model apf. Thus in the remainder of this proof therandom vetors N
(d)
∗,n and N

(d)
∗ are relative to the apf model ( i.e., respetively de�ned inEq. 4.10 and De�nition 4.1). The same reasoning holds for the model pf. For Xn �xed,let L̃n : N

∗ × R
d × [0,+∞[×[0,+∞[7→ R

+ be the funtion de�ned by
L̃n(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1

[

∥

∥

∥

Xn

‖Xn‖
+ σx

∥

∥

∥
+ σǫy ≤

∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∥

∥

∥
+ σǫN

]

pN (y)dy ,(4.26)for (λ, x, σ, σǫ) ∈ N
∗ × R

d × [0,+∞[×[0,+∞[. Similarly to the proof of Lemma 4.2, wehave
P (N(d)

∗,n ∈ A|Xn) =

∫

A

1

(2π)
d
2

e−
‖x‖2

2 L̃n(λ, x, σ, σǫ)dx . (4.27)Therefore, the probability density funtion of the random vetor N
(d)
∗,n onditionnally to

Xn is obtained by multiplying the probability density funtion of N(d) by the funtion L̃n131



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsgiven in Eq. 4.26.The isotropy of the standard d-dimensional normal distribution gives
L̃n(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1

[

∥

∥

∥

Xn

‖Xn‖
+ σx

∥

∥

∥
+ σǫy ≤

∥

∥

∥
e1 + σN(d)

∥

∥

∥
+ σǫN

]

pN (y)dy .Let us ompute E( ln−
(∥

∥

∥

Xn

‖Xn‖ + σN
(d)
∗,n
∥

∥

∥

)) and E( ln+
(∥

∥

∥

Xn

‖Xn‖ + σN
(d)
∗,n
∥

∥

∥

)). We have
E
(

ln−
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

|Xn

)

=

1

(2π)d/2

∫

Rd

ln−
(

∥

∥

∥

Xn

‖Xn‖
+ σx

∥

∥

∥

)

e−
‖x‖2

2 L̃n(λ, x, σ, σǫ)dx .Using again the isotropy of the standard d-dimensional normal distribution, one gets
E
(

ln−
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

|Xn

)

= E
[

ln−(‖e1 + σN(d)
∗ ‖)

]

< +∞ . (4.28)Similarly, we have
E
(

ln+
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

|Xn

)

= E
[

ln+(‖e1 + σN(d)
∗ ‖)

]

< +∞ . (4.29)Hene E [ln(∥∥
∥

Xn

‖Xn‖ + σN
(d)
∗,n
∥

∥

∥

)]

= F̃(σ, σǫ) < +∞, and so E(Yn) = 0.Let F2 : [0,∞[×[0,+∞[→ [0,+∞] be de�ned, for (t1, t2) ∈ [0,+∞[×[0,+∞[, by
G̃(t1, t2) :=

λ

(2π)d/2

∫

Rd

[ln(‖e1 + t1x‖)]2 e−
‖x‖2

2 H̃(λ, x, t1, t2)dx ,where H̃ is the funtion de�ned in De�nition 4.1. Similarly to the proof of Lemma 4.2,we prove that G̃ has �nite values. Now, from the de�nitions of F and F2 one has
E(|Yn|2) = G̃(σ, σǫ) − (F̃(σ, σǫ))

2 < +∞ . (4.30)This ends the proof of the �rst point. The random vetors Yn and Zn have the samedistribution if their harateristi funtions are idential. But suessively
E(eitYn |Xn) = e−itF̃(σ,σǫ)E

(

e
it ln
(∥

∥ Xn
‖Xn‖

+σN
(d)
∗,n

∥

∥

)

|Xn

)

=
e−itF̃(σ,σǫ)

(2π)d/2

∫

Rd

eit ln
(∥

∥ Xn
‖Xn‖

+σx

∥

∥

)

e−‖x‖2/2L̃n(λ, x, σ, σǫ)dx

=
e−itF̃(σ,σǫ)

(2π)d/2

∫

Rd

eit ln(‖e1+σx‖)e−‖x‖2/2H̃(λ, x, σ, σǫ)dx

= E(eitZn) .Therefore E(eitYn) = E(E(eitYn |Xn)) = E(eitZn). To �nish the proof we show the orthog-onality property of the sequene (Yn). Let n and m be indies suh that n < m. Therandom vetor Yn is σ(Xn,N
(d)
∗,n)-measurable, so that

E(YmYn |Xn,Xm,N
(d)
∗,n) = YnE(Ym|Xn,Xm,N

(d)
∗,n) .132



4.7. Disussion and onlusionThe random variable Ym depends only on the random vetors N
(d)
∗,m and Xm suh that

E(Ym|Xn,Xm,N
(d)
∗,n) redues to E(Ym|Xm) and we get

E(Ym|Xm) =
1

(2π)d/2

∫

Rd

(

ln
(∥

∥

Xm

‖Xm‖
+ σx

∥

∥

)

)

e−
‖x‖2

2 L̃m(λ, x, σ, σǫ)dx− F̃(σ, σǫ)

=
1

(2π)d/2

∫

Rd

(

ln(‖e1 + σx‖)
)

e−
‖x‖2

2 H̃(λ, x, σ, σǫ)dx− F̃(σ, σǫ) = 0 ,that implies E(YmYn) = 0.Proof of Theorem 4.8In Proposition 4.7, we show that the random variables (Yn)n introdued in De�nition 4.6satisfy the assmuptions of Theorem 4.5. Therefore, the LLN for orthognal random vari-ables applies for the sequene (Yn)n in the sense that 1
n

∑n
k=1 ln

(∥

∥

∥

Xk

‖Xk‖ + σN
(d)
∗,k

∥

∥

∥

) on-verges almost surely to F×(σ, σǫ) when n goes to in�nity. Then, by Proposition 4.4, wehave 1
n

ln
(

‖Xn‖
‖X0‖

) onverges almost surely to F×(σ, σǫ) when n goes to in�nity.Proof of Theorem 4.9We reall here that the multivariate normal distribution on R
d with mean (0, . . . , 0) andovariane matrix the identity Id, N(0, Id), is simply denoted Nd. In the one dimensionase, i.e., d = 1, it will be simply denoted N. Moreover, for d ≥ 1, χ2

d denotes thehi-square distribution with d degrees of freedom. To prove the theorem, we need thefollowing proposition.Proposition needed to establish Theorem 4.9Proposition 4.11. Consider the funtion F de�ned in Lemma 4.2. Let σ∗ and σ∗
ǫ betwo stritly positive onstants. The funtions H and H̃ introdued in De�nition 4.1 arerede�ned as mapping N

∗ × R × [0,+∞[ into R
+ with

H(d, x, u) = λ

∫

R

pN (y)×Pr λ−1





√

(

1 +
σ∗

d
x

)2

+

(

σ∗

d

)2

u

(

1 +
σ∗
ǫ

d
y

)

≤ ‖e1 +
σ∗

d
N(d)‖

(

1 +
σ∗
ǫ

d
N
)



 dy ,and̃
H(d, x, u) = λ

∫

R

pN (y)×Pr λ−1





√

(

1 +
σ∗

d
x

)2

+

(

σ∗

d

)2

u+
σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N



 dy ,133



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsfor x ∈ R, u ∈ [0,+∞[ and d ∈ N
∗. The following holds

d× F×

(

σ∗

d
,
σ∗
ǫ

d

)

= E

[

d

2
ln

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

H×
(

d,N, χ2
d−1

)

] (4.31)and the family {d
2
ln
(

(

1 + σ∗

d
N
)2

+
(

σ∗

d

)2
χ2
d−1

)

H×
(

d,N, χ2
d−1

)

}

d≥1
, where H× stands for

H or H̃, is uniformly integrable.Proof :Th proof is given for the model apf. The result for the model pf is obtained using thesame proof. Let us rewrite F̃(σ(d), σǫ(d)) in Eq. 4.15 using σ(d) = σ∗

d
, σǫ(d) = σ∗ǫ

d
:

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

=
λ

(2π)d/2

∫

Rd

d

2
ln(‖e1 +

σ∗

d
x‖2)e−

‖x‖2

2

(
∫

R

Pr λ−1

[(

‖e1 +
σ∗

d
x‖ +

σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N
)]

pN (y)dy

)

dx . (4.32)In the remainder of this proof, the positive quantities σ∗, σ∗
ǫ and λ are �xed. Let H̃ bethe measurable funtion de�ned on N

∗ × R
d by:

H̃(d, x) = λ

∫

R

Pr λ−1

[

‖e1 +
σ∗

d
x‖ +

σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N
]

pN (y)dy .The probability of an event E is upper bounded by 1. Therefore, the funtion H̃ is upperbounded by λ and d× F̃(σ
∗

d
, σ

∗
ǫ

d
) an be rewritten as

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

=
1

(2π)d/2

∫

Rd

d

2
ln(‖e1 +

σ∗

d
x‖2)e−

‖x‖2

2 H̃(d, x)dx . (4.33)Let us apply the hange of variables x1 = t, x2 =
√
r cos(θ1), x3 =

√
r sin(θ1) cos(θ2), x4 =√

r sin(θ1) sin(θ2) cos(θ3), . . . , xd−2 =
√
r sin(θ1) . . . sin(θd−3) cos(θd−2) and

xd =
√
r sin(θ1) . . . sin(θd−3) sin(θd−2). Then, for d ≥ 2, d× F̃(σ

∗

d
, σ

∗
ǫ

d
) writes as

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

=
d

2
√

2π

1

2
d−1
2 Γ(d−1

2
)

∫

R

∫

[0,+∞[

ln

[

(

1 +
σ∗

d
t

)2

+

(

σ∗

d

)2

u

]

u
d−1
2

−1e−
x2+u

2 H̃(d, t, u)dtdu ,where for t ∈ R, u ∈ [0,+∞[

H̃(d, t, u) =

λ

∫

R

Pr λ−1





√

(

1 +
σ∗

d
t

)2

+

(

σ∗

d

)2

u+
σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N



 pN (y)dy .134



4.7. Disussion and onlusionThis means that we have
d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

= E

[

d

2
ln

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

H̃
(

d,N, χ2
d−1

)

] (4.34)where χ2
d−1 denote the hi-square distribution with d− 1 degrees of freedom and

H̃
(

d,N, χ2
d−1

)

= λ

∫

R

pN (y)×Pr λ−1





√

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1 +

σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N|N, χ2

d−1



 dy ,For �xed σ∗ > 0, let ((K̃)d)d≥1 be the sequene of random variables de�ned as
K̃d

(

d,N, χ2
d−1

)

:=
d

2
ln

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

H̃
(

d,N, χ2
d−1

)Therefore, we get d× F̃
(

σ∗

d
, σ

∗
ǫ

d

)

= E
(

K̃d

). Let K̃+
d and K̃−

d be respetively the positiveand negative part of the funtion K̃d suh that K̃d = K̃+
d − K̃−

d . We have to show that thefamilies of positive random variables ((K̃)+
d )d≥1 and ((K̃)−d )d≥1 are uniformly integrable.First, we give interest to the family ((K̃)+

d )d≥1. We have
(K̃)+

d ≤ λ

2
d ln+

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

=
λ

2
d ln+

(

1 + 2
σ∗

d
N +

(

σ∗

d

)2
(

N2 + χ2
d−1

)

)

≤ λ

2
d ln+

(

1 + 2
σ∗

d
|N| +

(

σ∗

d

)2
(

N2 + χ2
d−1

)

)

≤ λ

2
d

(

2
σ∗

d
|N| +

(

σ∗

d

)2
(

N2 + χ2
d−1

)

)

= λ

(

σ∗|N| + (σ∗)2

2d

(

N2 + χ2
d−1

)

)

(4.35)
Aording to the last inequality, we have to show that the families |N| and (

N2+χ2
d−1

d
)d≥1are uniformly integrable. The family |N| ontains a unique integrable random variabletherefore it is uniformly integrable. The random variable (

N2+χ2
d−1

d
)d onverges (by theLaw of Large Numbers) almost surely and therefore in probability to 1. Moreover thesequene of postive real values E [ |N2+χ2

d−1|
d

]

d
= 1 onverges to E [|1|] whih gives, by theso-alled Lr onvergene theorem from [93℄, that (

N2+χ2
d−1

d
)d≥1 onverges to 1 in the sense135



Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial Environmentsof the norm L1. Finally, the family (
N2+χ2

d−1

d
)d≥1 onverges in L1 therefore it is uniformlyintegrable.Let us now give interest to the family ((K̃)−d )d≥2. We have

(K̃)−d ≤ λ

2
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1 +
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d
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)2

+

(
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)2

χ2
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)

=
λ

2
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+
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d

)2
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)
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2
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=
λ
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1
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d
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≤ 4λ





1
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d
8
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(4.36)

Let us show that the family (Gd)d≥2 :=





(

1

1− N2

N2+χ2
d−1

)
d
8

1{N<0}





d≥2

is uniformly inte-grable. A riterium that an be used to show the uniform integrability of (Gd)d≥2 is toshow that the family
(

E
[

G2(d)
])

d≥1
=






E











1

1 − N2

N2+χ2
d−1





d
4

1{N<0}













d≥1is uniformly bounded. The expetation (E [G2(d)]) an be rewritten as:
E
[
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=
1

2
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1
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4
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d
2

∫
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1
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)
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2 dx ,Changing to spherial oordinates (with d ≥ 2), one gets
E
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=
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4.7. Disussion and onlusionSuppose now that d
2
is an integer. Then ∃p ≥ 1 suh that d = 2p. As limn→∞

√
nWn =

√

π/2 then
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d→∞

W d
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2 .Then for d ≥ d0, E [G2(d)] ≤
√
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2

. Consequently, the family {E [G2(d)]}d≥d0 is uniformlybounded whih means that the family (K̃−)d≥d0 is uniformly integrable and therefore thefamily
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}

d≥1is uniformly integrable.proof of the Theorem First, we show the Theorem for the model apf. Let g denotethe measurable funtion de�ned on N
∗ × R × [0,+∞[ for (d, x, u) ∈ N

∗ × R × [0,+∞[ by
g(d, x, u) =
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u .Let N̄, χ̄2
d−1 and N̄ be random variables respetively distributed as N, χ2

d−1 and N . Usingthe de�nition of the funtion H̃ introdued in Proposition 4.11, one an write
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.The indiator funtion in the previous equation is upper bounded by 1. Therefore,
H̃(N, χ2

d−1) ≤ λ and we have
d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

= EN(d),χ2
d−1

[(

d

2
ln(g(d,N, χ2

d−1))

)

H(d,N, χ2
d−1)

]

.By Proposition 4.11, the family {(d
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Chapter 4. Log-linear Behavior of the Sale-invariant (1, λ)-ES in Noisy Spherial EnvironmentsWe have ln(1 + x) ∼ x when x→ 0. Moreover, N2 + χ2
d−1 an be rewritten as the sum of

d idenpendent random variables following the distribution of N2. Therefore, by the LLNfor independent identially distributed random variable, we have limd→∞
1
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=
E(N2) = 1 almost surely. Consequently, one gets:
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.Now, by the (almost sure) ontinuity of the indiator funtion, we have
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4.7. Disussion and onlusionwhere A(σ∗, σ∗
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.To end the proof, we have to show that the quantity A(σ∗, σ∗
ǫ , λ) de�ned in Eq. 4.37 isnegative for all (σ∗, σ∗
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Chapter 5Identi�ation of the Isotherm Funtionin Chromatography Using CMA-ESThe main material ontained in this hapter is the paper [78℄ published in the Proeed-ings of the 2007 IEEE Congress on Evolutionary Computation onferene. The workpresented here has been funded by the CNRS program ACI NIM (Nouvelles Interfaesdes Mathématiques � New Frontiers for Mathematis) Chromalgema, oordinated by F.James (University of Orléans), and is a joint work with François James and Marie Postel(University Pierre et Marie Curie � Paris 6).The goal is to solve an identi�ation problem arising from a model of analyti hro-matography, a tehnique used by hemial engineers. Chromatography aims at separatingthe m omponents of a mixture (that an be a gas or a liquid) by injeting the mixturein a olumn of length L �lled by a porous medium (generally a solid, but sometimes aliquid). Pushed by a ontinuous injetion of an inert medium, the di�erent omponents ofthe mixture moves through the olumn at di�erent speeds, due to their di�erent a�nitieswith the porous medium in the olumn. The di�erent omponents of the mixture reahthe end of the olumn at di�erent times. In a perfetly linear world, and if the olumn waslong enough, eah omponent would have its own propagation speed, and the separationwould be perfet. However, beause the propagation speed of eah omponent depends onthe onentrations of the other omponents, the model is non-linear and the omponentsare not perfetly separated, whatever the olumn length. It is however very important tobe able to predit when this or that omponent will be highly onentrated at the end ofthe olumn. The 'output' onentration vetor (one onentration per omponent) at theend of the olumn is alled a hromatogram and will be denoted c(t, L) (t ∈ [0, T ]).Writing the mass balane of the system leads to a system of Partial Di�erential Equa-tions [140℄ that has been shown to be a non-linear hyperboli system [141℄. The unknownare the onentrations c(t, z), t ∈ [0, T ], z ∈ [0, L] and the '�ux' F of this system in-volves what hemists all the isotherm funtion of the proess (beause the temperatureis �xed during the whole proess). Solving the diret problem, i.e. omputing the outputhromatogram from the initial onditions and the onentrations that are injeted in theolumn during the whole experiment, thus amounts to solving the system of PDEs (5.2),with �ux given by Equation (5.3).Beause this system is hyperboli, it is well-known that it has a unique solution, and145



Chapter 5. Identi�ation of the Isotherm Funtion in Chromatography Using CMA-ESmany numerial shemata an be used in order to numerially approximate its solution.Also, beause all eigenvalues of this system are positive [141℄, the standard Godunovsheme here amounts to a simple forward �nite di�erene disretization, and the resultingdisrete system is numerially stable under the so-alled CFL ondition given by Eq. 5.5.The goal The art of hromatography separation requires knowing when to gather theoutput of the olumn to reah a desired level of purity of the produts. This an be easilyomputed provided the numerial model desribed above gives a good predition of thehromatogram. However, the auray of the predition given by the numerial solutionof system (5.2) highly depends on the validity of the isotherm funtion for the atualhemial system at hand � and isotherm funtions are not preisely known by hemistsin the ase of multiple omponents. Moreover, there are very few data points that wouldallow the engineers to �t an approximate model, and aquiring a new data point requiresseveral months of tedious experiment. On the other hand, it is muh easier to experimentwith a given hromatographi olumn, reording both the input onentrations and theorresponding output hromatograms. It should hene be possible to identify the isothermfuntion from those data by solving the inverse problem: �nd the isotherm funtion Hsuh that the numerial solution of system (5.2) with the given input �ts the experimentalhromatogram as aurately as possible.More formally, this problem an be turned into a minimization problem: given anexperimental hromatogram cexp(t), t ∈ [0, T ], �nd the isotherm funtion H suh thatthe solution of the diret system given in Eq. 5.2 minimizes the ost funtion J om-puted as the least square di�erene between the omputed hromatogram cH(t, L) andthe experimental one cexp(t):
J (H) =

∫ T

0

‖cH(t, L) − cexp(t)‖2dt (5.1)Chemial sientists have introdued several parametri models for isotherm funtions (seeSetion 5.3.2 for a presentation of some models). The resulting optimization problemhene amounts to parametri optimization. This parametri optimization problem hasalreay been adressed using gradient-based approahes [73, 74℄. However, the funtion tooptimize is not onvex, and experiments performed in [73℄ suggest that the funtion ismulti-modal. An additional di�ulty indued by the omputation of the �tness funtionis that the CFL stability ondition an be violated during the optimization, leading toinfeasible individuals (in the sense that no value an be omputed for the J funtion)without any easy way to a priori predit for a given set of parameter whether this willhappen or not. Finally, the di�erent variables of the problem have very di�erent sales.Implementation and results The minimization of the ost funtion J , as a funtionof the parameters of some parametri model for the isotherm funtion, is addressed usingthe Covariane Matrix Adaptation-Evolution Strategy (CMA-ES, see Setion 5.4.2). Theimplmentation that has been used here is that desribed in [16℄ and written in Silab,that has been interfaed with the C++ ode developed during the ACI Chromalgema for146



the �tness funtion [107℄. This approah has been tested on the real data set providedin [73℄, and results ompared with those of the gradient based approah provided on thesame publiation. Note that in [73℄, the gradient based approah adopted is the onju-gate gradient method of the disretized ost funtion. The gradient of the ost funtion Jwith respet to parameters of the isotherm funtion is obtained as follows: A disretizedexpression of the (parametri) ost funtion J (α1, . . . , αm) where α1, . . . , αm are the pa-rameters to identify is omputed. Then the gradient of the disretized ost funtion withrespet to the parameters to identify is omputed and used as an estimator of the gra-dient of the ontinuous formulation of the optimization problem in a onjugate gradientapproah. Our study shows that randomized searh methods an perform better that thegradient-based on this problem. In fat, CMA-ES is more robust as it always onvergesto the same point, independently of the starting point � and this was learly not the asefor the gradient approah. Moreover, CMA-ES is more e�ient in solving the problemat hand as it proposed more aurate solutions for two di�erent on�gurations of theparameters to identify. In partiular, CMA-ES was able to handle the omplete identi�-ation problem, whereas the gradient approah required that some parameter values arepre-determined using some experimental values. Another fat that has been learned dur-ing this ase study is that the two approahes (CMA-ES and gradient) have very similaromputation times: this is quite unusual as deterministi methods are in general muhfaster than population based randomized searh methods.A ommon drawbak of both the gradient-based and CMA-ES approahes is the poor�t of the identi�ed hromatogam with the (sparse) data points that the hemists hadgathered for the isotherm funtion � though the hromatograms were niely �tted. Thissuggests to use a multi-objetive approah, �tting both the hromatogram through solvingthe diret problem, and diretly �tting the isotherm using the few data available points.
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Identi�ation of the Isotherm funtion in ChromatographyUsing CMA-ESMohamed Jebalia1, Anne Auger1, Mar Shoenauer1, François James2 andMarie Postel3
1 TAO Team, INRIA FutursUniversité Paris Sud, LRI, 91405 Orsay edex, Frane{jebalia,auger,mar}�lri.fr
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Identi�ation of the Isotherm funtion in Chromatography Using CMA-ESMohamed Jebalia1, Anne Auger1, Mar Shoenauer1, François James2 andMarie Postel3
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AbstratThis paper deals with the identi�ation of the �ux for a system of onservation laws in thespei� example of analyti hromatography. The fundamental equations of hromato-graphi proess are highly non linear. The state-of-the-art Evolution Strategy, CMA-ES(the Covariane Matrix Adaptation Evolution Strategy), is used to identify the parametersof the so-alled isotherm funtion. The approah was validated on di�erent on�gurationsof simulated data using either one, two or three omponents mixtures. CMA-ES is thenapplied to real data ases and its results are ompared to those of a gradient-based strat-egy.5.1 IntrodutionThe hromatography proess is a powerful tool to separate or analyze mixtures [50℄. Itis widely used in hemial industry (pharmaeutial, perfume and oil industry, et) toprodue relatively high quantities of very pure omponents. This is ahieved by takingadvantage of the seletive absorption of the di�erent omponents in a solid porous medium.The moving �uid mixture is perolated through the motionless medium in a olumn. Thevarious omponents of the mixture propagate in the olumn at di�erent speeds, beauseof their di�erent a�nities with the solid medium. The art of hromatography separationrequires prediting the di�erent proportions of every omponent of the mixture at the150



5.2. Physial problem and modelend of the olumn (alled the hromatogram) during the experiment. In the ideal (linear)ase, every omponent has its own �xed propagation speed, that does not depend on theother omponents. In this ase, if the olumn is su�iently long, pure omponents omeout at the end of the olumn at di�erent times: they are perfetly separated. But in thereal world, the speed of a omponent heavily depends on every other omponent in themixture. Hene, the fundamental Partial Di�erential Equations of the hromatographiproess, derived from the mass balane, are highly non linear. The proess is governed bya nonlinear funtion of the mixture onentrations, the so-alled Isotherm Funtion. Thisfuntion omputes the amount of absorbed quantity of eah omponent w.r.t. all otheromponents.Mathematially speaking, thermodynamial properties of the isotherm ensure thatthe resulting system of PDEs is hyperboli, and standard numerial tools for hyperbolisystems an hene be applied; if the isotherm is known: The preise knowledge of theisotherm is ruial, both from the theoretial viewpoint of physio-hemial modeling andregarding the more pratial preoupation of aurately ontrolling the experiment to im-prove separation. Spei� hromatographi tehniques an be used to diretly identify theisotherm, but gathering a few points requires several months of areful experiments. An-other possible approah to isotherm identi�ation onsists in solving the inverse problemnumerially: �nd the isotherm suh that numerial simulations result in hromatogramsthat are as lose as possible to the atual experimental outputs.This paper introdues an evolutionary method to takle the identi�ation of theisotherm funtion from experimental hromatograms. The goal of the identi�ation isto minimize the di�erene between the atual experimental hromatogram and the hro-matogram that results from the numerial simulation of the hromatographi proess.Chemial sientists have introdued several parametri models for isotherm funtions (see[50℄ for all details of the most important models). The resulting optimization problemhene amounts to parametri optimization, that is addressed here using the state-of-the-art Evolution Strategy, CMA-ES. Setion 5.2 introdues the diret problem and Se-tion 5.3 the optimization (or inverse) problem. Setion 5.4.1 reviews previous approahesto the problem based on gradient optimization algorithms [74, 73℄. Setion 5.4.2 detailsthe CMA-ES method and the implementation used here. Finally, Setion 5.5 presentsexperimental results: �rst, simulated data are used to validate the proposed approah;seond, real data are used to ompare the evolutionary approah with a gradient-basedmethod.5.2 Physial problem and modelChromatography aims at separating the omponents of a mixture based on the sele-tive absorption of hemial speies by a solid porous medium. The �uid mixture movesdown through a olumn of length L, onsidered here to be one-dimensional. The variousomponents of the mixture propagate in the olumn at di�erent speeds, beause of theirdi�erent behavior when interating with the porous medium. At a given time t ∈ R
+, fora given z ∈ [0, L] the onentration of m speies is a real vetor of R

m denoted c(t, z).151



Chapter 5. Identi�ation of the Isotherm Funtion in Chromatography Using CMA-ESThe evolution of c is governed by the following partial di�erential equation:










∂zc + ∂tF(c) = 0,

c(0, z) = c0(z),

c(t, 0) = cinj(t).

(5.2)where c0 : R → R
m is the initial onentration, cinj : R → R

m the injeted onentrationat the entrane of the olumn and F : R
m → R

m is the �ux funtion that an be expressedin the following way
F(c) =

1

u

(

c +
1 − ǫ

ǫ
H(c)

) (5.3)where H : R
m → R

m is the so-alled isotherm funtion, ǫ ∈ (0, 1) and u ∈ R
+ [73℄. TheJaobian matrix of F being diagonalizable with stritly positive eigenvalues, the system(5.2) is stritly hyperboli and thus admits an unique solution as soon as F is ontinuouslydi�erentiable, and the initial and injetion onditions are pieewise ontinuous. Thesolution of Eq. 5.2 an be approximated using any �nite di�erene method that is suitablefor hyperboli systems [48℄. A uniform grid in spae and time of size (K +1)× (N +1) isde�ned: Let ∆z (resp. ∆t) suh thatK∆z = L (resp. N∆t = T ). Then an approximationof the solution of Eq. 5.2 an be omputed with the Godunov sheme:

c
n
k+1 = c

n
k −

∆z

∆t
(F(cnk) − F(cn−1

k )) (5.4)where c
n
k is an approximation of the mean value of the solution c at point (k∆z, n∆t)11.For a �xed value of ∆z

∆t
, the solution of Eq. 5.4 onverges to the solution of Eq. 5.2 as ∆tand ∆z onverge to zero. The numerial sheme given in Eq. 5.4 is numerially stableunder the so-alled CFL ondition stating that the largest absolute value of the eigenvaluesof the Jaobian matrix of F is upper-bounded by a onstant

∆z

∆t
max
c

Sp(|F′(c)|) ≤ CFL < 1. (5.5)5.3 The Optimization Problem5.3.1 GoalThe goal is to identify the isotherm funtion from experimental hromatograms: giveninitial data c0, injetion data cinj, and the orresponding experimental hromatogram
cexp (that an be either the result of a simulation using a known isotherm funtion, orthe result of atual experiments by hemial sientists), �nd the isotherm funtion Hsuh that the numerial solution of Eq. 5.2 using the same initial and injetion onditionsresults in a hromatogram as lose as possible to the experimental one cexp.11Mean value over the volume de�ned by the orresponding ell of the grid.152



5.3. The Optimization ProblemIdeally, the goal is to �nd H suh that the following system of PDEs has a uniquesolution c(t, z):


















∂zc + ∂tF(c) = 0,

c(0, z) = c0(z),

c(t, 0) = cinj(t),

c(t, L) = cexp(t).

(5.6)However, beause in most real-world ases this system will not have an exat solution,it is turned into a minimization problem. For a given isotherm funtion H, solve system5.2 and de�ne the ost funtion J as the least square di�erene between the omputedhromatogram cH(t, L) and the experimental one cexp(t):
J (H) =

∫ T

0

‖cH(t, L) − cexp(t)‖2dt (5.7)If many experimental hromatograms are provided, the ost funtion is the sum of suhfuntions J omputed for eah experimental hromatogram.5.3.2 Searh SpaeWhen takling a funtion identi�ation problem, the �rst issue to address is the para-metri vs non-parametri hoie [120℄: parametri models for the target funtion result inparametri optimization problems that are generally easier to takle � but a bad hoieof the model an hinder the optimization. On the other hand, non-parametri modelsare a priori less biased, but searh algorithms are also less e�ient on large unstruturedsearh spae.Early trials to solve the hromatography inverse problem using a non-parametri model(reurrent neural-network) have brought a proof-of-onept to suh approah [43℄, buthave also demonstrated its limits: only limited preision ould be reahed, and the ap-proah poorly saled up with the number of omponents of the mixture.Fortunately, hemists provide a whole zoology of parametrized models for the isothermfuntion H, and using suh models, the identi�ation problem amounts to parametrioptimization. For i ∈ {1, . . . , m}, denote Hi the omponent i of the funtion H. Themain models for the isotherm funtion that will be used here are the following:
• The Langmuir isotherm [89℄ assumes that the di�erent omponents are in ompe-tition to oupy eah site of the porous medium. This gives, for all i = 1, . . . , m

Hi(c) =
N

∗

1 +
∑m

l=1 Klcl
Kici. (5.8)There are m + 1 positive parameters: the Langmuir oe�ients (Ki)i∈[1,m], homo-geneous to the inverse of a onentration, and the saturation oe�ient N

∗ thatorresponds to some limit onentration. 153
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• The Bi-Langmuir isotherm generalizes the Langmuir isotherm by assuming twodi�erent kinds of sites on the absorbing medium. The resulting equations are, forall i = 1, . . . , m

Hi(c) =
∑

s∈{1,2}

N
∗
s

1 +
∑m

l=1 Kl,scl
Ki,sci. (5.9)This isotherm funtion here depends on 2(m + 1) parameters: the generalizedLangmuir oe�ients (Ki,s)i∈[1,m],s=1,2 and the generalized saturation oe�ients

(N∗
s)s=1,2.

• The Lattie isotherm [141℄ is a generalization of Langmuir isotherm that also on-siders interations among the di�erent sites of the porous medium. Depending onthe degree d of interations (number of interating sites grouped together), thismodel depends, additionally to the Langmuir oe�ients (Ki)i∈[1,m] and the satura-tion oe�ient N
∗, on interation energies (Eij)i,j∈[0,d],2≤i+j≤d resulting in ∏m

i=1
d+i
iparameters. For instane, for one omponent (m = 1) and degree 2, this gives:

H1(c) =
N

∗

2

K1 c + e−
E11
RT (K1 c)2

1 + 2K1 c + e−
E11
RT (K1 c)2

, (5.10)where T is the absolute temperature and R is the universal gas onstant. Note thatin all ases, a Lattie isotherm with 0 energies simpli�es to the Langmuir isothermwith the same Langmuir and saturation oe�ients up to a fator 1
2
.5.4 Approah Desription5.4.1 MotivationsPrevious works on parametri optimization of the hromatography inverse problem haveused gradient-based approahes [74, 73℄. In [74℄, the gradient of J is obtained by writingand solving numerially the adjoint problem, while diret di�erentiation of the disretizedequation have also been investigated in [73℄. However the �tness funtion to optimizeis not neessarily onvex and no results are provided for di�erentiability. Moreover, ex-periments performed in [73℄ suggest that the funtion is multimodal, sine the gradientalgorithm onverges to di�erent loal optima depending on the starting point. Evolu-tionary algorithms (EAs) are stohasti global optimization algorithms, less prone to getstuk in loal optima than gradient methods, and do not rely on onvexity assumptions.Thus they seem a good hoie to takle this problem. Among EAs, Evolution Strategieshave been spei�ally designed for ontinuous optimization. The next setion introduesthe state of the art EA for ontinuous optimization, the ovariane matrix adaptation ES(CMA-ES).5.4.2 The CMA Evolution StrategyCMA-ES is a stohasti optimization algorithm spei�ally designed for ontinuous opti-mization [61, 59, 57, 16℄. At eah iteration g, a population of points of an n-dimensional154



5.4. Approah Desriptionontinuous searh spae (subset of R
n), is sampled aording to a multi-variate normaldistribution. Evaluation of the �tness of the di�erent points is then performed, and pa-rameters of the multi-variate normal distribution are updated.More preisely, let 〈~x〉(g)W denotes the mean value of the (normally) sampling distribu-tion at iteration g. Its ovariane matrix is usually fatorized in two terms: σ(g) ∈ R

+,also alled the step-size, and C
(g), a de�nite positive n×n matrix, that is abusively alledthe ovariane matrix. The independent sampling of the λ o�spring an then be written:

~x
(g+1)
k = 〈~x〉(g)W + Nk

(

0, (σ(g))2
C

(g)
) for k = 1, . . . , λwhere Nk (0,M) denote independent realizations of the multi-variate normal distributionof ovariane matrix M .The µ best o�spring are reombined into

〈~x〉(g+1)W =

µ
∑

i=1

wi~x
(g+1)
i:λ , (5.11)where the positive weights wi ∈ R are set aording to individual ranks and sum to one.The index i :λ denotes the i-th best o�spring. Eq. 5.11 an be rewritten as

〈~x〉(g+1)W = 〈~x〉(g)W +

µ
∑

i=1

wiNi:λ

(

0, (σ(g))2
C

(g)
)

, (5.12)The ovariane matrix C
(g) is a positive de�nite symmetri matrix. Therefore it an bedeomposed in

C
(g) = B

(g)
D

(g)
D

(g)
(

B
(g)
)T

,where B
(g) is an orthogonal matrix, i.e. B

(g)
(

B
(g)
)T

= Id and D
(g) a diagonal matrixwhose diagonal ontains the square root of the eigenvalues of C

(g).The so-alled strategy parameters of the algorithm, the ovariane matrix C
(g) andthe step-size σ(g), are updated so as to inrease the probability to reprodue good steps.The so-alled rank-one update for C

(g) [61℄ takes plae as follows. First, an evolutionpath is omputed:
~p(g+1)
c = (1 − cc)~p

(g)
c +

√

cc(2 − cc)µeff

σ(g)

(

〈~x〉(g+1)W − 〈~x〉(g)W )where cc ∈]0, 1] is the umulation oe�ient and µeff is a stritly positive oe�ient. Thisevolution path an be seen as the desent diretion for the algorithm.Seond the ovariane matrix C
(g) is �elongated� in the diretion of the evolution path,i.e. the rank-one matrix ~p(g+1)

c

(

~p
(g+1)
c

)T is added to C
(g):

C
(g+1) = (1 − ccov)C

(g) + ccov~p
(g+1)
c

(

~p(g+1)
c

)Twhere ccov ∈]0, 1[. The omplete update rule for the ovariane matrix is a ombinationof the rank-one update previously desribed and the rank-mu update presented in [59℄.155



Chapter 5. Identi�ation of the Isotherm Funtion in Chromatography Using CMA-ESThe update rule for the step-size σ(g) is alled the path length ontrol. First, anotherevolution path is omputed:
~p(g+1)
σ = (1 − cσ)~p

(g)
σ +

√

cσ(2 − cσ)µeff

σ(g)
× B

(g)
D

(g)−1
B

(g)T
(

〈~x〉(g+1)W − 〈~x〉(g)W ) (5.13)where cσ ∈]0, 1]. The length of this vetor is ompared to the length that this vetorwould have had under random seletion, i.e. in a senario where no information is gainedfrom the �tness funtion and one is willing to keep the step-size onstant. Under randomseletion the vetor ~p(g)
σ is distributed as N (0, Id). Therefore, the step-size is inreased ifthe length of ~p(g)

σ is larger than E(‖ N (0, Id) ‖) and dereased if it is shorter. Formally,the update rule reads:
σ(g+1) = σ(g) exp

(

cσ
dσ

(

‖ ~p(g+1)
σ ‖

E(‖ N (0, Id) ‖)
− 1

)) (5.14)where dσ > 0 is a damping fator.The default parameters for CMA-ES were arefully derived in [57℄, Eqs. 6-8. The onlyproblem-dependent parameters are 〈~x〉(0)W and σ(0), and, to some extend, the o�spring size
λ: its default value is ⌊4+3 log(n)⌋ (the µ default value is ⌊λ

2
⌋), but inreasing λ inreasesthe probability to onverge towards the global optimum when minimizing multimodal�tness funtions [57℄.This fat was systematially exploited in [16℄, where a "CMA-ES restart" algorithmis proposed, in whih the population size is inreased after eah restart. Di�erent restartriteria are used:1. RestartTolFun: Stop if the range of the best objetive funtion values of the reentgeneration is below than a TolFun value.2. RestartTolX: Stop if the standard deviation of the normal distribution is smallerthan a TolX value and σ~pc is smaller than TolX in all omponents.3. RestartOnNoE�etAxis: Stop if adding a 0.1 standard deviation vetor in a prinipalaxis diretion of C

(g) does not hange 〈~x〉(g)W .4. RestartCondCov: Stop if the ondition number of the ovariane matrix exeeds a�xed value.The resulting algorithm (the CMA-ES restart, simply denoted CMA-ES in the remainderof this paper) is a quasi parameter free algorithm that performed best for the CEC 2005speial session on parametri optimization [2℄.An important property of CMA-ES is its invariane to linear transformations of thesearh spae. Moreover, beause of the rank-based seletion, CMA-ES is invariant to anymonotonous transformation of the �tness funtion: optimizing f or h ◦ f is equivalent,for any rank-preserving funtion h : R → R. In partiular, onvexity has no impat onthe atual behavior of CMA-ES.156



5.4. Approah Desription5.4.3 CMA-ES ImplementationThis setion desribes the spei� implementation of CMA-ES to identify n isotherm oef-�ients. For the sake of larity we will use a single index in the de�nition of the oe�ientsof the isotherm, i.e we will identify Ka, N∗
b and Ec for a ∈ [1, A], b ∈ [1, B] and c ∈ [1, C]where A, B and C are integers summing up to n.Fitness funtion and CFL ondition The goal is to minimize the �tness funtionde�ned in Setion 5.3.1. In the ase where identi�ation is done using only one exper-imental hromatogram, the �tness funtion is the funtion J de�ned in Eq. 5.7 as theleast squared di�erene between an experimental hromatogram cexp(t) obtained usingexperimental onditions c0, cinj and a numerial approximation of the solution of system(5.2) for a andidate isotherm funtion H using the same experimental onditions. Thenumerial simulation of a solution of Eq. 5.2 is omputed with a Godunov sheme writtenin C++ (see [107℄ for the details of the implementation).In order to validate the CMA-ES approah, �rst "experimental" hromatograms werein fat omputed using numerial simulations of Eq. 5.2 with di�erent experimental ondi-tions. Let Fsim denotes the �ux funtion used to simulate the experimental hromatogram.For the simulation of an approximated solution of Eq. 5.2, a time step ∆t and a CFLoe�ient stritly smaller than one (typially 0.8) are �xed beforehand. The quantitymax Sp(|F′

sim(c)|) is then estimated using a power method, and the spae step ∆z anthen be set suh that Eq. 5.5 is satis�ed for Fsim. The same ∆t and ∆z are then usedduring the optimization of J .When cexp omes from real data, an initial value for the parameters to estimate, i.e.an initial guess given by the expert is used to set the CFL ondition (5.5).Using expert knowledge The hoie of the type of isotherm funtion to be identi�edwill be, in most ases, given by the hemists. Fig 5.1 illustrates the importane of thishoie. In Fig 5.1-(a), the target hromatogram cexp is omputed using a Langmuirisotherm with one omponent (m = 1 and thus n = 2). In Fig 5.1-(b), the targethromatogram cexp is omputed using a Lattie of degree 3 with one omponent (m = 1and thus n = 4). In both ases, the identi�ation is done using a Langmuir model, with
n = 2. It is lear from the �gure that one is able to orretly identify the isotherm, andhene �t the "experimental" hromatogram when hoosing the orret model (Fig 5.1 (a))whereas the �t of the hromatogram is very poor when the model is not orret (Fig 5.1(b)).Another important issue when using CMA-ES is the initial hoie for the ovarianematrix: without any information, the algorithm starts with the identity matrix. However,this is a poor hoie in ase the di�erent variables have very di�erent possible order ofmagnitude, and the algorithm will spend some time adjusting its prinipal diretions tothose ranges.In most ases of hromatographi identi�ation, however, hemists provide orders ofmagnitudes, bounds and initial guesses for the di�erent values of the unknown parameters.157
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(b) Simulation using a Lattie isotherm,identi�ation using a Langmuir model:poor �t of the hromatogram.Figure 5.1: Importane of the hoie of model (one omponent mixture)Let [(Ka)min, (Ka)max], [(N∗
b)min, (N

∗
b)max] and [(Ec)min, (Ec)max] the ranges guessed bythe hemists for respetively eah Ka, N∗

b and Ec. All parameters are linearly saled intothose intervals from [−1, 1], removing the need to modify the initial ovariane matrix ofCMA-ES.Unfeasible solutions Two di�erent situations an lead to unfeasible solutions:First when one parameter at least, among parameters whih have to be positive, be-omes negative (remember that CMA-ES generates o�spring using an unbounded normaldistribution), the �tness funtion is arbitrarily set to 1020.Seond when the CFL ondition is violated, the simulation is numerially unstable,and generates absurd values. In this ase, the simulation is stopped, and the �tnessfuntion is arbitrarily set to a value larger than 106. Note that a better solution wouldbe to detet suh violation before running the simulation, and to penalize the �tness bysome amount that would be proportional to the atual violation. But it is numeriallyintratable to predit in advane if the CFL is going to be violated (see Eq. 5.5), and thenumerial absurd values returned in ase of numerial instability are not learly orrelatedwith the amount of violation either.Initialization The initial mean 〈~x〉(0)W for CMA-ES is uniformly drawn in [−1, 1]n, i.e.,the parameters Ka, N
∗
b and Ec are uniformly drawn in the ranges given by the expert.The initial step-size σ0 is set to 0.3. Besides we rejet individuals of the population sam-pled outside the initial ranges. Unfeasible individuals are also rejeted at initialization:at least one individual should be feasible to avoid random behavior of the algorithm. Inboth ases, rejetion is done by resampling until a �good� individual is got or a maximalnumber of sampling individuals is reahed. Initial numbers of o�spring λ and parents µ158



5.5. Resultsare set to the default values (λ = ⌊4 + 3 log(n)⌋ and µ = ⌊λ/2⌋).Restarting and stopping riteria The algorithm stops if it reahes 5 restarts, ora given �tness value (typially a value between 10−9 and 10−15 for arti�ial problems,and adjusted for real data). Restart riteria (see Setion 5.4.2) are RestartTolFun withTolFun= 10−12 ×σ(0), RestartTolX with TolX= 10−12 ×σ(0), RestartOnNoE�etAxis andRestartCondCov with a limit upper bound of 1014 for the ondition number. The o�springsize λ is doubled after eah restart and µ is set equal to ⌊λ/2⌋.5.5 Results5.5.1 Validation using arti�ial dataA �rst series of validation runs was arried out using simulated hromatograms. Eahidenti�ation uses one or many experimental hromatograms. Beause the same dis-retization is used for both the identi�ation and the generation of the "experimental"data, one solution is known (the same isotherm that was used to generate the data), andthe best possible �tness is thus zero.Several tests were run using di�erent models for the isotherm, di�erent numbers ofomponents, and di�erent numbers of time steps. In all ases, CMA-ES identi�ed theorret parameters, i.e. the �tness funtion reahes values very lose to zero. In mostases, CMA-ES did not need any restart to reah a preision of (10−14), though this wasneessary in a few ases. This happened when the whole population remained unfeasibleduring several generations, or when the algorithm was stuk in a loal optimum. Fig-ures 5.2, 5.3, 5.4 show typial evolutions during one run of the best �tness value withrespet to the number of evaluations, for problems involving respetively 1, 2 or 3 om-ponents. Figure 5.4 is a ase where restarting allowed the algorithm to esape a loaloptimum.Spei� tests were then run in order to study the in�uene of the expert guesses aboutboth the ranges of the variables and the starting point of the algorithm possibly givenby the hemial engineers: In CMA-ES, in a generation g, o�spring are drawn from aGaussian distribution entered on the mean 〈~x〉(g)W . An expert guess for a good solutionan hene be input as the mean of the �rst distribution 〈~x〉(0)W that will be used to generatethe o�spring of the �rst generation. The results are presented in Table 5.1. First 3 linesgive the probabilities that a given run onverges (i.e., reahes a �tness value of 10−12),omputed on 120 runs, and depending on the number of restarts (this probability of ourseinreases with the number of restarts). The last line is the ratio between the averagenumber of evaluations that were needed before onvergene (averaged over the runs thatdid onverge), and the probability of onvergene: this ratio measures the performane ofthe di�erent experimental settings, as disussed in details in [15℄.The results displayed in Table 5.1 learly demonstrate that a good guess of the rangeof the variables is the most prominent fator of suess: even without any hint about thestarting point, all runs did reah the required preision without any restart. However,159
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Figure 5.2: Single omponent mixture, 1000 time steps. Simulate a Lattie (5 parameters)and identify a Lattie of degree 4 (5 parameters): Best �tness versus number of evalua-tions. The �rst run gave a satisfatory solution but two restarts have been performed toreah a �tness value (2.4 10−15) lower than 10−14.
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Figure 5.3: Binary omponent mixture, 500 time steps . Simulate a Langmuir (3 pa-rameters) and identify a Lattie of degree 3 (10 parameters): Best �tness versus numberof evaluations. The �rst run gave a satisfatory solution but the maximal number (here�ve) of restarts have been performed attempting to reah a �tness value of 10−14, the best�tness value (1.4 10−14) was reahed in the fourth restart.
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5.5. Results
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Figure 5.4: Ternary omponent mixture, 2000 time steps. Simulate a Langmuir (4 param-eters) and identify a Langmuir (4 parameters): Best �tness versus number of evaluations.Two restarts were neessary: Before the seond restart, CMA-ES is stuk in some loaloptima (�tness of order of 10−1), in the seond restart, the algorithm reahes a �tnessvalue of 9.9 10−15.when no indiation about the range is available, a good initial guess signi�antly improvesthe results, without reahing the perfet quality brought by tight bounds on the ranges:saling is more important than rejeting unfeasible individuals at the beginning.Computational ost The duration of an evaluation depends on the disretization of thenumerial sheme (number of spae- and time-steps), and on the number n of unknownparameters to identify. Several runs were preisely timed to assess the dependeny ofthe omputational ost on both fators. The simple Langmuir isotherm was used toboth generate the data and identify the isotherm. Only omputational osts of singleevaluations are reported, as the number of evaluations per identi�ation heavily dependson many parameters, inluding the possible expert guesses, and in any ase is a randomvariable of unknown distribution. All runs in this paper were performed on a 1.8GHzPentium omputer running with a reent Linux system.For one omponent (m = 1, n = 2), and 100, 500 and 1000 time steps, the averages ofthe durations of a single evaluation are respetively 0.0097, 0.22, and 0.9 seonds, �ttingthe theoretial quadrati inrease with the number of time steps (though 3 sample pointsare too few to demonstrate anything!). This also holds for the number of spae steps asthe number of spae steps is proportional to the number of time steps due to the CFLondition. For an identi�ation with a 1-omponent Langmuir isotherm, the total ost ofthe identi�ation is on average 540 seonds for a 1000 time steps disretization.When looking at the dependeny of the omputational ost on the number of unknownparameters, things are not that lear from a theoretial point of view, beause the ostof eah omputation of the isotherm funtion also depends on the number of omponentsand on the number of experimental hromatograms to ompare with. Experimentally,for, 2, 3 and 4 variables, the osts of a single evaluation are respetively 0.9, 1.04, and
2.2 seonds (for a 1000 time steps disretization). For an identi�ation, the total timeis roughly 15 to 25 minutes for 2 variables, 40 to 60 minutes for 3 variables, and 1 to 2161



Chapter 5. Identi�ation of the Isotherm Funtion in Chromatography Using CMA-ESTable 5.1: On the usefulness of Expert Knowledge: target values for Langmuir isothermare here (K1,N
∗) = (0.0388, 107). Expert range is [0.01, 0.05] × [50, 150], wide rangeis [0.001, 1] × [50, 150]. The expert guess for the starting point is a better initial mean(aording to �tness value) than random. The �rst 3 lines give the probabilities (omputedover 120 runs) to reah a 10−12 �tness value within the given number of restarts. The lastline is the ratio of the number of evaluations needed for onvergene (averaged over theruns that did onverge) by the probability of onvergene after two restarts (line 3).Range Expert range Wide range Wide rangeStarting point No guess No guess Expert guessno restart 1 0.84 0.95

1 restart 1 0.92 0.97

2 restarts 1 0.95 0.97Perf. 601 1015 905hours for 4 variables.5.5.2 Experiments on real dataThe CMA-ES based approah has also been tested on a set of data taken from [66℄. Themixture was omposed of 3 hemial speies: the benzylalohol (BA), the 2-phenylethanol(PE) and the 2-methylbenzylalohol (MBA). Two real experiments have been performedwith di�erent proportions of injeted mixtures, with respetive proportions (1,3,1) and(3,1,0). Consequently, two real hromatograms have been provided. For this identi�a-tion, Quiñones et a.l. [66℄ have used a modi�ed Langmuir isotherm model in whih eahspeies has a di�erent saturation oe�ient N
∗
i :

Hi(c) =
N

∗
i

1 +
∑3

l=1 Kl cl
Ki ci, i = 1, . . . , 3. (5.15)Six parameters are to be identi�ed: N

∗
i and Ki, for i = 1, . . . , 3. A hange of variable hasbeen made for those tests so that the unknown parameters are in fat N

∗
i and K

′

i, where
K

′

i = Ki Ni: those are the values that hemial engineers are able to experimentallymeasure.Two series of numerial tests have been performed using a gradient-based method[73℄: identi�ation of the whole set of 6 parameters, and identi�ation of the 3 saturationoe�ients N
∗
i only, after setting the Langmuir oe�ients to the experimentally measuredvalues (K

′

1,K
′

2,K
′

3) = (1.833, 3.108, 3.511). The initial ranges used for CMA-ES are
[60, 250]× [60, 250]× [60, 250] (resp. [1.5, 2.5]× [2.7, 3.7]× [3, 4]× [90, 200]× [100, 200]×
[100, 210]) when optimizing 3 parameters (resp. 6 parameters). Comparisons between thetwo experimental hromatograms and those resulting from CMA-ES identi�ation for thetwo experiments are shown in Figure 5.5, for the 6-parameters ase. The orrespondingplots in the 3-parameters ase are visually idential though the �tness value is slightly162
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Chapter 5. Identi�ation of the Isotherm Funtion in Chromatography Using CMA-ESTable 5.2: Comparing CMA-ES and gradient: the 3-parameters ase. Solution ( line1) and assoiated �tness values ( line 2) for the modi�ed Langmuir model (Eq. 5.15).Line 3: For CMA-ES, "median (minimal)" number of �tness evaluations (out of 12 runs)needed to reah the orresonding �tness value on line 2. For gradient, "number of �tnessevaluations � number of gradient evaluations" for the best of the 10 runs desribed in [73℄.CMA-ES Gradient
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5.6. ConlusionsFinally, when omparing the identi�ed isotherms to the experimental ones (�gure 5.6),the �t is learly not very satisfying (similar deeptive results were obtained with the gra-dient method in [73℄): Fitting both the isotherms and the hromatograms seem to beontraditory objetives. Two diretions an lead to some improvements in this respet:modify the ost funtion J in order to take into aount some least-square error on theisotherm as well as on the hromatograms; or use a multi-objetive approah. Both mod-i�ations are easy to implement using Evolutionary Algorithms (a multi-objetive versionof CMA-ES was reently proposed [67℄), while there are beyond what gradient-basedmethods an takle. However, it might also be a sign that the modi�ed Langmuir modelthat has been suggested for the isotherm funtion is not the orret one.Comparison of onvergene speeds Tables 5.2 and 5.3 also give an idea of therespetive omputational osts of both methods on the same real data. For the bestrun out of 10, the gradient algorithm reahed its best �tness value after 21 iterations,requiring on average 7 evaluations per iteration for the embedded line searh. Moreover,the omputation of the gradient itself is ostly � roughly estimated to 4 times that of the�tness funtion. Hene, the total ost of the gradient algorithm an be onsidered to belarger than 220 �tness evaluations. To reah the same �tness value (8.96 10−3), CMA-ESonly needed 175 �tness evaluations (median value out of 12 runs). To onverge to itsbest value (8.78 10−3, best run out of 12) CMA-ES needed 280 �tness evaluations. Thoseresults show that the best run of the gradient algorithms needs roughly the same amountof funtions evaluations than CMA-ES to onverge. Regarding the robustness issue, notethat CMA-ES always reahed the same �tness value, while the 10 di�erent runs of thegradient algorithm from 10 di�erent starting points gave 10 di�erent solutions: in orderto assess the quality of the solution, more runs are needed for the gradient method thanfor CMA-ES!5.6 ConlusionsThis paper has introdued the use of CMA-ES for the parametri identi�ation of isothermfuntions in hromatography. Validation tests on simulated data were useful to adjust the(few) CMA-ES parameters, but also demonstrated the importane of expert knowledge:hoie of the type of isotherm, ranges for the di�erent parameters, and possibly someinitial guess of a not-so-bad solution.The proposed approah was also applied on real data and ompared to previous workusing gradient methods. On this data set, the best �tness found by CMA-ES is better thanthat found by the gradient approah. Moreover, the results obtained with CMA-ES are farmore robust: (1) CMA-ES always onverges to the same values of the isotherm parameters,independently of its starting point; (2) CMA-ES an handle the full problem that thegradient method failed to e�iently solve: there is no need when using CMA-ES to useexperimental values of the Langmuir parameters in order to obtain a satisfatory �tnessvalue. Note that the �tness funtion only takes into aount the �t of the hromatograms,resulting in a poor �t on the isotherms. The results on�rm the ones obtained with a165



Chapter 5. Identi�ation of the Isotherm Funtion in Chromatography Using CMA-ESgradient approah, and suggest to either inorporate some measure of isotherm �t in the�tness, or to try some multi-objetive method � probably the best way to go, as bothobjetives (hromatogram and isotherm �ts) seem somehow ontraditory.AknowledgmentsThis work was supported in part by MESR-CNRS ACI NIM Chromalgema. The authorswould like to thank Nikolaus Hansen for the Silab version of CMA-ES, and for hisnumerous useful omments.
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Summary and ConlusionThe ontext of this thesis is the non linear ontinuous optimization using Evolution Strate-gies (ES). The work is omposed of two parts. The �rst part is a theoretial and numerialstudy of the optimization using ES. In partiular, we fous on the optimization of noisyobjetive funtions whih are frequently enountered in pratie. In the seond part, thestate-of-the-art ES, the Covariane Matrix Adaptation Evolution Strategy (CMA-ES) isapplied to solve an identi�ation problem relative to the hromatography tehnique usedby hemial engineers.Theoretial and numerial studyThe study in Chapter 2 of the (1 + 1)-ES generalizes previous results relative to thebehavior of the (1, λ)-ES [17℄: The optimal onvergene rate of ES is reahed when theadaptation rule of the step-size is the arti�ial sale-invariant adaptation rule and theobjetive funtion is the spherial funtion. Therefore, these optimal settings (sale-invariant + spherial funtions) an be used to assess the performanes of algorithms usingrealisti adaptation rules and optimizing real world objetive funtions by omparing theirperformanes with the optimal one.In our study, we mainly investigate the rigorous proof with the numerial illustrationof the onvergene and divergene of sale-invariant ES. In Chapter 2, the Law of LargeNumbers (LLN) for orthogonal random variables has been used to show the log-linearonvergene of the sale-invariant (1 + 1)-ES when minimizing spherial funtions. InChapter 3, the Borel-Cantelli Lemma was used to show the almost sure onvergene (ordivergene) of the sale-invariant (1 + 1)-ES when minimizing noisy spherial funtions.Then, in the same hapter, we used the LLN for Markov hains to rigorously derive theexpressions of onvergene (or divergene) rates of the algorithm. However, in order toobtain the log-linear behavior of the algorithm, one has to show that the onvergene (ordivergene) rates are not equal to 0. Though it is di�ult to have a theoretial estimationof this onvergene rate, our study shows that the expressions of the onvergene (or di-vergene) rates derived an be estimated using Monte Carlo simulations. Therefore, onean show numerially that the onvergene (or divergene) rates are not equal to 0. Forthe sale-invariant (1, λ)-ES minimizing noisy spherial funtions, the LLN for orthogonalrandom variables is used again in Chapter 4 to show the log-linear of behavior of thealgorithm. In the same hapter, numerial simulations have investigated the onvergene(or divergene) rate that was theoretially derived to distiguish onvergene and diver-gene ases. Moreover, it is theoretially proven (Chapter 4) that the onvergene rate is167



Summary and Conlusionasymptotially (in the searh spae dimension) linear as a funtion of the inverse of thesearh spae dimension. Note that for rank-based algorithms [137℄ or any Hit-and-Rundiret searh method [75℄, we know that the onvergene rate is asymptotially linear asa funtion of the inverse of the searh spae dimension.The onvergene results obtained in Chapter 2 (Theorem 2.10) and in Chapter 4(Theorem 4.8) were obtained using the LLN for orthogonal random variables. Note thatthe same results an be obtained using LLN for independent random variables.Optimization of noisy objetive funtions When objetive funtions are noisy, EShad been shown to be more robust than other optimization methods in previous empirialstudies [9, 106℄. As pointed in [24℄, the di�ulty when handling noisy objetive funtionsarises for high noise levels. If the noise level is high, relatively to the ideal objetivefuntion value, the seletion proess an be deeived and therefore the performane of thealgorithm is altered. This may lead to a non onvergene of the method. Therefore, weinvestigated a multipliative noise model for whih the random noise is the ratio betweenthe noisy objetive funtion value and the ideal one. We investigated both the sale-invariant plus and omma strategies:1. For the (1 + 1)-ES (Chapter 3), the only relevant fat is whether the noisy funtionan take negative �tness values or not. If a negative �tness value an happen,the sale-invariant (1 + 1)-ES will diverge, beause of the elitist seletion. Thisresult may appear in ontradition with the result that has been previously derivedin [8℄, stating that the algorithm is expeted to onverge, beause of its positiveexpeted progress rate. The point is that, in the numerial simulations investigatedin that paper, negative �tness values were never sampled beause they had a verysmall probability to our. This was due to the use of normalizations of the noisestrength with respet to the searh spae dimension. This also shows that numerialsimulations have to be onsidered with are, and that both theoretial and numerialapproahes have to be investigated in a omplementary approah.2. For the (1, λ)-ES (Chapter 4), the onlusions are di�erent. The (1, λ)-ES anonverge even in the ase where negative �tness values an happen, provided thatthe variane of the noise (the noise strength) is su�iently small. On the otherhand, if the noise strength is su�iently high, divergene ours. In the spei�ase of Gaussian noise, the distintion between onvergene and divergene ases wastheoretially (respetively numerially) shown for in�nite (respetively �nite) searhspae dimension. For in�nite dimension, similar results had been obtained using thelimit of the normalized progress rate [25℄, whih is equal to the opposite of the limitof the normalized onvergene rate derived in our study. Moreover, for 'large' noisestrength values where divergene ours, onvergene an nevertheless be obtainedby inreasing the number of o�spring λ, and/or reevaluating eah o�spring severaltimes and setting its �tness value to the average of these reevaluations. Thesesolutions had been previously proposed in [25℄, and are also disussed in Chapter 4.168



Elitist strategies and omparing ES in noisy environments The results of Chap-ter 3 show that, if negative objetive funtions values have a stritly postive probabilityto happen, then the sale-invariant (1 + 1)-ES annot onverge beasue of the elitist se-letion. Therefore, the non onvergene holds also even if the number of the o�spring isinreased, i.e., even when using a (1 + λ)-ES with λ > 1. It is worth notiing that thenon robustness of the elitist seletion have been already notied in previous studies [119℄(where the objetive funtions is not noisy), where it had been shown that the (1+1)-ESusing the 1/5-suess rule an get stuk in a loal optimum. To overome the non onver-gene of the (1 + 1)-ES (when minimizing noisy objetive funtions) shown in Chapter 3,a possible solution is to reevaluate the parent at eah seletion step. Therefore, the obje-tive funtions values of the solutions generated by the algorithm are no more dereasing.Another solution is to use the (1, λ)-ES whih has been analyzed in Chapter 4 using theLLN for orthogonal random variables. The study of the sale-invariant (1 + λ)-ES withreevaluation of the parent has not been investigated here but it an be done, similarly tothe (1, λ)-ES, using the LLN for orthogonal random variables. Moreover, the (1 + λ)-ESwith reevaluation is similar, for in�nite dimension, to a (1, λ + 1)-ES as suggested bythe limits of the normalized progress rates derived in [25℄. Note that our study does notinlude the omparison of the performanes of plus and omma ES in noisy environments.However, our study gives a guideline for pratitionners about whih strategy to use whensome qualitative or quantitative informations on the noise distribution are available. Ifthe noise is suh that negative objetive funtion values an happen one should not useplus strategies with no reevaluation of the parent. In this ase, omma strategies (andprobably plus strategies with reevaluation, relying on results in [25℄) an be used with thepossible solutions of reevaluating o�spring or inreasing their number if the noise level is'high'.In a previous study that ompared the performanes of ES in the presene of a Gaussiannoise [7℄, it had been shown that, for small values of the noise strength, the plus strategies(with or without reevaluation) perform better than the omma strategies, and that theopposite happens for large normalized noise strength values. However, aording to ourstudy and from a theoretial view point, plus strategies with no reevaluation should notbe used in the ase of Gaussian noise as they lead to a non onvergene of the algorithm.Therefore one has to investigate, in ase of (theoretial) onvergene, the omparisonof the onvergene rates of the (1 + λ)-ES with reevaluation of the parent, and of the
(1, (λ+1))-ES. Note that in pratie, when the noise is Gaussian with a su�iently smallnoise strength, the study of Chapter 3 shows that onvergene an be seen in numerialsimulations as the event leading to the non-onvergene of the algorithm requires a hugenumber of iterations whih is not the ase of almost all numerial simulations. In theseases, and if one knows that (ideal) objetive funtions have to be positive, the (1+1)-ESan be used as a fast strategy (as suggested by the study in [7℄) until a negative �tnessvalue is sampled or another stopping riteria is met.Finally, ES with reombination has to be theoretially and numerially investigated andompared with the other strategies. Another point that should be investigated, in noisyenvironments, is the behavior of ES using atual adaptation tehniques (e.g. SA-ES and,of ourse, CMA-ES). 169



Summary and ConlusionOn the use of in�nite dimension approximations and link with the progress ratetheory The limit of the (normalized) onvergene rate (or normalized progress rate) ofan ES has in general, a simpler expression than that relative to a �xed dimension. Thismakes the distintion of onvergene and divergene ases easier and the results obtainedwhen the searh spae dimension goes to in�nity an be onsidered to be reliable forsu�iently large dimensions.In Chapter 4, we also extend a result from [17℄ to the noisy ase: when optimizingspherial funtions, the normalized progress rate, whih is related to the onvergene inmean of an ES, and (the opposite of) the normalized onvergene rate, whih gives thealmost sure onvergene, have the same limit when d goes to in�nity.On the other hand, for �nite dimensions of the searh spae, Figure 4.5 and Figure 4.6 inChapter 4 show that for some ases, divergene an hold in the ase of in�nite dimensionwhile onvergene holds for some �nite dimensions. This on�rms the observation thathas already been done in the ase of sphere funtion in [27℄: The authors show that in�nitedimension results do not over all onvergene ases for �nite dimensions.Moreover, our study shows rigorously (Chapter 4) the reliablity of an approximationfor large dimensions that has been previously done in [8℄ when optimizing noisy objetivefuntions. This approximation assumes that, for high dimensions of the searh spae, theparent and its o�spring have the same noise level.However, the �nite dimension plots of theonvergene rates that are shown in Chapter 4, and espeially in Figure 4.2, demonstratethat for the same noise variane and the same step-size mutation, the original modeland the approximating one an have ompletely di�erent behaviors (onvergene for theformer and divergene for the latter). Therefore, suh approximations has to be takenwith are.AppliationIn Chapter 5, CMA-ES was applied to solve a real-world problem enountered in hem-ial engineering. This study on�rms previous empirial omparison dealing whith thee�ieny and the robustness of deterministi and randomized searh methods. In thisspei� ase study, CMA-ES is demonstrated to be more robust than a gradient based ap-proah: CMA-ES found the same solution than the gradient method, but independentlyof the starting point, whereas gradient searh is very sensitive to its initialization. Infat, the solutions proposed by CMA-ES were also slightly more aurate. But the moststriking result is that CMA-ES sueeded to handle the full optimization problem whereasthe gradient-based approah failed unless some parameters were �xed by the user to someexperimentally determined values.
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