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Résumé de la thèseUn problème d'optimisation non linéaire 
ontinu peut être formulé 
omme suit : Étantdonné une fon
tion f : R
d 7→ R, appelée fon
tion obje
tif, le but est de 
her
her, dans unespa
e 
ontenant une ou plusieurs parties ouvertes de R

d, le ve
teur (soit d paramètres)qui maximise (ou minimise) la fon
tion f .Dans 
ette thèse, on s'intéresse à l'optimisation non linéaire 
ontinue par des méthodesappelées Stratégies d'Évolution (SE), algorithmes évolutionnaires dédiés à l'optimisationsur un espa
e 
ontinu. Les SE ont montré leur e�
a
ité pratique pour la résolution deproblèmes d'optimisation réels. Cependant les SE, 
omme l'ensemble des algorithmesévolutionnaires, ne sont pas basés sur les premiers prin
ipes, mais adaptés d'une imita-tion des prin
ipes de l'évolution naturelle, la survie des individus les plus adaptés. Dansune première partie de 
ette thèse, on étudie théoriquement et numériquement la 
on-vergen
e des SE, en parti
ulier dans le 
adre de l'optimisation des fon
tions obje
tifsbruitées. On montre par exemple que des niveaux assez élevés du bruit peuvent entraînerla non-
onvergen
e de l'algorithme. Les expressions des vitesses de 
onvergen
e sont en-suite établies théoriquement. Les 
as de 
onvergen
e et de divergen
e sont distinguésthéoriquement et numériquement.La se
onde partie traite une appli
ation à un problème réel en génie 
himique, l'identi�
ationde paramètres pour le système de la 
hromatographie analytique. L'appro
he évolution-naire est 
omparée à une méthode déterministe basée sur le 
al
ul du gradient numérique.L'appro
he évolutionnaire est plus robuste sur 
e 
as d'étude spé
i�que.

3
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Introdu
tion (In Fren
h)Les problèmes d'optimisation sont très fréquents dans l'industrie 
omme dans di�érentsdomaines de la re
her
he. L'optimisation non linéaire 
ontinue s'intéresse aux problèmesoù la fon
tion à optimiser, appelée fon
tion obje
tif, ou �tness, est dé�nie sur un espa
ed'état 
ontinu de dimension d, ç.à.d., f : R
d 7→ R, et n'est pas linéaire. Le but est don
,de 
her
her d paramètres réels qui maximisent (ou minimisent) une fon
tion f .Pour résoudre les problèmes d'optimisation, plusieurs méthodes ont été développées.La plupart de 
es méthodes sont itératives, et génèrent, à l'itération n, une (ou plusieurs)nouvelle(s) solution(s) soit de manière déterministe, soit de manière sto
hastique en é
han-tillonnant une distribution de probabilité. Ces méthodes peuvent être don
 
lassées endeux grandes familles : méthodes de re
her
he déterministe et méthodes de re
her
hesto
hastique.Dans les problèmes réels d'optimisation, le pro
essus de re
her
he de la (ou des) so-lution(s) optimale(s) peut s'avérer di�
ile. Les fon
tions obje
tifs peuvent être non 
on-vexes, irrégulières, bruitées, multimodales, mal 
onditionnées, non séparables . . . Les 
on-traintes sur l'espa
e de re
her
he peuvent aussi rendre la re
her
he en
ore plus di�
ile.En�n, la di�
ulté du problème d'optimisation 
roît également ave
 la dimension d del'espa
e de re
her
he.Certaines études empiriques [122, 55, 82, 106, 9℄ 
omparant les méthodes d'optimisationet en parti
ulier les méthodes de re
her
he sto
hastique aux méthodes de re
her
he déter-ministe donnent un avantage aux méthodes de re
her
he sto
hastique quand les fon
tionsobje
tifs sont de plus en plus 
omplexes à optimiser, i.e., quand les fon
tions obje
tifs sontplut�t non-
onvexes, multi-modales, très mal 
onditionnées, non séparables, ou bruitées.En parti
ulier, dans le 
adre de l'optimisation de fon
tions bruitées, qui 
onstitue la ma-jeure partie de 
ette thèse, les études empiriques [106, 9℄ montrent que les méthodes dere
her
he sto
hastique appelées Stratégies d'Évolution (SE) sont plus robustes fa
e aubruit que les méthodes déterministes.Les Stratégies d'Évolution sont des algorithmes évolutionnaires dédiés à l'optimisation
ontinue. Ils ont montré leur e�
a
ité pratique pour la résolution de problèmes d'optimisationréels [51, 43, 22, 104, 142℄. Cependant les SE, 
omme l'ensemble des algorithmes évolution-naires, ne sont pas basés sur les premiers prin
ipes, mais sont le fruit d'une imitation desprin
ipes de l'évolution naturelle (la survie et la reprodu
tion des individus les plus adap-tés). La méthode �état de l'art� en optimisation évolutionnaire 
ontinue aujourd'hui est la5



Introdu
tion (In Fren
h)méthode CMA-ES, ou Covarian
e Matrix Adaptation-Evolution Strategy, introduite parN. Hansen et A. Ostermeier au milieu des années 90 [61, 59, 56℄. Des études empiriquesont montré que CMA-ES est e�
a
e et robuste fa
e aux problèmes non séparables etmal 
onditionnés [61, 59, 82℄, mais est également e�
a
e pour résoudre les problèmesmultimodaux [56, 82℄. D'autres études empiriques [61, 56, 55, 62℄ 
omparant CMA-ESà d'autres méthodes populaires de re
her
he sto
hastique ainsi qu'à la méthode BFGS,méthode de re
her
he déterministe très utilisée, ont montré une grande 
ompétitivité deCMA-ES.Dans 
ette thèse, on s'intéresse à l'optimisation non linéaire 
ontinue par Stratégiesd'Évolution. La thèse 
omprend deux parties: la première est 
onsa
rée à des étudesthéoriques et numériques 
on
ernant la 
onvergen
e de Stratégies d'Évolution plus simplesque CMA-ES, algorithmes qui sont les seuls à avoir été étudiés d'un point de vue théoriquepour le moment. Dans 
ette partie, on s'intéresse en parti
ulier à l'optimisation desfon
tions quadratiques bruitées. La se
onde partie traite une appli
ation à un problèmeréel en génie 
himique, l'identi�
ation des paramètres de la loi de 
omportement (oufon
tion isotherme) pour le système de la 
hromatographie analytique.
1 Étude théorique et numérique1.1 État de l'art et 
ontexteLes premières études théoriques des Stratégies d'Évolution ont été des études asympto-tiques par rapport à la dimension de l'espa
e de re
her
he (d → +∞) [25, 114℄. Lespremières études théoriques établies en dimension �nie sont 
elles de François et Bien-venue [27℄ et de Auger [13, 17℄. Il est ainsi aujourd'hui démontré [13, 17, 27℄ que la
onvergen
e de Stratégies d'Évolution adaptant leur pas de re
her
he à 
haque itérationest (log-)linéaire (i.e. le logarithme de la distan
e séparant la solution de l'optimum tendlinéairement vers −∞ en fon
tion du nombre d'itérations). Ce résultat est valable pourtoute fon
tion qui s'é
rit sous la forme g(||x||2) où g est une fon
tion stri
tement 
rois-sante. Pour des 
lasses de fon
tions bruitées (que l'on é
rira sous la forme ||x||2(1 + N )ou ||x||(1 + N ), N étant une variable aléatoire modélisant le bruit), les études les pluspoussées sont 
elles de Arnold et Beyer [5, 7, 8, 24, 25℄, études asymptotiques i
i en
orepar rapport à la dimension d de l'espa
e de re
her
he.La partie théorique de 
ette thèse 
on
erne l'étude de la 
onvergen
e des Stratégiesd'Évolution, pour l'optimisation de fon
tions, non bruitées et bruitées.1.2 ContributionsNotre apport dans 
ette thèse est résumé dans les points suivants :6



1. Étude théorique et numériqueOptimisation des fon
tions non bruitées (Résultats publiés dans [77℄) :Dans le 
ontexte dé
rit 
i-dessus, nous démontrons :1) Une 
onvergen
e log-linéaire d'un algorithme �arti�
iel� de type ES1 appelé s
ale-invariant (1 + 1)-ES, dans lequel le pas de re
her
he à 
haque itération est proportionnelà la distan
e qui sépare la solution 
ourante de l'optimum (résultat similaire à 
e qui aété prouvé dans [13, 17, 27℄ pour l'algorithme appelé (1, λ)-ES).2) L'optimalité en terme de vitesse de 
onvergen
e du s
ale-invariant (1 + 1)-ES. Cerésultat 
on�rme le résultat montré dans [17℄ pour l'algorithme (1, λ)-ES.Cette étude est présentée dans le 
hapitre 2.Optimisation des fon
tions bruitées (Résultats in
luant 
eux publiés dans [76℄)Nous étudions le 
omportement des stratégies s
ale-invariant (1 + 1)-ES (
hapitre 3) ets
ale-invariant (1, λ)-ES (
hapitre 4) lors de la minimisation de fon
tions bruitées. Nousmontrons:
• Pour l'algorithme s
ale-invariant (1 + 1)-ES : les fon
tions bruitées sont i
i modé-lisées sous la forme ||x||2(1 +N ). La 
onvergen
e montrée auparavant [77℄ pour lesfon
tions non bruitées n'est plus valable lorsque le niveau de bruit est su�sammentélevé pour que des valeurs négatives de la fon
tion obje
tif puissent être générées.Si la probabilité de l'évènement (N < −1) est stri
tement positive, l'algorithme ne
onverge pas (si le bruit est Gaussien) et diverge (si le bruit est minoré). Pour desdistributions de bruit qui ne permettent de générer que des valeurs positives de lafon
tion obje
tif, l'algorithme 
onverge toujours.Pour les fon
tions obje
tifs qui s'é
rivent sous la forme (||x||2+α)(1+N ) ave
 α > 0,l'algorithme 
onverge si les valeurs des fon
tions obje
tifs générées ne peuveut êtreque positives. S'il y a une probabilité stri
tement positive que des valeurs négativesde la fon
tion obje
tif soient générées, l'algorithme ne 
onverge pas. Nous 
omparonsaussi nos résultats aux résultats obtenus dans [8℄ qui semblent en 
ontradi
tion ave
les résultats que nous avons obtenus.Dans une autre partie de 
ette étude, nous établissons théoriquement les expressionsdes vitesses de 
onvergen
e (ou divergen
e) de l'algorithme lors de la minimisationdes fon
tions obje
tifs de la forme ||x||2(1 + N ). Les vitesses de 
onvergen
e (oudivergen
e) obtenues peuvent être 
al
ulées numériquement. Pour des vitesses de
onvergen
e non nulles, le 
omportement de l'algorithme est log-linéaire.
• Pour l'algorithme s
ale-invariant (1, λ)-ES : les fon
tions bruitées sont i
i modéliséessous la forme ||x||(1 + N ). Le 
omportement log-linéaire (
onvergen
e/divergen
e)est prouvé théoriquement. Les 
as de divergen
e ou 
onvergen
e de l'algorithme, enfon
tion du niveau de bruit et du pas de mutation, sont distingués théoriquement(lorsque d → +∞) et numériquement (pour d < +∞). Nous montrons que lesvitesses de 
onvergen
e varient presque linéairement ave
 l'inverse de la dimension1l'a
ronyme ES se rapporte à l'appellation anglophone pour les Stratégies d'Évolution: EvolutionStrategies 7



Introdu
tion (In Fren
h)de l'espa
e de re
her
he. Cette étude prouve rigoureusement que 
ertaines approx-imations faites (lorsque d tend vers l'in�ni) dans [8℄ sont justi�ées.1.3 Outils mathématiques utilisésNous avons essentiellement utilisé dans notre étude des outils de la théorie de probabil-ité, tels que le Lemme de Borel-Cantelli, pour prouver la 
onvergen
e presque sûre desalgorithmes étudiés. Nous avons aussi eu re
ours aux di�érentes lois des grands nombresrelatives aux variables aléatoires orthogonales [93℄ ou aux 
haînes de Markov [97℄ pourétudier la stabilité des suites asso
iées aux algorithmes étudiés.2 Appli
ation (Résultats publiés dans [78℄)La se
onde partie de la thèse est 
onstituée du 
hapitre 5. Elle s'attaque à un problèmed'ingénierie réel. Le but est d'identi�er les paramètres de la fon
tion isotherme, loi de
omportement du pro
essus de 
hromatographie utilisé en génie 
himique. L'appro
heutilisée pour résoudre 
e problème d'identi�
ation est de le poser sous la forme d'un prob-lème d'optimisation. Pour résoudre le problème d'optimisation paramétrique ainsi obtenu,nous avons utilisé l'état de l'art en Stratégies d'Évolution, l'algorithme CMA-ES. La ver-sion de l'algorithme utilisé est 
elle dé
rite dans [16℄. Ce problème a déjà été traité pardes méthodes à base de des
ente de gradient dans [73, 74℄. Nous avons testé l'appro
heévolutionnaire sur l'ensemble des donnés réelles publiées dans [73℄. La 
omparaison denotre appro
he à 
elle du gradient numérique [73℄ a révélé que 1) L'algorithme CMA-ES
onverge toujours vers le même point indépendamment du point de départ (
ontraire-ment au gradient). 2) Les meilleures valeurs de la fon
tion obje
tif ont été trouvées parCMA-ES pour deux 
on�gurations expérimentales. En parti
ulier CMA-ES est 
apabled'optimiser les 6 paramètres simultanément, alors que l'utilisation de l'algorithme à basede gradient a né
essité de �xer 
ertaines valeurs de 2 des paramètres à partir de donnéesexpérimentales. Une autre remarque est que les temps de 
al
ul entre CMA-ES et laméthodes à base de gradient sont 
omparables, alors qu'il est en général 
onsidéré queles méthodes déterministes sont nettement plus rapides que les méthodes sto
hastiques àbase de population de solutions.Note : la thèse est rédigée en anglais.
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Summary of 
ontributions
Optimization problems are frequently en
ountered in all domains of s
ien
e and engineer-ing. They are of parti
ular relevan
e in industry. They in
lude tasks su
h as s
heduling,shape optimization, model 
alibration, and parameter identi�
ation. The goal of an op-timization problem is to �nd the optimum (or the optima) of a real-valued fun
tion fde�ned on some sear
h spa
e Ω, subset of the d-dimensional spa
e R

d. Many methodshave been developped to solve 
ontinuous optimization problems. They 
an be broadly
ategorized in two 
lasses: deterministi
 and sto
hasti
 sear
h methods.Among sto
hasti
 sear
h methods, the so-
alled Evolution Strategies (ES) have demon-strated their e�
ien
y in solving real-world optimization problems. This motivates thegeneral 
ontext of this thesis, 
ontinuous optimization using ES.The work presented in this do
ument 
an be divided into two parts: The �rst partdeals with a theoreti
al and numeri
al study of some basi
 ES algorithms; The se
ondpart is devoted to an appli
ation that is ta
kled using the CMA-ES method.1 Part 1: Theoreti
al and numeri
al studyThis part is 
on
erned with the theoreti
al and numeri
al study of the optimization, usingES, of obje
tive fun
tions having a unique global optimum. Therefore, this work 
an be
lassi�ed as belonging to the studies of lo
al 
onvergen
e. The sear
h spa
e Ω is supposedto be un
onstrained (Ω = R
d). We are interested in isotropi
 ES, i.e., ES where no sear
hdire
tion is preferred. We investigate the optimization of the following obje
tive fun
tions,that have been widely investigated in previous theoreti
al studies about ES:

• the so-
alled spheri
al fun
tions, that 
an be written as g(||x||2), where g is a stri
tlyin
reasing fun
tion and ||x|| denotes the norm of ve
tor x ∈ R
d, and

• noisy obje
tive fun
tions, that are modelized as ||x||2(1 +N ) or ||x||(1+N ), where
N is a random variable representing the noise.The unique global optimum of spheri
al fun
tions is (0, . . . , 0) ∈ R

d. Note that for noisyobje
tive fun
tions, the goal is to rea
h the optimum of the non-noisy part of the obje
tivefun
tion, i.e., (0, . . . , 0). Our theoreti
al 
ontributions in this thesis lies in Chapters 1, 2and 3 and 
an be summarized as follows: 9



Summary of 
ontributions1.1 Optimization of non noisy fun
tions (Results in [77℄) :In Chapter 2, we investigate the (1+1)-ES, and in parti
ular the (1+1)-s
ale-invariant-ESin whi
h the 'radius of the sear
h', or step-size, is, at ea
h iteration, proportional to thedistan
e between the 
urrent solution and the optimum. We rigorously prove:1. A log-linear 
onvergen
e of the simplest ES, 
alled s
ale-invariant (1 + 1)-ES, whenminimizing spheri
al fun
tions. A log-linear 
onvergen
e means that the logarithmof the distan
e to the optimum 
onverges linearly to −∞ as a fun
tion of the numberof iterations.2. The optimality (regarding the 
onvergen
e speed) of the (1+1)-ES algorithm usingthe arti�
ial s
ale-invariant rule when minimizing spheri
al fun
tions. Moreover,optimal 
onvergen
e rates are numeri
ally derived as a fun
tion of the sear
h spa
edimension.1.2 Optimization of noisy fun
tions (A part of the results hasbeen appeared in [76℄)Noisy obje
tive fun
tions are important to study, as real obje
tive fun
tions are usuallynoisy. Noisy spheri
al fun
tions investigated here are of parti
ular interest as the ran-domness of their noisy part 
an 
over a wide range of irregular real obje
tive fun
tions.We investigate the s
ale-invariant (1+1)-ES (Chapter 3) and the so-
alled s
ale-invariant
(1, λ)-ES (Chapter 4) for the minimization of noisy obje
tive fun
tions. More pre
isely:

• For the s
ale-invariant (1+1)-ES, noisy obje
tive fun
tions are modelized as ||x||2(1+
N ). The main result is that the 
onvergen
e that has been already shown in [77℄for non noisy obje
tive fun
tions does not always hold for noisy obje
tive fun
tions.If the noise level is su
h that negative obje
tive fun
tions values 
an be sampledwith a stri
lty positive probability, the algorithm does not 
onverge (if the noiseis Gaussian) and diverges (if the noise is lower bounded). Furthermore, for noisedistributions that only sample positive �tness values, the algorithm 
onverges. Weprove also that the same results hold for a more general 
lass of noisy obje
tivefun
tions that 
an be written as (||x||2 + α)(1 + N ) with α > 0. Our results are
ompared with those in [8℄, with whi
h they seem 
ontradi
tory. In this study, wealso theoreti
ally derive the 
onvergen
e (or divergen
e) rates of the algorithm min-imizing noisy obje
tive fun
tions written as ||x||2(1 + N ). Moreover, we show thatthe 
onvergen
e (or divergen
e) rates 
an be 
omputed numeri
ally. For 
onvergen
e(or divergen
e) rates whi
h are not equal to zero, the behavior of the algorithm islog-linear.

• For the s
ale-invariant (1, λ)-ES, the noisy obje
tive fun
tions that are investigated
an be written as ||x||(1 + N ). The log-linear behavior (
onvergen
e/divergen
e)is theoreti
ally proven. The 
onvergen
e and divergen
e 
ases are distiguished asa fun
tion of the noise level and the so-
alled 'normalized step-size mutation' (aparameter of the algorithm), theoreti
ally (when d goes to in�nity) and numeri
ally10



2. Part 2: Appli
ation (Results in [78℄)(for d < +∞). We show that 
onvergen
e rates vary almost linearly with theinverse of the dimension of the sear
h spa
e. Moreover, we theoreti
ally prove thatthe approximations used in [8℄ for the in�nite dimension study are reliable.2 Part 2: Appli
ation (Results in [78℄)The appli
ation part of this thesis is presented in Chapter 7. We investigate the resolutionof a real-world problem en
ountered by 
hemi
al engineers. The goal is the identi�
ationof the parameters of the isotherm fun
tion governing the 
hromatography pro
ess. Theapproa
h used in order to solve this problem is to turn the identi�
ation problem into anoptimization problem. One of the di�
ulties of the resulting optimization problem is thatthe relative sear
h spa
e is impli
itely 
onstrained. The resulting parametri
 optimizationproblem is ta
kled using the state-of-the-art in Evolution Strategies, the so-
alled CMA-ES (Covarian
e Matrix Adaptation-Evolution Strategy) introdu
ed by N. Hansen and A.Ostermeier [57, 59, 61℄. The version of this algorithm used here is that of [16℄. This iden-ti�
ation problem had already been addressed using gradient-based approa
hes [74, 73℄.We perform the identi�
ation using the real-world data set provided in [73℄: this allows usto 
ompare our results with those of the gradient based approa
h. The 
omparison revealsthat our approa
h is more e�
ient than the numeri
al gradient approa
h. More pre
isely,1) The CMA-ES algorithm always 
onverges to the same solution, independently of thestarting point: this was not the 
ase for the gradient approa
h. 2) Better obje
tive values
an be found by CMA-ES for two di�erent experimental 
on�gurations. In parti
ular,CMA-ES is able to handle the full problem and identi�y the 6 parameters, whereas thegradient approa
h doesn't work unless the values of 2 of the parameters are manually�xed (to experimental values). Finally, both approa
hes have very similar 
omputationtimes, whi
h is a rather unusual �nding, as it is well known that deterministi
 methodsare generally mu
h more faster than population based sto
hasti
 methods.The last part of the do
ument is a general 
on
lusion that summarizes the resultsobtained, also giving perspe
tives of possible future work.

11
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Chapter 1Non linear 
ontinuous optimizationOptimization is a re
urrent task mostly investigated by Engineers, Applied Mathemati-
ians, and Computer S
ientists. We are here interested in 
ontinuous minimization 2problems that 
an be formally formulated as follows:
{Minimize f(x),

x ∈ Ω
(1.1)where f : Ω 7→ R is the obje
tive fun
tion de�ned on some open subset Ω of R

d and isassumed to be non linear.Real-world 
ontinuous optimization problems are everywhere. For instan
e, they in
ludeshape optimization of e.g. airfoils in aeronauti
 industry, model 
alibration frequentlyen
ountered in biologi
al or physi
al domains, and parameter identi�
ation in the 
ontextof inverse problems.This work fo
uses more parti
ularly on the bla
k box s
enario, where the only availableinformation about the obje
tive fun
tion is the values it takes on any input from R
d.In parti
ular, no gradient nor Hessian information 
an be obtained (ex
ept of 
oursethrough numeri
al 
omputation from fun
tion values). Hen
e we will only 
onsider zerothorder methods, that only use fun
tion values. In order to solve real-world 
ontinuousoptimization problems, many iterative methods have been developed. These methods 
anbe broadly 
lassi�ed in two 
ategories, relatively to the method they use to explore thesear
h spa
e: Deterministi
 and randomized sear
h methods.In the following of this Chapter, we will brie�y survey both deterministi
 and randomizedsear
h methods operating on un
onstrained sear
h spa
es (i.e., Ω = R

d).1.1 Deterministi
 sear
h methods for non linear 
on-tinuous optimizationThe most widely used deterministi
 sear
h methods have been reviewed in [108, 80, 85, 29℄where 
onvergen
e results are given. In the following, we give a presentation of some of2Without loss of generality, the minimization of a real valued fun
tion f is equivalent to the maxi-mization of −f . 13



Chapter 1. Non linear 
ontinuous optimizationthe most popular deterministi
 sear
h methods.1.1.1 Gradient based methodsGradient based methods refers to methods whi
h use the expli
it value of the gradient ofthe obje
tive fun
tion at a given lo
ation. These methods have been originally inspiredfrom the approximating Taylor formula of a su�
iently smooth fun
tion. They have beendesigned to work well at least on the 
onvex quadrati
 fun
tions. These methods aredes
ent methods in the sense that the newly generated point at ea
h iteration has alwaysa better obje
tive fun
tion value than the previous one. More pre
isely, let Xn be thesolution at an iteration n. The new point Xn+1 is generated as follows:
{

Xn+1 = Xn + tndn,

tn = arg mint≥0{f(Xn + tdn)}
(1.2)where dn is the des
ent dire
tion and tn the des
ent step.The des
ent step tn is determined by some line sear
h method (su
h as rules of Wolfe,Goldstein and Pri
e, Armijo [29℄).A natural idea for the 
hoi
e of the des
ent dire
tion dn is to 
hoose the oppositeof the gradient at the 
urrent lo
ation, i.e., dn = −∇(f(Xn)). However, better 
hoi
es
an be made: In the 
onjugate gradient methods, the su

essive des
ent dire
tions dnsatisfy the re
urren
e relation dn+1 = −∇(f(Xn+1)) + ‖∇(f(Xn+1))‖2

‖∇(f(Xn))‖2 dn. It is shown (seefor example [103℄) that the 
onjugate gradient method theoreti
ally 
onverges in atmost d iterations when minimizing 
onvex quadrati
 fun
tions. Another 
hoi
e for thedes
ent dire
tion dn is −H̃−1
n ∇(f(Xn)) where H̃n is (an approximation of) the Hessianmatrix in the 
urrent solution. Gradient methods using su
h a des
ent dire
tion are 
alledQuasi-Newton Methods. The state of the art of these methods is the so-
alled Broyden-Flet
her-Goldfarb-Shanno algorithm (BFGS).A drawba
k of all gradient based methods, however, is that they are lo
al methods: be-
ause the obje
tive fun
tion value de
reases at ea
h iteration, the sear
h is stu
k in the�rst en
ountered lo
al optima.Note that even in the bla
k box s
enario where no derivative information is available,it is useful to 
onsider gradient based methods:

• If the obje
tive fun
tion is smooth and its values 
an be 
omputed with full pre
ision,�nite-di�eren
es 
an be used to obtain estimates of the derivative that are a

urateenough to be used as gradients in a gradient based method, su
h as the impli
it�ltering method des
ribed in Se
tion 1.1.2.
• Many popular sear
h software (e.g., within Matlab) used numeri
al gradient, andit is hen
e mandatory to 
ompare the results of any newly proposed optimizationmethod to those of gradient-based methods, even if using numeri
al gradient, inorder to assess their performan
es.14



1.1. Deterministi
 sear
h methods for non linear 
ontinuous optimization1.1.2 Deterministi
 dire
t sear
h methodsDeterministi
 dire
t sear
h methods �rst appeared in the 1950's and early 1960's withthe growing use of 
omputer to �t experimental data. The name dire
t sear
h was intro-du
ed in 1961 by Hooke and Jeeves. These methods do not use the expli
it expressionof the gradient to generate new solutions. In the following, we present some widely useddeterministi
 dire
t sear
h methods.Derivative-free pattern sear
h methodsThe dire
t Pattern Sear
h algorithm of Hooke and Jeeves [65℄ is one of the earliest deter-ministi
 sear
h methods that does not make use of derivatives. The generi
 pattern sear
halgorithm [39℄ 
al
ulates obje
tive fun
tion values of the 
urrent pattern and tries to �nda minimizer. Let Xn denotes the solution at the iteration n. The Hooke and Jeeves algo-rithm is a member of the so-
alled Generalized Pattern Sear
h algorithms (GPS) whi
hseeks for a lower value of the obje
tive fun
tion by sampling points in the sear
h spa
e ina �xed set (or pattern) around the 
urrent point. Sampled points build the set Ln whi
his de�ned as follows
Ln = {x ∈ R

d ; x = Xn ± ∆ns
iei , i ∈ {1, . . . , d}} (1.3)where ∆n > 0 is the pattern size whi
h represents the sear
h step, ei is the ith unit ve
tor,and s = (s1, . . . , sd) ∈ R

d is a �xed parameter that 
an be used to take into a

ount thedi�erent s
ales of the parameters to optimize. If the algorithm �nds a new minimum,then it 
hanges the 
enter of the pattern and iterates. If all the values on the patternfail to produ
e a de
rease, then the sear
h step or pattern size is redu
ed by half, i.e.,
∆n+1 = ∆n

2
. The sear
h 
ontinues until the sear
h step ∆n gets su�
iently small, thusensuring 
onvergen
e to a lo
al minimum. Performan
e is in
reased by reusing patternvalues as the pattern 
enter moves. Convergen
e analysis of GPS algorithm minimizingsmooth obje
tive fun
tions have been performed by Tor
zon [139℄ and Audet and Dennis[11℄.Simplex methodsThe �rst simplex based dire
t sear
h method was proposed by Spendley, Hext and Himsworthin 1962 [129℄. In 1965, the original method was developed by Nelder and Mead [105℄. Themethod evolves a 
onvex hull of d + 1 points in R

d, where the points satisfy the non-degenera
y 
ondition that the volume of the hull is nonzero. At every iteration, the worstvertex is repla
ed by a new vertex using re�e
tion, expansion or 
ontra
tion. In the 
asewhere this fails, a shrink step is 
arried out. Thus, this method only ensures improvementof the obje
tive fun
tion value in the sequen
e of worst vertexes, but it is the sequen
e ofbest vertexes that ultimately is of interest.It has been theoreti
ally and numeri
ally shown that the Nelder-Mead simplex algorithm
an fail in pra
ti
e. M
 Kinnon [96℄ 
onstru
ted a family of stri
tly 
onvex obje
tive fun
-tions in R
2 for whi
h he demonstrated that the Nelder-Mead algorithm fails to 
onverge toa stationary point, i.e., on whi
h the gradient equals 0. In M
kinnon examples, simplexes15



Chapter 1. Non linear 
ontinuous optimization
onverge to a straight line that it is orthogonal to the steepest des
ent dire
tion. In [146℄,there is a dis
ussion of the limitations, disadvantages, su

esses and developments of theNelder-Mead algorithm.To over
ome the short
omings of the Nelder-Mead algorithm, Tor
zon [138℄ proposedthe so-
alled multi-dire
tional sear
h, whi
h is also a simplex-based strategy. It has theproperty that shrinks o

ur for any number of variables, provided that the level setsof the obje
tive fun
tion are bounded. In [138℄, Tor
zon gives a 
onvergen
e proof forthe mutli-dire
tional sear
h and performs empiri
al tests in
luding the multi-dire
tionalsear
h, Nelder and Mead algorithm and a quasi-Newton method. She showed that themulti-dire
tional sear
h is robust whereas the Nelder-Mead algorithm is not, and thatmulti-dire
tional sear
h 
an handle higher dimension problems and 
laimed that themulti-dire
tional sear
h may be useful for optimizing noisy obje
tive fun
tions. How-ever, the multi-dire
tional sear
h also has some limits. In fa
t, the empiri
al study thathas been performed in [9℄ demonstrates that the performan
e of the multi-dire
tionalsear
h markedly degrades with in
reasing sear
h spa
e dimensions, and it is stated that,in the presen
e of noise, �. . . the multi-dire
tional sear
h method never stagnates butrather diverges if the noise strength is too high�.Quadrati
 approximation methodsThese methods rely on an interpolation or an approximation of the obje
tive fun
tionwith a quadrati
 fun
tion Q. The approximation is supposed to be reliable on a region ofthe sear
h spa
e 
alled the trust region. A quadrati
 fun
tion Q has d̃ = 1
2
(d+ 1)(d+ 2)independent 
oe�
ients, that may be de�ned by the interpolation 
onditions on d̃ pointsof R

d:
Q(xi) = f(xi), i = 1, . . . , d̃ (1.4)The points xi should have the property that, if Eq. 1.4 is written as a system of linearequations in terms of the 
oe�
ients Q, the matrix of the system should be non singular.Win�eld's algorithm [144℄ not only employs the interpolation equation Eq. 1.4 to de�ne

Q, but also in
ludes some of earliest work on trust regions. At an iteration n, the algorithmgenerates the quadrati
 approximation Qn using Eq. 1.4. Furthermore, the iteration
omputes the ve
tor x ∈ R
d that minimizes Qn subje
t to the bound ‖x−Xn‖ ≤ ρn where

Xn is the best point among the interpolation points at iteration n, and ρn is the trustregion radius. This algorithm presents the parti
ularity that, an eventual degeneration ofthe system Eq. 1.4 is ignored and it is assumed that the 
al
ulation of Qn is su�
ientlyrobust to provide a quadrati
 fun
tion that allow the trust region sub problem to besolved and the resulting x re
eives no spe
ial treatment. Other methods ensure that Qnis well de�ned. Powell [108℄ stated that Lagrange fun
tions are highly useful for sele
tingthe interpolations points at ea
h iteration su
h that the quadrati
 polynomial Qn is wellde�ned by Eq. 1.4. Using this idea, Powell proposed in 2002 the NEW Un
onstrainedOptimization Algorithm (NEWUOA) algorithm as a quadrati
 interpolation method thatuses only d̃ = 2d + 1 to build the quadrati
 fun
tion Q. Therefore, the amount of workper iteration is only of order (3d+1)2, whi
h allows d to be quite large. The su

ess of themethod is, a

ording to Powell [109℄, due to the use of the symmetri
 Brodyen method for16



1.1. Deterministi
 sear
h methods for non linear 
ontinuous optimizationupdating the Hessian of Qn, H(Qn), when �rst derivative of f are available [40℄. Another
laimed advantage [110℄ of the NEWUOA is that is suitable for the minimization of noisyobje
tive fun
tions.The algorithm 
an be summarized as follows. First, an initial quadrati
 model Q0 is
reated for the obje
tive fun
tion f . An iteration n then performs the following steps:
• Compute the minimum of Qn inside the trust region,
• Improve the model using the latest optimum,
• Stop if the latest trust region is lower than the user-de�ned end value,
• Stop if the distan
e between Qn and f is small enough (perfe
t mat
h of the model
Qn and the obje
tive fun
tion f),

• De
rease the trust-region radius if the values 
omputed for f stops de
reasing.A more detailed presentation of the algorithm 
an be found in [110℄.Impli
it �lteringImpli
it Filtering, as devised by Gilmore and Kelley [47, 80℄, belongs to the so-
alledSto
hasti
 Approximation methods dating ba
k to work of Robins and Monroe [115℄and Kiefer and Wolfowitz [83℄ and whi
h were spe
i�
ally designed to deal with noisyobje
tive fun
tions. In 
ontrast with the dire
t deterministi
 sear
h methods introdu
edso far, Impli
it Filtering relies on the idea suggested by Kiefer and Wolfowitz of expli
itlyapproximating the lo
al gradient of the obje
tive fun
tion by means of �nite di�eren
ing.Be
ause the gradient is only an approximation, the 
omputed steepest des
ent dire
tionmay fail to be a des
ent dire
tion and the line sear
h may fail. In this 
ase, the di�eren
ein
rement used to numeri
ally 
ompute the gradient is redu
ed. The name �impli
it�ltering� has been 
hosen be
ause the method uses di�eren
ing to �step over� the noiseat varying levels of resolution, hen
e impli
itly �ltering the obje
tive fun
tion from thenoise. The method uses the 
entral di�eren
e gradient that we denote ∇hf in a gradientbased method. Let x a point in R
d, and h a di�eren
e in
rement, a 
entral di�eren
egradient is de�ned as follows:

(∇hf(x))i =
f(x+ hei) − f(x− hei)

2h
, i = 1, . . . , d (1.5)where ei is the ith unit ve
tor. Clearly this 
omputation involves 2d evaluations. Atiteration n, the algorithm 
omputes the 
entral di�eren
e gradient at the 
urrent solution

Xn, i.e., ∇hf(Xn). As in gradient based methods, the new point Xn+1 is generated as
Xn + tndn, where tn is determined by a standard line sear
h in dire
tion dn. The des
entdire
tion dn is usually generated as in Quasi-Newton methods. A presentation of the
onvergen
e theory of impli
it �ltering and of several related methods 
an be found in[80℄. 17



Chapter 1. Non linear 
ontinuous optimization1.2 Randomized sear
h methods for non linear 
ontin-uous optimizationRandomization is an e�
ient resear
h tool for seeking the optima of an obje
tive fun
tionespe
ially when no information about he derivative neither the Hessian of this fun
tionare provided. Randomized sear
h methods are global sear
h methods in the sense that thesto
hasti
 nature of the sear
h 
an prevent the 
onvergen
e to a lo
al optimum3. Theirability to es
ape lo
al optima is also due to the fa
t that they are usually populationbased. However, despite their pra
ti
al ability to solve many real-world otpimizationproblems, the majority of these methods do not rely on a �rm mathemati
al ba
kground:they are in general designed based on nature-inspired paradigms, and their theoreti
alstudy 
omes long after their e�e
tive use and su

esses in pra
ti
al appli
ations. Thisse
tion will survey the most widely used randomized sear
h methods.1.2.1 Pure Random Sear
h (PRS) and Pure Adaptive Sear
h(PAS)Pure Random Sear
h (PRS) [31℄ is the simplest random sear
h method. This method
onsists in generating the solutions X1,...,Xn independently, using a �xed probability dis-tribution. When the stopping 
riterion is met, the best point rea
hed so far is taken asthe solution proposed by the method. It has been theoreti
ally proven [149℄ that PRS
onverges to the global minimum with probability 1 for every obje
tive fun
tion for whi
hthe neighborhood of the optimum 
an be rea
hed with a stri
tly positive probability.However, the sear
h is always done around the same �xed point and the sear
h distri-bution parameters, namely the radius and the 
ovarian
e matrix of the sear
h in 
ase of
ontinuous optimization, are kept un
hanged during the run. Therefore, these parametersare not adapted, neither relatively to the history of the sear
h, nor to the lo
al shape ofthe fun
tion to optimize. This makes PRS totally ine�
ient in pra
ti
e, with a very large
onvergen
e time that in
reases exponentially with the sear
h spa
e dimension [149℄.Then Pure Adaptive Sear
h (PAS) was introdu
ed as a random sear
h method havingan exponentially lower 
omplexity than that of PRS [148℄. In fa
t, the 
onvergen
etime of PAS varies linearly with the sear
h spa
e dimension d in the spe
i�
 
ase ofLips
hitz obje
tive fun
tions. This method di�ers from the PRS method in the fa
t thatthe new individual is uniformly generated on the set 
ontaining individuals having betterobje
tive fun
tion values than the 
urrent solution. Therefore PAS is not pra
ti
al be
ausethe prin
ipal 
omputational e�ort of the algorithm lies in generating points uniformlydistributed in the improving region. Moreover, PAS 
an be seen as a parti
ular instan
eof an Evolution Strategy (ES) (see Se
tion 1.2.4 for a presentation of ES) evolving aunique solution and where no adaptation in the sear
h parameters is done.3However, the probability to es
ape a lo
al optimum 
an be too small when using some randomizedsear
h method su
h as the (1 + 1)-ES for example (whi
h will be des
ribed in Se
tion 1.2.4).18



1.2. Randomized sear
h methods for non linear 
ontinuous optimization1.2.2 Simulated Annealing (SA)Simulated Annealing (SA) [84, 3℄ is a global optimization method inspired from annealingin metallurgy. The optimization method 
onsiders ea
h point x of the sear
h spa
e as astate of some physi
al system, and the obje
tive fun
tion value of x, f(x), as the energyof the state x. The goal is then to bring the system, from an arbitrary initial state, to astate with the minimum possible energy � that is, to minimize the obje
tive fun
tion f .The algorithm generates a sequen
e of solutions (Xn) as follows. Let Xn be the solutionat iteration n. A new solution Yn is generated using a sear
h spa
e distribution dependingon Xn. The a

eptan
e rule of the new point Yn is the Boltzmann rule, de�ned as follows
Xn+1 =











Yn if f(Yn) ≤ f(Xn),

Yn if f(Yn) > f(Xn) with probability e( f(Xn)−f(Yn)
Tn

),

Xn otherwise (1.6)where Tn, the so-
alled temperature, is a positive parameter that will be de
reased to 0.The goal of the randomization in the Boltzmann a

eptan
e rule for the new solution
Yn is to avoid getting stu
k in lo
al optima. In pra
ti
e, the sequen
e (Tn) has to be ade
reasing sequen
e su
h that the probability to a

ept worse solutions de
reases duringthe run. The 
onvergen
e (in probability) results [84, 102℄ only require that the tempera-ture sequen
e (Tn) de
reases to 0 and, in some 
ases, that this sequen
e de
reases slowlyenough in order to es
ape lo
al optima. In [102℄ too, key 
on
epts su
h as global versuslo
al exploration and adaptability of the parameters of the sear
h distribution and of thea

eptan
e probability have been underlined.In pra
ti
e, however, the major in
onvenient of SA methods, and espe
ially of oneof the most popular one, the so-
alled Adaptive Simulated Annealing (ASA) [68, 69℄, isthe tuning of its underlying parameters. It is worth noti
ing that SA 
an be seen as aparti
ular ES method (see paragraph 1.2.4 for a presentation of ES) evolving a singlesolution and using Boltzmann randomized rule for the a

eptan
e of a new point. Alongthose lines, the methods dis
ussed in [37℄ for the adaptation of the parameters of thesear
h distribution are quite similar to that of the so-
alled derandomized ES (see Se
tion1.3).1.2.3 Parti
le Swarm Optimization (PSO)Parti
le Swarm Optimization (PSO) [81, 126, 127, 34℄ is a population-based sto
hasti
optimization te
hnique initially proposed by R. Eberhart and J. Kennedy in 1995, inspiredby so
ial behavior of bird �o
king or �sh s
hooling. PSO tra
ks a number of so-
alledparti
les (solutions ve
tors) in a swarm. The default swarm size is S = 10 + [2

√
d]. Atea
h iteration n, let Xn = (Xn

1, . . .Xn
d) denotes a parti
le of the swarm. This parti
le is
hara
terized by:

• a velo
ity Vn (that 
an also be viewed as the previous displa
ement of this parti
le,i.e., Xn − Xn−1),
• the best solution en
ountered so far by that parti
le, denoted pbestn i.e., pbestn ∈
{X0, . . . ,Xn} with f(pbestn) ≤ f(Xj), ∀j ∈ {0, . . . , n}, and 19
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• the global best position ever visited by all parti
les that we will denote gbestn.The parti
le Xn is then pulled toward the best positions pbestn and gbestn as follows

V j
n+1 =wV j

n + αj
[pbestjn −Xj

n

]

+ βj
[gbestjn −Xj

n

]

,

Xn+1
j =Xn

j + V j
n+1

(1.7)for ea
h 
oordinate j = 1, . . . , d, where αj and βj are uniformly distributed in [0, φ] with
φ = ln(2)+ 1

2
and the inertia weight w equals 1

2 ln(2)
. One of the reasons of the widespreaduse of PSO is that it is very easy to program (no linear algebra involved for instan
e),and there are very few parameters to adjust. Indeed, in the re
ent years, PSO has beenapplied in many resear
h and appli
ation areas [35, 28, 32, 94, 95℄. Unfortunately, ina re
ent study [62℄ investigating the performan
es of the Standard PSO 2006 [1℄ on ill-
onditioned fun
tions, it has been demonstrated that, whereas PSO performs very wellon separable fun
tions (even if ill-
onditioned), its performan
e degrades dramati
ally onnon-separable ill-
onditioned fun
tions.1.2.4 Evolutionary AlgorithmsEvolutionary Algorithms (EAs) are bio-inspired optimization methods whi
h evolve apopulation of solutions. They are an iterative te
hnique inspired by Darwin's theory ofnatural evolution, more pre
isely the idea that the emergen
e of spe
ies that are adaptedto their environment results from the synergy between natural sele
tion (survival of the�ttest) and blind variations (random modi�
ation of the geneti
 material from parentsto o�spring, independently of any adaptation). The denomination of the ingredients ofthe algorithm also arise from the biologi
al paradigm: the obje
tive fun
tion is usually
alled the �tness, the points of the sear
h spa
e, possible solutions of the problem at hand,are 
alled individuals, and the set of individuals that the algorithms evolves is termed apopulation. A generation (one iteration of the algorithm) 
onsists in1. Sele
ting among the population at 
urrent time n (also termed the parents) someindividuals based on their �tnesses, biased toward individuals with good valueswith respe
t to the optimization problem at hand (i.e., implementing a �rst step of'natural' sele
tion);2. Applying variation operators (i.e., sto
hasti
 operators independent of the obje
tivefun
tion) to the sele
ted parents, thus generating o�spring. The variation operatorsare either unary operators (also 
alled mutations), or k-ary operators (then 
alledre
ombination or 
rossover operators);3. Evaluating the o�spring, i.e., 
omputing the value of the obje
tive (�tness) fun
tionat the newly generated points, the o�spring;4. Sele
ting among the o�spring and the 'old' parents, based again on �tness values, theindividuals who will survive to the next generation, thus implementing the se
ondstep of 'natural' sele
tion.20



1.2. Randomized sear
h methods for non linear 
ontinuous optimizationFrom the des
ription above, it is 
lear that Evolutionary Algorithms are zeroth ordermethods. Moreover, they have been applied su

essfully to solve many real-world prob-lems [51, 43, 22, 104, 142℄. However, their main drawba
k is that they are 
omputationally
ostly, requiring in general a large number of generations and rather large population sizes.Moreover, another di�
ulty 
omes along with their high �exibility: when tailoring thesemethods to a new problem, the user has to set a high number of parameters. A promisingline of resear
h in to 
ope with this di�
ulty while maintaining the high �exibility ofthose algorithm is to make as many of those parameters as possible adaptive, i.e., auto-mati
ally determined during the 
ourse of evolution. In the spe
i�
 �eld of 
ontinuousoptimization, many adaptive methods have been developed, and will be detailed in theforth
oming Se
tion 1.2.4.Histori
al rootsBefore turning to the detailed des
ription of Evolution Strategies, the Evolutionary Al-gorithm at the heart of this thesis, it is worth des
ribing shortly other roots of the �eldthat have also been applied to 
ontinuous optimization.Geneti
 Algorithms (GAs) are still the most popular �eld of Evolutionary Algo-rithms. GAs has been investigated sin
e the early sixties by J. Holland [64℄. GAs wereinitially designed to handle bit-string representation, but were also used for 
ontinuousoptimization problems by representing ea
h real number by its 'natural' binary represen-tation. However, su
h representation have some sever drawba
ks. In parti
ular, it doesnot respe
t at all the topology in R
d, as thoroughly dis
ussed in [135℄. Today, with veryfew ex
eptions, bit-string representations are abandoned when dealing with 
ontinuousparameters, at least when a

ura
y matters. Hen
e GAs will not be dis
ussed any morehere. For more details, see the seminal book by Goldberg [49℄, or the more re
ent and
omprehensive books [101, 143℄. One of the earliest book about optimization by meansof natural evolution is that of L. Fogel [45℄, introdu
ing what has been known as Evo-lutionary Programming (EP). Initially devoted to the optimization of Finite StateAutomata, Evolutionary Programming was su

essfully applied to very diverse sear
hspa
es, in
luding 
ontinuous ones. However, in that parti
ular setting, EP 
an also be
onsidered as a parti
ular 
ase of self-adaptive Evolution Strategies (see next Se
tion),and is not an a
tive �eld per se any more. It is hen
e only re
alled here to a

ount forthe histori
al truth.Modern EAs tend to forget the frontiers between those histori
al diale
ts, as advo
atedby Mi
halewi
z [99℄ and De Jong [38℄, and presented in the re
ent textbook by Eiben andSmith [41℄. The remaining di�eren
es regard the representation: Geneti
 Algorithms areasso
iated with bit-strings, Geneti
 Programming with parse-tree, and Evolution Strate-gies with real-valued parameters: they are the ba
kground of this work, and will now beintrodu
ed in detail.Evolution StrategiesEvolution Strategies (ESs) have been introdu
ed by I. Re
henberg [114, 113℄ and H.P.S
hwe�el [123℄ in Germany, also in the mid-sixties. For histori
al reasons, spe
i�
 no-21



Chapter 1. Non linear 
ontinuous optimizationtations are used, that will be de�ned here. For instan
e, the population size is denoted
µ ∈ IN, and the number of generated o�spring λ ∈ IN.ESs instantiate the generi
 EA given above the following way:1. There is no parent sele
tion step per se: all µ parents are 
hosen with uniformprobability to generate o�spring2. the main variation operator is the Gaussian mutation (see below); re
ombination,also 
alled here intermediate 
rossover, is a
hieved by performing a linear 
ombi-nation of two or more parents (though in the original ES, no re
ombination wasused);3. All o�spring are evaluated normally;4. The survival sele
tion is deterministi
: the µ best individuals are 
hosen eitheramong the λ o�spring � and the algorithm is then 
alled a (µ, λ)−ES � or amongthe µ+λ parents plus o�spring, and the algorithm is then a randomized hill-
limbertermed a (µ+ λ) −ES.The main operator of ESs is the Gaussian mutation: a parent X generates an o�spring
Y by Gaussian mutation whi
h will be written as

Y = X + σN(0, C). (1.8)where σN(0, C) = N(0, σ2C) is a drawn a

ording to the multivariate normal distributionof mean 0 and 
ovarian
e matrix σ2C. The reason for separating the step-size σ from the
ovarian
e matrix C lies in the adaptation me
hanisms that will be des
ribed later (Se
tion1.3): this will to separately adapt the average length of the mutation by modifying thestep-size σ and the main dire
tions of the mutation by modifying the 
ovarian
e matrix
C. However, those parameters (σ and C) should be adapted along evolution to the 
urrent�tness lands
ape, that is the lo
al 
hara
teristi
s of the obje
tive fun
tion.Adaptation in ESAs said above, parameter 
ontrol (also termed on-line parameter tuning) is a general issuein Revolutionary Algorithms [42℄. In the parti
ular 
ase of Evolution Strategies, it hasre
eived a lot of attention sin
e the very early works in the 60's.The 1/5 adaptation rule is the oldest known adaptation rule [121, 114℄. This ruleadapts a single step-size for the whole population (and used the Identity matrix as Co-varian
e Matrix). Its me
hanism is to 
ompute the empiri
al su

ess probability over thelast generations and to in
rease the step-size mutation (σn+1 = σne

1
3 ) if this su

ess prob-ability ex
eeds 0.2 (or to de
rease the step-size (σn+1 = σn/e

1
3 ) if the empiri
al su

essprobability is below 0.2). This rule was derived after a theoreti
al study on two simpleobje
tive fun
tions (the sphere fun
tion, and the 
orridor fun
tion, a linear 
onstrainedfun
tion), and asymptoti
ally when the spa
e dimension d tends to +∞. Whereas it wasshown to be quite e�
ient on many fun
tions, it 
an be totally wrong when the �tness22



1.2. Randomized sear
h methods for non linear 
ontinuous optimizationfun
tion does not behave like the model fun
tions. Moreover, it does not adapt the 
o-varian
e matrix of the sear
h distribution.The self-adaptation rules were introdu
ed by S
hwefel in the seventies [124℄. Self-Adaptive ESs (or SA-ESs) use the evolution itself to adjust the mutation parameters.The basi
 idea is to asso
iate to ea
h individual its own mutation parameters. One muta-tion then amounts to �rst mutate the individual's mutation parameters, then to mutatethe individual itself using the new values of the mutation parameters. In the long run,even though the sele
tion only a
ts based on �tness values, only individuals with 'good'mutation parameters (i.e., adapted to the lo
al 
hara
teristi
s of the �tness) 
an survivemany sele
tion steps. It is sometimes said that the mutation parameters are updated'for free'. There are 3 variants of this te
hnique, depending on the number of mutationparameters that evolve.In the isotropi
 SA-ES, only one mutation step-size is 
onsidered per individual, andthe 
ovarian
e matrix is kept equal to Id. The step-size undergoes a log-normal mutation(in order to keep it positive, and be
ause it is then used multipli
atively in the Gaussianmutation):
σ := σ exp τÑ(0, 1) (1.9)were τ is a stri
tly positive parameter and Ñ(0, 1) is a sampling of a normal distributionwith mean 0 and standard deviation 1. The parent is then mutated using the usualGaussian mutation with step-size σ:
Y = X + σN(0, Id) (1.10)Note that 
onsidering the pairs (X, σ) of individuals together with their mutation step-size, the 
omplete mutation 
an also be written as

(X, σ) → (X + σ exp τÑ(0, 1)N(0, Id), σ exp τÑ(0, 1))In the non-isotropi
 SA-ES, the 
ovarian
e matrix is a diagonal matrix with positive
oe�
ients denoted (σ2
1, σ

2
2, . . . , σ

2
d). The mutation of the deviations σi's pro
eeds asfollows

σi := σi exp τ ′N(0, 1) exp τNi(0, 1) for 1 ≤ i ≤ d (1.11)where N(0, 1) and Ni(0, 1) (1 ≤ i ≤ d) are d + 1 independent samplings of a 
enteredredu
ed normal random variable. Then, ea
h 
oordinate of a parent is mutated using the
orresponding mutated step-size in the same dire
tion, giving o�spring Y as follows
Yi = Xi + σiN(0, 1) for 1 ≤ i ≤ d. (1.12)Note that there is no global step-size here, but that the log-normal mutation of all σi'shas a �rst term that is 
ommon to all i's, and thus 
an be seen as some global update,plus a term that is spe
i�
 to ea
h 
oordinate i.Finally, the Correlated SA-ES uses a full 
ovarian
e matrix (i.e., not restri
ted to a diag-onal matrix) in order to also adapt to the prin
ipal dire
tions of the obje
tive fun
tion.23



Chapter 1. Non linear 
ontinuous optimizationIn order to easily mutate this 
ovarian
e matrix, it is written as the produ
t of d(d−1)/22D-rotation matri
es R(αij) with 1 ≤ i < j ≤ d and a diagonal matrix D with diagonal
oe�
ients σ2
1, . . . , σ

2
d.

C =

(

d−1
∏

i=1

d
∏

j=i+1

R(αij)

)

D (1.13)The mutation of the 
ovarian
e matrix 
onsists �rst in a log-normal mutation of the 
o-e�
ients of the diagonal matrix D, as in the non-isotropi
 
ase (see Eq. 1.11). Then theangles αij (1 ≤ i < j ≤ d) are also mutated using independent samplings of a Gaussianvariable βN(0, 1) (for a user-de�ned β). Finally, the parent X is mutated by a Gaussianmutation of 
ovarian
e matrix the mutated C.In [54℄, it has been shown that the di�erent variants of SA-ES are not 
oordinate-independent, i.e., will behave di�erently if a (linear) 
hange of 
oordinate is done in thesear
h spa
e (though the fun
tion stays the same). Moreover, the use of a randomized self-adaptation rule implies a low 
orrelation between the mutation step-size and the distan
ebetween the new a

epted o�spring and its parent i.e., ‖Xn+1−Xn‖ [124℄. Those remarkshave lead to di�erent attempts to 
ompletely derandomize the SA-ES algorithm.Re
ombination operator Though the initial ES algorithm didn't use any re
ombina-tion, it has been shown that the performan
es of ESs are in
reased if a re
ombinationoperator is used [123, 147℄. Furthermore, [25℄ shows a qualitative improved progress whena global intermediate re
ombination of µ parents is used rather than a (1, λ)-ES.Toward 
ompletely derandomized ES These ideas has been exploited to designnew ES algorithms with re
ombination and a derandomization of the adaptation rule ofthe sear
h distribution parameters. The most advan
ed ES using these te
hniques is theso-
alled Covarian
e Matrix Adaptation Evolution Strategy (CMA-ES) introdu
ed by N.Hansen and A. Ostermeier in 1996 [61, 59, 57, 16℄. This method uses a 
ompletely deran-domized self-adaptation using the 
umulation of previous step-size and 
ovarian
e matrixmoves. The adaptation of the 
ovarian
e matrix used in CMA-ES allows he algorithmto be invariant by 
hange of 
oordinates. Moreover, the algorithm generates a sequen
eof 
ovarian
e matri
es Cn whi
h is observed to 
onverge to the inverse of the Hessian inthe 
ase of quadrati
 
onvex obje
tive fun
tions. Compared to other ES, CMA-ES hasbeen shown to exhibit similar behavior on perfe
tly s
aled obje
tive fun
tions, and toperform better on ill-
onditioned non separable obje
tive fun
tions [61℄. CMA-ES is alsoperforming well on multi-modal fun
tions [56℄. The importan
e of CMA-ES nowadaysjusti�es that it is be presented in detail in a stand-alone forth
oming Se
tion 1.3.1.2.5 Di�erential EvolutionDi�erential Evolution (DE) was introdu
ed by Pri
e and Storn [131, 132, 133℄, and 
an beviewed as a parti
ular Evolutionary Algorithm for 
ontinuous optimization: DE evolves a24



1.2. Randomized sear
h methods for non linear 
ontinuous optimizationpopulation of individuals X1, . . . , Xµ using a very spe
i�
 mutation operator, that adds,at ea
h iteration, to a given individual one (or many) di�eren
e ve
tor(s) between one (ormany) 
ouple(s) of other individuals in the population (hen
e the name of the algorithm).A 
rossover operator is then performed between the mutated ve
tor and the parent, and�nally the o�spring repla
es its parent if it has a better �tness. There are several strategiesfor DE that di�er in the way mutation and 
rossover is 
ondu
ted [130, 111, 98℄ (the latterreferen
e is a 
ompartive study between some variants of DE). The variants are spe
i�edusing the notation DE/x/y/z where x denotes the way the ve
tor to mutate will be 
hosen(randomly or the best one for example), y denotes the number of di�eren
e ve
tors toadd to the mutated ve
tor and z denotes the 
rossover sheme (binomial or exponential forexample). In the 
lassi
al variant of DE, the DE/rand/1/bin, the mutation and 
rossoverwrite as:1. Mutation For ea
h parent Xi, i = 1, . . . , µ, the following mutating ve
tor is 
reated
Mi = Xr1 + F (Xr2 −Xr3),where r1, r2 and r3 are indi
es that are uniformly 
hosen in {1, . . . , µ}, and where

F is a user-de�ned amplifying fa
tor in [0, 2].2. Crossover First an integer j0 is uniformly 
hosen in {1, . . . , d}. Then, a uniform
rossover between Xi and Mi is performed:
Y j
i =











M j0
i if j = j0

M j
i with probability CR if j 6= j0,

Xj
iwith probability (1 − CR) if j 6= j0

(1.14)where CR ∈ [0, 1] is a user-de�ned Crossover Rate.Then the o�spring Yi repla
es its parent Xi i� it has a better �tness. In [131℄, Pri
eand Storn have shown on some test fun
tions that DE is superior to Adaptive SimulatedAnnealing (ASA) (see Se
tion 1.2.2). The DE algorithm is rotationally invariant when the
rossover rate CR equals 1, whereas the behavior of the algorithm is not invariant to sear
hspa
e rotation if CR 6= 1 [111, p. 98℄. Note also that the performan
e of DE is sensitiveto its 
ontrol parameters [46℄ and that the DE is not only prone to premature 
onvergen
ebut also to stagnation [88℄ and that a su

essful lo
ation of the global optimum dependson 
hoosing the 
orre
t 
ontrol parameters. Finally, the re
ommended population size forDE is 10d, and the performan
e of the algorithm hen
e poorly s
ales up with d.1.2.6 Estimation of Distribution AlgorithmsThe �rst instan
e of an Estimation of Distribution Algorithm (EDA) is the PBIL al-gorithm (Population Based In
remental Learning) that has �rst been proposed as analternative to Geneti
 Algorithms in the bit-string framework [21℄. EDAs try to iden-tify a probability distribution de�ned on the sear
h spa
e by su

essively sampling the
urrent distribution, 
omputing the �tness of the sampled points, sele
ting some of the25



Chapter 1. Non linear 
ontinuous optimizationsampled point with a bias toward the best performing points, and either re
onstru
tinga probability distribution from the sele
ted points, or updating the 
urrent distributionusing those sample points.EDAs have been applied to 
ontinuous optimization, starting with a modi�ed PBILalgorithm [125℄ that was using . . . a Gaussian distribution on the real-valued sear
h spa
e.Several variants have then been proposed (see e.g. [91℄ for a survey), and all of themevolve a full multivariate normal distribution by modifying its mean and 
ovarian
e matrixalong evolution. This is exa
tly what a fully derandomized Evolution Strategy like CMA-ES is doing (see next Se
tion). In parti
ular, the Estimation of Multivariate NormalAlgorithm (EMNA) [91℄ uses an update me
hanisms that is very similar to that of CMA-ES, though it re
onstru
ts the 
ovarian
e matrix from the sele
ted sample points whileCMA-ES 
arefully updates the 
urrent 
ovarian
e matrix. Experimental results [58℄ havedemonstrated that CMA-ES takes advantage of this update and performs better thanEMNA even on multi-modal test fun
tions.1.3 Covarian
e Matrix Adaptation-Evolution StrategyThough it 
learly belongs to the Evolution Strategy family of sto
hasti
 sear
h algorithms,the Covarian
e Matrix Adaptation-Evolution Strategy (CMA-ES) is presented in a sepa-rate Se
tion in order to emphasize its importan
e � as will be witnessed by the empiri
al
omparisons presented in next Se
tion.CMA-ES was introdu
ed by N. Hansen and A. Ostermeier in 1996 [60℄ and the 
om-plete almost parameter-less algorithm was published in 2001 [61℄. It is a (µ, λ) − ESthat uses a global re
ombination operator involving the µ parents at ea
h iteration, andhen
e is referred to as a (µ/µ, λ)-ES. Let Xn denotes the re
ombination of the parentsat iteration n4. This 'super-parent' is subje
t to λ independent mutations, resulting in λo�spring Y1, . . . , Yλ:
Yk = Xn + σnNk (0, Cn) for k = 1, . . . , λThe new super-parent Xn+1 is the 
omputed as a linear 
ombination of the best µ o�spring:

Xn+1 =

µ
∑

i=1

wiYi:λ , (1.15)where the positive weights wi ∈ R are set a

ording to individual ranks and sum to one,and the index i :λ denotes the i-th best o�spring. The use of the weighted re
ombinationof the parents as shown in Eq. 1.15 allows CMA-ES (and in general any (µ/µ, λ)-ES) tohave a larger progress (at ea
h iteration) than any (1, λ)-ES in the absen
e of noise [25℄.Moreover, be
ause it only uses an ordering of the λ o�spring, CMA-ES is invariant byany monotonous transformation of the �tness fun
tion (see Se
tion 1.4.2). In parti
ular,(non-)
onvexity does not modify in any way the behavior of CMA-ES.4Note that in the presentation of CMA-ES in Chapter 5, the ieration number, here n, is referred toas g. In the same 
hapter, the quantities Xn, Yk, σn, Cn, (~pc)n and (~pσ)n are respe
tively referred to as
〈~x〉(g)W , ~x

(g+1)
k , σ(g), C

(g), ~p
(g)
c and ~p

(g)
σ . Note also that Equations1.17 and 1.19 for the 
ovarian
e matrixadaptation are more general than those of Chapter 5.26



1.3. Covarian
e Matrix Adaptation-Evolution StrategyAdaptation in CMA-ES It is stated in [16℄ that the adaptation used in CMA-ESallows to a
hieve, on 
onvex-quadrati
 fun
tions, log-linear 
onvergen
e (see De�nition 1.1in Se
tion 1.5) after an adaptation time whi
h s
ales between 0 and the square of thedimension of the sear
h spa
e. This adaptation is done deterministi
ally and the basi
idea is to in
rease the probability to reprodu
e good steps. This is done by 
omputingthe so-
alled evolution paths for both the step-size and the 
ovarian
e matrix. Let Cndenote the 
ovarian
e matrix at an iteration n and BnDnDn (Bn)
T its de
omposition in theeigenve
tor basis (Bn is an orthogonal matrix and Dn a diagonal matrix whose diagonal
ontains the square roots of the eigenvalues of Cn5). Let (~pσ)n and (~pc)n be the evolutionpaths of respe
tively the step-size mutation and the 
ovarian
e matrix. The adaptationis done as follows: First, the 
umulative path for the step-size mutation is updated:

(~pσ)n+1 = (1 − cσ)(~pσ)n +

√

cσ(2 − cσ)µeff

σn
×Bn(Dn)

−1Bn
T (Xn+1 − Xn) (1.16)where cσ is a parameter in ]0, 1]. Then, the evolution path for the 
ovarian
e matrix is inturn updated as follows:

(~pc)n+1 = (1 − cc)(~pc)n + (Hσ)n+1

√

cc(2 − cc)µeff

σn
(Xn+1 − Xn) (1.17)where (Hσ)n+1 = 1 if ‖(~pσ)n+1‖√

1−(1−cσ)2(n+1)
< (1.5 + 1

d−0.5
)E(‖ N (0, Id) ‖), and 0 otherwise,

cc ∈]0, 1] is the 
umulation 
oe�
ient and µeff is a stri
tly positive 
oe�
ient whi
h denotes`the �varian
e e�e
tive sele
tion mass�. It 
an be seen from Eq. 1.16 and Eq. 1.17 thatthe evolution path updates take into a

ount the last move (Xn+1 − Xn) and the historyof the sear
h whi
h is represented by (~pc)n for the evolution of the sear
h dire
tions, and
(~pσ)n for the evolution of the radius of the sear
h. Finally, the mutation step-size and the
ovarian
e matrix are updated using information on the whole sear
h history as follows:

σn+1 = σn exp

(

cσ
dσ

( ‖ (~pσ)n+1 ‖
E(‖ N (0, Id) ‖)

− 1

)) (1.18)where dσ > 0 is a damping fa
tor and N (0, Id) is the multivariate normal distributionwith 
ovarian
e matrix identity. For the 
ovarian
e matrix, the update takes pla
e asfollows:
Cn+1 = (1 − ccov)Cn + ccov

1

µcov

(~pc)n+1 ((~pc)n+1)
T

+ ccov

(

1 − 1

µcov

) µ
∑

i=1

wi
σ2
n

(Yi:λ − Xn)(Yi:λ − Xn)
T (1.19)where ccov, µcov ∈]0, 1[. This update rule is 
alled the rank-mu update for Cn [59℄. When

µcov = 1, this rule redu
es to the so-
alled rank-one update [61℄.5Su
h a de
omposition is always possible as Cn is positive de�nite symmetri
 matrix. 27



Chapter 1. Non linear 
ontinuous optimizationOn the pra
ti
al side, the default parameters of CMA-ES were 
arefully tuned in[57℄. For example, the default values for λ and µ are respe
tively λdef = ⌊4 + 3 log(d)⌋and µdef = ⌊λdef

2
⌋. Moreover, a 'restart' version of CMA-ES has been introdu
ed in[16℄ in order to in
rease the probability to 
onverge towards the global optimum whenminimizing multi-modal obje
tive fun
tions. In this method, the algorithm is restartedwith an in
reased population size when some restart 
riteria are met, indi
ating that thesear
h pro
ess is no more progressing. Di�erent restart 
riteria are used:1. RestartTolFun: Stop if the range of the best obje
tive fun
tion values of the re
entgenerations is below than a TolFun value.2. RestartTolX: Stop if the standard deviation of the normal distribution is smallerthan a TolX value and σ~pc is smaller than TolX in all 
omponents.3. RestartOnNoE�e
tAxis: Stop if adding a 0.1 standard deviation ve
tor in a prin
ipalaxis dire
tion of Cn does not 
hange Xn.4. RestartCondCov: Stop if the 
ondition number of the 
ovarian
e matrix ex
eeds a�xed value.The resulting version of CMA-ES is a quasi parameter free algorithm. This version ofCMA-ES performed best at the CEC 2005 Spe
ial Session on Continuous Optimization[2℄. CMA-ES has also been applied to a variety of real-world optimization problems [53℄.For more details about CMA-ES, we refer to [52℄.1.4 Comparison of 
ontinuous optimization methodsThe di�
ulties of real-world optimization problems 
an be 
hara
terized by several dif-ferent features. In addition to di�
ulties due to the sear
h spa
e, su
h as high dimensionand 
onstraints, real-world problems di�
ulties are generally related to the 
hara
teristi
sof the obje
tive fun
tion.1.4.1 Obje
tive fun
tionsLet us �rst list several properties of obje
tive fun
tions that 
an be the sour
e of di�
ultiesfor their optimization. Obje
tive fun
tions 
an be

• non-
onvex: The hypothesis of 
onvexity is the basis of the gradient based meth-ods, that were designed to have good performan
es at least on quadrati
 
onvexfun
tions. The non-
onvexity of the obje
tive fun
tions is hen
e an obsta
le formethods relying on quadrati
 approximation su
h as Conjugate Gradient, BFGS,and Impli
it Filtering.
• rugged: Most 
onvergen
e results that have been proved for optimization methods(espe
ially deterministi
 methods) require some regularity of the obje
tive fun
tions.Hen
e those methods might fail on rugged fun
tions.28
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ontinuous optimization methods
• noisy: Noisy obje
tive fun
tions arise in most real-world problems, and high valuesof noise 
an totally mislead the sear
h. For instan
e, numeri
ally-
omputed gradi-ents be
ome totally unreliable in the presen
e of noise. But be
ause the rankingof 
andidate solutions 
an be hindered by the noise, sear
h methods using rankinformation 
an also be de
eived by noisy fun
tions.
• multi-modal: Some obje
tive fun
tions have many lo
al optima. The performan
e ofan optimization method 
an be also measured by its 
apa
ity to es
ape lo
al optimaand 
onverge to the global optimum. Deterministi
 gradient-based methods willneed some restart pro
edures to es
ape lo
al optima, and sto
hasti
 sear
h methodswill require a 
areful balan
e between exploitation and exploration. Moreover, it iswell known that population based methods 
an help to avoid 
onvergen
e to a lo
aloptima � but how large should the population be, depending on the 
hara
teristi
sof the obje
tive fun
tion?
• ill-
onditioned: Ill-
onditioning is well de�ned for quadrati
 fun
tions, as the ratiobetween the largest and the smallest eigenvalues. More generally, an ill-
onditionedproblem is a problem where di�erent variables show a very di�erent sensitivityin their 
ontribution to the obje
tive fun
tion value. For this kind of obje
tivefun
tions, algorithms exploring all dire
tions with a unique radius will most likelyfail in their sear
h. Algorithms have to provide some adaptation rule for the sear
hdire
tions, in order to gradually learn the lo
al 
onditioning. Ill-
onditioning alsosuggests the use of se
ond order information to learn about the lo
al 
urvature ofthe obje
tive fun
tion. In addition, this di�
ulty 
an lead to numeri
al failure ofsome line sear
h methods used in gradient based methods.
• non-separable: A fun
tion is separable when its global optimum 
an be rea
hedby su

essively optimizing in ea
h of the dimensions. Su
h obje
tive fun
tions arehen
e easy to optimize. However, some sear
h algorithm do impli
itly exploit theseparability of the obje
tive fun
tion [62℄. On the other hand, an algorithm thatis invariant by a 
hange of 
oordinate will perform exa
tly the same on a sepa-rable fun
tion and on its (non-separable) rotated instan
es, thus ensuring that itsperforman
es are not the result of the separability of the obje
tive fun
tion.The di�erent available optimization methods will behave di�erently when fa
ing theabove-mentioned possible sour
es of di�
ulty. On the other hand, knowing the 
har-a
teristi
s of a given obje
tive fun
tion with respe
t to those possible di�
ulties willallow the user to 
hoose an optimization method that 
an 
ope with the 
orrespondingdi�
ulty. For instan
e, multi-modality suggests the use of population-based methods;Ruggedness, non 
onvexity, and noise suggest the use of randomized sear
h methods;And ill-
onditioning and non-separability suggest the use of an e�
ient and non isotropi
adaptation me
hanism for the sear
h dire
tions.1.4.2 Invarian
e propertiesOn the other hand, a

ording to the No Free Lun
h theorem [145℄, no method 
an out-perform all other methods on all test problems. Note that the No Free Lun
h Theorem of29



Chapter 1. Non linear 
ontinuous optimization[145℄, applies to �nite sear
h spa
es (whi
h is not the 
ase here) and states that assum-ing a uniform distribution over all 'possible problems', no method outperforms all othermethods on average. When the sear
h spa
e is 
ontinuous, it is impossible to de�ne thenotion of a average over all possible problems [20℄. However, it is possible to �nd methodsoptimal on some 
lass of fun
tions [20℄. For example, quadrati
 approximation methods(see the paragraph on quadrati
 approximation methods), BFGS or the 
onjuguate gradi-ent method will probably be more e�
ient (in the sense that they will probably need less
omputational e�ort to generate solutions 
lose to the optimum) on quadrati
 obje
tivefun
tions than other methods whi
h do not make use of a quadrati
 model hypothesis ofthe obje
tive fun
tions. However, there would exists other methods that will be proba-bly more e�
ient, on non-
onvex obje
tive fun
tions, than methods making use of thequadrati
 model hypothesis . The same reasoning holds for example for the PSO method(see Se
tion 1.2.3) whi
h will be probably highly 
ompetitive on separable fun
tions, butprobably not the best 
hoi
e on non-separable problems. Therefore, one should look to
lasses of problems where a given method might outperform another method. This iswhere invarian
e properties 
an play an important role: when a given method is invariantwith respe
t to a set of transformations in the spa
e of problems, assessing its abilityto solve (with some 'reasonable' 
omputational e�ort) one problem immediately demon-strates similar e�
ien
y on the set of all transformed problems. Moreover, the moreinvarian
e properties an algorithm has, the more robust it is.Given an obje
tive fun
tion f : R
d 7→ R, there are di�erent ways to transform theproblem of optimizing f on R

d. First, any transformation T : R 7→ R 
an be used totransform the obje
tive fun
tion f to another obje
tive fun
tion T (f). Instan
es of su
h
ommon transformations are
• Translation: Addition of a 
onstant, i.e., T (f) = f + a

• S
aling: Multipli
ation by a positive 
onstant, i.e., T (f) = a ∗ f , (a > 0)
• Monotonous transformation: Composition by an order-preserving fun
tion i.e., T (f) =
g ◦ f where g : R 7→ R is a stri
tly in
reasing fun
tionAnother way to transform the problem of optimizing f into another problem is to apply

f to a transformation of the input parameters, i.e., optimizing f ◦ U where U : R
d 7→ R

dis a transformation of the sear
h spa
e. Sear
h spa
e transformations in
lude translation,parameter res
aling and any linear 
hange of 
oordinate (e.g., rotations).Two important invarian
e properties have already been mentioned, and will be empha-sized in the remaining of this Chapter. First, monotonous invarian
e is a
hieved by allrank-based methods, i.e., methods that only use 
omparisons of possible solutions (e.g.PSO, ESs, DE, most EDAs, but not gradient-based methods). A sear
h method withthe monotonous invarian
e property will behave exa
tly the same on f and √√
f6. Se
-ond, rotation invarian
e is a
hieved by CMA-ES and DE without 
rossover, but also bygradient-based methods when the gradient is 
omputed analyti
ally (and not numeri
ally,
oordinate by 
oordinate) and ensures a robust behavior of the algorithm with respe
t tonon-separability.6Obviously f is positive in this 
ase.30



1.4. Comparison of 
ontinuous optimization methodsThe importan
e of those invarian
e properties will be empiri
ally illustrated in thefollowing Se
tions.1.4.3 Empiri
al 
omparisonsThe most widely used sear
h methods have been presented in Se
tions 1.1 and 1.2. Whena real-world optimization problem is en
ountered, the pra
titioner will want to know whi
his the most e�
ient method to apply to the problem at hand. From our point of view,an e�
ient optimization method is a method that 
an o�er a good 
ompromise betweenthe 'quality' of the solution proposed and the 
omputational e�ort needed to generatesu
h a solution. There are two ways to 
ompare the e�
ien
ies of optimization methods:theoreti
al and empiri
al. Few theoreti
al studies [128℄ have investigated the 
omparisonof optimization methods. Moreover, theoreti
al studies rely on strong assumptions on theobje
tive fun
tions and/or the sear
h spa
e that are not satis�ed in pra
ti
e. Furthermore,a

ording to Powell [108℄ �there seems to be hardly any 
orrelation between the algorithmsthat are in regular use for pra
ti
al appli
ations and the algorithms that enjoy guaranteed
onvergen
e in theory�. The e�
ien
y of an optimization method is in general 'measured'when solving real-world problems. Therefore, empiri
al studies seems to be an e�e
tiveway for 
omparing optimization methods.Empiri
al studies 
omparing e�
ien
ies and robustness of optimization methods [122, 106,82, 9, 55℄ are usually done using a set of well-known tests fun
tions. For instan
e, a set oftest fun
tions were 
olle
ted in [134℄ to 
ompare performan
es of optimization methodsduring a Spe
ial Session at the Congress on Evolutionary Computation (CEC2005). Aspointed out in [62℄, any set of test fun
tions should take into a

ount the sear
h di�
ultiesas des
ribed in Se
tion 1.4.1.Probably the most investigated obje
tive fun
tion test is the (quadrati
) sphere fun
-tion:
fsphere(x) = xTx = ‖x‖2, x ∈ R

d , (1.20)where ‖.‖ denotes the eu
lidean norm on R
d. This fun
tion has a unique global mini-mum at (0, . . . , 0) and is therefore useful for lo
al studies where the goal is to study the
onvergen
e of uni-modal obje
tive fun
tions toward a lo
al optimum. A more general
lass of 
onvex quadrati
 fun
tions whi
h 
an be written as f(x) = xTHx, where H isa symmetri
 positive de�nite matrix, is often used to 
ompare optimization methods, asthe 
ondition number of H (the ratio between its largest and smallest eigenvalues) givesa quanti�ed information about the 
onditioning of the problem. The so-
alled ellipsoidfun
tion for instan
e is de�ned, for x = (x1, . . . , xd) as:

fell(x) =

d
∑

i=1

α
i−1
d−1x2

i , (1.21)where α > 0 is the 
ondition number of the fun
tion. One 
an test the behavior of a givenalgorithm for di�erent 
ondition numbers by 
hanging the value of α.Another widely used fun
tion, whi
h is not quadrati
, but also allows one to studythe e�e
t of ill-
onditioning on the behavior of an algorithm is the so-
alled di�-powers31
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ontinuous optimizationfun
tion:
fdiff (x) =

d
∑

i=1

x
2+α i−1

d−1

i , (1.22)where α > 0 
ontrols the 
onditioning of the problem.For testing algorithms on multi-modals problems, the Rastrigin fun
tion is often used:
fras(x) = 10d+

d
∑

i=1

(x2
i − 10 cos(2πxi)) . (1.23)However, all the above fun
tions are separable (as sum of fun
tions of ea
h variables).In order to test the e�e
ts of non-separability, any rotation using an orthogonal matrix

M 
an applied on the sear
h spa
e: the fun
tions fell ◦M (with α 6= 1), fdiff ◦M (with
α 6= 0) and fras ◦M are non-separable.Finally, in order to test the robustness relatively to noisy obje
tive fun
tions, one 
anadd to these fun
tions a random variable, as what has been done for the sphere fun
tionin [25, 9℄.Performan
e measurement In order to quantify and 
ompare the performan
e ofsear
h algorithms, one has to introdu
e a quantity whi
h measures how su

essful analgorithm is. Arnold and Beyer [9℄ have used as e�
ien
y quantity, the ratio between theexpe
ted gain at ea
h generation and the average number of evaluations at ea
h iteration.Another quantity estimating the su

ess performan
e has been used in [82℄: A su

essfulrun is a run where the algorithm solves the problem i.e., rea
hes a given pre
ision of theminimal obje
tive fun
tion value before a �xed number of evaluations. Then the su

essperforman
e is de�ned as the average number of fun
tion evaluations for su

essful runsover the empiri
al su

ess rate. This su

ess performan
e measure is 
alled SP1.1.4.4 Comparison of randomized sear
h methodsIn the previous se
tions, we present some popular randomized sear
h methods. The sim-plest ones PRS and PAS 
an be seen as parti
ular ES where no adaptation is used. Forthis reason, they are not e�
ient in pra
ti
e when 
ompared to self-adaptive ES astheir 
omputation time will be (relatively) very high. Con
erning Simulated Annealing,the te
hniques introdu
ed for the adaptation of its sear
h parameters in [37℄ are similarto those used in the derandomized CMA-ES. Therefore here again SA 
an be seen asa parti
ular ES. A

ording to empiri
al studies, CMA-ES is shown to perform well onill-
onditioned non-separable problems [61, 59, 82℄ as well as on multi-modal problems[56, 82℄. The CMA-ES algorithm is also highly 
ompetitive with all of the widely usedrandomized sear
h methods, as shown in [55, 62℄. The latter studies in
lude the 
om-parison of CMA-ES with other ESs, as well as with DE, the EMNA EDA, PSO andthe Matlab implementation of BFGS. Moreover, CMA-ES performed best on the set of25 test fun
tions proposed during the CEC05 Challenge for 
ontinuous optimization [2℄.CMA-ES was 
ompetitive in all uni-modal and multi-modal obje
tive fun
tions. Only on32
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ontinuous optimization methodsseparable fun
tions, it was signi�
antly outperformed by other 
ompetitors. Note how-ever that a simple modi�
ation of CMA-ES has been proposed in order to in
rease theperforman
e of CMA-ES on separable fun
tions [116℄, 
onstraining the 
ovarian
e matrixto be diagonal.
1.4.5 Comparison of randomized and deterministi
 methodsA

ording to di�erent empiri
al studies [106, 9, 56℄, randomized sear
h methods, andespe
ially CMA-ES, are highly 
ompetitive and usually more robust than deterministi
sear
h methods in solving real-world optimization problems. In [106℄, population basedmethods and espe
ially ES are shown to outperform deterministi
 point-based methodsin noisy environments. In [56℄, empiri
al 
omparisons also in
lude the BFGS method.In [9℄, the e�
ien
y of a CMA-ES like algorithm7, Hook and Jeeves pattern sear
h al-gorithm, multi-dire
tional sear
h simplex method and Impli
it Filtering are 
omparedfor the minimization of noisy obje
tive fun
tions. The 
omparison shows that for highsear
h spa
e dimensions and large amounts of noise strengths, the CMA-ES like strategyis the most e�
ient. As a matter of fa
t, the multi-dire
tional sear
h diverges for toohigh noise levels and Hook and Jeeves and Impli
it Filtering stagnate for su�
iently highnoise levels, whereas the performan
e of the ES algorithm gra
efully de
reases for highdimensions and high noise levels. Other empiri
al results 
omparing the performan
es ofCMA-ES, DE, PSO, NEWUOA and BFGS have been re
ently presented by A. Auger andN. Hansen [18℄ in a tutorial session during the PPSN'08 
onferen
e. The results show thatCMA-ES is more robust for wide 
lass of obje
tive fun
tions, thanks to its invarian
e totransformations su
h as sear
h spa
e rotation, 
omposition by an order-preserving fun
-tion and a less deterioration of its performan
e when the obje
tive fun
tion is more andmore ill-
onditioned. Relying on the empiri
al studies surveyed above, CMA-ES 
learlyseems the best default 
hoi
e among the di�erent sear
h methods presented here, whenno further information about the obje
tive fun
tion is available. In fa
t, it is robust, hav-ing a 
ompetitive e�
ien
y 
ompared to other optimization methods when dealing withdi�
ult optimization problems, espe
ially in the 
ase of non separable, non 
onvex, ill
onditioned, multi-modal and noisy obje
tive fun
tions. Of 
ourse, in the 
ase of 
onvex,relatively well-
onditioned fun
tions (
ondition number smaller than 105), methods su
has NEWUOA or BFGS should be preferred.However, it is worth noti
ing that real-world optimization obje
tive fun
tions aremore likely to lie in one of the di�
ult 
lasses des
ribed above than in the 
lass of 
onvexseparable fun
tions. In any 
ase, the appli
ation part of this work (Chapter 5) will useCMA-ES to solve a real-world optimization problem.7The algorithm used is 
alled the Cumulative Step-Size Adaptation Evolution Strategy, whi
h isreferred to as (µ/µ, λ)-CSA-ES. This algorithm uses the same step length adaptation as in CMA-ES, butdoes not attempt to adapt the 
ovarian
e matrix. 33
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ontinuous optimization1.5 Survey of theoreti
al studies on Evolution Strate-gies: Non-noisy fun
tionsThis se
tion will rapidly survey the existing theoreti
al studies of sear
h algorithms be-longing to the Evolution Strategy family.The majority of theoreti
al studies of ES algorithms is 
on
erned with isotropi
 ES,for whi
h no sear
h dire
tion is preferred (the 
ovarian
e matrix is equal to the identitymatrix during the whole run and is not updated). Let (Xn) be the sequen
e of ve
torsin R
d generated by the ES method and (f(Xn)) be the 
orresponding obje
tive fun
tionvalues. The goal of theoreti
al studies is to investigate the limit of the sequen
e (Xn)(respe
tively (f(Xn))) to the set of optima x∗ (respe
tively to the minimal obje
tivefun
tion value f ∗).The behavior of ES has been empiri
ally observed to be log-linear, and we will startby formalizing this 
on
ept:De�nition 1.1. Let A be an algorithm designed for the minimization of an obje
tivefun
tion with a unique global optimum. Let (dn)n be the sequen
e of the distan
es tothe optimum of the best points sampled by algorithm A at iteration n. Then algorithm

A (or the sequen
e (dn)n) is said to have a log-linear behavior if there exists c 6= 0su
h that limn
1
n

ln(dn) = c. Note that depending on c, this 
an mean 
onvergen
e ordivergen
e: If c > 0, the algorithm diverges in the sense that the logarithm of the distan
eto the optimum will in
rease linearly to +∞. We shall refer to this situation as log-lineardivergen
e. On the opposite, if c < 0, the algorithm 
onverges in the sense that thelogarithm of the distan
e to the optimum will de
rease linearly to 0. We shall refer tothis situation as log-linear 
onvergen
e.Existing theoreti
al studies 
an be divided into two 
lasses: global and lo
al 
onver-gen
e studies.1.5.1 Global 
onvergen
e studiesGlobal 
onvergen
e studies refer to theoreti
al studies where the obje
tive fun
tion is notsubje
t to many hypothesis. In parti
ular, these studies in
lude multi-modal obje
tivefun
tions. In the 
ase of the simplest ES pro
edure, the (1 + 1)-ES, a su�
ient 
onditionensuring almost sure 
onvergen
e of the algorithm over a 
ompa
t set [150℄ when thesequen
e of step-sizes, (σn)n∈N, is deterministi
ally updated with zero as limit is that
σn
√

ln(n) → +∞ when n goes to +∞.In the 
ase where the step-size is not updated, Rudolph [117℄, and later Chonghuiand Huanwen [33℄ prove the same result of almost sure 
onvergen
e of the sequen
e ofobje
tive fun
tions solutions generated by the (1 + 1)-ES to the global minimal obje
tivefun
tion value for 
ontinuous obje
tive fun
tions de�ned on a bounded sear
h spa
e. Fora spe
i�
 ES using quasi-random mutations and a spe
i�
 deterministi
 adaptation ruleof the step-size [19℄, an almost sure global 
onvergen
e is shown using mild assumptionson the obje
tive fun
tion.34



1.5. Survey of theoreti
al studies on Evolution Strategies: Non-noisy fun
tionsA negative result was shown by Rudolph [119℄ in the 
ase of the (1 + 1)-ES using theone-�fth adaptation rule: there is a stri
tly positive probability that the algorithm getsstu
k in a lo
al optimum.1.5.2 Lo
al 
onvergen
e studiesAll theoreti
al studies that will be presented in this thesis belong to the lo
al 
onvergen
estudies. These studies are 
on
erned either with obje
tive fun
tions that possess a uniqueglobal optimum, or with the 
onvergen
e of ES to a lo
al optimum. Without loss ofgenerality, we 
an suppose that in the general 
ase that the lo
al (or unique) optimum x∗that we are 
on
erned with is (0, . . . , 0) ∈ R
d.Lo
al studies 
an in turn be 
lassi�ed into studies in �nite dimension and studieswhere the dimension is assumed very large, that we will abusively 
all 'in�nite dimension'studies.In�nite dimension studiesBy in�nite dimension studies, we refer to studies that make the approximation of a sear
hspa
e dimension d going to +∞. The general 
ontext of this studies is the so-
alledprogress rate theory [114, 25℄. This theory investigates quantities su
h as the progressrate, the �tness gain, or the su

ess probability. The progress rate is the expe
ted progresstoward the optimum of a single iteration whi
h 
an be written as the 
onditional expe
ta-tion E (1 − ‖Xn+1‖

‖Xn‖ |Xn

). The �tness gain is the expe
ted gain in �tness at ea
h iteration.A 
lass of obje
tive fun
tions that have been widely investigated in progress ratetheory is the 
lass of the so-
alled spheri
al fun
tions, whi
h are real valued fun
tionsde�ned on R
d by f(x) = g(‖x‖2) where x ∈ R

d, g : [0,+∞[7→ R is an in
reasing fun
tionand ‖.‖ denotes the eu
lidean norm on R
d. All spheri
al fun
tions have a unique globalminimum rea
hed on (0, . . . , 0). In�nite dimension studies had also investigated otherobje
tive fun
tion models su
h as the 
orridor model, various ridge fun
tions and otherpositive de�nite quadrati
 forms.These studies use some normalizations of underlying quantities su
h as the step-sizemutation and the progress rate. These normalizations are useful when dimension d goesto in�nity. The sign of the limit of the normalized progress rate determines whether thealgorithm 
onverges or diverges when the sear
h spa
e dimension is su�
iently high: Astri
tly positive normalized progress rate implies the 
onvergen
e of the relative algorithmand a stri
tly negative normalized progress rate implies the divergen
e of the algorithm.Moreover, these studies investigate isotropi
 ES using either realisti
 adaptation rulessu
h as the one-�fth adaptation rule, the self-adaptation rule or the 
umulative steplength adaptation rule, or an arti�
ial adaptation rule 
alled s
ale-invariant adaptationrule. The s
ale-invariant adaptation rule, whi
h assumes that the distan
e to the optimumof a 
urrent solution is known at ea
h iteration (whi
h is not the 
ase in pra
ti
e), setsthe step-size mutation at a given iteration proportional to this distan
e.Studies using the progress rate theory are quantitative studies, asymptoti
 in thedimension of the sear
h spa
e but that rely on some approximations. Other asymptoti
35
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ontinuous optimizationstudies have been 
arried out by J. Jägersküpper [72, 70, 71, 75℄8, the proofs are rigorousat the expense of loosing quantitative results. Most of these studies aim to determinehow the runtime of ES (or more general zeroth order methods) varies as a fun
tion of thesear
h spa
e dimension.Finite dimension studiesSome lo
al studies in the �nite dimensional 
ase have also been 
on
erned with the s
ale-invariant adaptation rule: It has been proved [17℄ that this rule is optimal, in the sensethat the 
onvergen
e rate that is obtained with this rule when minimizing sphere fun
-tions is optimal. However, it has also been rigorously shown that the (1, λ)-ES 
onverges(or diverges) log-linearly when minimizing spheri
al fun
tions using either the optimals
ale-invariant adaptation rule [17, 27℄ or the true self-adaptation rule [13, 27℄ (see Se
-tion 1.2.4). Those results [13, 17, 27℄ have been established using the Laws of LargeNumbers (LLN) for independent random variables or for random variables 
onstituting aMarkov 
hain sequen
e. A 
omplete presentation of the theory investigating the stabilityof Markov 
hain sequen
es 
an be found in [97℄.Other results have been obtained for more general 
lasses than sphere fun
tions. Fora spe
i�
 
lass of 
onvex obje
tive fun
tions, Rudolph [118℄ investigates the (1, λ)-ESwhere mutations follow a uniform distribution on the sphere and the step-size is adaptedproportionally to the norm of the gradient on the 
urrent solution (at iteration n, thestep-size σn is set to σ‖∇Xn‖, where Xn is the 
urrent solution and σ is a stri
tly pos-itive 
onstant). He proves that the sequen
e of obje
tive fun
tions (f(Xn))n 
onvergesgeometri
ally fast to the optimal value provided that σ is su�
iently small. A. Augeret al. [14℄ investigate a similar (1, λ)-ES algorithm using Gaussian mutations and eitherthe s
ale-invariant adaptation rule (i.e., σn = σ‖Xn‖) or the gradient-proportional rule(i.e., σn = σ‖∇Xn‖, for some σ > 0). They prove that the sequen
e (f(Xn))n 
onvergesto the optimal solution almost surely and in L1, for a spe
i�
 
lass of twi
e 
ontinuouslydi�erentiable obje
tive fun
tions. This result was established using the martingale theoryand holds for su�
iently small values of σ.Finally, A. Auger and N. Hansen [17℄ have bridged the gap between the progressrate theory and �nite dimension studies. In the 
ontext of the minimization of spheri
alfun
tions, they introdu
e the so-
alled log-progress rate as the 
onditional expe
tation
E (ln(‖Xn‖) − ln(‖Xn+1‖)|Xn). They prove that the sign of this quantity gives the almostsure 
onvergen
e of the algorithm for �nite dimensions. Moreover, they have shown that,when using the normalizations that are used in the 
ontext of the progress rate theory, thelimits of the normalized log-progress rate and of the normalized progress rate are equalwhen the sear
h spa
e dimension d goes to in�nity. Another important point of theirstudy is that, for �nite dimension, the sign of the normalized progress rate determinesthe 
onvergen
e in mean of the solutions generated by the (1, λ)-ES algorithm, and notthe almost sure 
onvergen
e.8For the �rst referen
e, the work has been done in 
ollaboration with Carsten Witt.36



1.6. Survey of theoreti
al studies on Evolution Strategies: Noisy fun
tions1.6 Survey of theoreti
al studies on Evolution Strate-gies: Noisy fun
tions1.6.1 MotivationsThe most important part of the work presented in this thesis deals with the optimizationof noisy obje
tive fun
tions. Noisy optimization is an important part of optimization, be-
ause noisy obje
tive fun
tions are very frequently en
ountered in real-world optimizationproblems. Several situations may lead to noisy obje
tive fun
tions. Obje
tive fun
tions
an be the result of some physi
al measurements, and the measured values will di�er dueto the variability of experimental 
onditions at ea
h measurement. Noise 
an be also the
onsequen
e of user input. Also obje
tive fun
tions resulting from Monte-Carlo simu-lations are noisy due to their sto
hasti
 nature: the pre
ision of these methods dependon the number of iterations, but the results over di�erent simulations will always have apositive varian
e.These examples share the property that the reevaluation of these obje
tive fun
tionwith the same input data will lead to di�erent values: we shall assume that the noiseinvestigated here is an unknown random variable. The randomness of the noisy partof obje
tive fun
tions removes an important part of the information on this fun
tion.This means that ruggedness 
an be taken into a

ount by the model of a noisy obje
tivefun
tion.Many papers have been devoted to theoreti
al or empiri
al investigations of optimiza-tion of noisy obje
tive fun
tions [138, 23, 106, 80, 24, 25, 7, 5, 8, 9, 10, 136℄. In many em-piri
al studies [9, 106, 138℄, noisy obje
tive fun
tions are used to assess the performan
esof di�erent strategies. The work in [9℄ demonstrates the e�
ien
y and the robustness ofa CMA-ES-like algorithm (whi
h is an algorithm similar to CMA-ES but wi
h does notuse the adaptation of the 
ovarian
e matrix) when dealing with noisy obje
tive fun
tions.Furthermore, for high noise levels, this CMA-like method outperforms the impli
it �lter-ing method, a method that was espe
ially designed to deal with noise (see Se
tion 1.1.2).In [106℄, the e�
ien
y of population-based methods is 
ompared to that of deterministi
point-methods in noisy environments. The results favor population-based optimization,and ES in parti
ular.ES have thus been empiri
ally demonstrated to be robust when minimizing noisyobje
tive fun
tions. However, the most investigated theoreti
al studies are in�nite di-mension studies [24, 7, 25, 8, 5℄ and rely on many approximations and normalizations (seeSe
tion 1.6.3).1.6.2 Evolutionary Algorithms in noisy environmentsEvolutionary Algorithms are known to be robust with respe
t to noise, as has been knownfor long in the 
ontext of dis
rete sear
h spa
es [44, 112, 100℄. However, studies of GA innoisy environment are mostly empiri
al and, to the best of our knowledge, do not in
ludeany theoreti
al investigation.In [24℄, H.-G. Beyer surveyed some studies on the behavior of di�erent �avors of EAs(GA, ES and EP). In parti
ular, despite the fa
t that GA (for dis
rete sear
h spa
es)37



Chapter 1. Non linear 
ontinuous optimizationand ES (for 
ontinuous optimization) operate on di�erent sear
h spa
es, their behaviorsshow some similarities when applied to noisy obje
tive fun
tions. In fa
t, the noise resultsin a de
rease of the 
onvergen
e speed, and leads to a loss of a

ura
y in terms of thelo
alization of the optimum.The 
riti
al issue when optimizing noisy obje
tive fun
tions is that it 
an make thesele
tion pro
ess unreliable, and hen
e turn any sear
h algorithm into some kind of randomwalk. However, be
ause the noise is assumed to have zero mean, sto
hasti
 te
hniques
an 
ope with rather high levels of noise by over-sampling the noisy �tness fun
tion: this
an be a
hieved by assigning to ea
h new individual an average of several evaluations ofthe �tness fun
tion. Another possible solution is to in
rease the population size: Thenon-zero varian
e of the population size in the 
ase of the (µ, λ)-ES [7℄, or, the geneti
repair of the (µ/µI , λ)-ES [6℄, lead to an in
rease of the performan
es of these strategies innoisy environments. In the same 
ase of ES, another solution, that has been analyzed in[24℄, is 
on
erned with the use of res
aled mutations: The standard ES Gaussian mutationis repla
ed by equation:
(Yn)j = (Xn)i +

1

k
σnNj(0, Cn), (1.24)where k > 1 is the res
aling parameter. As stated by Beyer, �the (1, λ)-ES 
an performlarge sear
h steps with the result of larger �tness di�eren
es whi
h will be signi�
ant overthe noise level.�There has been, however, some theoreti
al studies about the behavior of ESs in noisyenvironments, that will now be des
ribed.1.6.3 Theoreti
al results for noisy optimizationTheoreti
al studies of optimization of noisy obje
tive fun
tions using ES have been mainlydone in the 
ontext of of the progress rate theory in in�nite dimension. However, few stud-ies in �nite dimension have been done in the 
ontext of optimization of noisy obje
tivefun
tions using ES [136℄.The �rst in�nite dimension studies of ES on noisy environments have been 
arriedout by Re
henberg [114℄, who investigated the 
omputation of the progress rate on thenoisy instan
es of the sphere and the 
orridor fun
tions. He su

eeded in 
al
ulating theprogress rate of the (1+1)-ES for the minimization of the noisy 
orridor fun
tion. Twentyyears later, Beyer [23℄ 
omputed the progress rate for the (1 + λ)-ES and (1, λ)-ES whenminimizing the noisy sphere fun
tion. Sin
e then, many works by Arnold and Beyer havestudied the behavior of ES on noisy obje
tive fun
tions [10, 5, 7, 8, 24, 25, 23℄. Thesestudies 
over the 
omma strategies [7℄, the 
omma strategies with re
ombination [6℄, andthe plus strategies [8, 25, 23℄. Note the plus strategies in [23, 25℄ in fa
t use a parti
ularplus strategy in whi
h the �tness of the parent is reevaluated at ea
h iteration.Noise modelBefore starting a theoreti
al investigation of a noisy �tness fun
tion, a model has to be
hosen for the noise. Let f be a �tness fun
tion with a minimal value f ∗ supposed to be38



1.6. Survey of theoreti
al studies on Evolution Strategies: Noisy fun
tionsequal to zero (termed the 'ideal' �tness in the following). There are several possible waysto build a noisy �tness fun
tion fnoisy from f .A �rst natural idea is to add to the ideal fun
tion some random variable, for examplea Gaussian random variable: fnoisy(x) = f(x) + ǫN(0, 1) where the noise level ǫ is a
onstant value. A possible defe
t of this model is that the noise 
an dominate the ideal�tness when getting 
lose to the optimum, and 
onsequently leads the sear
h to behavelike a random walk.Another idea, whi
h is often true in the 
ase of quadrati
 (ideal) obje
tive fun
tions(whi
h will be investigated in this thesis), is that the behavior of the algorithm dependson the ratio between the noise level and the values of the ideal obje
tive fun
tion. Thisis why the noise level should be proportional to the ideal obje
tive (quadrati
) fun
tion.Note that this statement is not ne
essarily veri�ed in general. In fa
t, for 
ubi
 or quarti
ideal obje
tive fun
tions for example, the behavior of the algorithm really depends on theratio between the noise level and the standard deviation of the ideal �tness values in thepopulation. Therefore, for the spe
i�
 
ase of quadrati
 ideal obje
tive fun
tion, the ideaof having a noise level proportional to the ideal obje
tive fun
tion, should be suitable,and leads to a multipli
ative noise model whi
h writes as fnoisy(x) = f(x)(1+σǫN(0, 1)).In the studies 
ited above [10, 5, 7, 8, 24, 25, 23℄, the obje
tive fun
tion is the so-
allednoisy sphere fun
tion: the Gaussian noise9 has a standard deviation proportional to theideal �tness, or, equivalently, to the distan
e to the optimum (for the sphere fun
tion).Moreover, the noise model takes into a

ount an additional normalization of the noisestrength with respe
t to the sear
h spa
e dimension d. In a more general 
ontext of idealobje
tive fun
tions f(x) = ‖x‖α with α > 0, the noise strength σǫ should be written [25℄
ασ∗ǫ
d
, where σ∗

ǫ > 0 is 
alled normalized noise strength. Therefore, the model of noisysphere fun
tion with a �tness-proportional Gaussian noise 
an be written as:
f(x) = ‖x‖2 +

2σ∗
ǫ

d
‖x‖2N(0, 1) . (1.25)In addition to the normalization of the noise strength, Arnold and Beyer use the samenormalizations relative to the progress rate and the step-size mutation that had beenintrodu
ed in the non-noisy 
ase for the theoreti
al studies in the 
ontext of the progressrate theory (see Se
tion 1.5.2). Using these normalizations, Arnold and Beyer [8℄ approx-imate the standard deviation of the noise at the o�spring lo
ation by that at its parentlo
ation. Their argument is that, in very large dimension, the parent and its o�springare so 
lose that the �tness has the same noise level at both lo
ations. Mathemati
allyspeaking, if we denote y an o�spring of a parent x, the expression of the �tness of theo�spring whi
h, a

ording to Eq. 1.25, writes as f(y) = ‖y‖2 + 2σ∗ǫ

d
‖y‖2N(0, 1) is well ap-proximated by f(y) = ‖y‖2 + 2σ∗ǫ

d
‖x|2N(0, 1). The random part 2σ∗ǫ

d
‖y‖2N(0, 1) is repla
edby 2σ∗ǫ

d
‖x‖2N(0, 1).In�nite dimension resultsAs in the non-noisy 
ase, the sign of the limit of the normalized progress rate is su�
ient toindi
ate whether the algorithm 
onverges or diverges, in the limit of in�nite dimension for9Note that the study in [10℄ does not assume a Gaussian noise. 39



Chapter 1. Non linear 
ontinuous optimizationthe noisy sphere fun
tion. The �rst (expe
ted) result that 
an be seen in the plots of thelimit of the normalized progress rate as a fun
tion of the normalized step-size mutation fordi�erent normalized noise strengths (see for example [25, Fig 3.10℄, [8, Fig 6℄, [7, Fig 4℄) isthat the normalized progress rate de
reases when the normalized noise strength in
reases.In parti
ular, the best normalized progress rate 
orresponds to the non-noisy 
ase (forwhi
h the noise strength σǫ equals 0). For 
omma strategies, it is proved in [25, Fig 3.10℄for the (1, 5)-ES that :
• For 'small' values of the normalized noise strength, the algorithm 
onverges for smallvalues of the normalized step-size mutation and diverges for su�
iently 'large' valuesof the normalized step-size mutation, and
• For 'large' values of the normalized noise strength: the algorithm diverges for anyvalue of the normalized step-size mutation.For plus strategies, the 
urves in [8, Fig 6℄, plotted using some normalized noise strengthvalues, suggest that the (1+1)-ES whi
h does not use reevaluation of the parent 
onvergesfor any value of the normalized step-size mutation. For plus strategies, and using thereevaluation of the parent at every iteration, the plots in [25, Fig 3.12℄ and [8, Fig 6℄suggest that for 'small' values of the normalized noise strength the algorithm 
onvergesand that it 
an diverge for large normalized noise strengths.The performan
e of these di�erent ES strategies (whi
h do not use re
ombination) hasbeen 
ompared in [7, Fig 6℄ as a fun
tion of the normalized noise strength. It is shownthat for small normalized noise strength values, plus strategies perform better than 
ommastrategies, and that the opposite happens for large normalized noise strength values.Moreover, some 
omputations in the in�nite dimension setting were used to de
idewhether re-sampling and/or in
reasing the population size 
an improve the performan
eof the ES in noisy environments: the (µ, µλ)-ES performs slightly better than the (1, λ)-ES when using re-sampling [24℄. For 'large' noise strengths, the expressions of the progressrate derived by Arnold and Beyer [25, 6℄ suggests that it is better to reevaluate and re-sample than to in
rease λ for the (1, λ)-ES, and that one should in
rease µ when usingthe (µ/µ, λ)-ES.Finally, the adaptation of the mutation step-size when optimizing noisy obje
tivefun
tions was studied. The usefulness of the one-�fth rule was dis
ussed in [8℄ and thatof a self-adaptive strategy with a res
aled mutation in [24℄. An interesting result wasderived in [6℄ where the e�
ien
y of 
umulative step length adaptation when dealing withnoisy environments was shown for the (µ/µ, λ)-ES minimizing the noisy sphere fun
tion.More pre
isely, the study suggests that 
umulative step length adaptation generates steplengths in the vi
inity of optimal ones provided that population sizes are su�
iently large.However, a limitation of this results, whi
h has been done in the limit of in�nite sear
hspa
e dimension, is that it requires at the same time su�
iently large population sizesand λ << d.In our theoreti
al and numeri
al study, we investigate �rst (Chapter 2) the optimiza-tion using the (1 + 1)-ES of non noisy obje
tive fun
tions. Then in Chapters 3 and4, we investigate the behavior, when minimizing noisy obje
tive fun
tions, of the s
ale-invariant (1 + 1)-ES (Chapter 3) and of the s
ale-invariant (1, λ)-ES (Chapter 4). For40



1.7. Dis
ussionthe studies in noisy environments, the noisy obje
tive fun
tion model is similar to theone investigated by Arnold and Beyer given in Eq. 1.25 but the noise distribution is notne
essary supposed to be Gaussian. In fa
t, the distribution of the random part of noisyobje
tive fun
tions investigated here in
lude lower bounded and unbounded distributions.Moreover, we uses mild assumptions on the noise distribution. Finally, we theoreti
allyinvestigate the reliability of some approximations used by Arnold and Beyer.1.7 Dis
ussionIn previous se
tions (Se
tions 1.4.4 and 1.4.5), we have shown that ESs and in parti
ularCMA-ES are e�
ient to solve di�
ult optimization problems. We give a parti
ular inter-est to the di�
ulties that 
an be 
aused by noisy obje
tive fun
tions whi
h are frequentlyen
ountered in pra
ti
e. In parti
ular, ESs using re
ombination, have been empiri
allyshown [9, 106℄ to be more robust than other deterministi
 or randomized sear
h methodsin noisy environments. A �rst goal of this thesis is then to study theoreti
ally and nu-meri
ally the behavior of some simple ESs (simpler than CMA-ES) in noisy environmentsas they performed better in noisy environments. We are 
onvin
ed that both theoreti
aland numeri
al approa
hes have to be investigated in a 
omplementary approa
h. In fa
t,theoreti
al studies are helpful to explain the behavior of a given method but they needstrong assumptions on obje
tive fun
tions, that are not satis�ed in pra
ti
e. Numeri
alapproa
hes are also helpful in order to improve our understanding of the behavior of thealgorithms, but one has to be 
areful not to hastily turn some behaviors that have beenobserved in very parti
ular 
ases into general truths. Here again, a theoreti
al study
an help understanding the experimental fa
ts. For this reason, our studies are based onestablishment of 
onvergen
e theorems with numeri
al simulations that illustrate resultsand that helped us for the understanding of the behavior of the algorithms and wee guide-lines for our theoreti
al results. Previous theoreti
al studies of ES in noisy environments(see Se
tion 1.6) lie on the limit of in�nite dimension of the sear
h spa
e. This hypothesisallow to use some approximations. Moreover, some normalizations have been frequentlyused. The noise distribution is also restri
ted to the Gaussian model (see Eq. 1.25). Inour work, we want to investigate theoreti
ally ESs (in parti
ular, in noisy environments)when the dimension of the sear
h spa
e is �nite and 
ompare our results to to in�nitedimension results. In the parti
ular 
ase of noisy obje
tive fun
tions, the noise is notalways assumed to be Gaussian. Another motivation for this study is that, as pointed outin [17℄, in�nite dimension results [17℄ usually provide 
onvergen
e in mean results and inthis work we want to give almost sure 
onvergen
e results.In the se
ond part of this thesis, CMA-ES is applied to solve a real-world optimizationproblem. The problem had been previously ta
kled using gradient-based strategies [74,73℄ and one of the goals of this study is to 
ompare performan
es of randomized anddeterministi
 sear
h methods in this spe
i�
 study and see whether it is true or not thatrandomized sear
h methods seem to be more robust that deterministi
 sear
h methods insolving real-world optimization problems. 41
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Chapter 2Log-linear Convergen
e and OptimalBounds for the (1 + 1)-ESThe material in this Chapter is mainly 
ontained in the paper [77℄ that has been publishedin a Springer Verlag LNCS volume 
ontaining a sele
tion of papers presented at the
onferen
e Evolution Arti�
ielle 2007. This work has been done in 
ollaboration withPierre Liardet.In this paper, we have studied the (1 + 1) isotropi
 ES for minimizing real valuedobje
tive fun
tions de�ned in R
d (d ≥ 1). We have shown two main results:

• Theorem 2.4: The 
onvergen
e of the (1 + 1) isotropi
 ES is at most log-linear andthe optimal 
onvergen
e rate is derived.
• Theorem 2.10: The 
onvergen
e of the spe
i�
 (1 + 1)-ES using a s
ale-invariantadaptation rule is log-linear when the obje
tive fun
tions are the so-
alled spheri
alfun
tions, f(x) = g(‖x‖2) where x ∈ R

d, g : [0,+∞[7→ R is an in
reasing fun
tionand ‖.‖ the eu
lidean norm on R
d. Moreover, the optimal 
onvergen
e rate, that
an be ra
hed when the (1 + 1) isotropi
 ES optimize any obje
tive fun
tion usingany adaptation rule, is obtained when the adaptation rule of the step-size is thes
ale-invariant adaptation rule and the obje
tive fun
tion is the spheri
al fun
tion.The log-linear behavior of the s
ale-invariant (1 + 1)-ES is established using the Law ofLarge Numbers (LLN) for orthogonal random variables (Theorem 2.9). This theorem hasbeen derived from [93, p. 458℄.Similar results had been previously proved in the 
ase of the (1, λ)-ES: The log-linearbehavior (
onvergen
e or divergen
e) of the s
ale-invariant (1, λ)-ES minimizing spheri
alfun
tions have been previously shown in [27, 17℄. The result has been derived using theLLN for independent random variables and suggests that the 
onvergen
e results obtainedhold in probability. In [12℄, it is stated that almost sure 
onvergen
e is obtained usingsimilar te
hniques as in [13℄ where the proof relies on the LLN for Markov 
hains. Forspe
i�
 
lasses of twi
e 
ontinuously di�erentiable obje
tive fun
tions, it has been shownin [14℄, that almost sure 
onvergen
e holds for adaptive (1, λ)-ES with the s
ale-invariantadaptation rule of the step-size mutation σn i.e., σn = σ‖Xn‖ or with di�erent step-sizemutations at ea
h dire
tion (σn)

i = σ|∂f(Xn)
∂xi

|, where for i ∈ {1, . . . , d}, ∂f
∂xi

is the i-th45



Chapter 2. Log-linear Convergen
e and Optimal Bounds for the (1 + 1)-ESpartial derivative of f and Xn is the solution at an iteration n. Those results were derivedusing tools of martingale theory. For the (1, λ)-ES using a realisti
 self-adaptation rule,the log-linear behavior on spheri
al fun
tions has been shown in [13℄ using the LLN forMarkov 
hains. The optimality of the s
ale-invariant adaptation rule when minimizingspheri
al fun
tions has been already rigorously derived for 
omma strategies in [17℄.The 
ontribution of this study is that it provides tight bounds for (1+1)-ES algorithms.The optimal bounds derived in this work 
an be used to assess the performan
es of a given(realisti
) step-size adaptation strategy 
omparing the 
onvergen
e rate a
hieved by thestrategy with the optimal one, given by the (arti�
ial) s
ale-invariant algorithm on spherefun
tion.The optimal 
onvergen
e rate that 
an be rea
hed by a (1+1)-ES algorithm is given by thevalue of σ maximizing the fun
tion F de�ned in Lemma 2.1. The theoreti
al 
omputationof the optimal σ value is presumably impossible. However, as the 
onvergen
e rate F isexpressed as a fun
tion of an expe
tation, its 
omputation (and then that of the optimal
σ value) is investigated using Monte Carlo simulations when the sear
h spa
e dimension
d is �nite.In the 
on
lusion of the paper (Se
tion 2.5), we state that the 
omputation of the valueof σ maximizing the 
onvergen
e rate is equivalent to that of σ maximizing the log-progress
E(ln ‖Xn‖)−E(ln ‖Xn+1‖). We also state that, when the sear
h spa
e dimension d goes toin�nity, the quantities d(E(ln ‖Xn‖)−E(ln ‖Xn+1‖)) and the so-
alled normalized progressrate d(E(‖Xn‖)−E(‖Xn+1‖)) are equal when repla
ing σ by σ∗/d (σ∗ > 0), having a limitthat only depends on σ∗ that we 
an denote l(σ∗) and whose expression is the oppositevalue of the one given in [25, Eq. 3.88℄. The limit l(σ∗) is also the limit, when d goes toin�nity, of the normalized 
onvergen
e rate dF (σ∗/d) where F is de�ned in Lemma 2.1.These statements 
ould be rigorously shown using the same te
hnique used in Chapter 4where a more 
ompli
ate result is given in the spe
i�
 
ase of 
omma strategies. Morevoer,the result will enable us to state the 
onvergen
e rate varies asymptoti
ally linearly withthe inverse of the sear
h spa
e dimension. On the other hand, it is worth noti
ing, thatin the similar 
ontext of a (1+1)-ES using isotropi
ally distributed mutation ve
tors andminimizing spheri
al fun
tions, an algorithmi
 analysis of how the runtime of the (1+1)-ES depends on the sear
h spa
e has been performed by J. Jägersküpper [71℄. In parti
ular,Jens shows for the one-�fth adaptation rule that, the time to halve the distan
e to theoptimum is linear in the dimension. This is an other way to state the result (shown here)that the dependen
e of the 
onvergen
e rate is inversely proportional to the dimension.However, Jens studies being asymptoti
 in the dimension, no 
onvergen
e rates for �nitedimension 
an be derived.
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Pro
eedings of Evolution Arti�
ielle 2007, pp 207-218.The original publi
ation is available at http://www.springerlink.
om
Errata :There are few errata in the published paper:

• Proof of Lemma 2.1: The surfa
e area of the d-dimensional unit ball should read
Sd = 2πd/2/Γ(d

2
).

• Proof of Proposition 2.7: 1) The quantities Yn and Y ′
n are random variables, notrandom ve
tors. 2) Last equation: The right hand side of the �rst line should be

1
(2π)d/2

∫

Rd

(

ln− (∥
∥

Xm

‖Xm‖ + σx
∥

∥

)

)

e−
‖x‖2

2 dx− F (σ).
• In Fig 2.1, the plots are rather related to the de�nition of F given in Eq. 2.3 thanto Eq. 2.4 whi
h is a 
onsequen
e of Eq. 2.3.
• A spelling mistake in the senten
e just after Eq. 2.1, the world �eu
lidian� shouldbe written as �eu
lidean�.48



• The word �independen
y� appears twi
e in the 
hapter (in the proofs of Lemma 2.2and of Proposition 2.7) and should be repla
ed by �independen
e�.
• In the proof of Lemma 2.2, one should have �Using the independen
e of σ‖X‖−1and N . . . �.
• Before Theorem 2.8, one should have � But the random ve
tors Y ′

n are i.i.d. . . . �instead of � But the random ve
tors Yn are i.i.d. . . . �.
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Abstra
tThe (1 + 1)-ES is modeled by a general sto
hasti
 pro
ess whose asymptoti
 behavior isinvestigated. Under general assumptions, it is shown that the 
onvergen
e of the relatedalgorithm is sub-log-linear, bounded below by an expli
it log-linear rate. For the spe
i�

ase of spheri
al fun
tions and s
ale-invariant algorithm, it is proved using the Law ofLarge Numbers for orthogonal variables, that the linear 
onvergen
e holds almost surelyand that the best 
onvergen
e rate is rea
hed. Experimental simulations illustrate thetheoreti
al results.2.1 Introdu
tionEvolutionary algorithms (EAs) are bio-inspired sto
hasti
 sear
h algorithms that itera-tively apply operators of variation and sele
tion to a population of 
andidate solutions.Among EAs, adaptive Evolution Strategies (ESs) are re
ognized as state of the art algo-rithms when dealing with 
ontinuous optimization problems. Adaptive ESs sequentiallyadapt the parameters of the sear
h distribution, usually a multivariate normal distribu-tion, based on the history of the sear
h. Several adaptation s
hemes have been introdu
edin the past. The one-�fth su

ess rule [114, 82℄ 
onsiders the adaptation of one parameter,referred as the step-size, based on the su

ess probability. The most advan
ed adaptations
heme, the Covarian
e Matrix Adaptation (CMA), adapts the full 
ovarian
e matrix ofthe multivariate normal distribution [61℄.The �rst theoreti
al works 
arried out in the 
ontext of Evolution Strategies fo
used onthe so-
alled progress rate de�ned as a one-step expe
ted progress towards the optimum[114, 25℄. The progress rate approa
h 
onsists in looking for step-sizes maximizing the50



2.2. Mathemati
al model for the (1 + 1)-ESexpe
ted progress. This amounts to investigating an arti�
ial step-size adaptation s
heme
alled s
ale-invariant, in whi
h, at ea
h iteration, the step-size is proportional to thedistan
e to the optimum. The results derived in the 
ontext of the progress rate theoryhold asymptoti
ally in the dimension of the sear
h spa
e and the te
hniques used do notallow to obtain �nite dimension estimations.Finite dimension results were obtained in the 
ontext of '
omma' strategies on the
lass of the so-
alled sphere fun
tions, mapping R
d into R (d being the dimension of thesear
h spa
e) and de�ned as

f(x) = g(‖x‖2) , (2.1)where g : [0,+∞[7→ R is an in
reasing fun
tion and ‖.‖ denotes the usual eu
lidian normon R
d. On this 
lass of fun
tions, s
ale-invariant ESs [27℄ and self-adaptive ESs (whi
h usea real adaptation rule) [27, 13℄ do 
onverge (or diverge) with order one, or log-linearly1.In this paper, �nite dimension results are investigated and the fo
us is on the simplestES, namely the (1 + 1)-ES. Se
tion 2.2 introdu
es the mathemati
al model asso
iated tothe algorithm in a general framework and provides preliminary results. In Se
tion 2.3,a sharp lower bound of the log-
onvergen
e rate is proved. In Se
tion 2.4, it is shownthat this lower bound is rea
hed for a s
aled-invariant algorithm on the 
lass of spherefun
tions. The proof of 
onvergen
e on the 
lass of sphere fun
tions uses the Law of LargeNumbers for orthogonal random variables. A 
entral limit theorem is also derived fromthis analysis. In Se
tion 2.5 our results are dis
ussed and related to previous works. Somenumeri
al experiments illustrating the theoreti
al results are presented.2.2 Mathemati
al model for the (1 + 1)-ESLet R
d be equipped with the Borel σ-algebra and the Lebesgue measure. In the sequelwe always assume that (Nn)n denotes a sequen
e of random ve
tors (r.ve
.) independentand identi
ally distributed (i.i.d.), de�ned on a suitable probability spa
e (Ω, P ), with
ommon law the multivariate isotropi
 normal distribution on R

d denoted by N(0, Id)
(2). Let (σn)n be a given sequen
e of positive random variables (r.var.). We also assumethat for ea
h index n, σn is de�ned on Ω and is independent of Nn; further we willalso require that the sequen
es (σn)n and (Nn)n are mutually independent. Finally, let
f : R

d → R be an obje
tive fun
tion (whi
h is always assumed to be Lebesgue measurable)and let δn : R
d × Ω → {0, 1} (n ≥ 0) be the measurable fun
tion de�ned by δn(x, ω) :=

1{f(x+σn(ω)Nn(ω))6f(x)}. In this paper, (1 + 1)-ES algorithms are modeled by the R
d-valuedrandom pro
ess (Xn)n>0 de�ned on Ω by the re
urren
e relation

Xn+1 = Xn + δn(Xn, IΩ)σnNn , (2.2)where IΩ is the identity fun
tion ω 7→ ω on Ω and X0 is given.1We say that the sequen
e (Xn)n 
onverges log-linearly to zero (resp. diverges log-linearly) if thereexists c < 0 (resp. c > 0) su
h that limn
1
n

ln ‖Xn‖ = c.2N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R
d and 
ovarian
e matrix theidentity Id. 51



Chapter 2. Log-linear Convergen
e and Optimal Bounds for the (1 + 1)-ESThe 
lassi
al terminology used for algorithms de�ned by (2.2) stresses the parallelwith the biology: the iteration index n is referred as generation, the random ve
tor Xnis 
alled the parent, the perturbed random ve
tor X̃n = Xn + σnNn is the n-th o�spring.The s
alar r.var. σn is 
alled step-size. The r.var. δn translates the plus sele
tion �+� inthe (1 + 1)-ES: the o�spring is a

epted if and only if its �tness value is smaller than the�tness of the parent. Several heuristi
s have been introdu
ed for the adaptation of thestep-size σn, the most popular being the one-�fth su

ess rule [114, 82℄.Notations and preliminary resultsFor a real valued fun
tion x 7→ h(x) we introdu
e its positive part h+(x) := max{0, h(x)}and negative part h− = (−h)+. In other words h = h+ − h− and |h| = h+ + h−. In thesequel, we denote by e1 a unitary ve
tor in R
d. The following te
hni
al lemmas will beuseful in the sequel.Lemma 2.1. Let N be a r.ve
. of distribution N(0, Id). The map F : [0,∞] → [0,+∞]de�ned by F (+∞) := 0 and

F (σ) := E
[

ln− (‖e1 + σN‖)
]

=
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e− ‖x‖2

2 dx (2.3)otherwise, is 
ontinuous on [0,+∞] (endowed with the usual 
ompa
t topology), �nitevalued and stri
tly positive on ]0,∞[.Proof :The integral (2.3) always exists but 
ould be in�nite. In any 
ase, F (σ) is independent ofthe 
hoi
e of e1 due to the invarian
e of N under rotations. For 
onvenien
e we 
hoose
e1 = (1, 0, . . . , 0) so that ln−(‖e1 + σx‖) = 0 if x = (x1, . . . , xd) with x1 > 0. Let
f1 : R

d × [0,∞] → [0,+∞] be de�ned by
f1(x, σ) = ln−(‖e1 + σx‖2)e−

‖x‖2

2for x 6= (−1/σ, 0, . . . , 0) and f1((−1/σ, 0, . . . , 0), σ) = +∞ (with σ > 0) and �nally
f1(x,+∞) = 0 (= limσ→+∞ f1(x, σ)). Noti
e that f1(x, σ) = 0 if x1 > 0 and readily
f1((x1, x2, . . . , xd), σ) = f1((x1, ǫ2x2, . . . , ǫdxd), σ) for any (ǫ2, . . . , ǫd) in {−1,+1}d−1 sothat we 
an restri
t the integration giving F (σ) to the domain D :=] −∞, 0[×]0,∞[d−1,more pre
isely one has

F (σ) =
1

4

( 2

π

)d/2
∫

D
f1(x, σ)dx (2.4)with in addition f1 is �nite everywhere in D. From the de�nition of F (+∞) and f1one has 1

4
(2/π)d/2

∫

D f1(x,+∞)dx = 0 = F (+∞) so that (2.4) holds also for σ = +∞.Now, for any real number σ > 0 �xed, the inequality f1(x, σ) > 0 holds on Bσ := {x ∈
D ; ‖e1 + σx‖ < 1} whi
h is a nonempty open set, therefore F (σ) > 0. In addition,52



2.2. Mathemati
al model for the (1 + 1)-ES
f1(x, 0) = 0 for all x and so, F (0) = 0. Passing to spheri
al 
oordinates (with d > 2)weobtain after partial integration

∫

D
f1(x)dx = 2cd

∫ +∞

0

∫ π/2

0

ln−(|σr − eiθ1 |)rd−1e−
r2

2 sind−2 θ1dr dθ1where
cd =

∫ π/2

0

· · ·
∫ π/2

0

sind−3(θ2) . . . sin(θd−2)dθ2 . . . dθd−1for d > 3 and c2 = 1. With the 
lassi
al Wallis integral Wd−2 =
∫ π/2

0
sind−2 θ dθ and thesurfa
e area of the d-dimensional unit ball Sd = 2πd/2/Γ(n

2
) we have Sd = 2dcdWd−2 andafter 
olle
ting the above results we get

F (σ) =
( 1

2π

)d/2 1

Wd−2Γ(d
2
)

∫ +∞

0

∫ π/2

0

ln−(|σr − eiθ|)rd−1e−
r2

2 sind−2(θ) dr dθ .The integrand g : (r, θ, σ) 7→ ln−(|σr − eiθ|)rd−1e−
r2

2 sind−2(θ) de�ned on the set
]0,+∞[×[0, π/2] × [0,∞] (with g(r, θ,+∞) = 0) is 
ontinuous. In fa
t, the 
ontinu-ity is 
lear at ea
h point (r, θ, σ) with σ 6= +∞ and for the points (r, θ,+∞), one has
g(ρ, α, σ) = 0 on ]r/2,+∞[×[0, π/2]×]4

r
,+∞]. Moreover, g is dominated by g1 : (r, θ) 7→

ln−(sin θ)rd−1e−r
2/2 i.e., g(r, θ, σ) 6 g1(r, θ) for all (r, θ, σ) in ]0,+∞[×[0, π/2] × [0,+∞].Sin
e g1 is integrable, the 
ontinuity of F on [0,+∞] follows from the Lebesgue dominated
onvergen
e theorem. For the remaining 
ase d = 1 the 
on
lusions of the lemma followeasily from (2.4) that gives F (σ) = 1

2
√

2π

∫∞
0

ln−(|1 − σr|)e− r2

2 dr. �Corollary 1. The supremum τ := supF ([0,+∞]) is rea
hed and σF := minF−1(τ)exists. Moreover 0 < σF < +∞ and 0 < τ < +∞.Proof :This 
orollary is a straightforward 
onsequen
e of the 
ontinuity of F a

ording to Lemma 2.1whi
h implies that F−1(τ) is nonempty and 
ompa
t. �Lemma 2.2. Let X denote a r.ve
. in R
d su
h that ‖X‖−1 is �nite almost surely. Let σbe a non negative random variable and let N be a random ve
tor in R

d with distribution
N (0, Id) and independent of σ‖X‖−1. Assume that

E
(

ln
(

1 + r
σ

‖X‖
))

∈ O(ecr)with a 
onstant c > 0, then the expe
tation of ln+(‖X‖−1‖X + σN‖) is �nite.Proof :Obviously E(ln+(‖X‖−1‖X + σN‖)) 6 E(ln(1 + σ
‖X‖‖N‖)). Using the independen
y of53
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σ‖X‖ and N , and passing to the spheri
al 
oordinates, one gets

E
(

ln
(

1 +
σ

‖X‖‖N‖
))

6 E
(

∫

Rd

ln(1 +
σ

‖X‖‖x‖)e
− ‖x‖2

2 dx
)

= SdE
(

∫ +∞

0

ln(1 + r
σ

‖X‖)rd−1e−
r2

2 dr
)

= Sd

∫ +∞

0

E(ln(1 + r
σ

‖X‖))rd−1e−
r2

2 dr

<<

∫ +∞

0

rd−1ecr−
r2

2 dr < +∞ .

�Remark 2.2.1. The assumption E(ln(1+r σ
‖X‖)) ∈ O(ecr) (with c = 0) is veri�ed if thereexists α > 0 su
h that the expe
tation of the r.var. (σ/‖X‖)α is �nite.2.3 Lower bounds for the (1 + 1)-ESIn this se
tion, we 
onsider a general measurable obje
tive fun
tion f : R

d → R. Weprove that the (1 + 1)-ES de�ned by (2.2) for minimizing f , under suitable assumptions,satis�es for all x∗ in R
d and all indi
es n > 0:

−∞ < E(ln ‖Xn − x∗‖) − τ 6 E(ln ‖Xn+1 − x∗‖) < +∞ (2.5)where τ is de�ned in Corollary 1.If x∗ is a limit point of (Xn) (that 
ould be a lo
al optimum of f), (2.5) means that theexpe
ted log-distan
e to x∗ 
annot de
rease more than τ , in other words, −τ is a lowerbound for the 
onvergen
e rate of (1 + 1)-ES. The proof of this result uses the followingeasy Lemma whose proof is left to the reader.Lemma 2.3. Let Z and V be r.ve
. and let Θ be any r.var. valued in {0, 1}. Assumethat the r.var. ln(‖Z‖) is �nite almost surely. Then the following inequalities
ln(‖Z‖) − ln−(‖Z‖−1‖Z + V ‖) ≤ ln(‖Z + ΘV ‖)

≤ ln(‖Z‖) + ln+(‖Z‖−1‖Z + V ‖) (2.6)hold almost surely.We are ready to prove the following general theorem.Theorem 2.4 (Lower bounds for the (1 + 1)-ES). Let (Xn)n be the sequen
e of randomve
tors verifying (2.2) with a given obje
tive fun
tion f as above. Assume that for ea
hstep n = 0, 1, 2, . . . the random ve
tor Nn is independent of both the random variable σn54



2.3. Lower bounds for the (1 + 1)-ESand the random ve
tor Xn. Let x∗ be any ve
tor in R
d and suppose that E(

∣

∣ ln(‖X0 −
x∗‖)

∣

∣) < +∞ and for all n > 0,
E
(

ln(1 + r
σn

‖Xn − x∗‖)
)

∈ O(ecnr)with a 
onstant cn > 0. Then
E (| ln (‖Xn − x∗‖) |) < +∞ ,and

E(ln(‖Xn − x∗‖)) − τ ≤ E(ln(‖Xn+1 − x∗‖)) , (2.7)for all n > 0, where τ is de�ned in Corollary 1. In parti
ular, the 
onvergen
e of the
(1 + 1)-ES is at most linear, in the sense that

inf
n∈N

1

n
E
(

ln
(

‖Xn − x∗‖/‖X0 − x∗‖
))

≥ −τ . (2.8)Proof :Set Zn = Xn − x∗, X̃n = Xn + σnNn and Z̃n = X̃n − x∗. We prove the integrability of
ln (‖Zn‖) by indu
tion. By assumption E( ln(‖Z0‖)

) is �nite. Suppose that E( ln ‖Zn‖
) is�nite, then 0 < ‖Zn‖ < +∞ almost surely, hen
e ln

(

‖Zn+1‖
) is also �nite almost surely.We 
laim that E( ln(‖Zn+1‖)

) is �nite. By applying Lemma 2.3 we get (2.6) and derive
ln+ (‖Zn+1‖) ≤ ln+ (‖Zn‖) + ln+

(

‖Zn‖−1(‖Zn + σnNn‖)
)

. (2.9)By Lemma 2.2 the expe
tation of ln+
(

‖Zn‖−1(‖Zn +σnNn‖)
) is �nite and using (2.9) we
on
lude that E( ln+ (‖Zn+1‖)

)

< +∞. It remains to show that E( ln−(‖Zn+1‖)
) is also�nite. Using the �rst inequality in (2.6) we obtain

ln− (‖Zn+1‖) ≤ − ln (‖Zn‖) + ln−
(∥

∥

∥

Zn
‖Zn‖

+
σn

‖Zn‖
Nn

∥

∥

∥

)

+ ln+ (‖Zn+1‖) . (2.10)For ea
h n ≥ 0, let Fn denote the σ-algebra generated by the r.ve
. Xn and the r.var. σn.Taking the 
onditional expe
tation we obtain
E[ln−(‖Zn+1‖) | Fn]

≤ − ln(‖Zn‖) + E
[

ln−
(∥

∥

∥

Zn
‖Zn‖

+
σn

‖Zn‖
Nn

∥

∥

∥

)

| Fn

]

+ E
[

ln+
(

‖Zn+1‖
)

| Fn

]

.Sin
e the distribution Nn is invariant under rotation and independent of Fn,
E
(

ln−
(∥

∥

∥

Zn
‖Zn‖

+
σn

‖Zn‖
Nn

∥

∥

∥

)

| Fn

)

=
1

(2π)d/2

∫

Rd

ln−(‖e1 + tnx‖)e−
‖x‖2

2 dx

= F (tn)where e1 is any unit ve
tor on R
d, tn = σn/‖Zn‖ (and F is the map introdu
ed inLemma 2.1). Using Lemma 2.1, we get 55
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E
[

ln− (‖Zn+1‖) | Fn

]

≤ − ln (‖Zn‖)+τ+E
[

ln+ (‖Zn+1‖) | Fn

] (re
all that τ = maxF ([0,+∞])).Passing to the expe
tation we get
E
[

ln− (‖Zn+1‖)
]

≤ −E [ln (‖Zn‖)] + τ + E
[

ln+ (‖Zn+1‖)
]

< +∞ .Hen
e E[| ln(‖Zn+1‖)|] is �nite for all n > 0. Moreover, we also get
E(ln ‖Zn+1‖) > E(ln ‖Zn‖) − τand after summing su
h inequalities we obtain

E (ln (‖Zn‖/‖Z0‖)) ≥ −τnand (2.8) follows. �When x∗ is a lo
al minimum of the obje
tive fun
tion, E(ln ‖Xn−x∗‖)−E(ln ‖Xn+1−
x∗‖) represents the expe
ted log-distan
e redu
tion towards x∗ at the n-th step of iteration,
alled log-progress in [17℄. Theorem 2.4 shows that the log-progress is bounded above by
τ = F (σF ).2.4 Spheri
al fun
tions and the s
ale-invariant algorithmIn this se
tion we prove that the lower bound −τ obtained in Theorem 2.4 is rea
hed forspheri
al obje
tive fun
tions when σn = σF‖Xn‖ (n > 0). Re
all that sphere obje
tivefun
tions are de�ned by f(x) = g(‖x‖2) where g is any in
reasing map, so that thea

eptan
e 
ondition f(Xn+1) 6 f(Xn) is equivalent to ‖Xn+1‖ 6 ‖Xn‖. It follows that
(‖Xn‖)n>0 is a non-in
reasing sequen
e of positive random variables (�nite almost surely),hen
e 
onverges pointwise almost surely. For spheri
al fun
tions, Lemma 2.3 be
omes:Lemma 2.5. Let X and W be any random ve
tors and let Θ = 1{f(X+W )6f(X)} andassume that the random variable ln(‖X‖) is �nite almost surely. Then the equality

ln(‖X + ΘW‖) − ln(‖X‖) = − ln+(‖X‖−1‖X +W‖) (2.11)holds almost surely.Proof :The equality (2.11) emphasizes the fa
t that ‖X + Θ‖ 6 ‖X‖ with equality on the event
{Θ = 0} (= {‖X +W‖ > ‖X‖}). �Proposition 2.6. Let (Xn)n be the sequen
e of random ve
tors valued in R

d satisfying there
urren
e relation (2.2) involving spheri
al fun
tion f(x) = g(‖x‖2) where g : [0,∞[→ Ris an in
reasing map. Assume that E(ln(‖X0‖) is �nite and that, at ea
h step n, therandom ve
tor Nn is independent of both the random variable σn and the random ve
tor
Xn. Then E(ln(‖Xn‖) is �nite for all indi
es n, the inequalities

E(ln(‖Xn‖) − τ 6 E(ln(‖Xn+1‖)hold, where τ is de�ned above in Corollary 1, and
ln(‖Xn‖) − ln(‖Xn+1‖) = ln−(‖Xn‖−1‖Xn + σnNn‖) < +∞ a.s. (2.12)56



2.4. Spheri
al fun
tions and the s
ale-invariant algorithmProof :By 
onstru
tion ‖Xn+1‖ 6 ‖Xn‖ 6 ‖X0‖ so that E(ln+(‖Xn+1‖)) 6 E(ln+(‖X0‖)) < +∞.Now assume that ln(‖Xn‖) is integrable, hen
e 0 < ‖Xn‖ < +∞ a.s. and so, byLemma 2.5, to obtain the inequalities and equality asserted in the proposition it is enoughto prove that E(ln−(‖Xn‖−1‖Xn+σnNn‖)) 6 τ . But similarly to the end part of the proofof Theorem 2.4 we have E(ln−(‖Xn‖−1‖Xn + σnNn‖)) = E(F (σn/‖Xn‖)) 6 τ . �Now we pay attention to the parti
ular 
ase where σn = σ‖Xn‖ with σ > 0 �xed. Theresulting (1 + 1)-ES is said to be s
ale-invariant, and is modeled by the d-dimensionalrandom pro
ess
Xn+1 = Xn + δn(Xn, IΩ)σ‖Xn‖Nn (n > 0) . (2.13)For 
onvenien
e of the reader we 
olle
t the hypothesis that govern the s
ale-invariantrandom pro
ess (2.13):(HSI) The sequen
e of random ve
tors (Nn)n in R

d is i.i.d. with 
ommon law
N(0, Id), is independent of the initial random ve
tor X0 and ln(‖X0‖) has a �niteexpe
tation.Noti
e that Assumption (HSI) implies in parti
ular that for m > n > 0, Nm is independentof Xn and by Proposition 2.6, ln(‖Xn‖) has a �nite expe
tation. The update rule (2.13)is not so realisti
 be
ause in pra
ti
e, at ea
h step n, the distan
e of Xn to the optimumis unknown. Nevertheless, we will show that the sto
hasti
 pro
ess de�ned by (2.13)
onverges log-linearly for sphere fun
tions and that for σ = σF the 
onvergen
e rate inlog is equal to −F (σF ) (= −τ). In other words, the 
hoi
e σn = σF‖Xn‖ 
orrespondto the adaptation s
heme that gives the optimal 
onvergen
e rate for isotropi
 EvolutionStrategies.It is usual for studying sto
hasti
 sear
h algorithms to 
onsider log-linear 
onvergen
eof Xn by investigating the stability of ln (‖Xn+1‖/‖Xn‖). This idea was introdu
ed in the
ontext of ESs by Bienvenüe and François [27℄ and exploited in [13℄. The pro
ess Xn givenby (2.13) has a remarkable property expressed in terms of orthogonality of the randomsequen
es Yn = ln−

(∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

)

− F (σ):Proposition 2.7. Consider the random variables
Yn := ln−

(∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

)

− F (σ)where F is de�ned by (2.4) and let σ > 0. Under the hypothesis (HSI) the followingshold:1. For n ≥ 0, E(Yn) = 0 and E(|Yn|2) < +∞.2. Let (Y ′
n)n≥0 be the sequen
e of random variables

Y ′
n := ln−(‖e1 + σNn‖) − F (σ).The random variables Yn (n ≥ 0) are identi
ally distributed and for every n ≥ 0,

Yn and Y ′
n follow the same distribution. 57
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e and Optimal Bounds for the (1 + 1)-ES3. The sequen
e of random variables (Yn)n≥0 is orthogonal, i.e. for all indi
es i, j, with
i 6= j one has E(Yi) = 0, E(Y 2

i ) < +∞ and E(YiYj) = 0.Proof :The isotropy of the standard d-dimensional normal distribution gives
E
(

ln−
(∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

)

|Xn

)

=
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e− ‖x‖2

2 dx

= F (σ)hen
e E [ln−
(∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

)]

= E [F (σ)] and so, E(Yn) = 0. Let F2 : [0,∞] → [0,+∞[be de�ned by F2(∞) = 0 and, for t ∈ [0,+∞[,
F2(t) :=

1

(2π)d/2

∫

Rd

[

ln−(‖e1 + tx‖)
]2
e−

‖x‖2

2 dx . (2.14)Similarly to the proof of Lemma 2.1, we prove that F2 is 
ontinuous, hen
e bounded.Now, from the de�nitions of F and F2 one has
E(|Yn|2) = F2(σ) − (F (σ))2 < +∞ . (2.15)This ends the proof of the �rst point.The random ve
tors Yn and Y ′

n have the same distribution if their 
hara
teristi
 fun
-tions are identi
al. But su

essively
E(eitYn |Xn) = e−itF (σ)E

(

eit ln
−
(∥

∥ Xn
‖Xn‖

+σNn

∥

∥

)

|Xn

)

=
e−itF (σ)

(2π)d/2

∫

Rd

e
it ln−

(∥

∥
Xn

‖Xn‖
+σx

∥

∥

)

e−‖x‖2/2dx

=
e−itF (σ)

(2π)d/2

∫

Rd

eit ln
−
(∥

∥e1+σx

∥

∥

)

e−‖x‖2/2dx

= E(eitY
′
n) .Therefore E(eitYn) = E(E(eitYn |Xn)) = E(eitY

′
n). To �nish the proof we show the orthog-onality property of the Yn (n ≥ 0). Let n and m be indi
es su
h that n < m. The randomve
tor Yn is σ(Xn,Nn)-measurable, so that

E(YmYn |Xn,Xm,Nn) = YnE(Ym|Xn,Xm,Nn) .Using the independen
y of Nm with the random ve
tors. Xn, Nn and Xm, we get
E(Ym|Xn,Xm,Nn) =

1

(2π)d/2

∫

Rd

(

ln− (∥
∥

Xn

‖Xn‖
+ σx

∥

∥

)

)

e−
‖x‖2

2 dx− F (σ)

=
1

(2π)d/2

∫

Rd

(

ln−(‖e1 + σx‖)
)

e−
‖x‖2

2 dx− F (σ) = 0 ,that implies E(YmYn) = 0. �58



2.4. Spheri
al fun
tions and the s
ale-invariant algorithmWith the above notations de�ne the random ve
tors Sn = Y0 + · · · + Yn and S ′
n =

Y ′
0 + · · ·+Y ′

n. Under the hypothesis (HSI), the 
hara
teristi
 fun
tion of Sn 
an be writtenas E(itSn) = E(E(itSn |X0,N0, . . . ,Nn−1)) and so, E(itSn) = E(itS ′
n) = (E(itY ′

0))
n+1.But the random ve
tors Yn are i.i.d. with expe
tation 0 and varian
e F2(σ) − F (σ)2(see (2.15)). As a 
onsequen
e, the 
entral limit theorem holds for both (Yn)n and (Y ′
n)n:Theorem 2.8. Under the hypothesis (HSI) one has

lim
n→+∞

P

(

ln(‖Xn‖) − ln(‖X0‖) + F (σ)n
√

(F2(σ) − F (σ)2)n
6 t

)

=
1√
2π

∫ t

−∞
e−

u2

2 du .The pointwise stability of ln (‖Xn+1‖/‖Xn‖) is obtained by applying the following Lawof Large Numbers (LLN) for orthogonal random variables (see [93, p. 458℄ where a moregeneral statement is given).Theorem 2.9 (LLN for Orthogonal Random Variables). Let (Yn)n≥0 be a sequen
e ofidenti
ally distributed real random variables with �nite varian
e and orthogonal, i.e., forall indi
es i, j, with i 6= j one has E(Yi) = 0, E(Y 2
i ) < +∞ and E(YiYj) = 0. Then

lim
n

1

n

n−1
∑

k=0

Yk = 0 a.s.We are now ready to prove the following main resultTheorem 2.10. Let σ > 0 and let (Xn)n be the sequen
e of random ve
tors satisfyingthe re
urren
e relation (2.13) with f(x) = g(‖x‖2) where g is an in
reasing map. Assumethat the hypothesis (HSI) holds. Then (Xn)n 
onverges log-linearly to the minimum, inthe sense that
lim
n

1

n
ln
(‖Xn‖
‖X0‖

)

= −F (σ)(< 0) a.s. (2.16)where F is de�ned by (2.4). The optimal 
onvergen
e rate is obtained for σ = σF :=
minF−1(maxF ) (see Corollary 1).Proof :In 
ase σn = σ‖Xn‖ for all indi
es n the equality (2.12) be
omes

ln ‖Xn+1‖ − ln ‖Xn‖ = − ln−
(∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

)

.and after summing the equations for k = 0, . . . , n− 1, we obtain
1

n
(ln ‖Xn‖ − ln ‖X0‖) = −1

n

n−1
∑

k=0

ln−
(∥

∥

∥

Xk

‖Xk‖
+ σNk

∥

∥

∥

)

.Proposition 2.7 and Theorem 2.9 end the proof. �59



Chapter 2. Log-linear Convergen
e and Optimal Bounds for the (1 + 1)-ES2.5 Dis
ussion and 
on
lusionTheorems 2.4 and 2.10 show that optimal bounds for the 
onvergen
e rate of an isotropi

(1 + 1)-ES with multivariate normal distribution are rea
hed for the s
ale-invariant algo-rithm with σn = σF‖Xn‖ for the sphere fun
tion, where σF maximizes

F (σ) = E(ln− ‖e1 + σN‖) =
1

(2π)d/2

∫

Rd

ln−(‖e1 + σx‖)e− ‖x‖2

2 dx .From (2.12) and from the isotropy of the multivariate normal distribution N , it fol-lows that �nding σ maximizing F amounts to �nding σ maximizing the log-progress
E(ln ‖Xn‖) − E(ln ‖Xn+1‖).Most of the works based on the progress rate, 
onsist in �nding σ maximizing estima-tions of the expe
ted progress E(‖Xn‖) − E(‖Xn+1‖) (when d goes to in�nity) [114, 25℄.Note that the de�nition of progress in those works does not 
onsider ln ‖Xn‖ and so isdi�erent from the one underlying our study. Assuming that both de�nitions mat
hes3, ourresults give an interpretation of this approa
h in terms of lower bounds for 
onvergen
eof ESs.The lower bounds derived in this paper are tight. Consequently they 
an be used inpra
ti
e to assess the performan
es of a given step-size adaptation strategy 
omparingthe 
onvergen
e rate a
hieved by the strategy with the optimal one, given by the s
ale-invariant algorithm.The numeri
al estimation of the optimal 
onvergen
e rate −τ 
an be a
hieved with aMonte Carlo integration: for di�erent σ, F (σ) equals the expe
tation E(ln− ‖e1 + σN‖).This expe
tation 
an be estimated by summing independent samplings of the randomvariable ln− ‖e1 + σN‖. This is illustrated in Fig 2.1.The analysis of the log-linear 
onvergen
e 
arried out in this paper relies on the appli-
ation of the Strong Law of Large Numbers for orthogonal random variables. This studyuses deeply the invarian
e under rotations of the standard d-dimensional multivariatenormal distribution and does not 
over dire
tly the usual 
ase of stable Markov 
hainsthat will be investigated in future works.A
knowledgmentsThe authors thank the referees for their 
onstru
tive remarks on the previous version thatlead to this new version and are very grateful to Ni
olas Monmar
hé for his en
ourage-ments. This work re
eives partial supports from the ANR/RNTL proje
t OptimisationMultidis
iplinaire (OMD) and from the ACI CHROMALGEMA.

3This will be true asymptoti
ally in the dimension d, though we do not prove it rigorously in thispaper.60



2.5. Dis
ussion and 
on
lusion

Figure 2.1: Left: Plot of the fun
tion σ 7→ dF (σ/d) (Eq. (2.4)) versus σ for d = 5 (resp.
10, 30) and 0 ≤ σ ≤ 8. The upper 
urve 
orresponds to d = 5, the middle one to d = 10and the lower one to d = 30. Note that the fun
tion F de�ned in (2.4) impli
itly dependson d. Using the more expli
it notation Fd instead of F , the plots represent a
tually
σ 7→ dFd(σ/d). For d = 10, we see that σF maximizing F (de�ned in Corollary 1)approximately equals 0.13. The plots were obtained doing Monte Carlo estimations of Fusing 106 samples.Right: Twenty realizations of the s
ale-invariant algorithm on the sphere fun
tion for
d = 10. The y-axis shows the distan
e to the optimum (in log-s
ale) and the x-axis thenumber of iterations n. The twenty 
urves below 
orrespond to the optimal algorithm,ie. σn = σF‖Xn‖ for all n where σF equals to 0.13 (value maximizing the 
urve of Fon the left for d = 10). The twenty 
urves above 
orrespond to 20 realizations of thes
ale-invariant algorithm for σn = 0.3‖Xn‖. Observed, the log-linear 
onvergen
e as wellas the optimality of the s
ale-invariant algorithm for σ = σF .
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Chapter 3Study of the S
ale-invariant (1 + 1)-ESin Noisy Spheri
al EnvironmentsIn real-world optimization problems, obje
tive fun
tions are noisy. The noise 
an stemfrom physi
al measurement limitations or Monte Carlo simulations . . . . In Chapter 2, wehave established that the s
ale-invariant (1 + 1)-ES 
onverges log-linearly when minimiz-ing sphere fun
tions. The goal of this 
hapter is to see how the behavior of the (1+1)-ESis a�e
ted when the sphere fun
tion is disturbed by noise. We investigate the (1 + 1)-ESwith the arti�
ial s
ale-invariant adaptation rule be
ause this rule is optimal in the 
aseof non-noisy spheri
al fun
tions, as shown in Chapter 2. The noise model investigatedhere is multipli
ative, i.e., the noisy obje
tive fun
tion result from the multipli
ation ofthe non-noisy obje
tive fun
tion by the random variable 1 +N where N is the noise ran-dom variable. Theoreti
al studies of minimization of noisy obje
tive fun
tions using EShave been mainly performed by Arnold and Beyer [23, 24, 7, 25, 5, 8, 10℄. These studiesrely on the approximation of an in�nite dimension of the sear
h spa
e and use 
lassi
alnormalizations previously used in the �eld of progress rate theory for the step-size of themutation and the progress rate. Moreover, Arnold and Beyer used an additional normal-ization for the noise strength whi
h represents the varian
e of the random variable N .The 
hapter is 
omposed of three parts:The �rst part (Se
tion 3.1) is the paper [76℄, that has been published in the pro
eed-ings of the 
onferen
e Parallel Problem Solving From Nature (PPSN 2008). The noisysphere fun
tion model used in this part is similar to the one studied by Arnold and Beyerin [23, 24, 7, 25, 5, 8, 10℄. It 
an be written as
Fs(x) = ‖x‖2(1 + N ) (3.1)where we assume that the random variable N has a �nite expe
tation su
h that E(N ) >

−1 and admits a density fun
tion pN whi
h lies in the range [mN ,MN [ (−∞ < mN <
MN ≤ +∞, MN > −1 and mN 6= −1). Arnold and Beyer's model is similar (see Eq. 3.2)ex
ept that they used a normalization for the varian
e of the noise. Moreover, most of thestudies of Arnold and Beyer use the assumption of Gaussian noise. A notable ex
eptionis the study in [10℄ whi
h investigates the behavior of a 
lass of ES using re
ombination,63



Chapter 3. Study of the S
ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentsunder the assumption of a general noise distribution. In this paper, we prove (Theorem3.1), that the behavior of the s
ale-invariant (1 + 1)-ES minimizing the noisy sphere(Eq. 3.1) depends on the in�mum of the (support of the) noise mN . More pre
isely, weprove that the sequen
e of solutions generated by the algorithm 
onverges almost surelyto zero if mN > −1 and diverges to in�nity when −∞ < mN < −1. The result isdemonstrated using the Borel-Cantelli Lemma (Lemma 3.2). The study does not in
ludethe 
ase mN = −1.The se
ond part (Se
tion 3.2) is the main material for a paper that we intend to submitsoon. The goal of this part is to see if the log-linear behavior that we have proved inChapter 2 for (non-noisy) sphere fun
tions also holds for noisy spheri
al fun
tions. Thisse
ond part uses the same 
ontext as the �rst part (Se
tion 3.1), i.e., the same noisyobje
tive fun
tion given by Eq. 3.1 and a s
ale-invariant (1 + 1)-ES. Therefore, the mainresult derived in Theorem 3.1 is also used in this part. It is shown (Theorem 3.18) that the
onvergen
e (ifmN > −1) or divergen
e (if−∞ < mN < −1) of the (1+1)-ES minimizingthe noisy sphere (Eq. 3.1) holds in the sense: 1
n

ln ‖Xn‖ 
onverges in probability to γ (seeEq. 3.20) where γ is �nite and (Xn)n is the solution of the algorithm at an iteration nde�ned in Eq. 3.5. However, a

ording to the de�nition of the log-linear behavior givenin Eq. 3.7, one has to show that γ 6= 0 whi
h is not proven in our study.The main result of this part (Theorem 3.18) has been established using the Law ofLarge Numbers (LLN) for Markov 
hains (Theorem 3.12).The third part (Se
tion 3.3) is made of some additional theoreti
al results that were notin
luded in paper [76℄ that they generalize. They are related to 'spatial' 
onvergen
e (ordivergen
e) of the s
ale-invariant (1 + 1)-ES for the shifted noisy sphere fun
tion de�nedby Fα(x) = (‖x‖2 + α)(1 + N ) where α is a positive 
onstant 4. Moreover, in thesestudies, non lower-bounded noise distributions, i.e., mN = −∞, are also investigated (In[76℄, only lower bounded noise distributions had been investigated). Therefore our studyin
ludes the parti
ular 
ase of Gaussian noise that has been investigated by Arnold andBeyer. It is shown in Se
tion 3.3.1 that if mN > −1 the algorithm 
onverges. However,if −∞ ≤ mN < −1, it is shown in Se
tion 3.3.2 that the algorithm 
annot 
onverge(in the sense that the L2-norm of the distan
e to the optimum of the noiseless part ofthe obje
tive fun
tion 
annot 
onverge to zero), as negative obje
tive fun
tion values aresampled after a �nite number of iterations.Comparison with results in [8℄ In [8℄, the s
ale-invariant (1 + 1)-ES has been inves-tigated using the following model of noisy sphere fun
tion:
f(x) = ‖x‖2 +

2σ∗
ǫ

d
‖x‖2N(0, 1) (3.2)where d is the sear
h spa
e dimension, σ∗

ǫ is a stri
tly positive 
onstant 
alled the normal-ized noise strength and N(0, 1) is the Gaussian random variable with mean 0 and varian
e
1. The expe
ted progress rate 
omputed in [8℄ is positive and 
onvergen
e o

urs for all
σ∗
ǫ values. On the other hand, our theoreti
al study shows (see Se
tion 3.3.2) that fornoise distributions with mN = −∞, whi
h is the 
ase of a Gaussian noise, no 
onvergen
e4For α = 0, Fα(x) simpli�es to Fs(x) de�ned in Eq. 3.1.64



o

urs. This result is also illustrated by experimental observations: In Fig. 3.3, it 
an beseen that divergen
e happens for su�
iently large noise strength values. Therefore ourresults may seem in 
ontradi
tion with Arnold and Beyer's results. The reason for thisapparent 
ontradi
tion is that, in [8℄, the expression 2σ∗ǫ
d

for the noise level implies a smallnoise strength for large sear
h spa
e dimensions. For example, in [8, Fig 8℄, and for σ∗
ǫ = 2and d = 80, the noisy sphere fun
tion 
an be written as f(x) = ‖x‖2(1 + 0.05N(0, 1)).Therefore, the probability to sample a negative �tness, whi
h is the event that leads tonon 
onvergen
e, is upper bounded by 10−88. Sampling a negative �tness value is then anevent that will 'never' happens in pra
ti
al simulations as it has a probability less that

10−88 to happen, and, the algorithm is observed to 
onverge.Future work Our study 
an be 
ompleted by investigating the 
ase mN = −1 whi
hwas not solved here. Moreover, in the se
ond part of the study, we have only shown that
onverge rates (for mN > −1) and divergen
e rates (for −∞ < mN < −1) is positiveor negative without ex
luding the 
ase of null 
onvergen
e or divergen
e rate to provethe log-linear behavior as de�ned in Eq. 3.7. Fortunately, the 
onvergen
e rate given inEq. 3.7 
an be easily 
omputed using Monte Carlo simulations. Therefore, one has to
ompute numeri
ally this 
onvergen
e rate. It seems that the 
ase mN = −1 is equivalentto having 1
n

ln ‖Xn‖ → 0 in Eq. 3.20. Furthermore, the 
onvergen
e established in Eq. 3.20holds in probability and one has to investigate almost sure 
onvergen
e in this equation.Another issue to 
larify is the reliability of an approximation that has been done in [8℄,stating that an o�spring and its parent have similar noise levels in large dimensions. For
omma strategies, we 
on�rm in Chapter 4 that su
h an approximation is reliable, but inthe limit of in�nite dimension of the sear
h spa
e.The (1+1)-ES with reevaluation of the parent, and link with Chapter 4 In this
hapter, we investigate the behavior of the (1 + 1)-ES when minimizing noisy obje
tivefun
tions with positive ideal fun
tion values. The (1 + 1)-ES does not 
onverge for noisedistributions allowing the sampling of negative �tness values and for the spe
i�
 s
ale-invariant adaptation rule. In fa
t, after a 
ertain number of iterations, a stri
tly negativeobje
tive fun
tion value will happens almost surely. Then, as the sele
tion s
heme usedin the (1 + 1)-ES is elitist, the sequen
e of (negative) �tness fun
tions de
reases and willprobably have as a limit −∞. The same reasoning applies for a (1 + λ)-ES where λ ≥ 1.This means that in
reasing the number of o�spring λ is not a solution to avoid divergen
e.To avoid divergen
e 
ases, an alternative is to use the (1 + 1)-ES with a reevaluation ofthe parent in the sele
tion step [25, 8℄. Another possible solution is to use a non elitistES su
h as the (1, λ)-ES whi
h will be investigated in the next 
hapter. Note that thebehavior of the (1 + 1)-ES with reevaluation will be very similar to a (1, 2)-ES espe
iallyfor high dimensions of the sear
h spa
e, as suggested by relative progress rates 
omputedin [25℄. Moreover, the study that we present in the next 
hapter (Chapter 4) uses theLLN for orthogonal random variables and the same te
hniques 
an also be applied for thevariant of (1 + 1)-ES reevaluating the parent.
65



Chapter 3. Study of the S
ale-invariant (1 + 1)-ES in Noisy Spheri
al Environments

66



Mohamed Jebalia1 and Anne Auger1,2
1 TAO Team, INRIA Sa
layUniversité Paris Sud, LRI, 91405 Orsay 
edex, Fran
e

2 Mi
rosoft Resear
h-INRIA Joint Centre28, rue Jean Rostand, 91893 Orsay Cedex, Fran
emohamed.jebalia�lri.fr, anne.auger�inria.fr
On Multipli
ative Noise Models for Sto
hasti
 Sear
hPro
eedings of Parallel Problem Solving from Nature 2008, pp52-61.The original publi
ation will be available athttp://www.springerlink.
om

Errata :All over Se
tion 3.1 of the 
hapter, the quantity mN should be referred to as the in�mumof the support of the noise and not the lower bound of the noise (even if mN = −∞).This implies, in the abstra
t of the �rst part of the 
hapter for example, that the senten
e�. . . the (1 + 1)-ES diverges when the lower bound allows to sample negative �tness . . . �should write �. . . the (1 + 1)-ES diverges when the in�mum of the support of the noisedistribution allows to sample negative �tness . . . �. Similarly, the quantity MN should bereferred to as the supremum (whi
h 
an be in�nite) of the support of the noise instead ofupper bound of the noise.In Lemma 3.6, an additional hypothesis is ne
essary to establish the result. we have tosuppose that : for all n ≥ 0, the random ve
tors Un and Nn are independent. Moreover,there are two errata in the se
ond paragraph of the 
on
lusion of the published paper:
• In the se
ond paragraph of the 
on
lusion, in the senten
e �. . . the normalization ofthe standard deviation of the noise implies a so small probability to sample 1 + N67



Chapter 3. Study of the S
ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentsbelow −1 . . . �, one should have �1 + N below 0� instead of 1 + N below −1

• In the se
ond paragraph of the 
on
lusion, in the senten
e �. . . where the standarddeviation of 0.1 
orresponds to a probability to have (1+0.1N ) < 0 lower boundedby 10−23.�, one should have �upper bounded� instead of �lower bounded�.
• In the abstra
t of the paper �dimensionality� should be repla
ed by �dimension�.
• A spelling mistake in Se
tion 3.1.2 (paragraph Experimental observations): �re-spe
itvely� should be written as �respe
tively�.
• A spelling mistake in the sket
h of the proof of Proposition 3.4: �stri
lty� should bewritten as �stri
tly�.
• In the beginning of the Se
tion �Mathemati
al model for the (1 + 1)-ES�, �pertur-bated� should be written as �perturbed�.
• The word �independen
y� at the end of the proof of Lemma 3.5 in the Se
tionAppendix and the word �independan
e� in the proof of Lemma 3.6 in the Se
tionAppendix should be written as `independen
e�.
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3.1. On Multipli
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hasti
 Sear
h
3.1 OnMultipli
ative Noise Models for Sto
hasti
 Sear
h

On Multipli
ative Noise Models for Sto
hasti
 Sear
hMohamed Jebalia1 and Anne Auger1,2
1 TAO Team, INRIA Sa
layUniversité Paris Sud, LRI, 91405 Orsay 
edex, Fran
e

2 Mi
rosoft Resear
h-INRIA Joint Centre28, rue Jean Rostand, 91893 Orsay Cedex, Fran
emohamed.jebalia�lri.fr, anne.auger�inria.fr
Abstra
tIn this paper we investigate multipli
ative noise models in the 
ontext of 
ontinuous op-timization. We illustrate how some intrinsi
 properties of the noise model imply thefailure of reasonable sear
h algorithms for lo
ating the optimum of the noiseless part ofthe obje
tive fun
tion. Those �ndings are rigorously investigated on the (1 + 1)-ES forthe minimization of the noisy sphere fun
tion. Assuming a lower bound on the supportof the noise distribution, we prove that the (1 + 1)-ES diverges when the lower boundallows to sample negative �tness with positive probability and 
onverges in the opposite
ase. We provide a dis
ussion on the pra
ti
al appli
ations and non appli
ations of thoseout
omes and explain the di�eren
es with previous results obtained in the limit of in�nitesear
h-spa
e dimensionality.3.1.1 Introdu
tionIn many real-world optimization problems, obje
tive fun
tions are perturbed by noise.Evolutionary Algorithms (EAs) have been proposed as e�e
tive sear
h methods in su
h
ontexts [9, 79℄. A noisy optimization problem is a rather general optimization problemwhere for ea
h point x of the sear
h spa
e, we 
an observe f(x) perturbed by a randomvariable or in other words for a given x we 
an observe a distribution of possible obje
tivevalues. The goal is in general to 
onverge to the minimum of the averaged value of the69



Chapter 3. Study of the S
ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentsobserved random variable. One type of noise en
ountered in real-world problems is theso-
alled multipli
ative noise where the noiseless obje
tive fun
tion f(x) is perturbed bythe addition of a noise term proportional to f , ie. the noisy obje
tive fun
tion F reads
F(x) = f(x)(1 + N ) (3.3)where N is the noise random variable, sampled independently at ea
h new evaluationof a point. Su
h noise models are in parti
ular used to ben
hmark robustness of EAswith respe
t to noise [134℄. The fo
us here is 
ontinuous optimization (that will be min-imization) where f maps a 
ontinuous sear
h spa
e, ie. a subset of R

d, into R. TheEAs spe
i�
ally designed for 
ontinuous optimization are usually referred as EvolutionStrategies (ES), where a set of 
andidate solutions evolves by �rst applying Gaussian per-turbations (mutations) to the 
urrent solutions then sele
tion. ES in noisy environmentshave been studied by Arnold and Beyer [25, 7, 5℄. Multipli
ative noise has been investi-gated in the 
ase of N being normally distributed with a standard deviation s
aled by
1/d for a (1+1)-ES [8℄, (µ, λ)-ES [7, 24℄, (µ/µI, λ)-ES [6℄ and f being the sphere fun
tion
f(x) = ‖x‖2. Under the assumption that d goes to in�nity, Arnold and Beyer show, for
f(x) = ‖x‖2, positive expe
ted �tness gain for the elitist (1 + 1)-ES (if the �tness of theparent is not reevaluated in the sele
tion step whi
h is the 
ase of our study). This impliesa de
rease of the expe
tation of the square distan
e to the optimum (here zero). However,
onvergen
e of the (1 + 1)-ES to the optimum of the noiseless part of the noisy obje
tivefun
tion seems to be unlikely if the noise random variable takes values smaller than −1as we illustrate now on a simple example. Assume indeed that N takes three distin
tvalues (ea
h with probability 1/3) +γ, 0 and −γ where γ satis�es γ > 1. For a given
x ∈ R

d, the obje
tive fun
tion F(x) takes 3 di�erent values (ea
h with probability 1/3)
(1 + γ)‖x‖2, ‖x‖2, (1− γ)‖x‖2. The last term is stri
tly negative for x non equal to zero.Therefore, if one negative obje
tive fun
tion value is rea
hed, the (1+1)-ES that 
an onlya

ept solutions having a lower obje
tive fun
tion value will never a

ept solutions 
loserto the optimum sin
e they have higher obje
tive fun
tion values1. On the 
ontrary the
(1 + 1)-ES will diverge log-linearly 2, i.e. the logarithm of the distan
e to the optimumwill in
rease linearly.Starting from this observation, we investigate how the properties of the support of thenoise distribution relate to 
onvergen
e or divergen
e of sto
hasti
 sear
h algorithms and
an make the 
onvergen
e to the optimum of the noiseless part of the obje
tive fun
tionhopeless for reasonable sear
h algorithms. Compared to previous approa
hes, we do notmake use of asymptoti
 assumptions, trying to 
apture e�e
ts that were not observedbefore [8℄. In Se
tion 3.1.2, we detail the noise model 
onsidered and show experimentallyon a (1 + 1)-ES that divergen
e and 
onvergen
e is determined by the probability tosample noise values smaller than −1. In Se
tion 3.1.3, we provide some simple proofs of
onvergen
e and divergen
e for the (1+1)-ES. In Se
tion 3.1.4 we dis
uss the results andexplain where the di�eren
e with the results in [8℄ stems from.1Their absolute value is smaller though. However, trying to minimize the absolute value of F insteadis not a solution in general, 
onsider for instan
e the fun
tion f(x) = (‖x‖2 + 1)(1 + N ).2We will say that a sequen
e (dn)n diverges (resp. 
onverges) log-linearly if there exists c > 0 (resp.
c < 0) su
h that limn

1
n

ln(dn) = c .70
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AFigure 3.1: [Dashed Line℄ One dimensional 
ut of f(x) = ‖x‖2 along one arbitrary unitve
tor. [Straight line℄ Left: One dimensional 
ut of g−0.5(x) = ‖x‖2(1− 0.5). Right: Onedimensional 
ut of g−1.5(x) = ‖x‖2(1 − 1.5). For a given x, the noisy-obje
tive fun
tion
an, in parti
ular, take any value between the dashed 
urve and the straight 
urve.3.1.2 MotivationsElementary remarks on the noise model We investigate multipli
ative noise modelsas de�ned in Eq. 3.3 where N is a random variable with �nite mean and f(x) is thenoiseless fun
tion that we assume positive in the sequel. We also assume that 1+E(N ) > 0su
h that the argmin3 of the expe
ted value of F(x) is the argmin of f(x). Often, thedistribution of N is assumed symmetri
, implying then that 1 + E(N ) = 1 > 0. Thoughone might think that this 
ondition is su�
ient su
h that minimizing F(x) amounts tominimizing f(x), we sket
h now, why divergen
e to ∞ of the distan
e to the optimumhappens if 1 + N 
an take negative values.Assume that f(x) 
onverges to in�nity when ‖x‖ goes to ∞; typi
ally f(x) 
an be thefamous sphere fun
tion f(x) = ‖x‖2 and assume that the random variable N admits adensity fun
tion pN (t), t ∈ R whose support is an interval [mN ,MN [, i.e. N ∈ [mN ,MN [and the probability that N ∈ [a, b] for any mN ≤ a < b ≤ MN is stri
tly positive. Thefun
tion gmN
(x) = f(x)(1+mN ) gives a lower bound of the values that 
an be rea
hed bythe noisy �tness fun
tion for di�erent instantiations of the random variable N (be
ause

f is positive). For a given x, F(x) 
an take values with positive probability in any openinterval of ]gmN
(x), f(x)[ (4).In Fig. 3.1 are depi
ted a 
ut of f(x) = ‖x‖2 and gmN

(x) = f(x)(1 + mN ) for mNequals −0.5 and −1.5. The position ofmN with respe
t to −1 determines whether gmN
(x)is 
onvex or 
on
ave: for mN > −1, gmN

(x) is 
onvex, 
onverging to in�nity when ‖x‖goes to ∞ and for mN < −1, gmN
(x) is 
on
ave, 
onverging to minus in�nity when ‖x‖goes to ∞. Minimizing gmN

(x) in the 
ase of mN < −1 means that ‖x‖ is diverging to
+∞ and gmN

(x) is diverging to −∞ whi
h is the opposite of the behavior one would likesin
e we are aiming at minimizing the non-noisy fun
tion f(x) = ‖x‖2. Note that in theexample sket
hed in the introdu
tion with N taking the values γ, −γ and 0, the plot of
‖x‖2 and (1 − γ)‖x‖2 for γ = 1.5 are the 
urves represented in Fig 3.1 (right).Experimental observations We investigate now numeri
ally how the �shape� of thelower bound might a�e
t the 
onvergen
e. For this purpose we use a (1, 5)-ES and a3The argmin of an obje
tive fun
tion x 7→ h(x) are de�ned as h(argminx h) = minx h(x)4Note that gmN

(x) < f(x) i� mN < 0. 71
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Figure 3.2: Distan
e to the optimum (in log-s
ale) versus number of evaluations. Tenindependent runs for the s
ale-invariant (1, 5)-ES (10 upper 
urves of ea
h graph) and
(1 + 1)-ES (10 lower 
urves of ea
h graphs) with d = 10 and σ = 1/d. Left: f(x) = ‖x‖2.Middle: f(x) = ‖x‖2(1 + U[−0.5,0.5]). Right: f(x) = ‖x‖2(1 + U[−1.5,1.5]).
(1 + 1)-ES using s
ale-invariant adaptation s
heme for the step-size5.We investigate the fun
tion Fs(x) = ‖x‖2(1 + N ) when the noise N is uniformlydistributed in the ranges [−0.5, 0.5] and [−1.5, 1.5] respe
itvely denoted U[−0.5,0.5] and
U[−1.5,1.5]. This latter noise 
orresponds to the 
on
ave lower bound g−1.5(x) = −0.5‖x‖2plotted in Fig. 3.1. In Figure 3.2, the result of 10 independent runs of the (1, 5)-ES (10upper 
urves of ea
h graph) in dimension d = 10 are plotted for the non-noisy sphere(left), f(x) = ‖x‖2(1 + U[−0.5,0.5]) (middle) and f(x) = ‖x‖2(1 + U[−1.5,1.5]) (right). Nottoo surprisingly, we observe a drasti
 di�eren
e in the last two 
ases: the algorithm
onverges to the optimum for the noise U[−0.5,0.5] whereas the distan
e to the optimumin
reases (log)-linearly for the noise having a lower bound smaller than −1 6. Comparingthe left and middle graphs we also observe, as expe
ted, that the presen
e of noise slowsdown the 
onvergen
e. On the same �gure (lower 
urves of the graphs), the results of 10independent runs of the (1 + 1)-ES are plotted for the three same fun
tions. As in the
ase of the 
omma strategy we observe that the (1+1)-ES diverges in the 
ase of the noise
U[−1.5,1.5] and that, when 
onvergen
e o

urs, the 
onvergen
e rate is slower in presen
eof noise. Last, we investigate numeri
ally the (1+1)-ES where N is normally distributedand in parti
ular unbounded. This 
orresponds to the 
ase investigated in [8℄. We 
arryout tests for a standard deviation of the Gaussian noise equals 0.1, 2 and 10. Results arepresented in Fig. 3.3. We observe 
onvergen
e when the standard deviation of the noiseequals 0.1 and divergen
e in the last two 
ases.5In a s
ale-invariant ES, the step-size is set at ea
h iteration as a (stri
tly positive) 
onstant σ times thedistan
e to the optimum. This arti�
ial adaption s
heme (sin
e in pra
ti
e one does not know the distan
eto the optimum!) allows to a
hieve optimal 
onvergen
e rate for ES and is therefore very interesting froma theoreti
al point of view. The algorithm is mathemati
ally de�ned in Se
tion 3.1.3.6However, 
ontrary to what we will see for the (1 + 1)-ES, we do not state that �-1� is a limit valuebetween 
onvergen
e and divergen
e in the 
ase of (1, λ)-ES. Indeed 
onvergen
e and divergen
e dependson the intrinsi
 properties of the noise and on λ and σ as well (see [25℄).72
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Figure 3.3: Ten independent runs for the s
ale-invariant (1 + 1)-ES with a normallydistributed noise: on f(x) = ‖x‖2(1 + σǫN (0, 1)) with σǫ equals 0.1 (left), 2 (middle) and
10 (right) for d = 10 and σ = 1/d.3.1.3 Convergen
e and divergen
e of the (1 + 1)-ESIn this se
tion, we provide a simple mathemati
al analysis of the 
onvergen
e and diver-gen
e of the (1 + 1)-ES experimentally observed in the previous se
tion. We fo
us forthe sake of simpli
ity on lower bounded noise, i.e. the support of the noise is in
ludedin [mN ,+∞[. We prove that the (1 + 1)-ES minimizing the noisy sphere 
onverges if
mN > −1 and diverges if mN < −1. The proofs are rather simple and rely on the Borel-Cantelli Lemma. For the sake of readability we provide here a sket
h of the demonstrationsand send the proofs with the te
hni
al details in the Appendix of the paper.Mathemati
al model for the (1 + 1)-ESThe (1 + 1)-ES is a simple ES whi
h evolves a single solution. At an iteration n, thissolution denoted Xn, is 
alled parent. The minimization of a given fun
tion f mapping
R
d (d ≥ 1) into R using the (1 + 1)-ES algorithm is as follows: At every iteration n,the parent Xn is perturbated by a Gaussian random variable σnNn, where σn is a stri
tlypositive value 
alled step-size and (Nn)n ∈ R

d are independent realizations of a multivari-ate isotropi
 normal distribution on R
d denoted by N(0, Id)

(7). The resulting o�spring
Xn + σnNn is a

epted if and only if its �tness value is smaller than the one of its parent
Xn. One of the key points in minimization using isotropi
 ES8 is how to adapt the se-quen
e of step-sizes (σn). Convergen
e of the (1 + 1)-ES is sub-log-linear bounded belowby an expli
it log-linear rate. This lower bound for the 
onvergen
e rate is attained forthe spe
i�
 
ase of the sphere fun
tion and s
ale-invariant algorithm where the step-size is
hosen proportional to the distan
e to the optimum, i.e. σn = σ‖Xn‖ where σ is a stri
tlypositive 
onstant [17, 77℄. The s
ale-invariant algorithm has a major pla
e in the theoryof ES sin
e it 
orresponds to the dynami
 algorithm impli
itly studied in the one-stepanalysis 
omputing progress rate or �tness gain [113, 25℄. Using this adaptation s
heme,the algorithm is referred to as the s
ale-invariant (1 + 1)-ES and the o�spring writes as7N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R

d and 
ovarian
e matrix theidentity Id.8ES are 
alled isotropi
 when the 
ovarian
e matrix of the distribution of the random ve
tors (Nn)nis Id. 73
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al Environments
Xn + σ‖Xn‖Nn. The noisy sphere fun
tion is denoted

Fs(x) = ‖x‖2(1 + N ) (3.4)where we assume that the random variable N has a �nite expe
tation su
h that E(N ) >
−1 and admits a density fun
tion pN whi
h lies in the range [mN ,MN [ where −∞ < mN <
MN ≤ +∞, MN > −1 and mN 6= −1. The normalized noisy part N of the noisy spherefun
tion will be 
alled normalized overvaluation of x. The term normalized overvaluationwas already de�ned in [8℄ where it 
orresponds to the opposite of the quantity 
onsideredhere up to a fa
tor d/2. The minimization of this fun
tion using the s
ale-invariant (1+1)-ES is mathemati
ally modeled by the sequen
e of parents (Xn) with their relative noisyobje
tive fun
tions (Fs(Xn)) and normalized overvaluations (On). At an iteration n, the�tness of the parent is Fs(Xn) = ‖Xn‖2 (1 +On) and the �tness of an o�spring equals
‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) where (Nn)n is a sequen
e of independent random variableswith N as a 
ommon law. Let X0 ∈ R

d be the �rst parent with a normalized overvaluation
O0 sampled from the distribution of N . Then the update of Xn for n ≥ 0 writes as:

Xn+1 = Xn + σ‖Xn‖Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) < ‖Xn‖2 (1 +On) ,

= Xn otherwise , (3.5)and the new normalized overvaluation On+1 is then:
On+1 = Nn if ‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) < ‖Xn‖2 (1 +On) ,

= On otherwise . (3.6)The (1 + 1)-ES algorithm ensures that the sequen
e relative to the fun
tion to minimize(whi
h is (Fs(Xn)) in our 
ase) de
reases. This property makes the theoreti
al study ofthe (1 + 1)-ES easier than that of 
omma strategies. Our study shows that the behaviorof the s
ale-invariant (1 + 1)-ES on the noisy sphere fun
tion (3.4) depends on the lowerbound of the noise mN .Theorem 3.1. The (1 + 1)-ES minimizing the noisy sphere (Eq. 3.4) de�ned in Eq. 3.5
onverges to zero if mN > −1 and diverges to in�nity when mN < −1.Proof :The proof of this theorem is split in two 
ases mN > −1 and mN < −1 respe
tivelyinvestigated in Proposition 3.3 and Proposition 3.4.The proofs heavily rely on the se
ond Borel-Cantelli Lemma that we re
all below. But�rst, we need a formal de�nition of `in�nitely often (i.o.)': Let qn be some statement,eg. |an − a| > ǫ. We say (qn i.o.) if for all n, ∃ m ≥ n su
h that qm is true. Similarly,for a sequen
e of events An in a probability spa
e, (An i.o.) equals {w|w ∈ An i.o.} =
∩n≥0 ∪m≥n Am := lim An. The se
ond Borel-Cantelli Lemma (BCL) states that:Lemma 3.2. Let (An)n≥0 be a sequen
e of events in some probability spa
e. If the events
An are independent and verify ∑n≥0 P (An) = +∞ then P (lim An) = 1.74
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ative Noise Models for Sto
hasti
 Sear
hProposition 3.3 (Convergen
e for mN > −1). If mN > −1, the sequen
es (Fs(Xn)) and
(‖Xn‖) 
onverge to zero almost surely.Sket
h of the proof (see detailed proof in Appendix) The 
ondition mN > −1 ensuresthat the de
reasing sequen
e (Fs(Xn)) is positive. Therefore it 
onverges. Besides thesequen
e (‖Xn‖) is upper bounded by θ := Fs(X0)/(1 +mN ) as shown in Fig. 3.1 (left).Consequently, the probability to hit, at ea
h iteration n, a �xed neighborhood of 0 islower bounded by a stri
tly positive 
onstant. Applying BCL we dedu
e the 
onvergen
eof the sequen
e (Fs(Xn)) (and then that of (‖Xn‖)) to zero.Proposition 3.4 (Divergen
e for mN < −1). If mN < −1, the sequen
e (Fs(Xn)) di-verges to −∞ almost surely and the sequen
e (‖Xn‖) diverges to +∞ almost surely.Sket
h of the proof (see detailed proof in Appendix) As 1 + mN < 0, the probabilityto sample a noise Nn su
h that 1 + Nn < 0 is stri
lty positive. Therefore there exists aninteger n1 su
h that for all n ≥ n1, Fs(Xn) < 0. Consequently (‖Xn‖) is lower boundedby A as illustrated in Fig. 3.1 (right) where the straight horizontal line represents theslope y = Fs(Xn1). Besides, the probability to have Fs(Xn) as small as we want islower bounded by a stri
tly positive 
onstant whi
h gives with BCL the divergen
e of thesequen
e (Fs(Xn)) to −∞, i.e. the sequen
e (‖Xn‖) diverges to +∞.Remark that for the example sket
hed in the introdu
tion where N takes the 3 di�erentvalues γ, 0 and −γ and under the 
ondition γ > 1 the proof of divergen
e will follow thesame lines.3.1.4 Dis
ussion and 
on
lusionWe 
on
lude from Theorem 3.1 that what matters for 
onvergen
e or divergen
e of the
(1+1)-ES in the 
ase of noisy obje
tive fun
tion with positive noiseless part is the positionof the lower bound mN of the noise distribution N with respe
t to −1 or in other wordsthe existen
e or not of possible negative �tness values. This result applies in parti
ularwhen N equals a trun
ated normal distribution, i.e. N = σǫN (0, 1)1[−a,a]

9 for any a and
σǫ positive. Whenever σǫa > 1, Proposition 3.4 applies and the (1 + 1)-ES diverges.Those results might appear in 
ontradi
tion with those of Arnold and Beyer [8℄ provingthat the expe
ted �tness gain is positive−and therefore 
onvergen
e in mean holds for thes
ale-invariant ES−for a noise distributed a

ording to a normal distribution. In theirmodel, Arnold and Beyer s
ale the standard deviation of the noise σǫ with 1/d, i.e. when
d → ∞, σǫ 
onverges to 0. The largest value for the normalized σ∗

ǫ in [8, Fig 5, 6, 8℄,for d = 80 
orresponds to a standard deviation of 0.05 for whi
h the probability to have
(1+0.05N ) < 0 is upper bounded by 10−88 (10), i.e. relatively unlikely! Therefore thoughthey 
onsider some unbounded noise having a support in R, the normalization of thestandard deviation of the noise implies a so small probability to sample 1 + N below −1that the unbounded noise redu
es to the 
ase of 
onvergen
e where mN > −1. The same
on
lusion holds for the numeri
al example given in Se
tion 3.1.2, Fig. 3.3 (left) where9The indi
ator fun
tion 1[−a,a](x) equals 1 if x ∈ [−a, a] and 0 otherwise.10For 
omputing the lower bound we use the fa
t that P (N (0, 1) < x) ≤ exp(−x2/2)/|x|

√

(2π) for
x < 0. 75
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ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentsthe standard deviation of 0.1 
orresponds to a probability to have (1 + 0.1N ) < 0 lowerbounded by 10−23. Therefore though the theory predi
ts divergen
e as soon as mN < −1,what matters in pra
ti
e is how likely the probability to sample N < −1 is.In 
on
lusion, we have illustrated that 
onvergen
e but also divergen
e 
an happen forthe multipli
ative noise model. Those results are due to the probability to sample 1 + Nsmaller than 0 and are therefore intrinsi
 to the noise model and not to the '+' strategy.The probability that 1 + N 
an be very small, in whi
h 
ase theory predi
ts divergen
ethat will not be observed in simulations. We de
ided to present simple proofs relyingon Borel-Cantelli Lemma. As a 
onsequen
e, those proofs do not show the log-linear
onvergen
e and divergen
e observed in Se
tion 3.1.2. Obtaining the log-linear behavior
an be a
hieved using the theory of Markov 
hain on 
ontinuous state spa
e. Last, wedid not in
lude results 
on
erning a translated sphere f(x) = ‖x‖2 + α with α ≥ 0 forwhi
h our proofs of 
onvergen
e 
an be extended but where linear 
onvergen
e does nothold anymore due to the fa
t that the varian
e of the noise distribution does not redu
eto zero 
lose to the optimum.A
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eives partial supports from the ANR/RNTL proje
t Optimisation Multidis
i-plinaire (OMD).AppendixProof of Proposition 3.3 The sequen
e (Fs(Xn)) is de
reasing and is lower boundedby 0 as Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 . Therefore it 
onverges to a limit l ≥ 0. Let usshow that l = 0. Let ǫ > 0, we have to show that ∃ n0 ≥ 0 su
h that Fs(Xn) ≤ ǫ for n ≥ n0.Sin
e the sequen
e (Fs(Xn)) is de
reasing, we only have to show that ∃ n0 ≥ 0 su
h that
Fs(Xn0) ≤ ǫ . Let β > 1 and su
h that [1+mN , β(1+mN )[⊂ supp(1+N ). In Lemma 3.5,we have de�ned the event An,ǫ,β, shown that it is in
luded in the event {Fs(Xn+1) ≤ ǫ} andproved that the events (An,ǫ,β)n are independent. Moreover, P (An,ǫ,β) = P (‖e1 + σN‖2 ≤

ǫ
(1+β)θ2(1+mN )

)P (1+N ≤ β(1+mN )) (where θ is de�ned in Lemma 3.5) is a stri
tly positive
onstant for all n. Then ∑+∞
n=0 P (An) = +∞. This gives by BCL that P (lim An) = 1.Therefore P (lim {Fs(Xn+1) ≤ ǫ}) = 1, i.e. ∃n0 su
h that ∀n ≥ n0, Fs(Xn) ≤ ǫ. Therefore

Fs(Xn) 
onverges to 0. The sequen
e (‖Xn‖) 
onverges also to 0 as ‖Xn‖2 ≤ Fs(Xn)
1+mN

.Lemma 3.5. If mN + 1 > 0, the following points hold:1. The sequen
e (‖Xn‖) is upper bounded by θ :=
√

Fs(X0)
1+mN

> 0.2. Let ǫ > 0 and β > 1 su
h that β(1 + mN ) ∈ supp(1 + N ). For n ≥ 0, theevent An,ǫ,β :=

({

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ ǫ
(1+β)θ2(1+mN )

}

∩ {1 + Nn ≤ β(1 +mN )}
)

(11)veri�es An,ǫ,β ⊂ {Fs(Xn+1) ≤ ǫ}. Moreover, the events (An,ǫ,β)n are independent.11The multivariate Gaussian distribution is absolutely 
ontinuous with respe
t to the Lebesgue measuresu
h that P (‖Xn‖ = 0) = 0 and then we 
an divide by ‖Xn‖ almost surely.76



3.1. On Multipli
ative Noise Models for Sto
hasti
 Sear
hProof :1. For n ≥ 0, Fs(Xn) = ‖Xn‖2 (1 +On) = ‖Xn‖2
(

1 + Nφ(n)

) where φ(n) is the index ofthe last a

eptan
e (obviously φ(n) ≤ n). Then, for n ≥ 0

Fs(Xn) ≥ ‖Xn‖2 (1 +mN ) ≥ 0 and 
onsequently ‖Xn‖2 ≤ Fs(Xn)
1+mN

≤ Fs(X0)
1+mN

.2. Let ǫ > 0 and β > 1 su
h that [1 +mN , β(1 +mN )[⊂ supp(1 + N ) (with βmN < MNif MN < +∞). For n ≥ 0, the event
{(

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

< ǫ
(1+β)θ2(1+mN )

)

∩ (1 + Nn < β(1 +mN ))

} implies for the o�spring
X̃n := Xn + σ‖Xn‖Nn 
reated at the iteration n that
Fs(X̃n) = ‖Xn‖2

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

(1 + Nn) ≤ θ2 ǫ
(1+β)(1+mN )θ2

β(1 +mN ) .Then Fs(X̃n) ≤ β
β+1

ǫ < ǫ. If this o�spring is a

epted then Fs(Xn+1) < ǫ, otherwise the�tness is already less than ǫ and we have also Fs(Xn+1) < ǫ. Finally, the independen
yof the events (An,ǫ,β)n result from Lemma 3.6 applied to the sequen
e (Xn).Lemma 3.6. Let (Un) be a sequen
e of random ve
tors in R
d su
h that P (‖Un‖ = 0) = 0and Nn independent random ve
tors distributed as N(0, Id). Then the variables Yn :=

∥

∥

∥

Un

‖Un‖ + σNn

∥

∥

∥
are independent.Proof :The independan
e of the random variables Yn is due to the fa
t that the multivariateGaussian variable N(0, Id) is isotropi
 and is therefore invariant by rotation. The lengthof the ve
tor Un

‖Un‖ + σNn will therefore be independent of where we start on the unithypersphere, i.e., independent of the ve
tor Un

‖Un‖ .Proof of Proposition 3.4 Let n ≥ n1 (n1 de�ned in Lemma 3.7). We have to show thatfor any m < Fs(Xn1) < 0, ∃ n ≥ n1 su
h that Fs(Xn) ≤ m, or equivalently |Fs(Xn)| ≥
|m|. Similarly to the proof of Proposition 3.3, by BCL we have (Bn,m,β i.o.) ((Bn,m,βbeing de�ned in Lemma 3.7) therefore Lemma 3.7 gives that (Fs(Xn+1) ≤ m i.o.). Then
Fs(Xn) = ‖Xn‖2 (1 +On) tends to −∞. For all n ≥ n1, 0 ≥ 1 + On ≥ 1 + mN , then
|Fs(Xn)|
|1+mN | ≤ ‖Xn‖2 for n ≥ n1. Consequently (‖Xn‖) 
onverges to +∞ almost surely.Lemma 3.7. Assume that mN + 1 < 0. The following points hold:1. There exists n1 ≥ 0 and A :=

√

|Fs(Xn1 )|
|1+mN | > 0 su
h that Fs(Xn) < 0 and ‖Xn‖ ≥ Afor n ≥ n1 almost surely.2. Let m < Fs(Xn1) < 0 and β > 1. For n ≥ n1, the event Bn,m,β de�ned by Bn,m,β :=

({

|1 − σ‖Nn‖|2 ≥ |m|
|mN+1|

β+1
A2

}

∩
{

1 + Nn ≤ 1+mN

β

}) veri�es Bn,ǫ,β ⊂ (Fs(Xn+1) ≤ m).Proof :1. We �rst prove that the event A := { ∃ n1 ≥ 0 su
h that ∀ n ≥ n1,
Fs(Xn) < 0} is equivalent to the event B := { ∃ p0 ≥ 0 su
h that Np0 < −1 }.Proving that A ⊂ B is equivalent to show that Bc ⊂ Ac. Suppose that ∀p ≥ 0, Np ≥ −1.Then ∀p ≥ 0, Op ≥ −1. Therefore ∀p ≥ 0, Fs(Xp) = ‖Xp‖2 (1 +Op) ≥ 0. Now wehave to show that B ⊂ A: Suppose that ∃ p0 ≥ 0 su
h that Np0 < −1. We denote77



Chapter 3. Study of the S
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al Environments
p1 ≥ 0 the integer de�ned by p1 = min{p ∈ N su
h that Np < −1}. Then Fs (Xp1) < 0and Fs (Xp) ≥ 0 for all 0 ≤ p ≤ p1 − 1. Sin
e (Fs (Xn)) is a de
reasing sequen
e,
Fs(Xn) < 0 ∀ n ≥ p1. This implies that P (A) = P (B). Now, we have for all n ≥ 0,
P (Bc) = P (∩+∞

p=0 (Np ≥ −1)) ≤ Πn
p=0P (Np ≥ −1) = (P (N ≥ −1))n .Let a := P (N ≥ −1)(12). As mN < −1, then a < 1 whi
h gives P (Bc) = 0 and therefore

P (A) = 1. Then ∃ n1 ≥ 0 su
h that Fs(Xn) < 0 for n ≥ n1 almost surely. Thesequen
e (Fs(Xn))n is de
reasing (be
ause of the elitist sele
tion). Then for n ≥ n1,
Fs(Xn) ≤ Fs(Xn1) < 0 . This gives |Fs(Xn)| ≥ |Fs(Xn1)| > 0. It is easy to see (fromEq. 3.6) that for all n ∈ N , On = Nψ(n) where ψ(n) is the last a

eptan
e index beforethe iteration n. Combining this with the fa
t if 1 + mN ≤ 1 + Nψ(n) < 0 one gets 0 <

|Fs(Xn1)| ≤ |Fs(Xn)| = ‖Xn‖2|1 +Nψ(n)| ≤ ‖Xn‖2|1 +mN | . Then ‖Xn‖2 ≥ |Fs(Xn1 )|
|1+mN | > 0 .2. By the �rst result of the Lemma, ∃ n1 ≥ 0, A > 0 su
h that Fs(Xn) < 0 and ‖Xn‖ ≥

A ∀n ≥ n1. We 
onsider n ≥ n1, then ‖Xn‖ > A. We noti
e that ∀ y ∈ R
d\{(0, 0)},

∥

∥

∥

y
‖y‖ + σN

∥

∥

∥
≥ |1 − σ‖N‖|. Let β > 1. As the upper bound MN veri�es 1 + MN > 0,

1+mN

β
∈ supp(1+N )∩R

−. Suppose that we have |1−σ‖Nn‖|2 ≥ (β+1)|m|
A2|1+mN | and |1+Nn| ≥

|1+mN |
β

, then the o�spring X̃n := Xn + σ‖Xn‖Nn is su
h that
|Fs(X̃n)| = ‖Xn‖2

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

|1 +Nn| ≥ ‖Xn‖2|1− σ‖Nn‖|2|1+Nn| . Then |Fs(X̃n)| ≥
β+1
β
|m| > |m| whi
h gives Fs(Xn+1) ≤ Fs(X̃n) ≤ m. Consequently, for n ≥ n0, the event

Bn,m,β :=
{

|1 − σ‖Nn‖2| ≥ (β+1)|m|
A2|1+mN |

}

∩
{

|1 + Nn| ≥ |1+mN |
β

} is in
luded in {Fs(Xn+1) ≤
m}.

12We apply the same reasoning with a = 2/3 for the example given in the introdu
tion where N takevalues in {−γ, 0, γ} (with γ > 1) .78



3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noise
3.2 Convergen
e and divergen
e rates of the (1 + 1)-ESunder multipli
ative noiseIt is generally observed in the 
ase of optimization with Evolution Strategies (ES) andtheoreti
ally proven, in the 
ase of minimization of non-noisy sphere fun
tions, using eitherthe arti�
ial s
ale-invariant adaptation rule 1 [27, 17, 77℄ or the real Self-Adaptation rule[27, 13℄ that ESs 
onverge (or diverge) log-linearly. This means that, after an adaptationtime, the logarithm of the distan
e to the optimum de
reases (or in
reases) linearly withthe number of iterations. Let dn denote the distan
e, at the iteration n, of the 
urrentsolution to the optimum. The log-linear behavior of the algorithm is here mathemati
allyexpressed as:

∃ c ∈ R
∗ su
h that lim

n→∞
1

n
ln (dn) = c . (3.7)The limit c is 
alled 
onvergen
e rate. The term �
onvergen
e� has to be 
onsidered inthe mathemati
al sense relative to the 
onvergen
e of the sequen
e 1

n
ln (dn). In fa
t, if

c > 0, the algorithm diverges. If c < 0, the algorithm 
onverges.Spe
i�
 results have been derived in the 
ase of minimization using the simplest ES, the
(1+1)-ES. When minimizing the non-noisy sphere fun
tion, the s
ale-invariant (1+1)-ES
onverges log-linearly with a stri
tly negative 
onvergen
e rate [77℄. When the obje
tivefun
tion is the sphere fun
tion with multipli
ative noise lower bounded, the (1 + 1) s
ale-invariant ES 
onverges or diverges (a

ording to the in�mum of the noise) as we haveshown in Se
tion 3.1. Moreover, a log-linear behavior has been observed in Figure 3.2 butonly the 
onvergen
e or divergen
e have been proven and not the log-linear behavior.The aim of this se
tion is to generalize the theoreti
al result of log-linear behavior of the
(1+1)-ES minimizing sphere fun
tions to noisy sphere fun
tions First, in Se
tion 3.2.1, were
all the mathemati
al de�nition of the algorithm, of the obje
tive fun
tion model andprevious results of 
onvergen
e and divergen
e obtained (This se
tion may seem redundantwith de�ntions and results of Se
tion 3.1, but it will be useful for the paper that we intendto submit and whi
h will be 
onstituted of the whole Se
tion 3.2.). Then, in Se
tion 3.2.2,we investigate the log-linear behavior of the algorithm and show that there exists c ∈ Rsu
h that limn→∞

1
n

ln (dn) = c where c is given in terms of the expe
tation, with respe
t tothe probability measure relative to the stationary state of the algorithm, of the di�eren
eof the logarithms of two 
onse
utvie distan
es to the optimum. The proofs of all resultsof this se
tion are in the appendix se
tion1The s
ale-invariant rule is not realisti
 as it assumes the knowledge of the optimum lo
ation. 79



Chapter 3. Study of the S
ale-invariant (1 + 1)-ES in Noisy Spheri
al Environments3.2.1 Mathemati
al formulation of the problem and (spatial) 
on-vergen
e and divergen
e of the (1 + 1)-ESIn this se
tion, we present the model of the noisy sphere fun
tion and the mathemati
almodel of the (1+1)-ES used for �nding the optimum of the noiseless part of this fun
tion.Then we re
all the results derived in [76℄ relative to the s
ale-invariant (1 + 1)-ES mini-mizing this noisy fun
tion: The s
ale-invariant (1+1)-ES 
onverges or diverges relativelyto the in�mum of the noise distribution support.Noisy obje
tive fun
tion model : Sphere fun
tion with multipli
ative noiseThe noisy sphere fun
tion mapping R
d into R is de�ned as:

Fs(x) = ‖x‖2(1 + N ) (3.8)where N is the noise random variable, sampled independently at ea
h new evaluation of apoint. The noisy part of Fs(x) is ‖x‖2N . Therefore, the termN represents the normalizednoisy part of the noisy sphere fun
tion whi
h will be 
alled normalized overvaluation of
x. The term normalized overvaluation has been introdu
ed in [8℄ where it 
orresponds tothe normalized di�eren
e between the ideal and the noisy obje
tive fun
tion. We assumethat N has a �nite expe
tation and that E(N ) > −1. Therefore, our study in
ludes theparti
ular 
ase of white noise where E(N ) = 0. We also assume that N admits a densityfun
tion pN with support [mN ,MN [ where −∞ < mN < MN ≤ +∞, MN > −1 and
mN 6= −1.Mathemati
al model for the s
ale-invariant (1 + 1)-ES minimizing Fs (Eq. 3.8)The (1+1)-ES is a simple ES evolving a unique solution. At every iteration n, this solutiondenoted Xn and 
alled parent is perturbed by the addition of a 
entered multivariatenormal distribution to 
reate a new 
andidate solution 
alled o�spring. The o�springwrites as Xn + σnNn, where σn is a stri
tly positive real number 
alled step-size and
(Nn)n ∈ R

d are independent realizations of a multivariate isotropi
 normal distributionin R
d denoted by N(0, Id)

(2). The density of N(0, Id) is denoted pN. In the spe
i�
 
aseof random variables (Nn)n ∈ R
d following the spheri
al multivariate normal distribution

N(0, Id), the algorithm is 
alled isotropi
 ES. The e�
ien
y of an isotropi
 ES is 
loselyrelated to the adaptation rule of the sequen
e (σn)n. The best adaptation s
heme is theso-
alled s
ale-invariant adaptation rule for whi
h the step-size is set proportionally to thedistan
e to the optimum, i.e., σn = σ‖Xn‖ where σ is a stri
tly positive 
onstant. Theoptimality of this arti�
ial rule in spheri
al environments has been derived in [17, 77℄.The algorithm using this adaptation rule is referred to as the s
ale-invariant (1 + 1)-ESfor whi
h the o�spring writes as Xn + σ‖Xn‖Nn.Let X0 ∈ R
d be the �rst parent randomly 
hosen su
h that ‖X0‖ > 0 almost surely andwith a normalized overvaluation O0 sampled from the distribution ofN . At an iteration n,and for the obje
tive fun
tion investigated here (Eq. 3.8), the �tness of a parent Xn with a2N(0, Id) is the multivariate normal distribution with mean (0, . . . , 0) ∈ R

d and 
ovarian
e matrixidentity Id.80



3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noisenormalized overvaluation On equals ‖Xn‖2 (1 +On) and the �tness of an o�spring equals
‖Xn + σ‖Xn‖Nn‖2 (1 + Nn) where (Nn)n is a sequen
e of random variables independentwith N as a 
ommon law. The new parent Xn+1 is the o�spring Xn + σ‖Xn‖Nn i� its�tness value is smaller than the one of its parent Xn, otherwise Xn+1 equals Xn. Therefore,this a

eptan
e 
ondition implies, for n ≥ 0, that:

Xn+1 = Xn + σ‖Xn‖Nn if [∥∥
∥
Xn + σ‖Xn‖Nn

∥

∥

∥

2
]

(1 + Nn) < ‖Xn‖2 (1 +On) ,

= Xn otherwise , (3.9)and the normalized overvaluation On+1 of the new parent Xn+1 is then:
On+1 = Nn if [∥∥

∥
Xn + σ‖Xn‖Nn

∥

∥

∥

2
]

(1 + Nn) < ‖Xn‖2 (1 +On) ,

= On otherwise . (3.10)Convergen
e and divergen
e of the (1 + 1)-ESThe behavior of the algorithm de�ned by Eq. 3.9 and Eq. 3.10 designed for the minimiza-tion of the obje
tive fun
tion (Eq. 3.8) was established in [76℄. The result is re
alled inthe following theorem.Theorem 3.8 ([76℄). The (1 + 1)-ES de�ned in Eq. 3.9 minimizing the noisy sphere(Eq. 3.8) 
onverges to zero if mN > −1 and diverges to in�nity when mN < −1.This theorem states that the behavior of the algorithm depends on the in�mummN of thenoise N . If mN < −1, there is a stri
tly positive probability to sample negative �tnessvalues and the algorithm diverges sin
e the best �tness, whi
h be
omes negative aftersome iterations, is de
reasing. If mN > −1, the algorithm 
onverges. In the followingse
tion, we theoreti
ally investigate the log-linear behavior of the algorithm de�ned byEq. 3.9 and Eq. 3.10.3.2.2 Convergen
e and divergen
e rates of the (1 + 1)-ESTheoreti
al results of 
onvergen
e of sto
hasti
 sear
h algorithms 
an be obtained usingmathemati
al tools su
h as Law of Large Numbers (LLN) for independent or orthogonalrandom variables or LLN for Markov 
hains. In the spe
i�
 
ase of the noisy spherefun
tion, Eq. 3.9 and Eq. 3.10 show that the variables are 
orrelated and suggest the useof Markov 
hains to investigate the stability of these dynami
s.MotivationsThe log-linear behavior means that, after an adaptation time, the sequen
e (ln (‖Xn‖))n�where (‖Xn‖)n is de�ned in Eq. 3.9� in
reases or de
reases linearly with the number ofiterations. This means that one has to investigate the sequen
e (ln (‖Xn‖))n. The follow-ing proposition is a basi
 step for proving the log-linear behavior expressing 1
n

ln
(

‖Xn‖
‖X0‖

)81



Chapter 3. Study of the S
ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentsas the sum of n random variables divided by n. The same idea has been previously usedin [27, 13, 17, 77℄.Proposition 3.9. Let (Xn)n be the sequen
e of random ve
tors valued in R
d satisfyingthe re
urren
e relation (3.9). Then for all indi
es n, we have

1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σNk1


∥

∥

Xk
‖Xk‖

+σNk

∥

∥

2

(1+Nk)<1+Ok

ff

∥

∥

∥

)

a.s. (3.11)Proposition 3.9 states that the limit of 1
n

ln
(

‖Xn‖
‖X0‖

) is given by the limit of the right handside of Eq. 3.11. The right hand side of Eq. 3.11 
an be simpli�ed using the invarian
eby rotation of the multivariate normal distribution. For this purpose, we will introdu
ethe sequen
es (Zn)n and (F (Zn))n:De�nition 3.10. Consider a sequen
e of independent identi
ally distributed (i.i.d.) ran-dom ve
tors (N′
n)n in R

d with 
ommon law N(0, Id) and a sequen
e of random variables
(N ′

n)n also i.i.d. with N as 
ommon law. Let e1 ∈ R
d be equal to (1, 0, . . . , 0). We de�ne1. the Markov 
hain (Zn)n as follows: Z0 = N∗ where N∗ is a random variable dis-tributed as N , and, for all n ≥ 0,

Zn+1 = δn(Zn)N ′
n + (1 − δn(Zn))Zn (3.12)where δn(Zn) equals 1 if ‖e1 + σN′

n‖2 (1 + N ′
n) − 1 ≤ Zn and 0 otherwise.2. the sequen
e (F (Zn))n≥0 as follows: for n ≥ 0,

F (Zn) := ln
(

‖e1 + σN′
n1{‖e1+σN′

n‖2(1+N ′
n)<1+Zn}‖

)

. (3.13)Using these de�nitions, we 
an state the key point of our study in the following Propo-sition.Proposition 3.11 (Link between the stability of (Zn)n and log-linear 
onvergen
e). Let
(Zn)n and (F (Zn))n be the Markov 
hains introdu
ed in De�nition 3.10. Then the fol-lowing equality

1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

F (Zk) (3.14)holds in distribution.Therefore, if 1
n

∑n−1
k=0 F (Zk) 
onverges almost surely to a �nite valuethat we will denote γ, 1

n
ln
(

‖Xn‖
‖X0‖

) will 
onverge (in probability) to the same value γ.The 
ondition 1
n

∑n−1
k=0 F (Zk) → γ given in Proposition 3.11 holds if the LLN holds forthe Markov 
hain (Zn)n. If in addition γ 6= 0, then the log-linear behavior holds, at leastin probability, for the sequen
e (‖Xn‖)n given in Eq. 3.9. In the following se
tion, weinvestigate the establishment of a LLN for the Markov 
hain (Zn)n.82



3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noiseStabilityIn Proposition 3.11, we have seen that log-linear 
onvergen
e 
an be implied from thestability of the 
hain (Zn)n introdu
ed in De�nition 3.10. The goal is to prove that the
hain (Zn)n is su�
iently stable so that a LLN 
an be stated. Before investigating the sta-bility of (Zn)n we re
all some de�nitions and results about ϕ-irredu
ible Markov Chainsthat will be used in the sequel. We refer to the Meyn and Tweedie book for a 
ompletepresentation of this theory [97℄. In the following B(R) will denote the Borel σ-algebra on
R and for a subset S ⊂ R, B(S) will denote the Borel σ-algebra on S.Basi
s about Markov 
hains and de�nitions For a Markov 
hain (Zn)n ⊂ R, thetransition kernel P (., .) is de�ned for all z ∈ R, for all A ∈ B(R) as

P (z, A) = P (Z1 ∈ A|Z0 = z).A 
hain (Zn)n is irredu
ible with respe
t to a measure ϕ if:
∀(z, A) ∈ R × B(R) su
h that ϕ(A) > 0, ∃ n0 ≥ 0 su
h that P n0(z, A) > 0 , (3.15)where P n0(z, A) equals P (Zn0 ∈ A|Z0 = z). Another equivalent de�nition for the ϕ-irredu
ibility of the Markov 
hain (Zn)n is: ∀z ∈ R, ∀A ∈ B(R) su
h that ϕ(A) >

0, P (τA <∞|Z0 = z) > 0 where, τA is the hitting time of Zn on A, i.e.,
τA = min{n ≥ 1 su
h that Zn ∈ A}.If the last term of Eq. 3.15 is equal to one, the 
hain is re
urrent. A ϕ-irredu
ible 
hain

(Zn)n is Harris re
urrent if:
∀A ∈ B(R) su
h that ϕ(A) > 0;Pz(ηA = ∞) = 1, z ∈ R ,where ηA is the o

upation time of A, i.e., ηA =

∑∞
n=1 1{Zn∈A}.A 
hain (Zn)n whi
h is Harris-re
urrent admits an invariant measure, i.e., a measure πon B(R) satisfying:

π(A) =

∫

R

π(dz)P (z, A), A ∈ B(R) .If in addition this measure is a probability measure, the 
hain is 
alled positive. Positive,Harris-re
urrent 
hains satisfy the Strong Law of Large Numbers (LLN) as stated in [97,Theorem 17.0.1℄ and re
alled here.Theorem 3.12 (LLN for Harris positive 
hains). Suppose that (Zn)n is a positive Har-ris 
hain with invariant probability measure π, then the LLN holds for any fun
tion Gsatisfying π(G) =
∫

Gdπ <∞, i.e.,
lim
n→∞

1

n

n
∑

k=1

G(Zk) = π(G) . (3.16)83
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ale-invariant (1 + 1)-ES in Noisy Spheri
al EnvironmentsTo show the di�erent stability notions su
h as re
urren
e, Harris-re
urren
e or posi-tivity of (Zn)n it is possible to make use of pra
ti
al drift 
onditions. Stronger stability
riteria are 
alled uniform ergodi
ity and geometri
 ergodi
ity (see [97, Eq. 16.6, Eq. 15.7℄for the de�nitions). These stability notions imply the positivity and Harris re
urren
e ofthe 
hain. Drift 
onditions 
an be used to prove the geometri
 ergodi
ity of ϕ-irredu
ible
hain. Uniform ergodi
ity 
an be obtained without the need to verify the ϕ-irredu
ibility,using the following theorem whi
h is derived from a spe
i�
 
ase of [97, Theorem 16.2.1,Theorem 16.2.4℄.Theorem 3.13 (Condition for uniform ergodi
ity). Suppose that there exists a �nitemeasure ν on B(R) su
h that a Markov 
hain (Zn)n satis�es P (z, A) ≥ ν(A) for all z ∈ Rand A ∈ B(R). Then (Zn)nis uniformly ergodi
.Using the equivalent property of uniform ergodi
ity (assertion (vi) in [97, Theo-rem 16.0.2℄) in the assertion (ii) of [97, Theorem 10.4.10℄ one 
an 
on
lude that if aMarkov 
hain (Zn)n is uniformly ergodi
 then it is ϕ-irredu
ible, aperiodi
 (see de�nitionin [97, p. 121℄) positive Harris-re
urrent. Combining this with Theorem 3.13, we have thefollowing 
orollary.Corollary 2. Suppose that there exists a �nite measure ν on B(R) su
h that a Markov
hain (Zn)n satis�es P (z, A) ≥ ν(A) for all z ∈ R and A ∈ B(R). Then (Zn) is ϕ-irredu
ible, aperiodi
, positive Harris-re
urrent.Stability of Zn In the following, we will study the Markov 
hain (Zn)n introdu
ed inDe�nition 3.10. Its stability will follow from the use of Corollary 2 and 
onsequently the(LLN) given in Theorem 3.12 holds for (Zn)n.Lemma 3.14.
Zn ∈ supp(pN ) = [mN ,MN [ .Proposition 3.15 (Transition Kernel). The transition kernel P (., .) of Zn is split into anabsolutely 
ontinuous part P1 and a singular part P2:

∀z ∈ [mN ,MN [, ∀A ∈ B([mN ,MN [), P (z, A) = P1(z, A) + δ{z}(A)P2(z) (3.17)where P1(z, A) equals P ({N ∈ A} ∩ {‖e1 + σN‖2 (1 + N ) < 1 + z}), δ{z} is the Dira
measure 
on
entrated in {z} and P2(z) = P (‖e1 + σN‖2 (1 + N ) ≥ 1 + z). An otherexpression for P1 is
P1(z, A) =

∫

Rd

∫ MN

mN

1A(u)1{‖e1+σt‖2(1+u)<1+z}(u, t)pN(t)pN (u)dudt . (3.18)Proposition 3.16 (Doeblin 
ondition or minoration 
ondition). In the 
ase mN 6= −1,
∀z ∈ [mN ,MN [, ∀A ∈ B([mN ,MN [), P1(z, A) ≥ ν(A)where ν is the measure de�ned as

ν(A) =

∫

Rd

∫ MN

mN

1A(u)1{‖e1+σt‖2(1+u)<1+mN }(u, t)pN(t)pN (u)dudt84



3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noiseThe following 
orollary holds as a dire
t 
onsequen
e of the appli
ation of Corollary 2using the result of Proposition 3.16.Corollary 3. If mN 6= −1, the 
hain (Zn)n is positive Harris re
urrent.The following Proposition will be useful when establishing the LLN for the Markov
hain (Zn)n.Proposition 3.17. Suppose that the Markov 
hain (Zn)n admits an invariant probabilitymeasure denoted µ. Let γ be the quantity de�ned by
γ :=

∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) , (3.19)where δ(z) equals 1 if ‖e1 + σN(0, Id)‖2 (1 + N )− 1 ≤ z and 0 otherwise. Then γ is �nitefor all σ > 0. Moreover, the appli
ation σ 7→ γ(σ) is 
ontinuous on ]0,+∞[.We are now ready to state the main result of this se
tionTheorem 3.18. The (1 + 1)-ES minimizing the noisy sphere (Eq. 3.8) de�ned in Eq. 3.9(and Eq. 3.10) 
onverges almost surely to zero if mN > −1 and diverges almost surelyto in�nity when mN < −1. The 
onvergen
e (or divergen
e) rate ver�es the followingequation
1

n
ln ‖Xn‖ → γ :=

∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) (3.20)whi
h holds in probability and where δ(z) equals 1 if ‖e1 + σN(0, Id)‖2 (1 + N ) − 1 ≤ zand 0 otherwise and µ is the invariant probability measure of the Markov 
hain (Zn)n.Moreover, if 1+mN > 0 then the 
onvergen
e rate γ ≤ 0 and if 1+mN < 0 then γ ≥ 0 .Remark 3.2.1. Theorem 3.18 does not state that the log-linear behavior holds for thesequen
e (‖Xn‖)n where (Xn)n is de�ned in Eq. 3.9. It gives only the expression of the
onvergen
e (or divergen
e) rate of the sequen
e ln((‖Xn‖))n. To show rigorously thelog-linear behavior, one has to show that the 
onvergen
e rate given in Eq. 3.20 is notequal to 0 when mN 6= −1. However, a bene�t of our study is that the 
onvergen
e ratederived in Eq. 3.20 is easy to 
ompute numeri
ally using Monte Carlo simulations. Note�nally that Figure 3.2 suggests that the 
onvergen
e (or divergen
e) rate is not equal tozero for the value of σ represented.3.2.3 Con
lusionThe theoreti
al study using LLN for Markov 
hains shows that the s
ale-invariant (1+1)-ES minimizing the noisy sphere fun
tion with lower bounded noise satis�es 1
n

ln ‖Xn‖ P→ γwhere γ is a �nite 
onvergen
e (or divergen
e) rate whi
h 
orresponds to the expe
tation
∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) where δ(z) equals 1 if ‖e1+σN(0, Id)‖2 (1 + N )−1 ≤ zand 0 otherwise and µ is the invariant probability measure of the Markov 
hain (Zn)n.However, we have not been able to ex
lude the 
ase of the 
onvergen
e rate γ equal to85
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ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentszero to state that the behavior of the algorithm investigated is log-linear a

ording to thede�nition given in Eq. 3.7. Figure 3.2 suggests that the algorithm 
onverges or divergeslog-linearly if the in�mum of the noise,mN , is su
h thatmN 6= −1. Numeri
al simulationsof the 
onvergen
e rate derived in Theorem 3.18 
an be used to ex
lude numeri
ally the
ase of null 
onvergen
e rate whi
h seems to be equivalent to the 
ase mN = −1. Finally,another point whi
h has to be investigated in a future work is to show that the 
onvergen
egiven in Eq. 3.7 i.e., 1
n

ln ‖Xn‖ → γ holds also almost surely.
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3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noiseAppendixThe following Lemma will be useful for proofs.Lemma 3.19. The sequen
e (Xn)n introdu
ed in Eq. 3.9 satis�es: for every n ≥ 0,
‖Xn‖ 6= 0 almost surely.Proof :The result is demonstrated indu
tively. The �rst parent is 
hosen randomly with P (‖X0‖ =
0) = 0. Suppose that P (‖Xn‖ = 0) = 0. As the o�spring X̃n is obtained by adding to
Xn a random ve
tor admitting an absolutely 
ontinuous distribution with respe
t to theLebesgue measure then P (‖X̃n‖ = 0) = 0. Consequently, if the o�spring is a

epted then
P (‖Xn+1‖ = 0) = P (‖X̃n‖ = 0) = 0, otherwise P (‖Xn+1‖ = 0) = P (‖Xn‖ = 0) = 0.Proof of Proposition 3.9Taking the norm in Eq. 3.9, we have for n ≥ 0

‖Xn+1‖ = ‖Xn + σ‖Xn‖Nn1{‖Xn+σ‖Xn‖Nn‖2(1+Nk)<(1+On)‖Xn‖}‖Lemma 3.19 states that n ≥ 0, ‖Xn‖ 6= 0 almost surely. Then the previous equation 
anbe rewritten as
‖Xn+1‖ = ‖Xn‖

∥

∥

∥

Xn

‖Xn‖
+ σNn1


∥

∥ Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)<(1+On)

ff

∥

∥

∥
a.s.Taking the logarithm of the previous equation, one has for n ≥ 0

ln(‖Xn+1‖) = ln(‖Xn‖) + ln

(

∥

∥

∥

Xn

‖Xn‖
+ σNn1


∥

∥ Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)<(1+On)

ff

∥

∥

∥

) a.s. (3.21)Summing the equations (3.21) from 0 to n− 1 and dividing by n, one gets
1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(‖Xk+1‖
‖Xk‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σNk1


∥

∥

Xk
‖Xk‖

+σNk

∥

∥

2

(1+Nk)<1+Ok

ff

∥

∥

∥

)

.

Proof of Proposition 3.11Step 1: We show that the random variables Zn (introdu
ed in De�nition 3.10) and On(de�ned in Eq. 3.10) follow the same distribution. We are going to prove indu
tively thisresult. For n = 0, the random variables O0 and Z0 = N∗ follow the same noise distribution87
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ale-invariant (1 + 1)-ES in Noisy Spheri
al Environments
N . For n ≥ 0, suppose that On and Zn follow the same distribution. We have to showthat E(eitOn+1) = E(eitZn+1). A

ording to Eq. 3.10 and using Lemma 3.19, we have
E(eitOn+1 |Xn, On) = E

{

eitNn1{∥
∥

Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)<1+On

}|Xn, On

}

+ E

{

eitOn
1{∥
∥

Xn
‖Xn‖

+σNn

∥

∥

2

(1+Nn)≥1+On

}|Xn, On

}

.Let Rn : R
d 7→ R

d be an orthogonal transformation (rotation) su
h that Rn

(

Xn

‖Xn‖

)

= e1.Then, ‖ Xn

‖Xn‖ + σNn‖ = ‖Rn

(

Xn

‖Xn‖ + σNn

)

‖ = ‖e1 +Rn(Nn)‖ whi
h gives
E(eitOn+1 |Xn, On) = E

{

eitNn
1{∥
∥e1+σRn(Nn)

∥

∥

2

(1+Nn)<1+On

}|Xn, On

}

+ E

{

eitOn1{∥
∥e1+σRn(Nn)

∥

∥

2

(1+Nn)≥1+On

}|Xn, On

}

.This equation 
an be rewritten as:
E(eitOn+1 |Xn, On) =

∫

[mN ,MN [

∫

Rd

eity1{∥
∥e1+σRn(x)

∥

∥

2

(1+y)<1+On

}pN(x)dx pN (y)dy

+

∫

[mN ,MN [

∫

Rd

eitOn1{∥
∥e1+σRn(x)

∥

∥

2

(1+y)≥1+On

}pN(x)dx pN (y)dy .Let us apply the 
hange of variables z = Rn(x). As the isotropi
 multivariate normaldistribution is invariant by orthogonal transformation, the new variable follows also thesame multivariate normal distribution and one 
an write
E(eitOn+1 |Xn, On) =

∫

[mN ,MN [

∫

Rd

eity1{∥
∥e1+σz

∥

∥

2

(1+y)<1+On

}pN(z)dz pN (y)dy

+

∫

[mN ,MN [

∫

Rd

eitOn1{∥
∥e1+σz

∥

∥

2

(1+y)≥1+On

}pN(z)dz pN (y)dy .Therefore, one gets:
E(eitOn+1 |Xn, On) =

E

{

eitNn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)<1+On

} + eitOn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)≥1+On

}|On

}

.The right hand side of the previous equation 
an be written as gn(On) with gn 
ontinuous3and bounded (|gn(On)| ≤ 1). As On and Zn follow the same distribution (re
urren
e3The 
ontinuity follows from the Lebesgue dominated 
onvergen
e Theorem for 
ontinuity.88



3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noisehypothesis), then E(gn(On)) = E(gn(Zn)) whi
h means that by taking the expe
tation ofthe previous equation, one gets
E(eitOn+1) =

E

{

eitNn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)<1+Zn

}

}

+ E

{

eitZn1{∥
∥e1+σNn

∥

∥

2

(1+Nn)≥1+Zn

}

}

= E(eitZn+1) .Step 2: We have shown that the random variables Zn and On follow the same distribution.In the same manner, we want to show that, for n ≥ 0, the random variables
Un := ln

(

∥

∥

∥

Xn

‖Xn‖ + σNn1

∥

∥
Xn

‖Xn‖
+σNn

∥

∥

2

(1+Nn)<1+On

ff

∥

∥

∥

) and
F (Zn) := ln

(

‖e1 + σN′
n1{‖e1+σN′

n‖2(1+N ′
n)<1+Zn}‖

) are equal in distribution.
E(eitUn |Xn, On) = E











e

8

<

:

it ln(‖ Xn
‖Xn‖

+σNn‖)1

‖ Xn
‖Xn‖

+σNn‖2
(1+Nn)<1+On

ff

9

=

;|Xn, On











.Again, the invarian
e of the multivariate normal distribution by any orthogonal transfor-mation R and the fa
t that ‖R(x)‖ = ‖x‖ for any x ∈ R
d gives

E(eitUn |Xn, On) = E

{

e

n

it ln(‖e1+σNn‖)1{‖e1+σNn‖2(1+Nn)<1+On}
o

|On

}

.The 
onditional expe
tation E(eitUn |Xn, On) redu
es then to a fun
tion of On and 
an bewritten as hn(On) where hn is real valued bounded fun
tion and for whi
h the 
ontinuityfollows from the Lebesgue dominated 
onvergen
e Theorem. As On and Zn follow thesame distribution, one has E(hn(On)) = E(hn(Zn)) whi
h gives E [eitUn
]

= E
[

eitF (Zn)
].Therefore, for n ≥ 0, Un and F (Zn) follow the same distribution.Step 3: Now, we have to show that, for n ≥ 1, ∑n−1

k=0 Uk and ∑n−1
k=0 F (Zk) are equal indistribution. We are going to prove the result indu
tively. For n = 1, ∑0

k=0 Uk = U0 and
∑0

k=0 F (Zk) = F (Z0) are equal in distribution a

ording to step 2. Suppose that, for
n ≥ 1, Sn :=

∑n−1
k=0 Uk and Tn :=

∑n−1
k=0 F (Zk) are equal in distribution. Let us prove that

Sn+1 and Tn+1 are equal in distribution. We have to show that E (eitSn+1
)

= E
(

eitTn+1
).We de�ne the �ltration Tn as

Tn := σ (X0, . . . ,Xn, O0, . . . , On,N0, . . . ,Nn−1,N0, . . . ,Nn) . We have
E
(

eitSn+1 |Tn
)

= eitSnE
(

eitUn |Tn
)

= eitSnE









e

it ln

0

@

∥

∥

∥

Xn
‖Xn‖

+σNn1{∥
∥ Xn

‖Xn‖
+σNn

∥

∥

2

(1+Nn)<1+On

}

∥

∥

∥

1

A

|Tn









= eitSnE
(

eit ln(‖e1+σNn1{‖e1+σNn‖2(1+Nn)<1+On}‖)|Tn
)

= eitSnE
(

eitF (Zn)|Tn
) 89



Chapter 3. Study of the S
ale-invariant (1 + 1)-ES in Noisy Spheri
al EnvironmentsThis gives E (eitSn+1 |Tn
)

= E
(

eitSn+F (Zn)|Tn
). Taking the expe
tation of this equation,one gets E (eitSn+1

)

= E
(

eitSn+F (Zn)
). This 
an be rewritten as

E
(

eitSn+1
)

= E
[

E
(

eitSn+F (Zn)|N′
n,N ′

n, Zn
)]

= E
[

E
(

eitSn |N′
n,N ′

n, Zn
)

eitF (Zn)
]

= E
[

E
(

eitSn
)

eitF (Zn)
]

= E
[

E
(

eitTn
)

eitF (Zn)
]

= E
(

eitTn+1
)Consequently, for n ≥ 1, 1

n

∑n−1
k=0 Uk and 1

n

∑n−1
k=0 F (Zk) are equal in distribution.By Proposition 3.9, one has

1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σNk1

{∥

∥

Xk
‖Xk‖

+σNk

∥

∥

2

(1+Nk)<1+Ok

}

∥

∥

∥

)

a.s.Then 1
n

ln
(

‖Xn‖
‖X0‖

) equals in distribution 1
n

∑n−1
k=0 F (Zk). Consequently if the Markov 
hain

(Zn)n is stable su
h that it veri�es the (LLN) for Markov 
hains, the result holds in thesense that 1
n

∑n
k=1 F (Zk) 
onverges to some γ a.s. It follows that 1

n
ln ‖Xn‖ 
onverges to

γ in probability.Proof of Lemma 3.14The result is proven indu
tively. For n = 0, by De�nition 3.10, Z0 = N∗ ∈ [mN ,MN [.For n ≥ 0, suppose that Zn ∈ supp(pN ) = [mN ,MN [. By Eq. 3.12, Zn+1 equals N ′
n ∈

supp(pN ) = [mN ,MN [ or Zn+1 equals Zn whi
h is in supp(pN ) = [mN ,MN [ by there
urren
e hypothesis. Then Zn+1 ∈ supp(pN ) = [mN ,MN [.Proof of Proposition 3.15The transition kernel P (z, A) is the probability that Z1 belongs to A 
onditionally to
Z0 = z. By Eq. 3.12, Z1 equals N ′

0 if ‖e1 + σN‖2 (1 + N ) < 1 + z, otherwise Z1 equals z.Let P1(z, A) represent the probability to have Z1 = N ′
0 and Z1 ∈ A and P2(z) representthe probability to have ‖e1 + σN‖2 (1 + N ) ≥ 1 + z. The expression of P (z, A) given inEq. 3.18 follows.Proof of Proposition 3.16Let us show that ν : B([mN ,MN [) 7→ R

+ ∪ {+∞} de�ned as
ν(A) =

∫

Rd

∫ MN

mN

1A(u)1{‖e1+σt‖2(1+u)<1+mN }(u, t)pN(t)pN (u)dudtis a �nite measure. First, we have ν(∅) = 0. Se
ond, if E1 and E2 are two disjoint setsthen ν(E1 ∪E2) = ν(E1) + ν(E2) as the fun
tion 1E1∪E2 is identi
ally equal to 1E1 + 1E290



3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noisewhen E1 ∩ E2 = ∅. Third,
ν([mN ,MN [) =

∫

Rd

∫ MN

mN

1{‖e1+σt‖2(1+u)<1+mN }(u, t)pN(t)pN (u)dudt ≤ 1 .Now, if mN = −1 then the indi
ator fun
tion 1{‖e1+σt‖2(1+u)<1+mN }(u, t) equals zero forany t ∈ R
d and u ∈ [−1,MN [ almost surely. Therefore, ν is identi
ally equal to zero.However, if mN 6= −1, then, for A ∈ B([mN ,MN [) with a stri
tly positive Lebesguemeasure, the set

A := {(u, t) ∈ ([mN ,MN [∩A) × R
d su
h that ‖e1 + σt‖2 (1 + u) < 1 +mN}has a stri
lty positive measure with respe
t to a Lebesgue measure de�ned on B(Rd ×

[mN ,MN [). This implies that ν is non identi
ally equal to zero if and only if mN 6= −1.Moreover, for t ∈ R
d, (u, z) ∈ [mN ,MN [2

‖e1 + σt‖2 (1 + u) < 1 +mN ⇒ ‖e1 + σt‖2 (1 + u) < 1 + zwhi
h gives that ∀z ∈ [mN ,MN [, ∀A ∈ B([mN ,MN [), P1(z, A) ≥ ν(A).Proof of Proposition 3.17Let g : R
d × R

∗
+ × R × R be de�ned for (x, σ, y, z) in R

d × R
∗
+ × R × R by

g(x, σ, y, z) = ‖e1 + 1{‖e1+σx‖2(1+y)−1<z}(x, y, z)σx‖ .The quantity γ de�ned in Eq. 3.19 results from the integration of the fun
tion ln(g)with respe
t to the variables x, y and z. We noti
e that g((x1, x2, . . . , xd), σ, y, z) =
g((x1, ǫ2x2, . . . , ǫdxd), σ, y, z) for all (ǫ2, . . . , ǫd) in {−1,+1}d−1 and (x1, x2, . . . , xd) in R

d.Therefore, we 
an restri
t the integration with respe
t to the variable x to the domain
D := R

∗×]0,+∞[d−1, more pre
isely the quantity γ 
an be rewritten as
γ =

1

(2π)d/2

∫

D

∫ MN

mN

∫ MN

mN

ln (g(x, σ, y, z)) e−
‖x‖2

2 pN (y)dxdydµ(z) .where µ is the invariant probability measure of the Markov 
hain (Zn)n introdu
ed inDe�nition 3.10 whi
h we supposed that it exists in the hypothesis of Proposition 3.17.We introdu
e γ+ as:
γ+ =

1

(2π)d/2

∫

D

∫ MN

mN

∫ MN

mN

ln+ [g(x, σ, y, z)] e−
‖x‖2

2 pN (y)dxdydµ(z)and γ− as:
γ− =

1

(2π)d/2

∫

D

∫ MN

mN

∫ MN

mN

ln− [g(x, σ, y, z)] e−
‖x‖2

2 pN (y)dxdydµ(z) 91
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ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentssu
h that γ = γ+ − γ−. The quantities γ+ and γ− are well de�ned but 
ould be in�nite.Using spheri
al 
oordinates (with d ≥ 2) we obtain after partial integration
γ− =

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π
2

0

∫ MN

mN

∫ MN

mN

ln− [h(r, θ, σ, y, z)] rd−1e−
r2

2 sind−2(θ)pN (y) dr dθdydµ(z) ,and
γ+ =

(

1

2

) d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π

0

∫ MN

mN

∫ MN

mN

ln+ [h(r, θ, σ, y, z)] rd−1e−
r2

2 sind−2(θ)pN (y) dr dθdydµ(z) ,where h is the positive fun
tion de�ned on R
+ × [0, π] × R

∗
+ × R × R by

h(r, θ, σ, y, z) = ‖1{‖σr−eiθ‖2(1+y)−1<z}(r, θ, y, z)σr − eiθ‖ .For (r, θ, σ, y, z) in R
+ × [0, π] × R

∗
+ × R × R, we have

ln+(h(r, θ, σ, y, z)) ≤ ln+(1 + σr) ≤ σr (3.22)and
ln−(h(r, θ, σ, y, z)) ≤ ln−(sin(θ)) . (3.23)This gives

γ+ ≤
(

1

2

)
d
2 σπ

Wd−2Γ
(

d
2

)

∫ +∞

0

rde−
r2

2 dr < +∞ ,and
γ− ≤

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π
2

0

ln− (sin(θ)) rd−1e−
r2

2 sind−2(θ) dr dθ

≤
(

1

2

)
d
2 2

Wd−2Γ
(

d
2

)

∫ +∞

0

rd−1e−
r2

2 dr

∫ π
2

0

sind−
5
2 (θ) dθ < +∞ .For the remaining 
ase d = 1, we have

γ+ ≤ σ√
2π

∫

R

|x|e−x2

2 dx =
2σ√
2π

∫

R+

xe−
x2

2 < +∞ ,For γ−, after a 
hange of variables (v = σx), we get
γ− ≤ e−

1
2√

2π

∫ MN

mN

∫ 0

−2

∫ MN

mN

ln
(

|1 + 1{|1+v|2(1+y)−1<z}(v, y, z)v|
)

v
pN (y)dvdydµ(z)

=
e−

1
2√

2π

∫ MN

mN

∫ 0

−2

∫ MN

mN

ln (|1 + v|)
v

1{|1+v|2(1+y)−1<z}(v, y, z)pN (y)dvdydµ(z)

≤ e−
1
2√

2π

∫ MN

mN

∫ 0

−2

∫ MN

mN

ln (|1 + v|)
v

pN (y)dvdydµ(z)

=
e−

1
2√

2π

∫ 0

−2

ln (|1 + v|)
v

dv < +∞ .92



3.2. Convergen
e and divergen
e rates of the (1 + 1)-ES under multipli
ative noiseThe 
ontinuity with respe
t to σ is shown , using the Lebesgue dominated 
onvergen
etheorem (for 
ontinuity), on every range ]0,M [ and then for the whole ]0,+∞[ thanks tothe inequalities given in Eq. 3.22 and Eq. 3.23. This gives the result for d > 1.For the 
ase d = 1, the integrand in γ+ is 
ontinuous with respe
t to σ for almost all
(x, y, z) in R × [mN ,MN [×[mN ,MN [ and is dominated by 2√

2π
Sxe−

x2

2 for (x, σ, y, z) ∈
R

+×]0, S]× [0,+∞[×[mN ,MN [×[mN ,MN [ whi
h gives the 
ontinuity of γ+ with respe
tto σ by the Lebesgue dominated 
onvergen
e Theorem. For γ−, and after the 
hangeof variables v = σx, the integrand will be dominated by e−
1
2√

2π

ln(|1+v|)
v

for (v, σ, y, z) ∈
]−2, 0]×]0,+∞[×[mN ,MN [×[mN ,MN [ and the 
ontinuity of γ− with respe
t to σ followsfrom the dominated 
onvergen
e Theorem.Proof of Theorem 3.18The almost sure 
onvergen
e or divergen
e was already given in Theorem 3.8. Now, wegive interest to the 
onvergen
e (or divergen
e) rate.Corollary 3 states that, formN 6= −1,the Markov 
hain (Zn)n is positive and Harris re
urrent. Therefore it satis�es the (LLN)given in Theorem 3.12. Let µ the invariant probability measure of the 
hain(Zn)n. Then,we 
an de�ne the quantity γ :=

∫

E [ln(‖e1 + δ(z)σN(0, Id)‖)] dµ(z) where δ(z) equals 1if ‖e1 + σN(0, Id)‖2 (1 + N )− 1 ≤ z and 0 otherwise. By Proposition 3.17, γ is �nite. As
(Zn)n satis�es the 
onditions of the LLN and γ < +∞, the right hand side of Eq. 3.14
onverges almost surely to γ. Then the sequen
e 1

n
ln(‖Xn‖)n 
onverges in distributionto γ. As γ is a 
onstant, the 
onvergen
e of the sequen
e 1

n
ln(‖Xn‖)n to γ holds also inprobability.The 
onvergen
e in probability of the sequen
e 1

n
ln(‖Xn‖) (when mN 6= −1) implies thatthere is a subsequen
e whi
h writes as ( 1

φ(n)
ln(‖Xφ(n)‖)

)

n
and whi
h 
onverges almostsurely to the same limit γ.Moreover, by Theorem 3.8, the sequen
e (ln(‖Xn‖))n 
onverges almost surely to +∞if mN < −1 and to −∞ if mN > −1. Combining this with the fa
t that the sequen
e

(

1
φ(n)

ln(‖Xφ(n)‖)
)

n

onverges almost surely to γ, we dedu
e that γ ≥ 0 if mN > −1 and

γ ≤ 0 if mN > −1.
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ale-invariant (1 + 1)-ES in Noisy Spheri
al Environments3.3 Additional 
onvergen
e/divergen
e resultsIn this se
tion, we generalize 
onvergen
e/divergen
e results that have been derived in[76℄ (Se
tion 3.1) for the obje
tive fun
tion de�ned by Eq. 3.4 to the following (noisy)obje
tive fun
tion:
Fα(x) = (‖x‖2 + α)(1 + N ) (3.24)where α is a positive 
onstant. The noise random variable N has a �nite expe
tationsu
h that E(N ) > −1 and has a density fun
tion pN whi
h lies in the range [mN ,MN [where −∞ ≤ mN < MN ≤ +∞4 , MN > −1 and mN 6= −1. Some of the proofs ofthe following results are based on the se
ond Borel-Cantelli Lemma (see Lemma 3.2).It is worth noti
ing that the log-linear behavior observed in Figures 3.2 and 3.3 andtheoreti
ally shown in Se
tion 3.2 when α = 0 does not hold anymore for α > 0 as thevarian
e of the noise random variable does not redu
e to zero 
lose to the optimum. Were
all here that:

• The random ve
tor N(0, Id) is the multivariate isotropi
 normal distribution on R
dwith mean (0, . . . , 0) ∈ R

d and 
ovarian
e matrix the identity Id.
• The random ve
tors Nn (n ≥ 0) are independent realizations of N(0, Id).
• The random variables Nn (n ≥ 0) are independent realizations of N .
• The ve
tor e1 is a unit ve
tor in R

d whi
h equals (1, 0, . . . , 0).In the 
ase of the minimization of the obje
tive fun
tion (Eq. 3.24) using a s
ale-invariant
(1 + 1)-ES, the solution at an iteration n, Xn, is updated as follows:

Xn+1 = Xn + σ‖Xn‖Nn if [∥∥Xn + σ‖Xn‖Nn

∥

∥

2
+ α

]

(1 + Nn) < (‖Xn‖2 + α) (1 +On) ,

= Xn otherwise , (3.25)and the new normalized overvaluation On+1 is then:
On+1 = Nn if [∥∥Xn + σ‖Xn‖Nn

∥

∥

2
+ α

]

(1 + Nn) < (‖Xn‖2 + α) (1 +On) ,

= On otherwise . (3.26)The results depend, similarly to the 
ase of the noisy obje
tive fun
tion given by Eq. 3.4,on the in�mum of the noisemN . The results are summarized in the two following se
tions.3.3.1 Convergen
e in the 
ase mN > −1The result is stated in the following proposition.4Note that, 
omparing to Se
tion 3.1, the hypothesis on the variable N are more general in thisse
tion: The in�mum of the noise 
an be in�nite, i.e., mN = −∞.94



3.3. Additional 
onvergen
e/divergen
e resultsProposition 3.20 (Convergen
e formN > −1). Consider the sequen
es (On)n and (Xn)nde�ned by the re
urren
e relations Eq. 3.25 and Eq. 3.26 for the minimization of theobje
tive fun
tion de�ned in Eq. 3.24. If mN + 1 > 0 then the sequen
es (Fα(Xn))n and
(‖Xn‖)n 
onverge respe
tively to α(1 +mN ) and zero almost surely.Proof :The 
onvergen
e in the 
ase α = 0 has been already stated in Proposition 3.3. Let usnow demonstrate the result for α > 0.Step 1: Note in the beginning that the sequen
e (Fα(Xn))n is de
reasing due to thea

eptan
e 
ondition used in the (1 + 1)-ES. Let us show that the sequen
e (Fα(Xn))n ispositive, lower bounded and that the sequen
e (‖Xn‖)n is upper bounded. The de
reaseof the sequen
e (Fα(Xn))n and the fa
t the random variable N is lower bounded by
mN > −1 imply, for n ≥ 0, that:
Fα(X0) ≥ Fα(Xn) =

(

‖Xn‖2 + α
)

(1 +On) ≥
(

‖Xn‖2 + α
)

(1 +mN ) ≥ α(1 +mN ) ≥ 0 .(3.27)The de
reasing sequen
e (Fα(Xn))n is then positive and lower bounded. Therefore it
onverges almost surely. Moreover, by the previous equation, one gets
‖Xn‖2 ≤M (3.28)where M is de�ned as M := Fα(X0)−α(1+mN )

1+mN
. This means that the sequen
e (‖Xn‖)n isupper bounded by M .Step 2: Let us show that the sequen
e (Fα(Xn))n 
onverges almost surely to α(1+mN ).Let ǫ > 0, we are going to show that ∃ n0 ≥ 0 su
h that Fα(Xn) < α (1 +mN ) +

ǫ, ∀n ≥ n0. Let n ≥ 0. For ǫ > 0, ∃ K(ǫ) > 1 su
h that the probability to have
Nn ∈ supp(pN ) and α(1 + Nn) < α(1 + mN ) + ǫ

K(ǫ)
is stri
tly positive. Let a :=

K(ǫ)−1
K(ǫ)

1+mN

1+mN+ ǫ
K(ǫ)α

ǫ
Fα(X0)−α(1+mN )

> 0 and b := 1+mN + ǫ
K(ǫ)α

> 0. Suppose that the events
(

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

) and (1 + Nn < b) hold. Therefore, using in addition Eq. 3.28, the�tness of the o�spring Xn + σ‖Xn‖Nn at an iteration n veri�es
Fα(Xn + σ‖Xn‖Nn) = ‖Xn‖2

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

(1 + Nn) + α (1 + Nn)

≤Mab + αb

= ǫ
K(ǫ) − 1

K(ǫ)
+ α (1 +mN ) +

ǫ

K(ǫ)
= α (1 +mN ) + ǫ .Then, for n ≥ 0, the event An =

((

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

)

∩ (1 + Nn ≤ b)

) impliesthe event Fα(Xn + σ‖Xn‖Nn) ≤ α (1 +mN ) + ǫ and therefore Fα(Xn+1) ≤ Fα(Xn +95
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σ‖Xn‖Nn) ≤ α (1 +mN ) + ǫ. Moreover, the event An has a probability whi
h veri�es:

P (An) = P

((

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

≤ a

)

∩ (1 + Nn ≤ b)

)

= P

(

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

≤ a

)

P (1 + Nn ≤ b)

= P

(

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

≤ a

)

P (1 + N ≤ b) .

(3.29)
By Lemma 3.21, the quantity P (∥∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

) equals P (‖e1 + σN‖2 ≤ a). There-fore, P (An) equals the 
onstant value P (‖e1 + σN‖2 ≤ a)P (1 + N ≤ b) whi
h impliesthat ∑n≥0 P (An) = +∞. Moreover, by the same Lemma, we have the independen
e ofthe events (∥∥
∥

Xn

‖Xn‖ + σNn

∥

∥

∥

2

≤ a

) and therefore that of the events An. Thus, the Borel-Cantelli Lemma (Lemma 3.2) 
an be applied and shows that the event An happens almostsurely and then the event Fα(Xn+1) ≤ α (1 +mN ) + ǫ happens almost surely. Therefore,the sequen
e (Fα(Xn))n 
onverges almost surely to α (1 +mN ).Step 3: Now we have to show that the sequen
e (‖Xn‖)n 
onverges to 0 almost surely.From Eq. 3.27, we have for n ≥ 0,
Fα(Xn) ≥

(

‖Xn‖2 + α
)

(1 +mN ) .Using the fa
t that mN + 1 > 0, the previous equation implies that, for n ≥ 0, 0 ≤
‖Xn‖2 ≤ Fα(Xn)

1+mN
− α. As both the right and left hand sides of this equation 
onverge tozero, the sequen
e (‖Xn‖)n 
onverges also to zero.Lemma 3.21. Let (Xn)n be the sequen
e of random ve
tors in R

d de�ned in Eq. 3.25 and
(Nn)n the relative sequen
e of independent random ve
tors following the same distribution
N(0, Id) used to de�ne the sequen
e (Xn)n as shown in Eq. 3.25. Then the variables
Yn :=

∥

∥

∥

Xn

‖Xn‖ + σNn

∥

∥

∥
are independent and follow the same distribution as ‖e1 +σN(0, Id)‖.Proof :In the beginning, let us show that, for n ≥ 0, the random variable Yn follows the samedistribution as ‖e1 + σN(0, Id)‖. Let t ∈ R, the expe
tation E(eitYn) writes as follows:

E(eitYn) = E
[

E
(

eit‖
Xn

‖Xn‖
+σNn‖|Xn

)] (3.30)Let Rn an orthogonal transformation (rotation) su
h that Rn

(

Xn

‖Xn‖

)

= e1. The previousequation be
omes:
E(eitYn) = E

[

E
(

eit‖e1+σRn(Nn)‖|Xn

)]

. (3.31)Applying a 
hange of variables Un = Rn (Nn), the variables Un and Nn follow the samedistribution due to the fa
t that the distribution of N(0, Id) is spheri
al. Therefore, onegets:
E(eitYn) = E

[

E
(

eit‖e1+σNn‖)] = E
(

eit‖e1+σN(0,Id)‖) . (3.32)96



3.3. Additional 
onvergen
e/divergen
e resultsNow, we have to show that the variables Yn (n ≥ 0) are independent. Let n, m in N su
hthat m 6= n. We suppose, without loss of generality, that n < m. Let t1, t2 ∈ R. We aregoing to show that E (eit1Yn+it2Ym
)

= E
(

eit1Yn
)

E
(

eit2Ym
). We have

E
(

eit1Yn+it2Ym
)

= E
[

E
(

eit1Yn+it2Ym |Xn,Xm,Nn

)]

. (3.33)The random variable Yn is σ(Xn,Nn)-measurable, so that
E
(

eit1Yn+it2Ym
)

= E
[

eit1YnE
(

eit2‖
Xm

‖Xm‖
+σNm‖|Xn,Xm,Nn

)] (3.34)Using the independen
e of Nm with the random ve
tors Xn, NNn and Xm, we get
E
(

eit2‖
Xm

‖Xm‖
+σNm‖|Xn,Xm,Nn

)

=
1

(2π)d/2

∫

Rd

eit2‖
Xm

‖Xm‖
+σx‖e− ‖x‖2

2 dx

=
1

(2π)d/2

∫

Rd

eit2‖e1+σx‖e−
‖x‖2

2 dx

= E
[

eit2‖e1+σNm‖] .

(3.35)Therefore, we get
E
(

eit1Yn+it2Ym
)

= E
(

eit1YnE
(

eit2‖e1+σNm‖))

= E
(

eit2‖e1+σNm‖)E
(

eit1Yn
)

= E
(

eit1Yn
)

E
(

eit2Ym
)

.

(3.36)
3.3.2 Divergen
e in the 
ase −∞ ≤ mN < −1In the 
ase where −∞ ≤ mN < −1, the key idea is that obje
tive fun
tions are negativeafter a �nite number of iterations. This is stated in the following lemma.Lemma 3.22. Consider the sequen
es (On)n and (Xn)n de�ned by the re
urren
e relationsEq. 3.25 and Eq. 3.26 for the minimization of the obje
tive fun
tion de�ned in Eq. 3.24. If
−∞ ≤ mN < −1, then obje
tive fun
tions are negative after a �nite number of iterationsi.e., ∃ n1 ≥ 0 su
h that Fα(Xn) < 0 for n ≥ n1 almost surely.Proof :The proof is similar to the proof of the assertion 1 of Lemma 3.7 in the non shifted 
ase(i.e., relative to the obje
tive fun
tion given by Eq. 3.4). Let us show that the event
A := {∃ n1 ≥ 0 su
h that ∀ n ≥ n1 Fα(Xn) < 0} is equal to the event B := {∃ p0 ≥
0 su
h that Np0 < −1} .First, we show that A ⊂ B. This is equivalent to show that Bc ⊂ Ac. If ∀ p ≥ 0 , Np ≥ −1then ∀p ≥ 0 , Fα(Xp) ≥ 0 (be
ause
Fα(‖Xp‖) = (‖Xp‖2 + α) (1 +Op) = (‖Xp‖2 + α)

(

1 + Nψ(p)

) where ψ(p) ≤ p is the indexof last a

eptan
e).Now we have to show that B ⊂ A : Suppose that ∃ p0 ≥ 0 su
h that Np0 < −1. Wedenote by p1 ≥ 0 the integer de�ned by p1 = min{p ∈ N su
h that Np < −1}. Then97
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al Environments
Fα (Xp1) < 0 and Fα (Xp) ≥ 0 for all 0 ≤ p ≤ p1 − 1. Then, as (Fα (Xn))n is a de
reasingsequen
e, ∀n ≥ p1 Fα(Xn) < 0.This implies that P (A) = P (B). Now, we have for all n ≥ 0,

P (Bc) = P (∩+∞
p=0 (Np ≥ −1)) ≤ Πn

i=0P (N ≥ −1)) = (P (N ≥ −1))n.Let a := P (N ≥ −1). As −∞ ≤ mN < −1, then a < 1 and 
onsequently P (Bc) = 0and P (A) = 1. Then ∃ n1 ≥ 0 su
h that Fα(Xn) < 0 for n ≥ n1 almost surely. Thesequen
e (Fα(Xn))n is de
reasing (be
ause of the elitist sele
tion). Then for n ≥ n1,
Fα(Xn) ≤ Fα(Xn1) < 0 .We are now ready to state the main result.Proposition 3.23 (Divergen
e for −∞ ≤ mN < −1). Consider the sequen
es (On)n and
(Xn)n de�ned by the re
urren
e relations Eq. 3.25 and Eq. 3.26 for the minimization ofthe obje
tive fun
tion de�ned in Eq. 3.24. If mN + 1 < 0 then:1. Obje
tive fun
tions are negative after a �nite number of iterations i.e., ∃ n1 ≥ 0su
h that Fα(Xn) < 0 for n ≥ n1 almost surely.2. For n ≥ n1, the sequen
e of the expe
tations of the distan
es squared to the optimumof the non noisy obje
tive fun
tion is in
reasing in the sense that

E
(

‖Xn+1‖2

‖Xn‖2 |Xn, On,Nn

)

≥ 1.Therefore, for n ≥ n1, E(‖Xn‖2) ≥ E(‖Xn1‖2) > 0, and the sequen
e (E(‖Xn‖2))n 
annot
onverge to zero.This result in
lude the parti
ular 
ase of Gaussian noise (mN = −∞). Therefore, inthe 
ase of a Gaussian noise, the algorithm 
annot 
onverge in the sense that the L2-normof the sequen
e (‖Xn‖)n 
an not 
onverge to zero. This result seems in 
ontradi
tion withthe result of Arnold and Beyer [8℄ in whi
h they show that 
onvergen
e (in expe
tation)o

urs due to a positive expe
ted progress rate. The reason for this apparent 
ontradi
tionis due to the model investigated by Arnold and Beyer. Arnold and Beyer's model writesas:
f(x) = ‖x‖2

(

1 +
2σ∗

ǫ

d
N(0, 1)

) (3.37)where d is the sear
h spa
e dimension, σ∗
ǫ is a stri
tly positive 
onstant 
alled the normal-ized noise strength and N(0, 1) is the Gaussian random variable with mean 0 and varian
e

1. Our study shows that whenever, a negative �ntess value is sampled, the algorithmstart to diverge. In [8, Fig 8℄, and for the values σ∗
ǫ = 2 and d = 80, the probabilitythat a negative �tness value is sampled is upper bounded by 10−88 as already stated inSe
tion 3.1.4. Therefore, the average value of the moment n1 de�ned in Lemma 3.22is 1088. As in pra
ti
e, the algorithm does not run su
h a number of iterations, �tnessfun
tions values sampled are positive and a 
onvergen
e is observed.Proof :Note that the 
ase α = 0 and −∞ < mN < −1 leads to a divergen
e of the algorithm as98



3.3. Additional 
onvergen
e/divergen
e resultsalready stated in Proposition 3.4. Now we investigate the more general result where α ≥ 0and −∞ ≤ mN < −1. The �rst point of the proof is demonstrated in Lemma 3.22. Thefa
t that ∃ n1 ≥ 0 su
h that Fα(Xn) < 0 for n ≥ n1 almost surely implies that 1+On < 0for all n ≥ n1. For n ≥ 0, as P (‖Xn‖ = 0) = 0, one 
an divide the the a

eptan
e eventinequality (see Eq. 3.25 and Eq. 3.26) by ‖Xn‖2. The resulting inequality writes as:
(

∥

∥

∥

∥

Xn

‖Xn‖
+ σNn

∥

∥

∥

∥

2

+
α

‖Xn‖2

)

(1 + Nn) <

(

1 +
α

‖Xn‖2

)

(1 +On) .In the sequel, we suppose n ≥ n1. We have:
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

=

E

(

1n“‖ Xn
‖Xn‖

+σNn‖2
+ α

‖Xn‖2

”

(1+Nn)>
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

+E

(

‖Xn‖2‖ Xn

‖Xn‖ + σNn‖2

‖Xn‖2
1n“‖ Xn

‖Xn‖
+σNn‖2

+ α
‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

.As the multivariate normal distribution is isotropi
, we get
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

=

E

(

1n“‖e1+σNn‖2+ α
‖Xn‖2

”

(1+Nn)>
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

+ E

(

‖e1 + σNn‖2
1n“‖e1+σNn‖2+ α

‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

.Let Nn,1 denote the �rst 
oordinate of the variable Nn. The quantity ‖e1 + σNn‖2 equals
1 + 2σNn,1 + σ2‖Nn‖2 and we have
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

= 1

+ σ2E

(

‖Nn‖2
1n“‖e1+σNn‖2+ α

‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

+ 2σE

(

Nn,11
n“

‖e1+σNn‖2+ α
‖Xn‖2

”

(1+Nn)<
“

1+ α
‖Xn‖2

”

(1+On)
o |Xn, On,Nn

)

.For n ≥ n1, we have 1 +On < 0. Therefore, the event
((

‖e1 + σNn‖2 +
α

‖Xn‖2

)

(1 + Nn) <

(

1 +
α

‖Xn‖2

)

(1 +On)

)is equivalent to the event
{

(1 + Nn < 0) ∩
(

‖e1 + σNn‖2 > A (On, ‖Xn‖,Nn)
)} 99
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ale-invariant (1 + 1)-ES in Noisy Spheri
al Environmentswhere A (On, ‖Xn‖,Nn) is de�ned as A (On, ‖Xn‖,Nn) :=
(

1 + α
‖Xn‖2

)

1+On

1+Nn
− α

‖Xn‖2 . There-fore, we get:
E

(‖Xn+1‖2

‖Xn‖2
|Xn, On,Nn

)

= 1+

2σ1{Nn<0}E
(

Nn,11{1+2σNn,1+σ2‖Nn‖2>A(On,‖Xn‖,Nn)} |Xn, On,Nn

)

+ σ2
1{Nn<0}E

(

‖Nn‖2
1{1+2σNn,1+σ2‖Nn‖2>A(On,‖Xn‖,Nn)} |Xn, On,Nn

)Now, we will show thatM(Xn, On,Nn) := E
(

Nn,11{‖e1+σNn‖2>A(On,‖Xn‖,Nn)} |Xn, On,Nn

)

≥
0. The quantity M(Xn, On,Nn) 
an be rewritten as

M(Xn, On,Nn) =
1

(2π)
d
2

∫

Rd

x11{‖e1+σx‖2>A(On,‖Xn‖,Nn)}(x)dx . (3.38)Let On, ‖Xn‖ and Nn be �xed and let (x1, . . . , xd) ∈ R
d. If x1 is su
h that

x1 < 0 and 1 + 2σx1 + σ2‖x‖2 > A (On, ‖Xn‖,Nn)then
1 + 2σ(−x1) + σ2

(

(x1)
2 +

d
∑

i=2

(xi)
2

)

≥ 1 + 2σx1 + σ2‖x‖2 > A (On, ‖Xn‖,Nn)Let B (On, ‖Xn‖,Nn, x) denote the quantity A(On,‖Xn‖,Nn)−1−σ2‖x‖2

2σ
. Then

B (On, ‖Xn‖,Nn, (x1, x2 . . . , xd)) = B (On, ‖Xn‖,Nn, (−x1, x2 . . . , xd)) , (3.39)and we haveif x1 < 0 then 1{x1>B(On,‖Xn‖,Nn,(x1,x2,...,xd))} ≤ 1{−x1>B(On,‖Xn‖,Nn,(−x1,x2,...,xd))} . (3.40)The quantity M(Xn, On,Nn) 
an be rewritten as
M(Xn, On,Nn) =

1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≤0}1{‖e1+σx‖2>A(On,‖Xn‖,Nn)}(x)dx1

]

dx2 . . . dxd

+
1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≥0}1{‖e1+σx‖2>A(On,‖Xn‖,Nn)}(x)dx1

]

dx2 . . . dxd .Applying a 
hange of variables in the se
ond term (u1 = −x1, u2 = x2, . . . , ud = xd), andusing Eq. 3.39, one gets
M(Xn, On,Nn) =

1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≤0}1{x1>B(On,‖Xn‖,Nn,x)}(x)dx1

]

dx2 . . . dxd

+
1

(2π)
d
2

∫

Rd−1

[∫

R

−u11{u1≤0}1{−u1>B(On,‖Xn‖,Nn,u)}(u)du1

]

du2 . . . dud .100



3.3. Additional 
onvergen
e/divergen
e resultsThis gives
M(Xn, On,Nn) =

1

(2π)
d
2

∫

Rd−1

[
∫

R

x11{x1≤0}
(

1{x1>B(On,‖Xn‖,Nn,x)}(x) − 1{−x1>B(On,‖Xn‖,Nn,x)}(x)
)

dx1

]

dx2 . . . dxd .By Eq. 3.40, one has x11{x1≤0}
(

1{x1>B(On,‖Xn‖,Nn,x)}(x) − 1{−x1>B(On,‖Xn‖,Nn,x)}(x)
)

≥ 0for all x ∈ R
d . ConsequentlyM(Xn, On,Nn) ≥ 0 whi
h implies thatE (‖Xn+1‖2

‖Xn‖2 |Xn, On,Nn

)

≥
1 for n ≥ n1.
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Chapter 4Log-linear Behavior of theS
ale-invariant (1, λ)-ES in NoisySpheri
al EnvironmentsThe material in this 
hapter is the basis for a journal paper that we intend to submitsoon. In Chapter 3, we investigated the e�e
t of the elitist sele
tion pro
edure of thes
ale-invariant (1 + 1)-ES when minimizing noisy obje
tive fun
tions. For a 
lass ofnoisy obje
tive fun
tions with positive non-noisy part, we have shown that almost sure
onvergen
e 
annot o

ur if negative noisy obje
tive fun
tions values 
an be sampledwith a stri
tly positive probability. In this 
hapter, we investigate the behavior of thenon elitist (1, λ) isotropi
 ES when minimizing noisy obje
tive fun
tions. The adaptationrule is the s
ale-invariant rule (i.e., σn = σ‖Xn‖) that had been previously shown to beoptimal for 
omma strategies [17℄. The general model of the noisy obje
tive fun
tion isgiven by the following equation
f(x) = ‖x‖(1 + σǫN ) (4.1)where x ∈ R

d, N is an independent random variable that models the noise and σǫ is astri
tly positive 
onstant whi
h represents a s
aling parameter for the noise level. Wewill refer to σǫ as the noise strength. The noise random variable N is supposed to beabsolutely 
ontinuous with respe
t to the Lebesgue measure.Moreover, we investigate two models relative to the 
omputation of the �tness of theo�spring that we denote model pf and model apf respe
tively. Let x ∈ R
d denotea parent and y ∈ R

d its o�spring. In the model pf, the �tness of the o�spring is
f(y) = ‖y‖+σǫ‖y‖N . In the model apf, the �tness of the o�spring is f(y) = ‖y‖+σǫ‖x‖N .The model apf was used in [8℄ as a reliable approximation in the limit of in�nite dimen-sion of the sear
h spa
e.The work 
an be divided into three parts, that we summarize below.Part 1: Log-linear behavior for �xed �nite dimension In this part, we investigatethe log-linear behavior of the algorithm for a �xed sear
h spa
e dimension. The log-linear103



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsbehavior of the algorithm is proven in Theorem 4.8 for the models pf and apf. The resultis established using the Law of Large Numbers for orthogonal random variables. Theresult is that limn
1
n

ln (‖Xn‖) = F(σ, σǫ) or F̃(σ, σǫ) where F(σ, σǫ) (respe
tively F̃(σ, σǫ))represents the 
onvergen
e rate for the model pf (respe
tively apf). This theorem not onlystates that the behavior of the algorithm is log-linear (whenever the quantites F(σ, σǫ) and
F̃(σ, σǫ) are nonzero), but also gives a quantitative information relative to the 
onvergen
e(or divergen
e) speed that 
an be numeri
ally 
omputed (see Part 3)..Part 2: In�nite dimension study The hypothesis used in [8℄ suggests that the modelpf is well approximated by the model apf for in�nite dimension of the sear
h spa
e. Inthis part, we show rigorously that su
h an approximation is reliable when the sear
h spa
edimension goes to in�nity. Moreover, we investigate how the 
onvergen
e rate F(σ, σǫ) (or
F̃(σ, σǫ)) varies as a fun
tion of the sear
h spa
e dimension d. Therefore, we investigatethe limit of the so-
alled normalized 
onvergen
e rates dF(σ, σǫ) and dF̃(σ, σǫ) with σequal to σ∗

d
and σǫ equal to σ∗ǫ

d
. The stri
tly positive 
onstants σ∗ and σ∗

ǫ are respe
tively
alled normalized step-size mutation and normalized noise strength. The result of this
omputation relies on proving the uniform integrability of the underlying random variablesand is given in Theorem 4.9. It is proven that the quantities dF(σ
∗

d
, σ

∗
ǫ

d
) and dF̃(σ

∗

d
, σ

∗
ǫ

d
)have the same limit, depending on λ, σ∗ and σ∗

ǫ , that we will denote l(λ, σ, σ∗
ǫ ). Thisresult allows us to 
on
lude that:1. The 
onvergen
e rate varies asymptoti
ally linearly with the inverse of the sear
hspa
e dimension in the sense that F(σ

∗

d
, σ

∗
ǫ

d
) ∼

l(λ,σ,σ∗ǫ )
d

and F̃(σ
∗

d
, σ

∗
ǫ

d
) ∼

l(λ,σ,σ∗ǫ )
d

.2. The approximation used in [8℄ is reliable when the sear
h spa
e dimension goes toin�nity.Part 3: Spe
i�
 
ase of Gaussian noise In this part, we fo
us on the parti
ular
ase of Gaussian noise. First, we give in Theorem 4.10 a simpli�ed expression of the limit
l(λ, σ, σ∗

ǫ ) of the normalized 
onvergen
e rates dF(σ
∗

d
, σ

∗
ǫ

d
) and dF̃(σ

∗

d
, σ

∗
ǫ

d
). The proof inTheorem 4.10 uses the same te
hniques that were used in [25℄, and mainly relies on the fa
tthat mutations follow the multivariate normal distribution.The limit of the normalized
onvergen
e rate (given in Eq. 4.20) is found to be equal to the opposite of the limit ofthe progress rate derived in [25℄. This result generalizes the result derived in [17℄ for thenon-noisy sphere fun
tion. Moreover, the expression derived shows that:1. For su�
iently large sear
h spa
e dimensions, if σ∗

ǫ < 2c(1, λ), the algorithm 
on-verges provided that σ∗2 +σ∗
ǫ
2 < 4c2(1, λ) (stri
tly negative normalized 
onvergen
erate) and if σ∗

ǫ > 2c(1, λ) the algorithm diverges (stri
tly positive normalized 
on-vergen
e rate).2. For �xed σ∗ and λ, the limit of the normalized 
onvergen
e rate when the sear
hspa
e goes to in�nity is in
reasing as a fun
tion of σ∗
ǫ , i.e., the noise slows downa possible 
onvergen
e of the algorithm or speeds up a possible divergen
e of thealgorithm.104



3. The limit of the normalized 
onvergen
e rate when the sear
h spa
e dimensiongoes to in�nity is a de
reasing fun
tion of λ, i.e., in
reasing λ speed up a possible
onvergen
e of the algorithm.Se
ond, in the divergen
e 
ase given by σ∗
ǫ > 2c(1, λ), we 
ompare the strategies of1. in
reasing λ,2. re-sampling the o�spring �tness N times and averaging its �tness through the Nsamplings.By in
reasing λ or averaging (whi
h de
reases the normalized noise strength from σ∗

ǫ to
σ∗ǫ√
N
) one 
an be in the 
onvergen
e situation given by σ∗

ǫ < 2c(1, λ). It is established,for su�
iently large values of σ∗
ǫ , that it is better for the (1, λ)-ES (in term of evaluation
ost per generation), to reevaluate the o�spring �tness than to in
rease the number ofo�spring λ. Note that a similar study had been previously done in [25℄.Third, a 
ontribution of this study is Theorem 4.8, whi
h has been derived using a LLNfor orthogonal random variables, and gives the expli
it expression of the 
onvergen
e (ordivergen
e) rate. This expression is given in terms of an expe
tation of an underlyingrandom variable and therefore, a

ording to the LLN, 
an be numeri
ally 
omputed us-ing Monte Carlo simulations. Monte Carlo simulations of the normalized 
onvergen
erates are plotted as a fun
tion of the normalized step-size mutation for di�erent normal-ized noise strengths, di�erent dimensions and both models pf and apf. Stri
tly positive(respe
tively negative) values of the normalized 
onvergen
e rate mean that the algo-rithm 
onverges (respe
tively diverges). In parti
ular, it 
an be seen that for almost allparameter settings (normalized step-size muation, normalized noise strength, number ofo�spring), the 
onvergen
e rate is nonzero, whi
h gives the log-linear behavior of the al-gorithm.Fourth, 
urves representing the normalized 
onvergen
e rates for �nite dimensions andthe in�nite dimension (d → +∞) are plotted (Figures 4.5 and 4.6) as a fun
tion of thenormalized step-size mutation for the models pf and apf and two values of the normal-ized noise strength. These plots reveal that, for same parameter values of the algorithmand of the normalized strength, �nite 
onvergen
e rates 
an have stri
tly negative sign,suggesting a 
onvergen
e of the algorithm, while the limit expression of the 
onvergen
erate is stri
tly positive, suggesting the divergen
e of the algorithm in the limit of in�nitedimensions. Therefore, in�nite dimension results have to be taken with 
are in some
ases. Moreover, the 
omparison of the 
urves relative to the model pf to those relativeto the model apf reveals that, for the same parameter values and �nite dimensions, 
on-vergen
e 
an be predi
ted for one of the two models, while divergen
e o

urs for the othermodel. These two observations prove the limits of adopting, for �nite dimensions, in�nitedimension results and for approximating the model pf by the model apf.Finally, optimal 
onvergen
e rates, optimal normalized step-size mutations, and upperbounds for the step-size mutation allowing to have a 
onvergen
e of the algorithm areplotted, for �nite and in�nite dimensions, as a fun
tion of the normalized noise strength

σ∗
ǫ . 105
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4.1. Introdu
tion
Log-linear Behavior of the S
ale-invariant (1, λ)-ES inNoisy Spheri
al Environments

4.1 Introdu
tionOptimization is a re
urrent task in engineering problems and a resear
h �eld investigatedby applied mathemati
ians and by 
omputer s
ientists as well. Mathemati
ally speaking,the goal is to minimize (or maximize 1) a real valued fun
tion f , 
alled obje
tive fun
-tion, and de�ned on a sear
h spa
e Ω. The general 
ontext of this 
hapter is non linearun
onstrained 
ontinuous optimization. This means that f is non linear, the sear
h spa
e
Ω is non restri
ted and is (or 
ontains) one or many open subsets of R

d.The di�
ulty of an un
onstrained optimization problem is related to the dimension ofthe sear
h spa
e Ω and to the 
hara
teristi
s of the underlying obje
tive fun
tion f . Inreal-world optimization problems, obje
tive fun
tions 
an be non-
onvex, non-smooth,dis
ontinuous, noisy, multi-modals, ill-
onditioned, non separable . . . . The algorithmsdeveloped to solve these problems explore the sear
h spa
e by generating, at ea
h iter-ation, new trial point(s) either deterministi
ally or randomly using some sear
h distri-bution. Randomized sear
h methods are well known global methods whi
h prove to bemore robust than deterministi
 sear
h methods when optimization problems are 'di�
ult'[9, 106, 78℄. Randomized sear
h methods designed for 
ontinuous optimization in
ludePure Random Sear
h (PRS) [31℄, Pure Adaptive Sear
h (PAS) [148℄, Evolution Strate-gies (ES) [25℄, Di�erential Evolution (DE) [131, 132, 133℄, Parti
le Swarm Optimization(PSO) [34, 81, 126, 127℄, (
ontinuous) Estimation of Distribution Algorithms (
ontinu-ous (EDA)) [91℄ and Simulated Annealing (SA) [3℄2. A

ording to the 
omparison ofsome widely used 
ontinuous randomized sear
h methods whi
h has been done during theCongress of Evolutionary Computation (CEC 2005) [2℄, the state of the art of ES 
alledCovarian
e Matrix Adaptation-Evolution Strategy (CMA-ES) was highly 
ompetitive bysolving all problems in
luding multi-modal problems and robust as its performan
e wasnot a�e
ted by non-separability or non-
onvexity. Moreover, the performan
e of CMA-ESdegrades slower than performan
e of the other methods when the test fun
tion is beingless and less 
onditioned.Pure Random Sear
h is the simplest randomized sear
h method. At ea
h iteration,trial points are independent identi
ally distributed (i.i.d.) and the best solution is re-tained. In parti
ular, points are always sampled around the same point and the sear
h1Minimizing a real valued fun
tion f is equivalent to maximize −f .2Simulated Annealing 
an be seen as a parti
ular ES with a randomized rule for the a

eptan
e of anew trial point. 107



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsdistribution parameters su
h as the radius and favorite dire
tions of the sear
h are un-
hanged during the optimization pro
ess. It has been proven [149℄ that this intuitivepro
edure ensures a global 
onvergen
e in the sense that the algorithm 
onverges to theglobal minimum with probability 1 for every obje
tive fun
tion for whi
h the neighbor-hood of the global optimum 
an be rea
hed with stri
tly positive probability. However,the resear
h parameters of Pure Random Sear
h are not adapted relatively to the historyof the sear
h and/or the shape of the obje
tive fun
tion. Thus, its 
onvergen
e time isvery large in
reasing exponentially with the sear
h spa
e dimension. This makes PureRandom Sear
h not useful in pra
ti
e on some problems presenting a stru
ture that 
ouldbe exploited. This exponential dependen
y of the 
onvergen
e time of the PRS withrespe
t to the dimension is de
reased to a linear dependen
y for the so-
alled Pure Adap-tive Sear
h (PAS) [148℄ but the PAS is an algorithm, not only move i� a better point issampled but also does not adapt its resear
h parameters. The run time will be then verylarge in pra
ti
e.On the other hand, ES, whi
h are evolutionary algorithms (EA) designed for 
ontinuousoptimization, were su

essful due to the adaptation me
hanisms of resear
h parametersthey implement. ES, as other EA, use bio-inspired te
hniques at ea
h iteration (
alledalso generation) to evolve a set (or population) of solutions. Solutions in the beginningof an iteration n are 
alled parents. Then the sear
h step is based on the so-
alled mu-tations. A mutation is a perturbation of a parent whi
h 
orresponds to adding a randomsampling of a multivariate normal distribution. The resulting point is 
alled o�spring. Atan iteration n, let Xn be the parent, the o�spring Yn equals
Yn = Xn + σnN(0, Cn), (4.2)where σn is a stri
tly positive 
onstant and N(0,M) denotes a sampling of the multi-variate normal distribution with mean (0, . . . , 0) ∈ R

d and a 
ovarian
e matrix M . Theparameter σn and the matrix Cn are the sear
h distribution parameters. The parameter
σn 
orresponds to the 'radius' of the sear
h and is 
alled the step-size mutation. Thematrix Cn gives the favorite dire
tions of the sear
h at the iteration n and is abusively
alled the 
ovarian
e matrix of the mutation. An e�
ient ES has to adapt its resear
hparameters (σn and Cn) based on the history of the sear
h. The simplest ES, is the so-
alled (1 + 1)-ES, whi
h evolves a single solution and a

ept, at ea
h iteration, the newtrial point i� it is better than the previous sampled points. If the step-sizes σn (n ≥ 0) areset equals to a 
onstant σ0 and the 
ovarian
e matri
es Cn are set equal to the identitymatrix of R

d whi
h we denote Id3, it has been shown [117, 33℄ that almost sure 
onver-gen
e toward the global optimum holds when the obje
tive fun
tion is 
ontinuous. If thestep-sizes σn (n ≥ 0) are deterministi
ally updated, it has been shown that global 
onver-gen
e4 holds for isotropi
 ES whenever a su�
ient 
ondition on the sequen
e of step-sizesis satis�ed [150℄. Several adaptation s
hemes have been introdu
ed. The one-�fth su

essrule [114, 82℄ is the oldest known te
hnique whi
h adapts only the step-size. Self-adaptiveStrategies [114℄ and Meta-ES [63℄ employ the evolution itself to adjust the sear
h param-eter values. The state of the art of adaptive ES is the CMA-ES [61, 59, 57, 16℄ in whi
h3ES with Cn = Id are 
alled isotropi
 ES.4Global 
onvergen
e studies refer to theoreti
al studies where obje
tive fun
tion is not subje
t to manyhypothesis and in parti
ular these studies 
on
ern multi-modal fun
tions.108



4.1. Introdu
tionthe step-size and all the dire
tions of the sear
h are updated at ea
h iteration.The adaptation in ES makes them pra
ti
ally more e�e
tive and more rapid than PRSas it is the 
ase of CMA-ES for whi
h it is stated in [16℄ that: �On Convex-quadrati
fun
tions, the adaptation me
hanisms for σ and C allow to a
hieve log-linear 
onvergen
eafter an adaptation time whi
h s
ales between 0 and the sear
h spa
e dimension squared�.The log-linear 
onvergen
e, numeri
ally observed in many numeri
al studies of optimiza-tion using ES, means that the logarithm of the distan
e to the optimum de
reases linearlywith the number of iterations after an adaptation time. Mathemati
ally speaking, if wedenote dn the distan
e of the solution at an iteration n to the optimum, the (log)-linear(asymptoti
) 
onvergen
e means that
lim
n→∞

1

n
ln(dn) = c (4.3)for some c 6= 0. The limit c is 
alled 
onvergen
e rate (of the sequen
e (ln(dn))n). Thesequen
e (dn)n 
onverges whenever c < 0. If c > 0, the algorithm diverges. It hasbeen proven [17, 77℄ for isotropi
 ES that the 
onvergen
e of ES on uni-modal obje
tivefun
tions is at most log-linear for any adaptation s
heme of the sequen
e (σn) and thatthe optimal 
onvergen
e rate is rea
hed for a spe
i�
 obje
tive fun
tion and a spe
i�
adaptation rule of the sequen
e (σn). The spe
i�
 obje
tive fun
tion is the so-
alled spherefun
tion whi
h is the fun
tion mapping R
d into R and de�ned as f(x) = ‖x‖2 for x ∈ R

dwhere ‖.‖ denotes the eu
lidean norm on R
d. The minimum of this fun
tion is rea
hedon (0, . . . , 0). The spe
i�
 adaptation rule is the so-
alled s
ale-invariant te
hnique forwhi
h the step-size is set proportionally to the distan
e to the optimum at ea
h iteration5in the sense that, in the 
ase of an optimum in (0, . . . , 0), this rule writes as

σn = σ‖Xn‖ , (4.4)where σ is a stri
tly positive 
onstant 
alled normalized step-size mutation. This adap-tation rule has been widely investigated in the 
ontext of progress rate theory [114, 25℄in whi
h the exa
t expression of the s
ale-invariant mutation is to set σ in Eq. 4.4 equalto σ∗

d
where σ∗ is a stri
tly positive 
onstant 
alled the normalized step-size mutation6.In progress rate theory, the goal is to maximize the expe
ted progress to the optimumat ea
h iteration (
alled progress rate) and the results derived hold asymptoti
ally in thedimension of the sear
h spa
e. In the 
ase of a realisti
 adaptation rule, an idea proposedin [27℄ of investigating the stability of Markov 
hains relative to the ES dynami
s to studytheir behavior was exploited in [13℄ to rigorously prove that isotropi
 ES do 
onverge (ordiverge) log-linearly when minimizing the sphere fun
tion.Noisy obje
tive fun
tions are frequently en
ountered in real-world optimization prob-lems. Noise 
an have various origins as physi
al measurement limitations or the use ofsto
hasti
 simulation pro
edures su
h as Monte-Carlo simulations. Note that these exam-ples share the property that a reevaluation of a same solution lead to di�erent obje
tive5This rule is arti�
ial as in pra
ti
e one does not know the optimum lo
ation.6Note that we used the same terminology 'normalized step-size mutation' to denote σ in Eq. 4.4 and

σ∗ when σ is repla
ed by σ∗

d
. 109



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsfun
tion values. Therefore, the noise investigated here is random.The problem when dealing with noisy obje
tive fun
tions is that the noisy part of thefun
tion 
an de
eive the de
ision making. The 
omparison of two solutions is no morereliable: the noisy obje
tive fun
tion of a solution with low noise value 
an be betterthan the obje
tive fun
tion value of a solution with a better (ideal) fun
tion value butlarge noise value. If this event happens frequently, the algorithm may diverges. Beyer[24℄ noti
ed that the behavior of evolutionary algorithms in noisy environments is similar,independently of the nature of the sear
h spa
e (
ontinuous or dis
rete): noisy obje
tivefun
tions lead to the de
rease of the 
onvergen
e speed and to a deterioration of the �-nal optimum lo
ation quality. ES are robust when solving noisy optimization problems[9, 106℄ 
ompared to other deterministi
 or randomized sear
h methods. In [9℄, it is shownthat ES perform better than some deterministi
 method whi
h 
an stagnate. In parti
-ular, it is shown that, for large values of noise, ES 
an perform even better than theimpli
it �ltering method [47, 80℄ whi
h belongs to the �eld of sto
hasti
 approximationalgorithms [115, 83, 86, 87℄ whi
h are optimization methods spe
i�
ally designed for theoptimization of sto
hasti
 and in parti
ular noisy obje
tive fun
tions. In [106℄, it is statedthat ES perform the best among population-based methods on noisy environments. How-ever, there are few rigorous mathemati
al studies of the 
onvergen
e of ES with respe
t tothe noise properties. Theoreti
al studies of ES in presen
e of noise have been 
arried outby Re
henberg [114℄, Arnold and Beyer [25, 7, 5, 10, 6, 8, 24℄, using asymptoti
 estima-tions when the dimension of the sear
h spa
e tends to in�nity. In [8℄, the noisy obje
tivefun
tion used by the authors is
‖x‖2

(

1 +
2σ∗

ǫ

d
N
) (4.5)in whi
h the term σ∗

ǫ is a stri
tly positive 
onstant 
alled normalized noise strength and
N is a Gaussian variable. Note that the noise model here is multipli
ative, i.e., the noiseis the ratio between the noisy and ideal obje
tive fun
tion. It is worth noti
ing that amultipli
ative noise model is a realisti
 model for modeling the noise, as the performan
eof the algorithm depends on how the noisy value of the obje
tive fun
tion 
ompares to theideal value. Moreover, an hypothesis of an additional noise with a �xed varian
e will leadto a random behavior of the algorithm when the ideal obje
tive fun
tions values be
ome,after some iterations, very small 
ompared to the noise varian
e. In our study, we theoret-i
ally investigate the behavior of the so-
alled (1, λ)-ES7 using the optimal s
ale-invariantadaptation rule on the minimization of an obje
tive fun
tion perturbed by a multipli
ativenoise. The noisy obje
tive fun
tion investigated here has a similar expression to that ofEq. 4.5 and simpli�es to the fun
tion f(x) = ‖x‖ in the absen
e of noise. We will denotethe non-noisy fun
tion f(x) = ‖x‖ the sphere fun
tion and the relative noisy fun
tion,that we will investigate here, noisy sphere fun
tion. Note that in general, the terminology'sphere fun
tion' is in general used to denote the fun
tion f(x) = ‖x‖2, but in our 
ase weused this terminology to refer to f(x) = ‖x‖. The study is similar for the two fun
tions.We investigate two noise models relative to two ways the o�spring obje
tive fun
tion7In an iteration of the (1, λ)-ES, the new parent is the best o�spring among the λ o�spring newlygenerated.110



4.2. Mathemati
al model for the s
ale-invariant (1, λ)-ES minimizing noisy sphere fun
tions
omputation is done. In the �rst model, the noise level of the o�spring is proportional toits (ideal) obje
tive fun
tion f(x) = ‖x‖. The se
ond model has been used by Arnold andBeyer in [8℄ as a reliable approximation of the �rst one for high sear
h spa
e dimensions:using the s
ale invariant algorithm with a Gaussian noise distribution for the noisy ob-je
tive fun
tion, they 
laim that the noise level of an o�spring (whi
h 
orresponds to thestandard deviation of the noise distribution) is well approximated by that of its parentwhen the sear
h spa
e dimension d goes to in�nity. The �rst model will be referred to asmodel pf and the se
ond one will be denoted model apf.The behavior of ES on noisy obje
tive fun
tions is important to study. The randomizedpart of these fun
tions 
overs many real obje
tive fun
tion 
ases for whi
h a little infor-mation is given and therefore any kind of irregularity is in
luded on this kind of fun
tions.In this 
hapter, we want to see if, similarly to the non-noisy 
ase, the behavior of thes
ale-invariant (1, λ)-ES is log-linear on the noisy spheri
al obje
tive fun
tions. For thispurpose, we introdu
e in Se
tion 4.2 the mathemati
al model for the obje
tive fun
tionand the s
ale-invariant (1, λ)-ES minimizing this fun
tion with its two versions relative tothe models pf and apf. In Se
tions 4.3 and 4.4 we investigate the log-linear behavior ofthe algorithm and derive the 
onvergen
e (or divergen
e) rate in Theorem 4.8. Se
tion 4.5is dedi
ated to the study of the dependen
y of the 
onvergen
e rate of the algorithm withrespe
t of the sear
h spa
e dimension: we 
ompute a 
ommon limit (Theorem 4.9) forthe two models pf and apf of the so-
alled normalized 
onvergen
e (or divergen
e) ratewhen the sear
h spa
e dimensions goes to in�nity and derive its expression on the spe
i�

ase of Gaussian noise (Theorem 4.10). In Se
tion 4.6, the distin
tion between the 
aseswhere 
onvergen
e or divergen
e happens is investigated theoreti
ally and numeri
ally for�nite and in�nite dimension 
ases. Note �nally that for the sake of readability, most ofthe proofs of this 
hapter are sent into an appendix se
tion.4.2 Mathemati
al model for the s
ale-invariant (1, λ)-ES minimizing noisy sphere fun
tions4.2.1 Obje
tive fun
tion modelThe general noisy spheri
al model investigated here is the multipli
ative noise modelwhi
h writes as
f(x) = ‖x‖(1 + σǫN ) (4.6)where x ∈ R

d, N is an independent random variable that models the noise and σǫ isa stri
tly positive 
onstant whi
h represents the s
aling parameter for the noise level.We will refer to σǫ as the noise strength. The noise random variable N is supposed tobe absolutely 
ontinuous with respe
t to the Lebesgue measure. Its probability densityfun
tion is denoted pN . The expression of the noise level σǫ‖x‖ 
onveys the idea of settingthe varian
e of the noise proportional to the (ideal) obje
tive fun
tion whi
h is the spherefun
tion ‖x‖ here.In our study, we investigate two noise models relative to two di�erent expressions for111



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsthe 
omputation of the o�spring obje
tive fun
tion. Let x denote the parent and y itso�spring. The model pf is the original model given by Eq. 4.6 and then verifying that thenoise level of the o�spring is proportional to its (ideal) obje
tive fun
tion, i.e., the �tnessof the o�spring y writes as ‖y‖ + σǫ‖y‖N . The model apf is relative to the approxima-tion used by Arnold and Beyer in [8℄. In fa
t, Arnold and Beyer [8℄ state that for highdimension of the sear
h spa
e the parent and its o�spring are so 
lose that the noise levelof the o�spring (whi
h is σǫ‖y‖N in the original model pf) will be well approximated bythat of its parent, i.e., σǫ‖x‖N . Thus, the �tness of the o�spring y in model apf equals
‖y‖ + σǫ‖x‖N . The model ( apf ) was also investigated in [136℄ as a model where thenoise level is s
aled proportionally to the step-size mutation.4.2.2 The algorithm: the s
ale-invariant (1, λ)-ES minimizing theobje
tive fun
tion de�ned in Eq. 4.6In the 
ontext of minimization of a real valued fun
tion de�ned on a 
ontinuous subsetof R

d (d ≥ 1), the (1, λ)-ES is a simple ES whi
h evolves a single solution. The solutionat an iteration n is the parent denoted Xn. An iteration n of a (1, λ)-ES is 
omposed ofthree steps:
• Sear
h step:In this step, λ mutations are performed as in Eq. 4.2 resulting on λ new trial points(the o�spring) Yi,n := Xn + σnNi,n(0, Id) , i = 1, . . . , λ . The quantities Ni,n(0, Id) , i =
1, . . . , λ are independent realizations of the multivariate isotropi
 normal distribution on
R
d, N(0, Id), whi
h we will denote N(d). For d = 1, N(1) will be simply denoted NUsinga s
ale-invariant mutation des
ribed in Eq. 4.4, the expressions of the o�spring 
an berewritten as: Yi,n = Xn + σ‖Xn‖Ni,n(0, Id) , i = 1, . . . , λ.

• Evaluation step:In this step, obje
tive fun
tions of the o�spring 
reated are 
omputed. The noisy obje
tivefun
tion of an o�spring Yi,n denoted, a

ording to the model used, f̃(Yi,n) or f(Yi,n) isthen de�ned as
f(Yi,n) = ‖Yi,n‖ + σǫ‖Yi,n‖Ni,n , (4.7)for the model pf, and
f̃(Yi,n) = ‖Yi,n‖ + σǫ‖Xn‖Ni,n , (4.8)for the model apf where, for n ∈ N and i an integer in [1, λ], the random variables Ni,nare independent realizations of the (noise) random variable N . In Eq. 4.8, we have useda tilde for the notation of the �tness fun
tion of the o�spring for the model apf, whi
h isdenoted without a tilde for the model pf. In the sequel, we will use the same 
onvention,i.e., use tilde for quantities relative to the model apf.

• Sele
tion step:In this step, only the best o�spring (a

ording to its obje
tive fun
tion value) is keptas the new parent Xn+1. This means that Xn+1 equals Y∗,n whi
h veri�es f(Y∗,n) =112



4.3. De�nitions and preliminary results
min{f(Yi,n) , i = 1, . . . , λ} if model pf is used and f̃(Y∗,n) = min{f̃(Yi,n) , i = 1, . . . , λ}if model apf is used. For this 
hosen o�spring the random ve
tor (r.ve
.) N

(d)
∗,n and therandom variable (r. var.) N∗,n are then impli
itely de�ned by

∥

∥Xn + σ‖Xn‖N(d)
∗,n
∥

∥ (1 + σǫN∗,n) = min
1≤i≤λ

{
∥

∥Xn + σ‖Xn‖N(d)
i,n

∥

∥ (1 + σǫNi,n)} (4.9)if the model pf is used. For the model apf the previous equation writes
∥

∥Xn + σ‖Xn‖N(d)
∗,n
∥

∥+ σǫ‖Xn‖N∗,n = min
1≤i≤λ

{
∥

∥Xn + σ‖Xn‖N(d)
i,n

∥

∥+ σǫ‖Xn‖Ni,n} . (4.10)In other words, the random ve
tor N
(d)
∗,n and the random variable N∗,n are the instan
ethat gave the best o�spring. A

ording to this three steps, the mathemati
al formulationof the algorithm is as follows: let X0 ∈ R

d be the �rst parent randomly 
hosen with the
ondition P (X0 = 0) = 0. Then an iteration of the s
ale-invariant (1, λ)-ES algorithmdesigned for the minimization of the fun
tion de�ned in Eq. 4.6 writes for n ≥ 0 as:
Xn+1 = Xn + σ‖Xn‖N(d)

∗,n , (4.11)where N
(d)
∗,n is de�ned in Eq. 4.9 and Eq. 4.10 a

ording to the model used.In se
tion 4.4, we investigate the stability of the sequen
e Xn for the models apf andpf and derive the 
onvergen
e theorem (Theorem 4.8). In se
tion 4.5, we 
ompute thelimit for d going to in�nity of the so-
alled normalized 
onvergen
e rate derived fromthe expe
tation given in Theorem 4.8 using normalizations of the progress rate theoryin
luding Arnold and Beyer [25, 8℄ normalizations for the noise.4.3 De�nitions and preliminary resultsIn the sequel, e1 will denote the unitary ve
tor in R

d (1, 0, . . . , 0) and Pr (E) the probabilityof an event E. Moreover, let λ ∈ N
∗, (Mi)1≤i≤λ be λ random variables (or ve
tors) and Rbe a random variable or a real valued fun
tion. The argmin of the variables R(Mi) (i ∈

{1, . . . , λ}) is the random variable (or ve
tor) M∗ whi
h lies in the set {Mi, i = 1, . . . , λ}and whi
h veri�es R(M∗) = min{1≤i≤λ}{R(Mi)}.will also use the following de�nition.De�nition 4.1.1. We de�ne the maps H (relative to the model pf) and H̃ (relative to the model apf)on N
∗ × R

d × [0,+∞[×[0,+∞[ into R
+ as the following:

H(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1
[

‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN(d)‖ (1 + σǫN )
]

pN (y)dy ,and̃
H(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1
[

‖e1 + σx‖ + σǫy ≤ ‖e1 + σN(d)‖ + σǫN
]

pN (y)dy .113



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environments2. Let (N
(d)
i )i∈[1,λ] (resp. (Ni)i∈[1,λ]) be λ independent samplings of N(d) (resp. N ).We de�ne the random ve
tor (N

(d)
∗ ,N∗) as the argmin of the variables {‖e1 +

σN
(d)
i ‖ (1 + σǫNi) , i = 1, . . . , λ} if model pf and as the argmin of the variables

{‖e1 + σN
(d)
i ‖ + σǫNi, i = 1, . . . , λ} if model apf.In this 
ontext, we have the following lemma.Lemma 4.2. Let H and H̃ be the fun
tions introdu
ed in De�nition. 4.1 and N

(d)
∗ therandom ve
tor introdu
ed in the same De�nition. Then the probability density fun
tionof the random ve
tor N

(d)
∗ is de�ned, for a given (λ, σ, σǫ) ∈ N

∗ × [0,+∞[×[0,+∞[, as
1

(2π)d/2
e−

‖x‖2

2 H(λ, x, σ, σǫ), x ∈ R
d (4.12)if model pf and

1

(2π)d/2
e−

‖x‖2

2 H̃(λ, x, σ, σǫ), x ∈ R
d (4.13)if model apf. Moreover, we introdu
e the fun
tions F and F̃ mapping [0,+∞[×[0,+∞[into R as follows:

F(σ, σǫ) := E
[

ln(‖e1 + σN(d)
∗ ‖)

]

=
1

(2π)d/2

∫

Rd

ln(‖e1 + σx‖)e− ‖x‖2

2 H(λ, x, σ, σǫ)dx
(4.14)where N

(d)
∗ is de�ned a

ording to model pf and

F̃(σ, σǫ) := E
[

ln(‖e1 + σN(d)
∗ ‖)

]

=
1

(2π)d/2

∫

Rd

ln(‖e1 + σx‖)e− ‖x‖2

2 H̃(λ, x, σ, σǫ)dx
(4.15)where N

(d)
∗ is de�ned a

ording to model apf. Then the fun
tions F and F̃ are well de�ned,
ontinuous on [0,+∞[×[0,+∞[ (endowed with the usual 
ompa
t topology).In order to take advantage of the fa
t that the random ve
tor N(d) has a spheri
al distri-bution, the following de�nition will be useful in the sequel.De�nition 4.3. Let (N{n,i})n,i ∈ R

d a sequen
e of independent random ve
tors on
R
d following the same distribution N(d). Let also (Ni,n)i,n (i an integer in [1, λ]) bea sequen
e of independent identi
ally distributed random variables (i.i.d.) with 
om-mon law N . We de�ne the random ve
tor (U

(d)
∗,n,V∗,n) as the argmin of the variables

{‖e1 + σN
(d)
i,n‖ (1 + σǫNi,n) , i = 1, . . . , λ} if model pf and as the argmin of the variables

{‖e1 + σN
(d)
i,n‖ + σǫNi,n, i = 1, . . . , λ} if model apf. Let σ a positive 
onstant. We de�nethe random sequen
e (Zn)n≥0 as follows

Zn := ln(‖e1 + σU(d)
∗,n‖) − F×(σ, σǫ)where F×(σ, σǫ) is de�ned by Eq. 4.14 if model pf and by Eq. 4.15 if model apf.114



4.4. Log-Linear behavior of the s
ale-invariant (1, λ)-ES minimizing the obje
tive fun
tion (Eq. 4.6)Note that U
(d)
∗,n is distributed as N

(d)
∗ introdu
ed in De�nition 4.1.Remark 4.3.1. Note that in De�nition 4.3, we have used the notation �F×(σ, σǫ)� torefer to the quantity F(σ, σǫ) for the model pf and to the quantity F̃(σ, σǫ) for the modelapf. In the sequel, we will use the same 
onvention, i.e., the notation A× will refer to aquantity A relative to the model pf and to a quantity Ã relative to the model apf.4.4 Log-Linear behavior of the s
ale-invariant (1, λ)-ESminimizing the obje
tive fun
tion (Eq. 4.6)The proof of the log-linear 
onvergen
e for ES relies on the appli
ation of the Strong Lawof Large Numbers (LLN) for independent or orthogonal random variables or for Markov
hains.The following proposition is a key (
lassi
al) idea for the study of the stability ofthe sequen
e (ln (‖Xn‖))n where (Xn)n is de�ned by Eq. 4.11.Proposition 4.4. Let (Xn)n be the sequen
e of random ve
tors valued in R

d satisfyingthe re
urren
e relation Eq. 4.11. Then for all indi
es n, we have
1

n
ln

(‖Xn‖
‖X0‖

)

=
1

n

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σN

(d)
∗,k

∥

∥

∥

)

a.s. (4.16)where the random ve
tors (N
(d)
∗,n)n satisfy Eq. 4.9 if the model is pf and Eq. 4.10 if themodel is apf.To 
ompute the limit of the right hand side of Eq. 4.16, we will apply the following LLNfor orthogonal random variables derived from [93, p. 458℄.Theorem 4.5 (LLN for Orthogonal Random Variables). Let (Yn)n≥0 be a sequen
e ofidenti
ally distributed real random variables with �nite varian
e and orthogonal, i.e., forall indi
es i, j, with i 6= j one has E(Yi) = 0, E(Y 2

i ) < +∞ and E(YiYj) = 0. Then
lim
n

1

n

n−1
∑

k=0

Yk = 0 a.s.This theorem will be applied for the random variables (Yn)n≥0 that we introdu
e inthe following de�nition.De�nition 4.6. Let (Xn)n be the sequen
e of random ve
tors de�ned in Eq. 4.11, σ and
σǫ be stri
lty positive 
onstants. Let also F× be the fun
tion equal to the fun
tion Fgiven in Lemma 4.2 and (N

(d)
∗,n)n be the sequen
e of random variables given in in Eq. 4.9if model pf is used; and F× be the fun
tion equal to the fun
tion F̃ given in Lemma 4.2and (N

(d)
∗,n)n be the sequen
e of random variables given in in Eq. 4.10 if model apf is used.We introdu
e the sequen
e of random variables (Yn)n as the following: for n ≥ 0,

Yn := ln
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

− F×(σ, σǫ) . (4.17)115



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al EnvironmentsIn the following proposition, we show that the sequen
e (Yn)n introdu
ed in De�ni-tion 4.6 satis�es the assumptions of Theorem 4.5.Proposition 4.7. Let (Yn)n be the sequen
e of random variables in De�nition 4.6. Thefollowings hold:1. For n ≥ 0, E(Yn) = 0 and E(|Yn|2) < +∞.2. The random variables Zn (n ≥ 0) introdu
ed in De�nition 4.3 are identi
ally dis-tributed and for every n ≥ 0, Yn and Zn follow the same distribution.3. The sequen
e of random variables (Yn)n≥0 is orthogonal, i.e., for all indi
es i, j, with
i 6= j one has E(Yi) = 0, E(Y 2

i ) < +∞ and E(YiYj) = 0.Then the following theorem holds as a 
onsequen
e of Theorem 4.5, Proposition 4.7 andProposition 4.4.Theorem 4.8 (Log-linear behavior of the s
ale-invariant (1, λ)-ES minimizing the obje
-tive fun
tion (Eq. 4.6)). The s
ale-invariant (1, λ)-ES minimizing the noisy sphere fun
tionde�ned in Eq. 4.6 
onverges (or diverges) log-linearly in the sense that for σ and σǫ stri
tlypositive the sequen
e (Xn)n of random ve
tors given by the re
urren
e relation Eq. 4.11veri�es the following equations
lim
n

1

n
ln (‖Xn‖) = F(σ, σǫ) if model pf is used,

lim
n

1

n
ln (‖Xn‖) = F̃(σ, σǫ) if model apf is used, (4.18)almost surely, with F and F̃ de�ned in Eq. 4.14 and Eq. 4.15.Theorem 4.8 states that the 
onvergen
e (or divergen
e) rate of the s
ale-invariant (1, λ)-ES minimizing the noisy sphere fun
tion given in Eq. 4.6 (or equivalently the 
onvergen
e(or divergen
e) rate of the sequen
e (ln (‖Xn‖))n) is F(σ, σǫ) if model pf and F̃(σ, σǫ) ifmodel apf. A

ording to Eq. 4.3, the log-linear behavior holds if the 
onvergen
e (or di-vergen
e) rates F(σ, σǫ) and F̃(σ, σǫ) are non zero. If F×(σ, σǫ) < 0, the sequen
e (‖Xn‖)n
onverges log-linearly to the optimum and if F×(σ, σǫ) > 0 the algorithm diverges log-linearly. Fortunately, these quantities 
an be numeri
ally 
omputed using Monte Carlosimulations and Figures 4.2, 4.3 and 4.4 (see Se
tion 4.6), whi
h have been performedusing a Gaussian noise, show that for almost all parameter settings of the algorithm theyare not equal to zero. Therefore, the log-linear behavior of the algorithm holds. These�gures give also the sign of the 
onvergen
e (or divergen
e) rates F×(σ, σǫ). Moreover, thesign of these rates (multiplied by the sear
h spa
e dimension d and using some normal-izations) is investigated when the sear
h spa
e dimension goes to in�nity in the spe
i�

ase of Gaussian noise (see Se
tion 4.5).An interesting question that arises now is how this 
onvergen
e speed given by a pos-sible negative value of F×(σ, σǫ) varies as a fun
tion of the dimension. In the 
ontext116



4.5. Approximation of the 
onvergen
e rate when the sear
h spa
e dimension goes to in�nityof progress rate theory, this question was addressed (for noisy and non noisy 
ases) [25℄by 
omputing the limit when the dimension goes to in�nity of the so-
alled normalizedprogress rate. The normalized progress rate 
orresponds to the expe
ted progress madeby an ES algorithm in a single step multiplied by the dimension d of the sear
h spa
ei.e., d [E (‖Xn‖−‖Xn+1‖
‖Xn‖ |Xn

)]. These 
omputations have been done using the obje
tivefun
tion with a Gaussian noise de�ned in Eq. 4.5, the model apf and the s
ale-invariantrule de�ned in Eq. 4.4 with σ = σ∗

d
. Using these expressions, the normalized progressrate simpli�es to d

(

1 − E
[

‖e1 + σ∗

d
N

(d)
∗ ‖
]) where N

(d)
∗ is given in De�nition 4.1.It isworth noti
ing that the quantity E [‖e1 + σN

(d)
∗ ‖
] is the 
ommon ratio of the geometri
sequen
e E(‖Xn‖) where (Xn) is de�ned by Eq. 4.11 whi
h then 
onverges to zero i�

E
[

‖e1 + σN
(d)
∗ ‖
]

< 1. Therefore, as already pointed in [17℄ in the non noisy 
ase, theprogress rate determines if the algorithm 
onverges or not in expe
tation. The 
omputedlimit of the normalized progress rate shows that the progress rate varies asymptoti
allylinearly as a fun
tion of the inverse of the sear
h spa
e dimension.In the next se
tion, and using normalizations of σ and σǫ as a fun
tion of d, we rigorously
ompute the limit of the normalized 
onvergen
e rate w.r.t to the dimension d of thequantity d× F×(σ(d), σǫ(d)) that we will refer to as the normalized 
onvergen
e rate.4.5 Approximation of the 
onvergen
e rate when thesear
h spa
e dimension goes to in�nityIn non noisy 
ases, it has been theoreti
ally proven in [17℄ that the 
onvergen
e rate ofES varies asymptoti
ally linearly as a fun
tion of inverse of the dimension of the sear
hspa
e. This result is not spe
i�
 to ES but holds also for more general 
ases: it is true forany rank-based algorithm [137℄, or any Hit-and-Run dire
t sear
h method [75℄. In thisse
tion, the goal is to extend the result of asymptoti
 linear 
omplexity of the 
onvergen
erate derived in the non noisy 
ase to the noisy 
ase. Moreover, we show rigorously thatthe approximation of the model pf by the model apf that has been done in [8℄ is reliablefor in�nite dimension of the sear
h spa
e. This is done by investigating the limit of thenormalized 
onvergen
e rate. For this sake, we adopt the expression of the s
ale-invariantmutation used in the 
ontext of progress rate theory i.e., σ = σ∗

d
and the normalizationsintrodu
ed in [8, 25℄ for the noise strength i.e., σǫ = σ∗ǫ

d
8 where σ∗ > 0 and σ∗

ǫ > 0are respe
tively the normalized step-size mutation and the normalized noise strength.Theorem 4.9 summarizes the result of the limit, when d goes to in�nity, of the normalized
onvergen
e rate for any noise distribution. In Theorem 4.10, we give the simpli�edexpression of the limit of the normalized 
onvergen
e rate in the spe
i�
 
ase of Gaussiannoise. The main di�
ulty in establishing the proof of Theorem 4.9 is the veri�
ation ofthe te
hni
al 
ondition of uniform integrability. This 
ondition was not veri�ed in [25℄.8In the general 
ase where the ideal obje
tive fun
tion equals ‖x‖α, (α > 0), Beyer [25℄ stated thatthe normalization should be σǫ =
ασ∗

ǫ

d
. 117



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al EnvironmentsTheorem 4.9. Consider the fun
tion F de�ned in Lemma 4.2. Let σ∗ and σ∗
ǫ be twostri
tly positive 
onstants. For σ(d) = σ∗

d
, σǫ(d) = σ∗ǫ

d
, the following holds

lim
d→∞

d× F̃(σ(d), σǫ(d)) = lim
d→∞

d× F(σ(d), σǫ(d)) = A(σ∗, σ∗
ǫ , λ) × σ∗ +

σ∗2

2with A(σ∗, σ∗
ǫ , λ) :=

∫

R

x
e−

x2

2√
2π
dx

(

λ

∫

R

Pr λ−1 [σ∗x+ σ∗
ǫ y ≤ σ∗N + σ∗

ǫN ] pN (y)dy

)

,(4.19)where N is the standard normal distribution with mean zero and varian
e one. Moreover
A(σ∗, σ∗

ǫ , λ) ≤ 0 for any (σ∗, σ∗
ǫ , λ) ∈ R

∗
+ × R

∗
+ × N

∗.Theorem 4.9 states that the 
onvergen
e rate of the (1, λ)-ES varies linearly as a fun
tion ofthe inverse of the sear
h spa
e dimension for noisy sphere fun
tions. Besides, this theoremis true for any absolutely 
ontinuous noise distribution. Therefore, it applies to theparti
ular 
ase of Gaussian noise and then 
on�rms the reliability of the approximation,when the sear
h spa
e dimension goes to in�nity, of the original model pf by the modelapf made in [25, 8℄. The quantities d F(σ
∗

d
, σ

∗
ǫ

d
) and d F̃(σ

∗

d
, σ

∗
ǫ

d
) have the same limit:the models pf and apf are similar when the dimension goes to in�nity whi
h 
on�rm thereliability of su
h an approximation.Spe
i�
 
ase of Gaussian noise: Suppose that the random variable N modeling thenoise follows the standard normal distribution9. In this 
ase, the asymptoti
 expressionof the normalized 
onvergen
e rate is given by the following theorem. Note that forestablishing the proof, we used the same te
hniques that have been used in [25℄ to derivethe limit of the normalized progress rate.Theorem 4.10. Consider the fun
tions F and F̃ de�ned in Lemma 4.2 for the models pfand apf respe
tively. Assume that the r.var N follows the standard normal distribution.For λ ≥ 1, we denote by c(1, λ) the expe
tation of λ independent random variables whi
hfollow the same standard normal distribution, then c(1, λ) = λ√

2π

∫ +∞
−∞ u e−

1
2
u2

[φ(u)]λ−1 duwhere φ is the distribution fun
tion of the standard normal distribution. For σ(d) = σ∗

d
,

σǫ(d) = σ∗ǫ
d
where σ∗ and σ∗

ǫ are stri
tly positive 
onstants, the following holds
lim
d→∞

d F×(σ(d), σǫ(d)) = −c(1, λ)σ∗ 1
√

1 +
(

σ∗ǫ
σ∗

)2
+
σ∗2

2
. (4.20)where F× stands for F if model pf and F̃ if model apf.9The standard normal distribution is the normal distribution with a mean of zero and a varian
e ofone.118
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i�
 
ase of Gaussian noiseThe right hand side of Eq. 4.20 generalizes the limit of the normalized 
onvergen
e rate
omputed in [17℄ for the non-noisy sphere fun
tions and 
orresponding to σ∗
ǫ = 0 inEq. 4.20. Besides, the limit of the normalized 
onvergen
e rate is equal to the oppositeof the limit of the normalized progress rate 
omputed by Beyer in [25℄. This result wasexpe
ted due to the mathemati
al approximation of ln(x) by x − 1 when x is 
lose to1. For the same reason, the limit of the normalized 
onvergen
e rate, 
omputed in [17℄for non-noisy sphere fun
tions, was found to be equal to the opposite of the limit of thenormalized progress rate 
omputed in [25℄. We 
an also see from Eq. 4.20 that, for �xed

σ∗, the normalized 
onvergen
e rate is an in
reasing fun
tion of σ∗
ǫ . Besides, c(1, λ) isan in
reasing fun
tion of λ as it 
orresponds to the expe
tation of the maximum of λindependent distributed random variables with a 
ommon law the standard normal dis-tribution. Thus, the normalized 
onvergen
e rate is a de
reasing fun
tion of λ.4.6 Study of the spe
i�
 
ase of Gaussian noiseIn this se
tion, the noise distribution N is supposed to be Gaussian. Moreover, σ and σǫare respe
tively set equal to σ∗

d
and σ∗ǫ

d
where σ∗ and σ∗

ǫ are stri
tly positive 
onstant. Theobje
t of this se
tion is to study the 
onvergen
e and divergen
e 
ases of the algorithmin the 
ase of �nite sear
h spa
e dimension and when the sear
h spa
e dimension goes toin�nity.Convergen
e and divergen
e in the limit 
ase of in�nite sear
h spa
e di-mension : It is easy to see from Theorem 4.10 that, if σ∗2 + σ∗
ǫ
2 < 4c2(1, λ) then

limd→∞ F×
(

σ∗

d
, σ

∗
ǫ

d

)

< 0 and then the algorithm 
onverges if the dimension of the sear
hspa
e d is su�
iently large. Otherwise, if σ∗2 + σ∗
ǫ
2 > 4c2(1, λ) then F×

(

σ∗

d
, σ

∗
ǫ

d

)

> 0and the algorithm diverges when d is su�
iently large. Then if σ∗
ǫ < 2c(1, λ) (in
ludingin parti
ular the non-noisy 
ase σ∗

ǫ = 0), the algorithm 
onverges for some values of σ∗and su�
iently large values of d. But if σ∗
ǫ > 2c(1, λ), then the algorithm diverges forany value of σ∗ if d is su�
iently large. This means that one has to 
hoose λ su�
ientlylarge su
h that σ∗

ǫ < 2c(1, λ) to ensure that the algorithm 
onverges (provided that d issu�
iently large). However, as the fun
tion λ 7→ c(1, λ) veri�es c(1, λ) ∼
√

2 ln(λ) [4℄, it in
reases very slowly. This leads, for su�
iently large values of σ∗
ǫ , to huge valuesof minimal numbers of o�spring needed for 
onvergen
e as already pointed in [25℄ andshown in Fig 4.1. As an example, for σ∗

ǫ = 8, the minimal number of o�spring ne
essaryfor satisfying the 
onvergen
e 
ondition σ∗
ǫ < 2c(1, λ) is 18477. Another way to satisfythe 
onvergen
e 
ondition (for large values of d) is to de
rease the noise level σ∗

ǫ by usingreevaluation of o�spring. Reevaluation means that the obje
tive fun
tion of an o�spring
y will be equal, for the model pf for example, to 1

n

∑N
k=1 fk(y) with fk(y) = ‖y‖+σǫ‖y‖Nkwhere Nk are independent realizations of the noise N . The reevaluation using the 
ompu-tation of the obje
tive fun
tion of an o�spring as the average over N evaluations, leads to119
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Figure 4.1: Minimal number of o�spring λ needed to 
onverge as a fun
tion of σ∗
ǫ in the
ase of in�nite dimension.Table 4.1: Minimal number of evaluations needed per generation for di�erent σ∗
ǫ valuesand 
orresponding numbers of evaluations and o�spring.

σ∗
ǫ 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

N × λ 2 3 4 6 10 12 15 20 24 30 35 40 48 54 60

N 1 1 1 1 1, 2 2, 3 3 4, 5 4, 6 5, 6 5, 7 8, 10 8, 12 9 10, 12

λ 2 3 4 6 10, 5 6, 4 5 5, 4 6, 4 6, 5 7, 5 5, 4 6, 4 6 6, 5a de
rease of the noise level from σ∗
ǫ to σ∗

ǫ/
√
N . Then a �large� noise level value for whi
ha great number of o�spring is needed to 
onverge de
rease to a �small� value for whi
h areasonable number of o�spring is su�
ient for 
onvergen
e. This happens at the expenseof an additional evaluation 
ost due to reevaluations of the o�spring. We 
omputed, fordi�erent values of σ∗

ǫ , the minimal number of evaluations needed (for 
onvergen
e) pergeneration and saw the 
orresponding (optimal) number of evaluations N ≥ 1 by o�-spring. Note that the 
ase N = 1 means that no reevaluation is used. Results are shownin Table 4.1. This table shows that as the normalized noise strength σ∗
ǫ in
reases one hasto use more and more reevaluations of the o�spring. Table 4.1 does not show the gainin the 
ost of the number of evaluations that 
an be performed by using reevaluation.The minimal 
osts of evaluations needed for 
onvergen
e as a fun
tion of the number ofreevaluations of an o�spring for di�erent normalized noise strengths σ∗
ǫ is shown in Ta-ble 4.2. A

ording to Table 4.2, it is better (in term of evaluation 
ost per generation),for su�
iently large values of σ∗

ǫ , to reevaluate the o�spring �tness than to in
rease thenumber of o�spring λ. This holds only for ES with single parents. For 
omma ES us-120
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Table 4.2: Minimal number of evaluations N × λ needed per generation for di�erent σ∗

ǫvalues and di�erent number of evaluations N .
σ∗

ǫ 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
N × λ = λ 2 3 4 6 10 16 28 51 98 203 444 1031 2541 6649 18477

N × λ = 2 × λ 6 8 10 12 16 24 34 48 74 114 184 304 516

N × λ = 3 × λ 9 12 12 15 21 27 36 45 63 87 123 177

N × λ = 4 × λ 12 16 16 20 24 32 40 48 64 84 112

N × λ = 5 × λ 15 15 20 20 25 30 35 45 55 70 85

N × λ = 6 × λ 18 18 24 24 30 36 42 54 60 78

N × λ = 7 × λ 21 28 28 35 35 42 49 56 70

N × λ = 8 × λ 24 32 32 40 40 48 56 64

N × λ = 9 × λ 27 27 36 36 45 54 54 63

N × λ = 10 × λ 30 30 40 40 40 50 60 60

N × λ = 11 × λ 33 33 44 44 55 55 66

N × λ = 12 × λ 36 36 48 48 48 60 60

N × λ = 13 × λ 39 39 52 52 65 65

N × λ = 14 × λ 42 42 56 56 56 70

N × λ = 15 × λ 45 45 45 60 60 75

N × λ = 16 × λ 48 48 64 64 64

N × λ = 17 × λ 51 51 68 68 68

N × λ = 18 × λ 54 54 72 72

N × λ = 19 × λ 57 54 76 76

N × λ = 20 × λ 60 60 60 80

N × λ = 21 × λ 63 63 84

N × λ = 22 × λ 66 66 88

N × λ = 23 × λ 69 69 69

N × λ = 24 × λ 72 72 72

N × λ = 25 × λ 75 75

N × λ = 26 × λ 78 78

N × λ = 27 × λ 81 81

N × λ = 28 × λ 84

N × λ = 29 × λ 87

N × λ = 30 × λ 90
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Figure 4.2: d = 3, λ = 5. Monte Carlo simulations of the normalized 
onvergen
e rate asa fun
tion of the normalized step-size σ∗ for the following σ∗
ǫ values : 0, 0.6 , 1.2, 1.8, 2.4,3.0, 10.0 (from bottom to top). Plots in the left 
orrespond to the normalized 
onvergen
erate of the model pf ( i.e., d× F(σ

∗

d
, σ

∗
ǫ

d
) where F is de�ned in Eq. 4.14) and plots in theright 
orrespond to the normalized 
onvergen
e rate of the model apf ( i.e., d× F̃(σ

∗

d
, σ

∗
ǫ

d
)where F̃ is de�ned in Eq. 4.15).ing re
ombination of many parents (the so-
alled (µ/µ, λ)-ES), the progress rate formuladerived in [25℄ suggests that it is preferable to in
rease the number of o�spring than toreevaluate them.Convergen
e and divergen
e for �nite dimensions For d < +∞, if the normal-ized 
onvergen
e rate d F̃

(

σ∗

d
, σ

∗
ǫ

d

) (or d F
(

σ∗

d
, σ

∗
ǫ

d

)) is stri
tly negative, the algorithm
onverges. If it is stri
tly positive, the algorithm diverges. We plot, using Monte Carlosimulations, the expe
tations d F̃
(

σ∗

d
, σ

∗
ǫ

d

) and d F
(

σ∗

d
, σ

∗
ǫ

d

) as a fun
tion of σ∗ for di�er-ent values of σ∗
ǫ . Figures 4.2, 4.3 and 4.4 represent these plots for the models pf and apfrespe
tively for dimensions 3, 10 and 30.Finite and in�nite normalized 
onvergen
e rates Using the expli
it expressionof the limit of the normalized 
onvergen
e rate given in Eq. 4.20 for Gaussian noise,we plotted, for σ∗

ǫ = 1.2 (Fig 4.5) and σ∗
ǫ = 3 (Fig 4.6), the limit of the normalized
onvergen
e rate when the dimension d goes to in�nity with normalized 
onvergen
e ratesfor dimensions 3, 10 and 30 and models pf and apf as a fun
tion of the normalized step-size mutation σ∗.These plots use λ = 5 and 
on�rm results in Theorem 4.10. In fa
t, the 
urves aregetting 
loser to the limit expression of the 
onvergen
e rate given in Eq. 4.20 as thedimension in
reases. This holds for the two models pf and apf. Moreover, these 
urvesreveals that the limit expression of the normalized 
onvergen
e rate is an upped bound fornormalized 
onvergen
e rates of �nite dimensions. This shows that the study of the limitof the 
onvergen
e rate is safe as whenever this limit is stri
tly negative (and the �limit�122
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Figure 4.3: d = 10, λ = 5. Monte Carlo simulations of the normalized 
onvergen
e rate asa fun
tion of the normalized step-size σ∗ for the following σ∗
ǫ values : 0, 0.6 , 1.2, 1.8, 2.4,3.0, 10.0 (from bottom to top). Plots in the left 
orrespond to the normalized 
onvergen
erate of the model pf ( i.e., d × F(σ

∗

d
, σ

∗
ǫ

d
) where F is de�ned in Eq. 4.14) and plots in theright 
orrespond to the normalized 
onvergen
e rate of the model apf ( i.e., d× F̃(σ

∗

d
, σ

∗
ǫ

d
)where F̃ is de�ned in Eq. 4.15).

Figure 4.4: d = 30, λ = 5. Monte Carlo simulations of the normalized 
onvergen
e rate asa fun
tion of the normalized step-size σ∗ for the following σ∗
ǫ values : 0, 0.6 , 1.2, 1.8, 2.4,3.0, 10.0 (from bottom to top). Plots in the left 
orrespond to the normalized 
onvergen
erate of the model pf ( i.e., d × F(σ

∗

d
, σ

∗
ǫ

d
) where F is de�ned in Eq. 4.14) and plots in theright 
orrespond to the normalized 
onvergen
e rate of the model apf ( i.e., d× F̃(σ

∗

d
, σ

∗
ǫ

d
)where F̃ is de�ned in Eq. 4.15).
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Figure 4.5: Normalized 
onvergen
e rates for dimensions 3, 10 and 30 and the limitexpression of the 
onvergen
e rate (d = +∞) as a fun
tion of σ∗ for σ∗
ǫ = 1.2, λ = 5and models pf (left) and apf (right). From bottom to top, the 
urves 
orrespond todimensions 3, 10, 30 and the limit d = +∞.

Figure 4.6: Normalized 
onvergen
e rates for dimensions 3, 10 and 30 and the limitexpression of the 
onvergen
e rate (d = +∞) as a fun
tion of σ∗ for σ∗
ǫ = 3, λ = 5 andmodels pf (left) and apf (right). From bottom to top, the 
urves 
orrespond to dimensions3, 10, 30 and the limit d = +∞
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4.7. Dis
ussion and 
on
lusionalgorithm 
onverges), not only the 
onvergen
e holds for su�
iently large dimensions butfor all dimensions. In the 
ase of σ∗
ǫ = 3 , Eq. 4.20 implies that the algorithm divergesfor su�
iently high values of d as σ∗
ǫ − 2 ∗ c(1, 5) is stri
tly positive. However, for smalldimensions, the algorithm 
an 
onverge for some σ∗ values as shown in Fig 4.6 (right)in the lower 
urve 
orresponding to d = 3. This represents a limit for the usefulnessof in�nite dimension results as in�nite dimension study predi
ts divergen
e and the plot
orrseponding to dimension 3 in Fig 4.6 (right) shows that the algorithm 
onverges forthe same settings of the algorithm and of the normalized noise strength. Another fa
trevealed by the 
omparison of �nite dimension 
urves 
orresponding to the model pf (left)to those 
orresponding to the model apf (right) is that, for the same parameters values(i.e., σ∗, σ∗

ǫ , λ and d), the signs of the 
onvergen
e rates are sometimes di�erent. Thismeans that, while a 
onvergen
e is predi
ted for one of the two models, a divergen
eo

urs for the other model. This is a limitation of the use, when the dimension is �nite,of the approximation of the model pf by the model apf.Optimal 
onvergen
e rates, optimal step-sizes and limit values for 
onvergen
efor di�erent noise levels We plotted, using λ = 5 and the model pf, as a fun
tion ofthe normalized noise strength σ∗
ǫ the following quantities:

• optimal normalized 
onvergen
e rates (Fig 4.7)
• optimal normalized step-size mutations (Fig 4.8 (Left))
• upper values of the normalized step-size mutation for whi
h the algorithm 
onverges(Fig 4.8 (Right))The plots show that, for a given σ∗

ǫ these values de
rease as the dimension in
reases andhave as limit the values 
orresponding to d = +∞. It is woth noti
ing that in Figures 4.7and 4.8, the 
urves relative to in�nite dimension 
an be found in [114, Fig. 14-2 and14-3℄.4.7 Dis
ussion and 
on
lusionIn this 
hapter we have analyzed the 
onvergen
e of the s
ale-invariant (1, λ)-ES for thenoisy sphere fun
tion. Two models for the noise have been analyzed: the model pf, wherethe noise is s
aled proportionally to the lo
ation of the individual or to the non-noisypart of the obje
tive fun
tion and the model apf, introdu
ed as an approximation of themodel pf in [25, 8℄, where the noise is s
aled proportionally to the norm of the parent andtherefore to the step-size.We prove rigorously that 
omma ES are more robust than plus ES in presen
e of noise:In Chapter 3, it is shown that the algorithm 
annot 
onverge (at least in expe
tation),if the noise is Gaussian. However, we have shown in this 
hapter that 
onvergen
e holdsalmost surely (also in expe
tation) for Gaussian noise but with small standard deviation(or noise strength). Moreover there is a robustness in the te
hnique used for the proof:the 
onvergen
e in presen
e of noise is obtained using the same tools used for the analysisof 
onvergen
e of ES on non-noisy fun
tions. 125



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environments

-1.5

-1

-0.5

 0

 0.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

O
pt

im
al

 n
or

m
al

iz
ed

 c
on

ve
rg

en
ce

 r
at

e

σε
*Figure 4.7: Optimal normalized 
onvergen
e rate as a fun
tion of the normalized noisestrength σ∗

ǫ for dimensions 3,10,30 and the limit of in�nite dimension (from bottom totop).

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5

σ* op
t

σε
*

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3

σ* lim

σε
*Figure 4.8: Left: Optimal normalized step size σ∗ as a fun
tion of the normalized noisestrength σ∗

ǫ for dimensions 3,10,30 and the limit of in�nite dimension (form top to bottom(
onsidering the values 
orresponding to σ∗
ǫ = 0)). Right: Normalized step size σ∗ forwhi
h the 
onvergen
e rate equals 0 as a fun
tion of the normalized noise strength σ∗

ǫ fordimensions 3,10,30 and the limit of in�nite dimension (from top to bottom).126



4.7. Dis
ussion and 
on
lusionThe 
onvergen
e rate obtained for �nite dimension is expressed as the expe
tation of arandom variable. Though it is di�
ult to have a theoreti
al estimation of this 
onvergen
erate without making an assumption (that the dimension is large for instan
e), our studyshows that it is fairly easy to simulate the 
onvergen
e rate with a Monte-Carlo method.We derive rigorously the limit of the normalized 
onvergen
e rate when the dimension
d goes to in�nity and meet the results obtained with the progress rate approa
h [25℄,bridging therefore the gap between �nite approximation results and in�nite approxima-tions results. As already observed in [25℄, the 
omputed expression is a generalization ofthe normalized progress rate (or normalized 
onvergen
e rate in our 
ase) in the 
ase ofnon-noisy 
omma ES but this 
omputation allowed us to prove: 1) the similarity of thetwo models for in�nite dimensions; 2) that the 
onvergen
e rate of the algorithm 
hangesasymptoti
ally linearly with the inverse of the sear
h spa
e dimension. In the parti
ular
ase of Gaussian noise, the limit of the normalized 
onvergen
e rate has been expli
itlyderived (the same expression has been previously derived in [25℄ for the progress rate)and we investigate the use of re-sampling versus in
reasing the number of o�spring tomake the algorithm 
onverge when noise levels are large. Moreover, the spe
i�
 studyof the Gaussian noise 
ase: 1) show the usefulness of in�nite dimension studies wherenormalized 
onvergen
e rate 
an be quanti�ed expli
itly, to learn about the behavior ofthe algorithm for �nite dimensions studies; 2) the limits of adopting, for �nite dimensions,in�nite dimension results and for approximating the model pf by the model apf.
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Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al EnvironmentsAppendixProof of Lemma 4.2Let (N
(d)
i )i∈[1,λ] (resp. (Ni)i∈[1,λ]) be λ independent samplings of N(d) (resp. N ). Therandom ve
tor (N

(d)
∗ ,N∗) veri�es, a

ording to De�nition 4.1,

‖e1 + σN(d)
∗ ‖ (1 + σǫN∗) = min

1≤i≤λ
{‖e1 + σN

(d)
i ‖ (1 + σǫNi)} (4.21)for the model pf, and

‖e1 + σN(d)
∗ ‖ + σǫN∗ = min

1≤i≤λ
{‖e1 + σN

(d)
i ‖ + σǫNi} (4.22)for the model apf. First, we give interest to the probability density fun
tion of the randomve
otr N

(d)
∗ in the spe
i�
 
ase of the model pf. The same reasoning holds for the modelapf. Let A ∈ B(Rd)10. A

ording to Eq. 4.21, we have:

P (N(d)
∗ ∈ A) = ∪λi=1P (N

(d)
i ∈ A;∩{1≤j≤λ;j 6=i}‖e1+σN

(d)
i ‖ (1 + σǫNi) ≤ ‖e1+σN

(d)
j ‖ (1 + σǫNj))The random variables (N

(d)
i )i∈[1,λ] and (Ni)i∈[1,λ] play the same role. Therefore, we have,

P (N(d)
∗ ∈ A) = λP (N

(d)
1 ∈ A;∩{2≤j≤λ}‖e1 + σN

(d)
1 ‖ (1 + σǫN1) ≤ ‖e1 + σN

(d)
j ‖ (1 + σǫNj))This 
an be rewritten as

P (N(d)
∗ ∈ A) =

λ

(2π)
d
2

∫

A

e−
‖x‖2

2 P (∩2≤j≤λ‖e1+σx‖ (1 + σǫN1) ≤ ‖e1+σN
(d)
j ‖ (1 + σǫNj))dxThis gives

P (N(d)
∗ ∈ A) =

λ

(2π)
d
2

×
∫

A

∫

R

e−
‖x‖2

2 fN (y)
(

P (∩2≤j≤λ‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN
(d)
j ‖ (1 + σǫNj))

)

dxdy(4.23)The random ve
tors (N
(d)
i ,Ni)i∈[2,λ] are independent identi
ally distributed. Therefore,for �xed (x, y) ∈ R

d × R, we have
P (∩2≤j≤λ‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN

(d)
j ‖ (1 + σǫNj)

= ∩2≤j≤λP (‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σN
(d)
j ‖ (1 + σǫNj))

= P λ−1(‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σNd‖ (1 + σǫN )) .10
B(Rd) is the Borel σ-algebra on R

d.128



4.7. Dis
ussion and 
on
lusionCombining the last equation with Eq. 4.23, one gets
P (N(d)

∗ ∈ A) =
λ

(2π)
d
2

×
∫

A

∫

R

e−
‖x‖2

2 fN (y)
(

P λ−1(‖e1 + σx‖ (1 + σǫy) ≤ ‖e1 + σNd‖ (1 + σǫN ))
)

dxdy (4.24)This gives
P (N(d)

∗ ∈ A) =
1

(2π)
d
2

∫

A

e−
‖x‖2

2 H(λ, x, σ, σǫ)dx , (4.25)where H is given in De�nition 4.1. This ends the proof for the probability density fun
tionof the random ve
tor N
(d)
∗ .Now, we de�ne the quantities F−

×(σ, σǫ) := E
[

ln−(‖e1 + σN
(d)
∗ ‖)

] and
F+
×(σ, σǫ) := E

[

ln+(‖e1 + σN
(d)
∗ ‖)

] where F−
×(σ, σǫ) (resp. F+

×(σ, σǫ)) stands for F−(σ, σǫ)(resp. F+(σ, σǫ)) with N
(d)
∗ given by Eq. 4.21 if model pf, and for F̃−(σ, σǫ) (resp.

F̃+(σ, σǫ)) with N
(d)
∗ given by Eq. 4.22 if model apf. Note that we have used the no-tation �F−

×� to refer to the quantity F− for the model pf and to the quantity F̃− for themodel apf. In the sequel, we will use the same 
onvention, i.e., the notation A× will referto a quantity A relative to the model pf and to a quantity Ã relative to the model apf.The quantities F−
× and F+

× exist but 
ould be in�nite. Let g+
×, g

−
× : N

∗ × R
d ×

[0,+∞[×[0,+∞[ be de�ned for (λ, x, σ, σǫ) in N
∗ × R

d × [0,+∞[×[0,+∞[ by
g+
×(λ, x, σ, σǫ) =

1

(2π)d/2
ln+(‖e1 + σx‖2)e−

‖x‖2

2 H×(λ, x, σ, σǫ)and
g−×(λ, x, σ, σǫ) =

1

(2π)d/2
ln−(‖e1 + σx‖2)e−

‖x‖2

2 H×(λ, x, σ, σǫ).We noti
e that for d ≥ 2 , g+
×(λ, (x1, x2, . . . , xd), σ, σǫ) = g+

×(λ, (x1, ǫ2x2, . . . , ǫdxd), σ, σǫ)(whi
h is also true for g−×) for all (ǫ2, . . . , ǫd) in {−1,+1}d−1 and (x1, x2, . . . , xd) in R
dthen we 
an restri
t the integration giving F×(σ, σǫ) to the domain D := R

∗×]0,+∞[d−1,more pre
isely one has (for d ≥ 2)
F−
×(σ, σǫ) = 2d−2

∫

D
g−×(λ, x, σ, σǫ)dxand

F+
×(σ, σǫ) = 2d−2

∫

D
g+
×(λ, x, σ, σǫ)dx .Changing to spheri
al 
oordinates (with d ≥ 2) we obtain after partial integration

F−
×(σ, σǫ) =

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π
2

0

ln− (|σr − eiθ|
)

rd−1e−
r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ) dr dθ ,129
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ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsand
F+
×(σ, σǫ) =

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π

0

ln+
(

|σr − eiθ|
)

rd−1e−
r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ) dr dθ ,where for n ∈ N, Wn =
∫ π/2

0
sinn θ dθ is the 
lassi
al Wallis integral and for z ∈

C su
h that Re(z) > 0,Γ(z) =
∫ +∞
0

e−uuz−1du is the Gamma fun
tion and K× is thefun
tion de�ned on N
∗ × [0,+∞[×[0, π] × [0,+∞[×[0,+∞[ by

K(λ, r, θ, σ, σǫ) = λ

∫

R

Pr λ−1
[

|σr − eiθ| (1 + σǫy) ≤ ‖e1 + σN(d)‖ (1 + σǫN )
]

pN (y)dy,for the model pf and
K̃(λ, r, θ, σ, σǫ) = λ

∫

R

Pr λ−1
[

|σr − eiθ| + σǫy ≤ ‖e1 + σN(d)‖ + σǫN
]

pN (y)dy,for the model apf.The integrand h−× : (r, θ, σ, σǫ) 7→ ln−(|σr−eiθ|)rd−1e−
r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ) de�nedon the set ]0,+∞[×[0, π/2] × [0,+∞[×[0,+∞[ is 
ontinuous for almost all (r, θ, σ, σǫ) in
]0,+∞[×[0, π/2]×[0,+∞[×[0,+∞[. In parti
ular, for almost all (r, θ) in ]0,+∞[×[0, π/2],the map (σ, σǫ) 7→ h−×(r, θ, σ, σǫ) is 
ontinuous. Moreover, the fun
tion K× is dominatedby λ and |σr − eiθ| ≥ sin θ for all (r, θ) in ]0,+∞[×[0, π/2]. Then h−× is dominatedby h1 : (r, θ) 7→ ln−(sin θ)rd−1e−r

2/2 i.e., h−×(r, θ, σ, σǫ) h1(r, θ) for all (r, θ, σ, σǫ) in
]0,+∞[×[0, π/2]× [0,+∞[×[0,+∞[. Sin
e h1 is integrable, the mapping F−

× is �nite and
ontinuous w.r.t. the variables σ and σǫ on [0,+∞[×[0,+∞[ thanks to the Lebesguedominated 
onvergen
e theorem. Besides, we have
F+
×(σ, σǫ) ≤

(

1

2

)
d
2 1

Wd−2Γ
(

d
2

)

∫ +∞

0

∫ π

0

σrde−
r2

2 dr dθ < +∞.Then F+
× and F−

× are �nite meaning that the map F× is well de�ned. Now we have tolook at the 
ontinuity of F+
×. The integrand

h+
× : (r, θ, σ, σǫ) 7→ ln+(|σr − eiθ|)rd−1e−

r2

2 sind−2(θ)K×(λ, r, θ, σ, σǫ)de�ned on the set ]0,+∞[×[0, π] × [0,+∞[×[0,+∞[ veri�es that for almost all (r, θ) in
]0,+∞[×[0, π], the map (σ, σǫ) 7→ h+

×(r, θ, σ, σǫ) is 
ontinuous on every set [0, S]× [0,+∞[with 0 < S < +∞. Moreover, h+
× is dominated by h2 : r 7→ Srde−r

2/2 for (r, θ, σ, σǫ) in
]0,+∞[×[0, π] × [0, S] × [0,+∞[. Sin
e h2 is integrable, the 
ontinuity of F+

× w.r.t. thevariables σ and σǫ on [0, S] × [0,+∞[ follows from the Lebesgue dominated 
onvergen
etheorem. This is true for any [0, S]× [0,+∞[ with 0 < S < +∞ then the 
ontinuity of F+
×holds also on [0,+∞[×[0,+∞[. For the remaining 
ase d = 1, the integrand in F+

×(σ, σǫ)will be dominated by Sxe−x2

2 for (x, σ, σǫ) ∈ R×[0, S]×[0,+∞[ whi
h gives the 
ontinuityof F+
×(σ, σǫ) on [0,+∞[×[0,+∞[. For F−

×, after a 
hange of variables y = σx, the integrandin F−
×(σ, σǫ) will be dominated by e−

1
2√

2π

ln(|1+y|)
y

for (y, σ, σǫ) ∈]−2, 0]×[0,+∞[×[0,+∞[.130



4.7. Dis
ussion and 
on
lusionProof of Proposition 4.4At ea
h iteration n, Eq. 4.11 gives
‖Xn+1‖ = ‖Xn + σ‖Xn‖N(d)

∗,n‖ ,where (N
(d)
∗,n)n is de�ned in Eq. 4.9 or in Eq. 4.10 a

ording to the model 
onsidered. Inthe beginning, we show indu
tively that, for all n ≥ 0, ‖Xn‖ > 0 almost surely:1) By de�nition P (‖X0‖ > 0) = 1. 2) Suppose that P (‖Xn‖ > 0) = 1 for n ≥ 0; then,by Eq. 4.11, the ith o�spring has a stri
tly positive non-noisy obje
tive fun
tion ( i.e.,

P (‖Yi,n‖ > 0) = 1 for all i in [1, λ]) as the multivariate normal distribution is absolutely
ontinuous w.r.t. to the Lebesgue measure and in parti
ular P (‖Xn+1‖ > 0) = 1. Thisgives that for all n ≥ 0, ‖Xn‖ > 0 almost surely and we 
an write
‖Xn+1‖ = ‖Xn‖

∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥
a.s.Taking the logarithm of the previous equation, we get

ln (‖Xn+1‖) = ln (‖Xn‖) + ln

(

∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

a.s.and after summing su
h equalities we obtain
ln (‖Xn‖) − ln (‖X0‖) =

n−1
∑

k=0

ln

(

∥

∥

∥

Xk

‖Xk‖
+ σN

(d)
∗,k

∥

∥

∥

)

a.s.

Proof of Proposition 4.7We will detail the proof for the model apf. Thus in the remainder of this proof therandom ve
tors N
(d)
∗,n and N

(d)
∗ are relative to the apf model ( i.e., respe
tively de�ned inEq. 4.10 and De�nition 4.1). The same reasoning holds for the model pf. For Xn �xed,let L̃n : N

∗ × R
d × [0,+∞[×[0,+∞[7→ R

+ be the fun
tion de�ned by
L̃n(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1

[

∥

∥

∥

Xn

‖Xn‖
+ σx

∥

∥

∥
+ σǫy ≤

∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∥

∥

∥
+ σǫN

]

pN (y)dy ,(4.26)for (λ, x, σ, σǫ) ∈ N
∗ × R

d × [0,+∞[×[0,+∞[. Similarly to the proof of Lemma 4.2, wehave
P (N(d)

∗,n ∈ A|Xn) =

∫

A

1

(2π)
d
2

e−
‖x‖2

2 L̃n(λ, x, σ, σǫ)dx . (4.27)Therefore, the probability density fun
tion of the random ve
tor N
(d)
∗,n 
onditionnally to

Xn is obtained by multiplying the probability density fun
tion of N(d) by the fun
tion L̃n131



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsgiven in Eq. 4.26.The isotropy of the standard d-dimensional normal distribution gives
L̃n(λ, x, σ, σǫ) = λ

∫

R

Pr λ−1

[

∥

∥

∥

Xn

‖Xn‖
+ σx

∥

∥

∥
+ σǫy ≤

∥

∥

∥
e1 + σN(d)

∥

∥

∥
+ σǫN

]

pN (y)dy .Let us 
ompute E( ln−
(∥

∥

∥

Xn

‖Xn‖ + σN
(d)
∗,n
∥

∥

∥

)) and E( ln+
(∥

∥

∥

Xn

‖Xn‖ + σN
(d)
∗,n
∥

∥

∥

)). We have
E
(

ln−
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

|Xn

)

=

1

(2π)d/2

∫

Rd

ln−
(

∥

∥

∥

Xn

‖Xn‖
+ σx

∥

∥

∥

)

e−
‖x‖2

2 L̃n(λ, x, σ, σǫ)dx .Using again the isotropy of the standard d-dimensional normal distribution, one gets
E
(

ln−
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

|Xn

)

= E
[

ln−(‖e1 + σN(d)
∗ ‖)

]

< +∞ . (4.28)Similarly, we have
E
(

ln+
(∥

∥

∥

Xn

‖Xn‖
+ σN(d)

∗,n

∥

∥

∥

)

|Xn

)

= E
[

ln+(‖e1 + σN(d)
∗ ‖)

]

< +∞ . (4.29)Hen
e E [ln(∥∥
∥

Xn

‖Xn‖ + σN
(d)
∗,n
∥

∥

∥

)]

= F̃(σ, σǫ) < +∞, and so E(Yn) = 0.Let F2 : [0,∞[×[0,+∞[→ [0,+∞] be de�ned, for (t1, t2) ∈ [0,+∞[×[0,+∞[, by
G̃(t1, t2) :=

λ

(2π)d/2

∫

Rd

[ln(‖e1 + t1x‖)]2 e−
‖x‖2

2 H̃(λ, x, t1, t2)dx ,where H̃ is the fun
tion de�ned in De�nition 4.1. Similarly to the proof of Lemma 4.2,we prove that G̃ has �nite values. Now, from the de�nitions of F and F2 one has
E(|Yn|2) = G̃(σ, σǫ) − (F̃(σ, σǫ))

2 < +∞ . (4.30)This ends the proof of the �rst point. The random ve
tors Yn and Zn have the samedistribution if their 
hara
teristi
 fun
tions are identi
al. But su

essively
E(eitYn |Xn) = e−itF̃(σ,σǫ)E

(

e
it ln
(∥

∥ Xn
‖Xn‖

+σN
(d)
∗,n

∥

∥

)

|Xn

)

=
e−itF̃(σ,σǫ)

(2π)d/2

∫

Rd

eit ln
(∥

∥ Xn
‖Xn‖

+σx

∥

∥

)

e−‖x‖2/2L̃n(λ, x, σ, σǫ)dx

=
e−itF̃(σ,σǫ)

(2π)d/2

∫

Rd

eit ln(‖e1+σx‖)e−‖x‖2/2H̃(λ, x, σ, σǫ)dx

= E(eitZn) .Therefore E(eitYn) = E(E(eitYn |Xn)) = E(eitZn). To �nish the proof we show the orthog-onality property of the sequen
e (Yn). Let n and m be indi
es su
h that n < m. Therandom ve
tor Yn is σ(Xn,N
(d)
∗,n)-measurable, so that

E(YmYn |Xn,Xm,N
(d)
∗,n) = YnE(Ym|Xn,Xm,N

(d)
∗,n) .132



4.7. Dis
ussion and 
on
lusionThe random variable Ym depends only on the random ve
tors N
(d)
∗,m and Xm su
h that

E(Ym|Xn,Xm,N
(d)
∗,n) redu
es to E(Ym|Xm) and we get

E(Ym|Xm) =
1

(2π)d/2

∫

Rd

(

ln
(∥

∥

Xm

‖Xm‖
+ σx

∥

∥

)

)

e−
‖x‖2

2 L̃m(λ, x, σ, σǫ)dx− F̃(σ, σǫ)

=
1

(2π)d/2

∫

Rd

(

ln(‖e1 + σx‖)
)

e−
‖x‖2

2 H̃(λ, x, σ, σǫ)dx− F̃(σ, σǫ) = 0 ,that implies E(YmYn) = 0.Proof of Theorem 4.8In Proposition 4.7, we show that the random variables (Yn)n introdu
ed in De�nition 4.6satisfy the assmuptions of Theorem 4.5. Therefore, the LLN for orthognal random vari-ables applies for the sequen
e (Yn)n in the sense that 1
n

∑n
k=1 ln

(∥

∥

∥

Xk

‖Xk‖ + σN
(d)
∗,k

∥

∥

∥

) 
on-verges almost surely to F×(σ, σǫ) when n goes to in�nity. Then, by Proposition 4.4, wehave 1
n

ln
(

‖Xn‖
‖X0‖

) 
onverges almost surely to F×(σ, σǫ) when n goes to in�nity.Proof of Theorem 4.9We re
all here that the multivariate normal distribution on R
d with mean (0, . . . , 0) and
ovarian
e matrix the identity Id, N(0, Id), is simply denoted Nd. In the one dimension
ase, i.e., d = 1, it will be simply denoted N. Moreover, for d ≥ 1, χ2

d denotes the
hi-square distribution with d degrees of freedom. To prove the theorem, we need thefollowing proposition.Proposition needed to establish Theorem 4.9Proposition 4.11. Consider the fun
tion F de�ned in Lemma 4.2. Let σ∗ and σ∗
ǫ betwo stri
tly positive 
onstants. The fun
tions H and H̃ introdu
ed in De�nition 4.1 arerede�ned as mapping N

∗ × R × [0,+∞[ into R
+ with

H(d, x, u) = λ

∫

R

pN (y)×Pr λ−1





√

(

1 +
σ∗

d
x

)2

+

(

σ∗

d

)2

u

(

1 +
σ∗
ǫ

d
y

)

≤ ‖e1 +
σ∗

d
N(d)‖

(

1 +
σ∗
ǫ

d
N
)



 dy ,and̃
H(d, x, u) = λ

∫

R

pN (y)×Pr λ−1





√

(

1 +
σ∗

d
x

)2

+

(

σ∗

d

)2

u+
σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N



 dy ,133



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsfor x ∈ R, u ∈ [0,+∞[ and d ∈ N
∗. The following holds

d× F×

(

σ∗

d
,
σ∗
ǫ

d

)

= E

[

d

2
ln

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

H×
(

d,N, χ2
d−1

)

] (4.31)and the family {d
2
ln
(

(

1 + σ∗

d
N
)2

+
(

σ∗

d

)2
χ2
d−1

)

H×
(

d,N, χ2
d−1

)

}

d≥1
, where H× stands for

H or H̃, is uniformly integrable.Proof :Th proof is given for the model apf. The result for the model pf is obtained using thesame proof. Let us rewrite F̃(σ(d), σǫ(d)) in Eq. 4.15 using σ(d) = σ∗

d
, σǫ(d) = σ∗ǫ

d
:

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

=
λ

(2π)d/2

∫

Rd

d

2
ln(‖e1 +

σ∗

d
x‖2)e−

‖x‖2

2

(
∫

R

Pr λ−1

[(

‖e1 +
σ∗

d
x‖ +

σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N
)]

pN (y)dy

)

dx . (4.32)In the remainder of this proof, the positive quantities σ∗, σ∗
ǫ and λ are �xed. Let H̃ bethe measurable fun
tion de�ned on N

∗ × R
d by:

H̃(d, x) = λ

∫

R

Pr λ−1

[

‖e1 +
σ∗

d
x‖ +

σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N
]

pN (y)dy .The probability of an event E is upper bounded by 1. Therefore, the fun
tion H̃ is upperbounded by λ and d× F̃(σ
∗

d
, σ

∗
ǫ

d
) 
an be rewritten as

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

=
1

(2π)d/2

∫

Rd

d

2
ln(‖e1 +

σ∗

d
x‖2)e−

‖x‖2

2 H̃(d, x)dx . (4.33)Let us apply the 
hange of variables x1 = t, x2 =
√
r cos(θ1), x3 =

√
r sin(θ1) cos(θ2), x4 =√

r sin(θ1) sin(θ2) cos(θ3), . . . , xd−2 =
√
r sin(θ1) . . . sin(θd−3) cos(θd−2) and

xd =
√
r sin(θ1) . . . sin(θd−3) sin(θd−2). Then, for d ≥ 2, d× F̃(σ

∗

d
, σ

∗
ǫ

d
) writes as

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

=
d

2
√

2π

1

2
d−1
2 Γ(d−1

2
)

∫

R

∫

[0,+∞[

ln

[

(

1 +
σ∗

d
t

)2

+

(

σ∗

d

)2

u

]

u
d−1
2

−1e−
x2+u

2 H̃(d, t, u)dtdu ,where for t ∈ R, u ∈ [0,+∞[

H̃(d, t, u) =

λ

∫

R

Pr λ−1





√

(

1 +
σ∗

d
t

)2

+

(

σ∗

d

)2

u+
σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N



 pN (y)dy .134



4.7. Dis
ussion and 
on
lusionThis means that we have
d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

= E

[

d

2
ln

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

H̃
(

d,N, χ2
d−1

)

] (4.34)where χ2
d−1 denote the 
hi-square distribution with d− 1 degrees of freedom and

H̃
(

d,N, χ2
d−1

)

= λ

∫

R

pN (y)×Pr λ−1





√

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1 +

σ∗
ǫ

d
y ≤ ‖e1 +

σ∗

d
N(d)‖ +

σ∗
ǫ

d
N|N, χ2

d−1



 dy ,For �xed σ∗ > 0, let ((K̃)d)d≥1 be the sequen
e of random variables de�ned as
K̃d

(

d,N, χ2
d−1

)

:=
d

2
ln

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

H̃
(

d,N, χ2
d−1

)Therefore, we get d× F̃
(

σ∗

d
, σ

∗
ǫ

d

)

= E
(

K̃d

). Let K̃+
d and K̃−

d be respe
tively the positiveand negative part of the fun
tion K̃d su
h that K̃d = K̃+
d − K̃−

d . We have to show that thefamilies of positive random variables ((K̃)+
d )d≥1 and ((K̃)−d )d≥1 are uniformly integrable.First, we give interest to the family ((K̃)+

d )d≥1. We have
(K̃)+

d ≤ λ

2
d ln+

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

=
λ

2
d ln+

(

1 + 2
σ∗

d
N +

(

σ∗

d

)2
(

N2 + χ2
d−1

)

)

≤ λ

2
d ln+

(

1 + 2
σ∗

d
|N| +

(

σ∗

d

)2
(

N2 + χ2
d−1

)

)

≤ λ

2
d

(

2
σ∗

d
|N| +

(

σ∗

d

)2
(

N2 + χ2
d−1

)

)

= λ

(

σ∗|N| + (σ∗)2

2d

(

N2 + χ2
d−1

)

)

(4.35)
A

ording to the last inequality, we have to show that the families |N| and (

N2+χ2
d−1

d
)d≥1are uniformly integrable. The family |N| 
ontains a unique integrable random variabletherefore it is uniformly integrable. The random variable (

N2+χ2
d−1

d
)d 
onverges (by theLaw of Large Numbers) almost surely and therefore in probability to 1. Moreover thesequen
e of postive real values E [ |N2+χ2

d−1|
d

]

d
= 1 
onverges to E [|1|] whi
h gives, by theso-
alled Lr 
onvergen
e theorem from [93℄, that (

N2+χ2
d−1

d
)d≥1 
onverges to 1 in the sense135



Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al Environmentsof the norm L1. Finally, the family (
N2+χ2

d−1

d
)d≥1 
onverges in L1 therefore it is uniformlyintegrable.Let us now give interest to the family ((K̃)−d )d≥2. We have

(K̃)−d ≤ λ

2
d ln−

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

=
λ

2
d ln−

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

1{N<0}

≤ λ

2
d ln−

(

1 − N2

N2 + χ2
d−1

)

1{N<0}

=
λ

2
ln−
[

(

1 − N2

N2 + χ2
d−1

)d
]

1{N<0}

=
λ

2
ln











1

1 − N2

N2+χ2
d−1





d





1{N<0}

≤ 4λ





1

1 − N2

N2+χ2
d−1





d
8

1{N<0}

(4.36)

Let us show that the family (Gd)d≥2 :=





(

1

1− N2

N2+χ2
d−1

)
d
8

1{N<0}





d≥2

is uniformly inte-grable. A 
riterium that 
an be used to show the uniform integrability of (Gd)d≥2 is toshow that the family
(

E
[

G2(d)
])

d≥1
=






E











1

1 − N2

N2+χ2
d−1





d
4

1{N<0}













d≥1is uniformly bounded. The expe
tation (E [G2(d)]) 
an be rewritten as:
E
[

G2(d)
]

=
1

2
E





(

1

1 − (N1(0,Id))2

‖N(0,Id)‖2

)
d
4



 =
1

2(2π)
d
2

∫

Rd

(

1

1 − (x1)2

‖x‖2

)
d
4

e−
‖x‖2

2 dx ,Changing to spheri
al 
oordinates (with d ≥ 2), one gets
E
[

G2(d)
]

=
1

2Wd−2

∫ π/2

0

(

1

sin(θ)

) d
2

sind−2(θ) dθ

=
1

2Wd−2

∫ π/2

0

sin
d
2
−2(θ) dθ =

W d
2
−2

2Wd−2
.136



4.7. Dis
ussion and 
on
lusionSuppose now that d
2
is an integer. Then ∃p ≥ 1 su
h that d = 2p. As limn→∞

√
nWn =

√

π/2 then
lim
d→∞

W d
2
−2

Wd−2
= lim

p→∞
Wp−2

W2p−2
= lim

p→∞

√
2p− 2√
p− 2

limp→∞
√
p− 2Wp−2

limp→∞
√

2p− 2W2p−2

=
√

2 .If d
2
is odd, then d−1

2
is an integer and W d

2
−2 ≤ W d−1

2
−2 and we have also

lim
d→∞

W d−1
2

−2

Wd−2

=
√

2 .Then for d ≥ d0, E [G2(d)] ≤
√

2+1
2

. Consequently, the family {E [G2(d)]}d≥d0 is uniformlybounded whi
h means that the family (K̃−)d≥d0 is uniformly integrable and therefore thefamily
{

d ln

(

(

1 +
σ∗

d
N

)2

+

(

σ∗

d

)2

χ2
d−1

)

H̃
(

d,N, χ2
d−1

)

}

d≥1is uniformly integrable.proof of the Theorem First, we show the Theorem for the model apf. Let g denotethe measurable fun
tion de�ned on N
∗ × R × [0,+∞[ for (d, x, u) ∈ N

∗ × R × [0,+∞[ by
g(d, x, u) =

(

1 + 2
σ∗

d
x

)2

+

(

σ∗

d

)2

u .Let N̄, χ̄2
d−1 and N̄ be random variables respe
tively distributed as N, χ2

d−1 and N . Usingthe de�nition of the fun
tion H̃ introdu
ed in Proposition 4.11, one 
an write
H̃(d,N, χ2

d−1) = λEN

[

Eλ−1
N̄,χ̄2

d−1,N̄

(

1n√
g(d,N,χ2

d−1)+
σ∗

ǫ
d
N≤

√
g(d,N̄,χ̄2

d−1)+
σ∗

ǫ
d
N̄
o|N, χ2

d−1,N
)]

.The indi
ator fun
tion in the previous equation is upper bounded by 1. Therefore,
H̃(N, χ2

d−1) ≤ λ and we have
d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

= EN(d),χ2
d−1

[(

d

2
ln(g(d,N, χ2

d−1))

)

H(d,N, χ2
d−1)

]

.By Proposition 4.11, the family {(d
2
ln(g(d,N, χ2

d−1))
)

H̃(d,N, χ2
d−1)

}

d≥1
is uniformly in-tegrable then

lim
d→∞

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

= EN(d),χ2
d−1

[

lim
d→∞

(

d

2
ln(g(d,N, χ2

d−1))

)

H̃
(

d,N, χ2
d−1

)

]

.Then we have to 
ompute limd→∞
d
2
ln
(

g
(

d,N, χ2
d−1

)) and limd→∞ H̃(d,N, χ2
d−1).

d

2
ln
(

g(d,N, χ2
d−1)

)

=
d

2
ln

(

1 + 2
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d
N +

(

σ∗

d

)2
(

N2 + χ2
d−1

)

)
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Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al EnvironmentsWe have ln(1 + x) ∼ x when x→ 0. Moreover, N2 + χ2
d−1 
an be rewritten as the sum of

d idenpendent random variables following the distribution of N2. Therefore, by the LLNfor independent identi
ally distributed random variable, we have limd→∞
1
d

(

N2 + χ2
d−1

)

=
E(N2) = 1 almost surely. Consequently, one gets:

lim
d→∞

d

2
ln
(

g(d,N, χ2
d−1)

)

= lim
d→∞

d

(

σ∗

d
N +

(

σ∗

2d

)2
(

N2 + χ2
d−1

)

)

= σ∗N +
σ∗2

2
.Now, Let us 
ompute the limit of H̃(d,N, χ2

d−1) when d goes to in�nity. First, we noti
ethat the a

eptan
e event
(

√

g(d,N, χ2
d−1) +

σ∗
ǫ

d
N ≤

√

g(d, N̄, χ̄2
d−1) +

σ∗
ǫ

d
N̄
)
an be rewritten as

(

d

[

√

g(d,N, χ2
d−1) − 1 +

σ∗
ǫ

d
N
]

≤ d

[

√

g(d, N̄, χ̄2
d−1) − 1 +

σ∗
ǫ

d
N̄
])

.We denote by h̃ (d,N, χ2
d−1, N̄, χ̄

2
d−1

) the quantity
1n

d
“√

g(d,N,χ2
d−1)−1+

σ∗
ǫ
d
N
”

≤d
“√

g(d,N̄,χ̄2
d−1)−1+

σ∗
ǫ
d
N̄
”o .Then H̃(d,N, χ2

d−1) be
omes
H̃(d,N, χ2

d−1) = λEN
[

Eλ−1
N̄,χ̄2

d−1,N̄

(

h̃
(

d,N, χ2
d−1, N̄, χ̄

2
d−1

)

|N, χ2
d−1,N

)]

.As H̃(d,N, χ2
d−1) ≤ λ then by the dominated 
onvergen
e theorem, we have

lim
d→∞

H̃(d,N, χ2
d−1) = λEN

[

Eλ−1
N̄,χ̄2

d−1,N̄

(

lim
d→∞

h̃
(

d,N, χ2
d−1, N̄, χ̄

2
d−1

)

|N, χ2
d−1,N

)]

.Now, by the (almost sure) 
ontinuity of the indi
ator fun
tion, we have
lim
d→∞

h̃
(

d,N, χ2
d−1, N̄, χ̄

2
d−1

)

= 1{σ∗N+σ∗ǫ N≤σ∗N̄+σ∗ǫ N̄}almost surely. Then
lim
d→∞
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d−1) = λEN
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.Colle
ting the information above, one gets
lim
d→∞

d× F̃

(

σ∗

d
,
σ∗
ǫ

d

)

=
σ∗2

2
+ A(σ∗, σ∗

ǫ , λ) × σ∗ , (4.37)138



4.7. Dis
ussion and 
on
lusionwhere A(σ∗, σ∗
ǫ , λ) := λEN

[

N EN
[

Eλ−1
N̄,N̄

(

1{σ∗N+σ∗ǫ N≤σ∗N̄+σ∗ǫ N̄}|N,N
)]]

.For the model pf, we similarly get (repla
ing h̃ for the model apf by its analogue h forthe model pf)
lim
d→∞

d× F

(
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d
,
σ∗
ǫ

d
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=
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.where h (d,N, χ2
d−1, N̄, χ̄

2
d−1

) is given by
1n

d
“√

g(d,N,χ2
d−1)

“
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ǫ
d
N
”

−1
”

≤d
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“
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ǫ
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”
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”o .As

lim
d→∞

h̃
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2
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d→∞

h
(
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)then
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d
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d→∞

d× F̃
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σ∗

d
,
σ∗
ǫ

d

)

.To end the proof, we have to show that the quantity A(σ∗, σ∗
ǫ , λ) de�ned in Eq. 4.37 isnegative for all (σ∗, σ∗

ǫ , λ) ∈ R
∗
+ ×R

∗
+ ×N

∗. The quantity A(σ∗, σ∗
ǫ , λ) 
an be rewritten as

A(σ∗, σ∗
ǫ , λ) =

∫

R

x
e−

x2

2√
2π
dx

(

λ

∫

R

Pr λ−1 [σ∗x+ σ∗
ǫ y ≤ σ∗N + σ∗

ǫN ] pN (y)dy

)

.Let x, y ∈ R. If x ≥ 0 and σ∗x + σ∗
ǫ y ≤ σ∗N + σ∗

ǫN then σ∗(−x) + σ∗
ǫ y ≤ σ∗N + σ∗

ǫN .Therefore, for x ≥ 0,Pr λ−1 [σ∗x+ σ∗
ǫ y ≤ σ∗N + σ∗

ǫN ] ≤ Pr λ−1 [σ∗(−x) + σ∗
ǫ y ≤ σ∗N + σ∗

ǫN ] . (4.38)The quantity A(σ∗, σ∗
ǫ , λ) 
an be rewritten as
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)Applying a 
hange of variables, one gets
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Chapter 4. Log-linear Behavior of the S
ale-invariant (1, λ)-ES in Noisy Spheri
al EnvironmentsThis gives
A(σ∗, σ∗

ǫ , λ) :=

∫

R+

λx
e−

x2

2√
2π
dx

∫

R

pN (y)dy
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ǫ y ≤ σ∗N + σ∗
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ǫ y ≤ σ∗N + σ∗

ǫN ]
)

.The result follow from Eq. 4.38.Proof of Theorem 4.10Let us re
ompute the quantity A(σ∗, σ∗
ǫ , λ) in Eq. 4.19. We have
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λ√
2π

∫

R

x1e
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)

.In the 
ase where the noise N is Gaussian, the random variable σ∗N+σ∗
ǫN is a Gaussianvariable with mean 0 and varian
e σ∗2 + σ∗

ǫ
2. Then

A(σ∗, σ∗
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.Applying the 
hange of variables t = x1 and s = σ∗x1+σ∗ǫ y√
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2
, we get
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∫
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2,

1√
2π

∫

R

te−
t2

2 e−
1
2
(at+b)2dt =
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


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4.7. Dis
ussion and 
on
lusionAfter substituting u = −s, one gets
A(σ∗, σ∗

ǫ , λ) = −
[

λ√
2π

∫ +∞

−∞
u e−

1
2
u2

[φ(u)]λ−1 du

]

1
√

1 +
(σ∗ǫ
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.Consequently

A(σ∗, σ∗
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1
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1 +
(σ∗ǫ
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)2
.
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Chapter 5Identi�
ation of the Isotherm Fun
tionin Chromatography Using CMA-ESThe main material 
ontained in this 
hapter is the paper [78℄ published in the Pro
eed-ings of the 2007 IEEE Congress on Evolutionary Computation 
onferen
e. The workpresented here has been funded by the CNRS program ACI NIM (Nouvelles Interfa
esdes Mathématiques � New Frontiers for Mathemati
s) Chromalgema, 
oordinated by F.James (University of Orléans), and is a joint work with François James and Marie Postel(University Pierre et Marie Curie � Paris 6).The goal is to solve an identi�
ation problem arising from a model of analyti
 
hro-matography, a te
hnique used by 
hemi
al engineers. Chromatography aims at separatingthe m 
omponents of a mixture (that 
an be a gas or a liquid) by inje
ting the mixturein a 
olumn of length L �lled by a porous medium (generally a solid, but sometimes aliquid). Pushed by a 
ontinuous inje
tion of an inert medium, the di�erent 
omponents ofthe mixture moves through the 
olumn at di�erent speeds, due to their di�erent a�nitieswith the porous medium in the 
olumn. The di�erent 
omponents of the mixture rea
hthe end of the 
olumn at di�erent times. In a perfe
tly linear world, and if the 
olumn waslong enough, ea
h 
omponent would have its own propagation speed, and the separationwould be perfe
t. However, be
ause the propagation speed of ea
h 
omponent depends onthe 
on
entrations of the other 
omponents, the model is non-linear and the 
omponentsare not perfe
tly separated, whatever the 
olumn length. It is however very important tobe able to predi
t when this or that 
omponent will be highly 
on
entrated at the end ofthe 
olumn. The 'output' 
on
entration ve
tor (one 
on
entration per 
omponent) at theend of the 
olumn is 
alled a 
hromatogram and will be denoted c(t, L) (t ∈ [0, T ]).Writing the mass balan
e of the system leads to a system of Partial Di�erential Equa-tions [140℄ that has been shown to be a non-linear hyperboli
 system [141℄. The unknownare the 
on
entrations c(t, z), t ∈ [0, T ], z ∈ [0, L] and the '�ux' F of this system in-volves what 
hemists 
all the isotherm fun
tion of the pro
ess (be
ause the temperatureis �xed during the whole pro
ess). Solving the dire
t problem, i.e. 
omputing the output
hromatogram from the initial 
onditions and the 
on
entrations that are inje
ted in the
olumn during the whole experiment, thus amounts to solving the system of PDEs (5.2),with �ux given by Equation (5.3).Be
ause this system is hyperboli
, it is well-known that it has a unique solution, and145



Chapter 5. Identi�
ation of the Isotherm Fun
tion in Chromatography Using CMA-ESmany numeri
al s
hemata 
an be used in order to numeri
ally approximate its solution.Also, be
ause all eigenvalues of this system are positive [141℄, the standard Godunovs
heme here amounts to a simple forward �nite di�eren
e dis
retization, and the resultingdis
rete system is numeri
ally stable under the so-
alled CFL 
ondition given by Eq. 5.5.The goal The art of 
hromatography separation requires knowing when to gather theoutput of the 
olumn to rea
h a desired level of purity of the produ
ts. This 
an be easily
omputed provided the numeri
al model des
ribed above gives a good predi
tion of the
hromatogram. However, the a

ura
y of the predi
tion given by the numeri
al solutionof system (5.2) highly depends on the validity of the isotherm fun
tion for the a
tual
hemi
al system at hand � and isotherm fun
tions are not pre
isely known by 
hemistsin the 
ase of multiple 
omponents. Moreover, there are very few data points that wouldallow the engineers to �t an approximate model, and a
quiring a new data point requiresseveral months of tedious experiment. On the other hand, it is mu
h easier to experimentwith a given 
hromatographi
 
olumn, re
ording both the input 
on
entrations and the
orresponding output 
hromatograms. It should hen
e be possible to identify the isothermfun
tion from those data by solving the inverse problem: �nd the isotherm fun
tion Hsu
h that the numeri
al solution of system (5.2) with the given input �ts the experimental
hromatogram as a

urately as possible.More formally, this problem 
an be turned into a minimization problem: given anexperimental 
hromatogram cexp(t), t ∈ [0, T ], �nd the isotherm fun
tion H su
h thatthe solution of the dire
t system given in Eq. 5.2 minimizes the 
ost fun
tion J 
om-puted as the least square di�eren
e between the 
omputed 
hromatogram cH(t, L) andthe experimental one cexp(t):
J (H) =

∫ T

0

‖cH(t, L) − cexp(t)‖2dt (5.1)Chemi
al s
ientists have introdu
ed several parametri
 models for isotherm fun
tions (seeSe
tion 5.3.2 for a presentation of some models). The resulting optimization problemhen
e amounts to parametri
 optimization. This parametri
 optimization problem hasalreay been adressed using gradient-based approa
hes [73, 74℄. However, the fun
tion tooptimize is not 
onvex, and experiments performed in [73℄ suggest that the fun
tion ismulti-modal. An additional di�
ulty indu
ed by the 
omputation of the �tness fun
tionis that the CFL stability 
ondition 
an be violated during the optimization, leading toinfeasible individuals (in the sense that no value 
an be 
omputed for the J fun
tion)without any easy way to a priori predi
t for a given set of parameter whether this willhappen or not. Finally, the di�erent variables of the problem have very di�erent s
ales.Implementation and results The minimization of the 
ost fun
tion J , as a fun
tionof the parameters of some parametri
 model for the isotherm fun
tion, is addressed usingthe Covarian
e Matrix Adaptation-Evolution Strategy (CMA-ES, see Se
tion 5.4.2). Theimplmentation that has been used here is that des
ribed in [16℄ and written in S
ilab,that has been interfa
ed with the C++ 
ode developed during the ACI Chromalgema for146



the �tness fun
tion [107℄. This approa
h has been tested on the real data set providedin [73℄, and results 
ompared with those of the gradient based approa
h provided on thesame publi
ation. Note that in [73℄, the gradient based approa
h adopted is the 
onju-gate gradient method of the dis
retized 
ost fun
tion. The gradient of the 
ost fun
tion Jwith respe
t to parameters of the isotherm fun
tion is obtained as follows: A dis
retizedexpression of the (parametri
) 
ost fun
tion J (α1, . . . , αm) where α1, . . . , αm are the pa-rameters to identify is 
omputed. Then the gradient of the dis
retized 
ost fun
tion withrespe
t to the parameters to identify is 
omputed and used as an estimator of the gra-dient of the 
ontinuous formulation of the optimization problem in a 
onjugate gradientapproa
h. Our study shows that randomized sear
h methods 
an perform better that thegradient-based on this problem. In fa
t, CMA-ES is more robust as it always 
onvergesto the same point, independently of the starting point � and this was 
learly not the 
asefor the gradient approa
h. Moreover, CMA-ES is more e�
ient in solving the problemat hand as it proposed more a

urate solutions for two di�erent 
on�gurations of theparameters to identify. In parti
ular, CMA-ES was able to handle the 
omplete identi�-
ation problem, whereas the gradient approa
h required that some parameter values arepre-determined using some experimental values. Another fa
t that has been learned dur-ing this 
ase study is that the two approa
hes (CMA-ES and gradient) have very similar
omputation times: this is quite unusual as deterministi
 methods are in general mu
hfaster than population based randomized sear
h methods.A 
ommon drawba
k of both the gradient-based and CMA-ES approa
hes is the poor�t of the identi�ed 
hromatogam with the (sparse) data points that the 
hemists hadgathered for the isotherm fun
tion � though the 
hromatograms were ni
ely �tted. Thissuggests to use a multi-obje
tive approa
h, �tting both the 
hromatogram through solvingthe dire
t problem, and dire
tly �tting the isotherm using the few data available points.
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Abstra
tThis paper deals with the identi�
ation of the �ux for a system of 
onservation laws in thespe
i�
 example of analyti
 
hromatography. The fundamental equations of 
hromato-graphi
 pro
ess are highly non linear. The state-of-the-art Evolution Strategy, CMA-ES(the Covarian
e Matrix Adaptation Evolution Strategy), is used to identify the parametersof the so-
alled isotherm fun
tion. The approa
h was validated on di�erent 
on�gurationsof simulated data using either one, two or three 
omponents mixtures. CMA-ES is thenapplied to real data 
ases and its results are 
ompared to those of a gradient-based strat-egy.5.1 Introdu
tionThe 
hromatography pro
ess is a powerful tool to separate or analyze mixtures [50℄. Itis widely used in 
hemi
al industry (pharma
euti
al, perfume and oil industry, et
) toprodu
e relatively high quantities of very pure 
omponents. This is a
hieved by takingadvantage of the sele
tive absorption of the di�erent 
omponents in a solid porous medium.The moving �uid mixture is per
olated through the motionless medium in a 
olumn. Thevarious 
omponents of the mixture propagate in the 
olumn at di�erent speeds, be
auseof their di�erent a�nities with the solid medium. The art of 
hromatography separationrequires predi
ting the di�erent proportions of every 
omponent of the mixture at the150



5.2. Physi
al problem and modelend of the 
olumn (
alled the 
hromatogram) during the experiment. In the ideal (linear)
ase, every 
omponent has its own �xed propagation speed, that does not depend on theother 
omponents. In this 
ase, if the 
olumn is su�
iently long, pure 
omponents 
omeout at the end of the 
olumn at di�erent times: they are perfe
tly separated. But in thereal world, the speed of a 
omponent heavily depends on every other 
omponent in themixture. Hen
e, the fundamental Partial Di�erential Equations of the 
hromatographi
pro
ess, derived from the mass balan
e, are highly non linear. The pro
ess is governed bya nonlinear fun
tion of the mixture 
on
entrations, the so-
alled Isotherm Fun
tion. Thisfun
tion 
omputes the amount of absorbed quantity of ea
h 
omponent w.r.t. all other
omponents.Mathemati
ally speaking, thermodynami
al properties of the isotherm ensure thatthe resulting system of PDEs is hyperboli
, and standard numeri
al tools for hyperboli
systems 
an hen
e be applied; if the isotherm is known: The pre
ise knowledge of theisotherm is 
ru
ial, both from the theoreti
al viewpoint of physi
o-
hemi
al modeling andregarding the more pra
ti
al preo

upation of a

urately 
ontrolling the experiment to im-prove separation. Spe
i�
 
hromatographi
 te
hniques 
an be used to dire
tly identify theisotherm, but gathering a few points requires several months of 
areful experiments. An-other possible approa
h to isotherm identi�
ation 
onsists in solving the inverse problemnumeri
ally: �nd the isotherm su
h that numeri
al simulations result in 
hromatogramsthat are as 
lose as possible to the a
tual experimental outputs.This paper introdu
es an evolutionary method to ta
kle the identi�
ation of theisotherm fun
tion from experimental 
hromatograms. The goal of the identi�
ation isto minimize the di�eren
e between the a
tual experimental 
hromatogram and the 
hro-matogram that results from the numeri
al simulation of the 
hromatographi
 pro
ess.Chemi
al s
ientists have introdu
ed several parametri
 models for isotherm fun
tions (see[50℄ for all details of the most important models). The resulting optimization problemhen
e amounts to parametri
 optimization, that is addressed here using the state-of-the-art Evolution Strategy, CMA-ES. Se
tion 5.2 introdu
es the dire
t problem and Se
-tion 5.3 the optimization (or inverse) problem. Se
tion 5.4.1 reviews previous approa
hesto the problem based on gradient optimization algorithms [74, 73℄. Se
tion 5.4.2 detailsthe CMA-ES method and the implementation used here. Finally, Se
tion 5.5 presentsexperimental results: �rst, simulated data are used to validate the proposed approa
h;se
ond, real data are used to 
ompare the evolutionary approa
h with a gradient-basedmethod.5.2 Physi
al problem and modelChromatography aims at separating the 
omponents of a mixture based on the sele
-tive absorption of 
hemi
al spe
ies by a solid porous medium. The �uid mixture movesdown through a 
olumn of length L, 
onsidered here to be one-dimensional. The various
omponents of the mixture propagate in the 
olumn at di�erent speeds, be
ause of theirdi�erent behavior when intera
ting with the porous medium. At a given time t ∈ R
+, fora given z ∈ [0, L] the 
on
entration of m spe
ies is a real ve
tor of R

m denoted c(t, z).151



Chapter 5. Identi�
ation of the Isotherm Fun
tion in Chromatography Using CMA-ESThe evolution of c is governed by the following partial di�erential equation:










∂zc + ∂tF(c) = 0,

c(0, z) = c0(z),

c(t, 0) = cinj(t).

(5.2)where c0 : R → R
m is the initial 
on
entration, cinj : R → R

m the inje
ted 
on
entrationat the entran
e of the 
olumn and F : R
m → R

m is the �ux fun
tion that 
an be expressedin the following way
F(c) =

1

u

(

c +
1 − ǫ

ǫ
H(c)

) (5.3)where H : R
m → R

m is the so-
alled isotherm fun
tion, ǫ ∈ (0, 1) and u ∈ R
+ [73℄. TheJa
obian matrix of F being diagonalizable with stri
tly positive eigenvalues, the system(5.2) is stri
tly hyperboli
 and thus admits an unique solution as soon as F is 
ontinuouslydi�erentiable, and the initial and inje
tion 
onditions are pie
ewise 
ontinuous. Thesolution of Eq. 5.2 
an be approximated using any �nite di�eren
e method that is suitablefor hyperboli
 systems [48℄. A uniform grid in spa
e and time of size (K +1)× (N +1) isde�ned: Let ∆z (resp. ∆t) su
h thatK∆z = L (resp. N∆t = T ). Then an approximationof the solution of Eq. 5.2 
an be 
omputed with the Godunov s
heme:

c
n
k+1 = c

n
k −

∆z

∆t
(F(cnk) − F(cn−1

k )) (5.4)where c
n
k is an approximation of the mean value of the solution c at point (k∆z, n∆t)11.For a �xed value of ∆z

∆t
, the solution of Eq. 5.4 
onverges to the solution of Eq. 5.2 as ∆tand ∆z 
onverge to zero. The numeri
al s
heme given in Eq. 5.4 is numeri
ally stableunder the so-
alled CFL 
ondition stating that the largest absolute value of the eigenvaluesof the Ja
obian matrix of F is upper-bounded by a 
onstant

∆z

∆t
max
c

Sp(|F′(c)|) ≤ CFL < 1. (5.5)5.3 The Optimization Problem5.3.1 GoalThe goal is to identify the isotherm fun
tion from experimental 
hromatograms: giveninitial data c0, inje
tion data cinj, and the 
orresponding experimental 
hromatogram
cexp (that 
an be either the result of a simulation using a known isotherm fun
tion, orthe result of a
tual experiments by 
hemi
al s
ientists), �nd the isotherm fun
tion Hsu
h that the numeri
al solution of Eq. 5.2 using the same initial and inje
tion 
onditionsresults in a 
hromatogram as 
lose as possible to the experimental one cexp.11Mean value over the volume de�ned by the 
orresponding 
ell of the grid.152



5.3. The Optimization ProblemIdeally, the goal is to �nd H su
h that the following system of PDEs has a uniquesolution c(t, z):


















∂zc + ∂tF(c) = 0,

c(0, z) = c0(z),

c(t, 0) = cinj(t),

c(t, L) = cexp(t).

(5.6)However, be
ause in most real-world 
ases this system will not have an exa
t solution,it is turned into a minimization problem. For a given isotherm fun
tion H, solve system5.2 and de�ne the 
ost fun
tion J as the least square di�eren
e between the 
omputed
hromatogram cH(t, L) and the experimental one cexp(t):
J (H) =

∫ T

0

‖cH(t, L) − cexp(t)‖2dt (5.7)If many experimental 
hromatograms are provided, the 
ost fun
tion is the sum of su
hfun
tions J 
omputed for ea
h experimental 
hromatogram.5.3.2 Sear
h Spa
eWhen ta
kling a fun
tion identi�
ation problem, the �rst issue to address is the para-metri
 vs non-parametri
 
hoi
e [120℄: parametri
 models for the target fun
tion result inparametri
 optimization problems that are generally easier to ta
kle � but a bad 
hoi
eof the model 
an hinder the optimization. On the other hand, non-parametri
 modelsare a priori less biased, but sear
h algorithms are also less e�
ient on large unstru
turedsear
h spa
e.Early trials to solve the 
hromatography inverse problem using a non-parametri
 model(re
urrent neural-network) have brought a proof-of-
on
ept to su
h approa
h [43℄, buthave also demonstrated its limits: only limited pre
ision 
ould be rea
hed, and the ap-proa
h poorly s
aled up with the number of 
omponents of the mixture.Fortunately, 
hemists provide a whole zoology of parametrized models for the isothermfun
tion H, and using su
h models, the identi�
ation problem amounts to parametri
optimization. For i ∈ {1, . . . , m}, denote Hi the 
omponent i of the fun
tion H. Themain models for the isotherm fun
tion that will be used here are the following:
• The Langmuir isotherm [89℄ assumes that the di�erent 
omponents are in 
ompe-tition to o

upy ea
h site of the porous medium. This gives, for all i = 1, . . . , m

Hi(c) =
N

∗

1 +
∑m

l=1 Klcl
Kici. (5.8)There are m + 1 positive parameters: the Langmuir 
oe�
ients (Ki)i∈[1,m], homo-geneous to the inverse of a 
on
entration, and the saturation 
oe�
ient N

∗ that
orresponds to some limit 
on
entration. 153



Chapter 5. Identi�
ation of the Isotherm Fun
tion in Chromatography Using CMA-ES
• The Bi-Langmuir isotherm generalizes the Langmuir isotherm by assuming twodi�erent kinds of sites on the absorbing medium. The resulting equations are, forall i = 1, . . . , m

Hi(c) =
∑

s∈{1,2}

N
∗
s

1 +
∑m

l=1 Kl,scl
Ki,sci. (5.9)This isotherm fun
tion here depends on 2(m + 1) parameters: the generalizedLangmuir 
oe�
ients (Ki,s)i∈[1,m],s=1,2 and the generalized saturation 
oe�
ients

(N∗
s)s=1,2.

• The Latti
e isotherm [141℄ is a generalization of Langmuir isotherm that also 
on-siders intera
tions among the di�erent sites of the porous medium. Depending onthe degree d of intera
tions (number of intera
ting sites grouped together), thismodel depends, additionally to the Langmuir 
oe�
ients (Ki)i∈[1,m] and the satura-tion 
oe�
ient N
∗, on intera
tion energies (Eij)i,j∈[0,d],2≤i+j≤d resulting in ∏m

i=1
d+i
iparameters. For instan
e, for one 
omponent (m = 1) and degree 2, this gives:

H1(c) =
N

∗

2

K1 c + e−
E11
RT (K1 c)2

1 + 2K1 c + e−
E11
RT (K1 c)2

, (5.10)where T is the absolute temperature and R is the universal gas 
onstant. Note thatin all 
ases, a Latti
e isotherm with 0 energies simpli�es to the Langmuir isothermwith the same Langmuir and saturation 
oe�
ients up to a fa
tor 1
2
.5.4 Approa
h Des
ription5.4.1 MotivationsPrevious works on parametri
 optimization of the 
hromatography inverse problem haveused gradient-based approa
hes [74, 73℄. In [74℄, the gradient of J is obtained by writingand solving numeri
ally the adjoint problem, while dire
t di�erentiation of the dis
retizedequation have also been investigated in [73℄. However the �tness fun
tion to optimizeis not ne
essarily 
onvex and no results are provided for di�erentiability. Moreover, ex-periments performed in [73℄ suggest that the fun
tion is multimodal, sin
e the gradientalgorithm 
onverges to di�erent lo
al optima depending on the starting point. Evolu-tionary algorithms (EAs) are sto
hasti
 global optimization algorithms, less prone to getstu
k in lo
al optima than gradient methods, and do not rely on 
onvexity assumptions.Thus they seem a good 
hoi
e to ta
kle this problem. Among EAs, Evolution Strategieshave been spe
i�
ally designed for 
ontinuous optimization. The next se
tion introdu
esthe state of the art EA for 
ontinuous optimization, the 
ovarian
e matrix adaptation ES(CMA-ES).5.4.2 The CMA Evolution StrategyCMA-ES is a sto
hasti
 optimization algorithm spe
i�
ally designed for 
ontinuous opti-mization [61, 59, 57, 16℄. At ea
h iteration g, a population of points of an n-dimensional154



5.4. Approa
h Des
ription
ontinuous sear
h spa
e (subset of R
n), is sampled a

ording to a multi-variate normaldistribution. Evaluation of the �tness of the di�erent points is then performed, and pa-rameters of the multi-variate normal distribution are updated.More pre
isely, let 〈~x〉(g)W denotes the mean value of the (normally) sampling distribu-tion at iteration g. Its 
ovarian
e matrix is usually fa
torized in two terms: σ(g) ∈ R

+,also 
alled the step-size, and C
(g), a de�nite positive n×n matrix, that is abusively 
alledthe 
ovarian
e matrix. The independent sampling of the λ o�spring 
an then be written:

~x
(g+1)
k = 〈~x〉(g)W + Nk

(

0, (σ(g))2
C

(g)
) for k = 1, . . . , λwhere Nk (0,M) denote independent realizations of the multi-variate normal distributionof 
ovarian
e matrix M .The µ best o�spring are re
ombined into

〈~x〉(g+1)W =

µ
∑

i=1

wi~x
(g+1)
i:λ , (5.11)where the positive weights wi ∈ R are set a

ording to individual ranks and sum to one.The index i :λ denotes the i-th best o�spring. Eq. 5.11 
an be rewritten as

〈~x〉(g+1)W = 〈~x〉(g)W +

µ
∑

i=1

wiNi:λ

(

0, (σ(g))2
C

(g)
)

, (5.12)The 
ovarian
e matrix C
(g) is a positive de�nite symmetri
 matrix. Therefore it 
an bede
omposed in

C
(g) = B

(g)
D

(g)
D

(g)
(

B
(g)
)T

,where B
(g) is an orthogonal matrix, i.e. B

(g)
(

B
(g)
)T

= Id and D
(g) a diagonal matrixwhose diagonal 
ontains the square root of the eigenvalues of C

(g).The so-
alled strategy parameters of the algorithm, the 
ovarian
e matrix C
(g) andthe step-size σ(g), are updated so as to in
rease the probability to reprodu
e good steps.The so-
alled rank-one update for C

(g) [61℄ takes pla
e as follows. First, an evolutionpath is 
omputed:
~p(g+1)
c = (1 − cc)~p

(g)
c +

√

cc(2 − cc)µeff

σ(g)

(

〈~x〉(g+1)W − 〈~x〉(g)W )where cc ∈]0, 1] is the 
umulation 
oe�
ient and µeff is a stri
tly positive 
oe�
ient. Thisevolution path 
an be seen as the des
ent dire
tion for the algorithm.Se
ond the 
ovarian
e matrix C
(g) is �elongated� in the dire
tion of the evolution path,i.e. the rank-one matrix ~p(g+1)

c

(

~p
(g+1)
c

)T is added to C
(g):

C
(g+1) = (1 − ccov)C

(g) + ccov~p
(g+1)
c

(

~p(g+1)
c

)Twhere ccov ∈]0, 1[. The 
omplete update rule for the 
ovarian
e matrix is a 
ombinationof the rank-one update previously des
ribed and the rank-mu update presented in [59℄.155



Chapter 5. Identi�
ation of the Isotherm Fun
tion in Chromatography Using CMA-ESThe update rule for the step-size σ(g) is 
alled the path length 
ontrol. First, anotherevolution path is 
omputed:
~p(g+1)
σ = (1 − cσ)~p

(g)
σ +

√

cσ(2 − cσ)µeff

σ(g)
× B

(g)
D

(g)−1
B

(g)T
(

〈~x〉(g+1)W − 〈~x〉(g)W ) (5.13)where cσ ∈]0, 1]. The length of this ve
tor is 
ompared to the length that this ve
torwould have had under random sele
tion, i.e. in a s
enario where no information is gainedfrom the �tness fun
tion and one is willing to keep the step-size 
onstant. Under randomsele
tion the ve
tor ~p(g)
σ is distributed as N (0, Id). Therefore, the step-size is in
reased ifthe length of ~p(g)

σ is larger than E(‖ N (0, Id) ‖) and de
reased if it is shorter. Formally,the update rule reads:
σ(g+1) = σ(g) exp

(

cσ
dσ

(

‖ ~p(g+1)
σ ‖

E(‖ N (0, Id) ‖)
− 1

)) (5.14)where dσ > 0 is a damping fa
tor.The default parameters for CMA-ES were 
arefully derived in [57℄, Eqs. 6-8. The onlyproblem-dependent parameters are 〈~x〉(0)W and σ(0), and, to some extend, the o�spring size
λ: its default value is ⌊4+3 log(n)⌋ (the µ default value is ⌊λ

2
⌋), but in
reasing λ in
reasesthe probability to 
onverge towards the global optimum when minimizing multimodal�tness fun
tions [57℄.This fa
t was systemati
ally exploited in [16℄, where a "CMA-ES restart" algorithmis proposed, in whi
h the population size is in
reased after ea
h restart. Di�erent restart
riteria are used:1. RestartTolFun: Stop if the range of the best obje
tive fun
tion values of the re
entgeneration is below than a TolFun value.2. RestartTolX: Stop if the standard deviation of the normal distribution is smallerthan a TolX value and σ~pc is smaller than TolX in all 
omponents.3. RestartOnNoE�e
tAxis: Stop if adding a 0.1 standard deviation ve
tor in a prin
ipalaxis dire
tion of C

(g) does not 
hange 〈~x〉(g)W .4. RestartCondCov: Stop if the 
ondition number of the 
ovarian
e matrix ex
eeds a�xed value.The resulting algorithm (the CMA-ES restart, simply denoted CMA-ES in the remainderof this paper) is a quasi parameter free algorithm that performed best for the CEC 2005spe
ial session on parametri
 optimization [2℄.An important property of CMA-ES is its invarian
e to linear transformations of thesear
h spa
e. Moreover, be
ause of the rank-based sele
tion, CMA-ES is invariant to anymonotonous transformation of the �tness fun
tion: optimizing f or h ◦ f is equivalent,for any rank-preserving fun
tion h : R → R. In parti
ular, 
onvexity has no impa
t onthe a
tual behavior of CMA-ES.156



5.4. Approa
h Des
ription5.4.3 CMA-ES ImplementationThis se
tion des
ribes the spe
i�
 implementation of CMA-ES to identify n isotherm 
oef-�
ients. For the sake of 
larity we will use a single index in the de�nition of the 
oe�
ientsof the isotherm, i.e we will identify Ka, N∗
b and Ec for a ∈ [1, A], b ∈ [1, B] and c ∈ [1, C]where A, B and C are integers summing up to n.Fitness fun
tion and CFL 
ondition The goal is to minimize the �tness fun
tionde�ned in Se
tion 5.3.1. In the 
ase where identi�
ation is done using only one exper-imental 
hromatogram, the �tness fun
tion is the fun
tion J de�ned in Eq. 5.7 as theleast squared di�eren
e between an experimental 
hromatogram cexp(t) obtained usingexperimental 
onditions c0, cinj and a numeri
al approximation of the solution of system(5.2) for a 
andidate isotherm fun
tion H using the same experimental 
onditions. Thenumeri
al simulation of a solution of Eq. 5.2 is 
omputed with a Godunov s
heme writtenin C++ (see [107℄ for the details of the implementation).In order to validate the CMA-ES approa
h, �rst "experimental" 
hromatograms werein fa
t 
omputed using numeri
al simulations of Eq. 5.2 with di�erent experimental 
ondi-tions. Let Fsim denotes the �ux fun
tion used to simulate the experimental 
hromatogram.For the simulation of an approximated solution of Eq. 5.2, a time step ∆t and a CFL
oe�
ient stri
tly smaller than one (typi
ally 0.8) are �xed beforehand. The quantitymax Sp(|F′

sim(c)|) is then estimated using a power method, and the spa
e step ∆z 
anthen be set su
h that Eq. 5.5 is satis�ed for Fsim. The same ∆t and ∆z are then usedduring the optimization of J .When cexp 
omes from real data, an initial value for the parameters to estimate, i.e.an initial guess given by the expert is used to set the CFL 
ondition (5.5).Using expert knowledge The 
hoi
e of the type of isotherm fun
tion to be identi�edwill be, in most 
ases, given by the 
hemists. Fig 5.1 illustrates the importan
e of this
hoi
e. In Fig 5.1-(a), the target 
hromatogram cexp is 
omputed using a Langmuirisotherm with one 
omponent (m = 1 and thus n = 2). In Fig 5.1-(b), the target
hromatogram cexp is 
omputed using a Latti
e of degree 3 with one 
omponent (m = 1and thus n = 4). In both 
ases, the identi�
ation is done using a Langmuir model, with
n = 2. It is 
lear from the �gure that one is able to 
orre
tly identify the isotherm, andhen
e �t the "experimental" 
hromatogram when 
hoosing the 
orre
t model (Fig 5.1 (a))whereas the �t of the 
hromatogram is very poor when the model is not 
orre
t (Fig 5.1(b)).Another important issue when using CMA-ES is the initial 
hoi
e for the 
ovarian
ematrix: without any information, the algorithm starts with the identity matrix. However,this is a poor 
hoi
e in 
ase the di�erent variables have very di�erent possible order ofmagnitude, and the algorithm will spend some time adjusting its prin
ipal dire
tions tothose ranges.In most 
ases of 
hromatographi
 identi�
ation, however, 
hemists provide orders ofmagnitudes, bounds and initial guesses for the di�erent values of the unknown parameters.157
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(b) Simulation using a Latti
e isotherm,identi�
ation using a Langmuir model:poor �t of the 
hromatogram.Figure 5.1: Importan
e of the 
hoi
e of model (one 
omponent mixture)Let [(Ka)min, (Ka)max], [(N∗
b)min, (N

∗
b)max] and [(Ec)min, (Ec)max] the ranges guessed bythe 
hemists for respe
tively ea
h Ka, N∗

b and Ec. All parameters are linearly s
aled intothose intervals from [−1, 1], removing the need to modify the initial 
ovarian
e matrix ofCMA-ES.Unfeasible solutions Two di�erent situations 
an lead to unfeasible solutions:First when one parameter at least, among parameters whi
h have to be positive, be-
omes negative (remember that CMA-ES generates o�spring using an unbounded normaldistribution), the �tness fun
tion is arbitrarily set to 1020.Se
ond when the CFL 
ondition is violated, the simulation is numeri
ally unstable,and generates absurd values. In this 
ase, the simulation is stopped, and the �tnessfun
tion is arbitrarily set to a value larger than 106. Note that a better solution wouldbe to dete
t su
h violation before running the simulation, and to penalize the �tness bysome amount that would be proportional to the a
tual violation. But it is numeri
allyintra
table to predi
t in advan
e if the CFL is going to be violated (see Eq. 5.5), and thenumeri
al absurd values returned in 
ase of numeri
al instability are not 
learly 
orrelatedwith the amount of violation either.Initialization The initial mean 〈~x〉(0)W for CMA-ES is uniformly drawn in [−1, 1]n, i.e.,the parameters Ka, N
∗
b and Ec are uniformly drawn in the ranges given by the expert.The initial step-size σ0 is set to 0.3. Besides we reje
t individuals of the population sam-pled outside the initial ranges. Unfeasible individuals are also reje
ted at initialization:at least one individual should be feasible to avoid random behavior of the algorithm. Inboth 
ases, reje
tion is done by resampling until a �good� individual is got or a maximalnumber of sampling individuals is rea
hed. Initial numbers of o�spring λ and parents µ158



5.5. Resultsare set to the default values (λ = ⌊4 + 3 log(n)⌋ and µ = ⌊λ/2⌋).Restarting and stopping 
riteria The algorithm stops if it rea
hes 5 restarts, ora given �tness value (typi
ally a value between 10−9 and 10−15 for arti�
ial problems,and adjusted for real data). Restart 
riteria (see Se
tion 5.4.2) are RestartTolFun withTolFun= 10−12 ×σ(0), RestartTolX with TolX= 10−12 ×σ(0), RestartOnNoE�e
tAxis andRestartCondCov with a limit upper bound of 1014 for the 
ondition number. The o�springsize λ is doubled after ea
h restart and µ is set equal to ⌊λ/2⌋.5.5 Results5.5.1 Validation using arti�
ial dataA �rst series of validation runs was 
arried out using simulated 
hromatograms. Ea
hidenti�
ation uses one or many experimental 
hromatograms. Be
ause the same dis-
retization is used for both the identi�
ation and the generation of the "experimental"data, one solution is known (the same isotherm that was used to generate the data), andthe best possible �tness is thus zero.Several tests were run using di�erent models for the isotherm, di�erent numbers of
omponents, and di�erent numbers of time steps. In all 
ases, CMA-ES identi�ed the
orre
t parameters, i.e. the �tness fun
tion rea
hes values very 
lose to zero. In most
ases, CMA-ES did not need any restart to rea
h a pre
ision of (10−14), though this wasne
essary in a few 
ases. This happened when the whole population remained unfeasibleduring several generations, or when the algorithm was stu
k in a lo
al optimum. Fig-ures 5.2, 5.3, 5.4 show typi
al evolutions during one run of the best �tness value withrespe
t to the number of evaluations, for problems involving respe
tively 1, 2 or 3 
om-ponents. Figure 5.4 is a 
ase where restarting allowed the algorithm to es
ape a lo
aloptimum.Spe
i�
 tests were then run in order to study the in�uen
e of the expert guesses aboutboth the ranges of the variables and the starting point of the algorithm possibly givenby the 
hemi
al engineers: In CMA-ES, in a generation g, o�spring are drawn from aGaussian distribution 
entered on the mean 〈~x〉(g)W . An expert guess for a good solution
an hen
e be input as the mean of the �rst distribution 〈~x〉(0)W that will be used to generatethe o�spring of the �rst generation. The results are presented in Table 5.1. First 3 linesgive the probabilities that a given run 
onverges (i.e., rea
hes a �tness value of 10−12),
omputed on 120 runs, and depending on the number of restarts (this probability of 
oursein
reases with the number of restarts). The last line is the ratio between the averagenumber of evaluations that were needed before 
onvergen
e (averaged over the runs thatdid 
onverge), and the probability of 
onvergen
e: this ratio measures the performan
e ofthe di�erent experimental settings, as dis
ussed in details in [15℄.The results displayed in Table 5.1 
learly demonstrate that a good guess of the rangeof the variables is the most prominent fa
tor of su

ess: even without any hint about thestarting point, all runs did rea
h the required pre
ision without any restart. However,159
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h a �tness value (2.4 10−15) lower than 10−14.
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tory solution but the maximal number (here�ve) of restarts have been performed attempting to rea
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Figure 5.4: Ternary 
omponent mixture, 2000 time steps. Simulate a Langmuir (4 param-eters) and identify a Langmuir (4 parameters): Best �tness versus number of evaluations.Two restarts were ne
essary: Before the se
ond restart, CMA-ES is stu
k in some lo
aloptima (�tness of order of 10−1), in the se
ond restart, the algorithm rea
hes a �tnessvalue of 9.9 10−15.when no indi
ation about the range is available, a good initial guess signi�
antly improvesthe results, without rea
hing the perfe
t quality brought by tight bounds on the ranges:s
aling is more important than reje
ting unfeasible individuals at the beginning.Computational 
ost The duration of an evaluation depends on the dis
retization of thenumeri
al s
heme (number of spa
e- and time-steps), and on the number n of unknownparameters to identify. Several runs were pre
isely timed to assess the dependen
y ofthe 
omputational 
ost on both fa
tors. The simple Langmuir isotherm was used toboth generate the data and identify the isotherm. Only 
omputational 
osts of singleevaluations are reported, as the number of evaluations per identi�
ation heavily dependson many parameters, in
luding the possible expert guesses, and in any 
ase is a randomvariable of unknown distribution. All runs in this paper were performed on a 1.8GHzPentium 
omputer running with a re
ent Linux system.For one 
omponent (m = 1, n = 2), and 100, 500 and 1000 time steps, the averages ofthe durations of a single evaluation are respe
tively 0.0097, 0.22, and 0.9 se
onds, �ttingthe theoreti
al quadrati
 in
rease with the number of time steps (though 3 sample pointsare too few to demonstrate anything!). This also holds for the number of spa
e steps asthe number of spa
e steps is proportional to the number of time steps due to the CFL
ondition. For an identi�
ation with a 1-
omponent Langmuir isotherm, the total 
ost ofthe identi�
ation is on average 540 se
onds for a 1000 time steps dis
retization.When looking at the dependen
y of the 
omputational 
ost on the number of unknownparameters, things are not that 
lear from a theoreti
al point of view, be
ause the 
ostof ea
h 
omputation of the isotherm fun
tion also depends on the number of 
omponentsand on the number of experimental 
hromatograms to 
ompare with. Experimentally,for, 2, 3 and 4 variables, the 
osts of a single evaluation are respe
tively 0.9, 1.04, and
2.2 se
onds (for a 1000 time steps dis
retization). For an identi�
ation, the total timeis roughly 15 to 25 minutes for 2 variables, 40 to 60 minutes for 3 variables, and 1 to 2161



Chapter 5. Identi�
ation of the Isotherm Fun
tion in Chromatography Using CMA-ESTable 5.1: On the usefulness of Expert Knowledge: target values for Langmuir isothermare here (K1,N
∗) = (0.0388, 107). Expert range is [0.01, 0.05] × [50, 150], wide rangeis [0.001, 1] × [50, 150]. The expert guess for the starting point is a better initial mean(a

ording to �tness value) than random. The �rst 3 lines give the probabilities (
omputedover 120 runs) to rea
h a 10−12 �tness value within the given number of restarts. The lastline is the ratio of the number of evaluations needed for 
onvergen
e (averaged over theruns that did 
onverge) by the probability of 
onvergen
e after two restarts (line 3).Range Expert range Wide range Wide rangeStarting point No guess No guess Expert guessno restart 1 0.84 0.95

1 restart 1 0.92 0.97

2 restarts 1 0.95 0.97Perf. 601 1015 905hours for 4 variables.5.5.2 Experiments on real dataThe CMA-ES based approa
h has also been tested on a set of data taken from [66℄. Themixture was 
omposed of 3 
hemi
al spe
ies: the benzylal
ohol (BA), the 2-phenylethanol(PE) and the 2-methylbenzylal
ohol (MBA). Two real experiments have been performedwith di�erent proportions of inje
ted mixtures, with respe
tive proportions (1,3,1) and(3,1,0). Consequently, two real 
hromatograms have been provided. For this identi�
a-tion, Quiñones et a.l. [66℄ have used a modi�ed Langmuir isotherm model in whi
h ea
hspe
ies has a di�erent saturation 
oe�
ient N
∗
i :

Hi(c) =
N

∗
i

1 +
∑3

l=1 Kl cl
Ki ci, i = 1, . . . , 3. (5.15)Six parameters are to be identi�ed: N

∗
i and Ki, for i = 1, . . . , 3. A 
hange of variable hasbeen made for those tests so that the unknown parameters are in fa
t N

∗
i and K

′

i, where
K

′

i = Ki Ni: those are the values that 
hemi
al engineers are able to experimentallymeasure.Two series of numeri
al tests have been performed using a gradient-based method[73℄: identi�
ation of the whole set of 6 parameters, and identi�
ation of the 3 saturation
oe�
ients N
∗
i only, after setting the Langmuir 
oe�
ients to the experimentally measuredvalues (K

′

1,K
′

2,K
′

3) = (1.833, 3.108, 3.511). The initial ranges used for CMA-ES are
[60, 250]× [60, 250]× [60, 250] (resp. [1.5, 2.5]× [2.7, 3.7]× [3, 4]× [90, 200]× [100, 200]×
[100, 210]) when optimizing 3 parameters (resp. 6 parameters). Comparisons between thetwo experimental 
hromatograms and those resulting from CMA-ES identi�
ation for thetwo experiments are shown in Figure 5.5, for the 6-parameters 
ase. The 
orrespondingplots in the 3-parameters 
ase are visually identi
al though the �tness value is slightly162
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(d) 3:1, MBAFigure 5.5: Experimental 
hromatograms (markers) and identi�ed 
hromatograms (
on-tinuous line) for the BA, BE and MBA spe
ies. Plots on the left/right 
orrespond to aninje
tion with proportions (1,3,1)/(3,1,0).lower than in the 6-parameters 
ase (see Tables 5.2 and 5.3). But another point ofview on the results is given by the 
omparison between the identi�ed isotherms and the(few) experimental values gathered by the 
hemi
al engineers. The usual way to presentthose isotherms in 
hemi
al publi
ations is that of Figure 5.6: the absorbed quantity
H(c)i of ea
h 
omponent i = 1, 2, 3 is displayed as a fun
tion of the total amount ofmixture (c1 + c2 + c3), for �ve di�erent 
ompositions of the mixture [73℄. Identi�ed(resp. experimental) isotherms are plotted in Figure 5.6 using 
ontinuous lines (resp.dis
rete markers), for the 6-parameters 
ase. Here again the 
orresponding plots for the
3-parameters 
ase are visually identi
al.5.5.3 Comparison with a Gradient MethodCMA-ES results have then been 
ompared with those of the gradient method from [73℄,using the same data 
ase of ternary mixture taken from [66℄ and des
ribed in previousSe
tion. Chromatograms found by CMA-ES are, a

ording to the �tness (see Tables 5.2and 5.3), 
loser to the experimental ones than those obtained with the gradient method.Moreover, 
ontrary to the gradient algorithm, all 12 independent runs of CMA-ES 
on-verged to the same point. Thus, no varian
e is to be reported on Tables 5.2 and 5.3.Furthermore, there seems to be no need, when using CMA-ES, to �x the 3 Langmuir
oe�
ients in order to �nd good results: when optimizing all 6 parameters, the gradientapproa
h 
ould not rea
h a value smaller than 0.01, whereas the best �tness found byCMA-ES in the same 
ontext is 8.32 10−3 (Table 5.3). 163



Chapter 5. Identi�
ation of the Isotherm Fun
tion in Chromatography Using CMA-ESTable 5.2: Comparing CMA-ES and gradient: the 3-parameters 
ase. Solution ( line1) and asso
iated �tness values ( line 2) for the modi�ed Langmuir model (Eq. 5.15).Line 3: For CMA-ES, "median (minimal)" number of �tness evaluations (out of 12 runs)needed to rea
h the 
orresonding �tness value on line 2. For gradient, "number of �tnessevaluations � number of gradient evaluations" for the best of the 10 runs des
ribed in [73℄.CMA-ES Gradient
N

∗
i (120.951,135.319,165.593) (123.373,135.704,159.637)Fitness × 103 8.96 8.78 8.96# Fit evals. 175 (70) 280 (203) 140 � 21
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ontinuous line) andexperimental ones (markers) versus total amount of the mixture for di�erent proportionsof the 
omponent in the inje
ted 
on
entration [73℄.Table 5.3: Comparing CMA-ES and gradient: the 6-parameters 
ase. Solutions ( lines 1and 2) and asso
iated �tness values ( line 3) for the modi�ed Langmuir model (Eq. 5.15).CMA-ES Gradient
K

′

i (1.861,3.120,3.563) (1.780,3.009,3.470)
N∗
i (118.732,134.860,162.498) (129.986,141.07,168.495)Fitness × 103 8.32 10.7164



5.6. Con
lusionsFinally, when 
omparing the identi�ed isotherms to the experimental ones (�gure 5.6),the �t is 
learly not very satisfying (similar de
eptive results were obtained with the gra-dient method in [73℄): Fitting both the isotherms and the 
hromatograms seem to be
ontradi
tory obje
tives. Two dire
tions 
an lead to some improvements in this respe
t:modify the 
ost fun
tion J in order to take into a

ount some least-square error on theisotherm as well as on the 
hromatograms; or use a multi-obje
tive approa
h. Both mod-i�
ations are easy to implement using Evolutionary Algorithms (a multi-obje
tive versionof CMA-ES was re
ently proposed [67℄), while there are beyond what gradient-basedmethods 
an ta
kle. However, it might also be a sign that the modi�ed Langmuir modelthat has been suggested for the isotherm fun
tion is not the 
orre
t one.Comparison of 
onvergen
e speeds Tables 5.2 and 5.3 also give an idea of therespe
tive 
omputational 
osts of both methods on the same real data. For the bestrun out of 10, the gradient algorithm rea
hed its best �tness value after 21 iterations,requiring on average 7 evaluations per iteration for the embedded line sear
h. Moreover,the 
omputation of the gradient itself is 
ostly � roughly estimated to 4 times that of the�tness fun
tion. Hen
e, the total 
ost of the gradient algorithm 
an be 
onsidered to belarger than 220 �tness evaluations. To rea
h the same �tness value (8.96 10−3), CMA-ESonly needed 175 �tness evaluations (median value out of 12 runs). To 
onverge to itsbest value (8.78 10−3, best run out of 12) CMA-ES needed 280 �tness evaluations. Thoseresults show that the best run of the gradient algorithms needs roughly the same amountof fun
tions evaluations than CMA-ES to 
onverge. Regarding the robustness issue, notethat CMA-ES always rea
hed the same �tness value, while the 10 di�erent runs of thegradient algorithm from 10 di�erent starting points gave 10 di�erent solutions: in orderto assess the quality of the solution, more runs are needed for the gradient method thanfor CMA-ES!5.6 Con
lusionsThis paper has introdu
ed the use of CMA-ES for the parametri
 identi�
ation of isothermfun
tions in 
hromatography. Validation tests on simulated data were useful to adjust the(few) CMA-ES parameters, but also demonstrated the importan
e of expert knowledge:
hoi
e of the type of isotherm, ranges for the di�erent parameters, and possibly someinitial guess of a not-so-bad solution.The proposed approa
h was also applied on real data and 
ompared to previous workusing gradient methods. On this data set, the best �tness found by CMA-ES is better thanthat found by the gradient approa
h. Moreover, the results obtained with CMA-ES are farmore robust: (1) CMA-ES always 
onverges to the same values of the isotherm parameters,independently of its starting point; (2) CMA-ES 
an handle the full problem that thegradient method failed to e�
iently solve: there is no need when using CMA-ES to useexperimental values of the Langmuir parameters in order to obtain a satisfa
tory �tnessvalue. Note that the �tness fun
tion only takes into a

ount the �t of the 
hromatograms,resulting in a poor �t on the isotherms. The results 
on�rm the ones obtained with a165



Chapter 5. Identi�
ation of the Isotherm Fun
tion in Chromatography Using CMA-ESgradient approa
h, and suggest to either in
orporate some measure of isotherm �t in the�tness, or to try some multi-obje
tive method � probably the best way to go, as bothobje
tives (
hromatogram and isotherm �ts) seem somehow 
ontradi
tory.A
knowledgmentsThis work was supported in part by MESR-CNRS ACI NIM Chromalgema. The authorswould like to thank Nikolaus Hansen for the S
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omments.

166



Summary and Con
lusionThe 
ontext of this thesis is the non linear 
ontinuous optimization using Evolution Strate-gies (ES). The work is 
omposed of two parts. The �rst part is a theoreti
al and numeri
alstudy of the optimization using ES. In parti
ular, we fo
us on the optimization of noisyobje
tive fun
tions whi
h are frequently en
ountered in pra
ti
e. In the se
ond part, thestate-of-the-art ES, the Covarian
e Matrix Adaptation Evolution Strategy (CMA-ES) isapplied to solve an identi�
ation problem relative to the 
hromatography te
hnique usedby 
hemi
al engineers.Theoreti
al and numeri
al studyThe study in Chapter 2 of the (1 + 1)-ES generalizes previous results relative to thebehavior of the (1, λ)-ES [17℄: The optimal 
onvergen
e rate of ES is rea
hed when theadaptation rule of the step-size is the arti�
ial s
ale-invariant adaptation rule and theobje
tive fun
tion is the spheri
al fun
tion. Therefore, these optimal settings (s
ale-invariant + spheri
al fun
tions) 
an be used to assess the performan
es of algorithms usingrealisti
 adaptation rules and optimizing real world obje
tive fun
tions by 
omparing theirperforman
es with the optimal one.In our study, we mainly investigate the rigorous proof with the numeri
al illustrationof the 
onvergen
e and divergen
e of s
ale-invariant ES. In Chapter 2, the Law of LargeNumbers (LLN) for orthogonal random variables has been used to show the log-linear
onvergen
e of the s
ale-invariant (1 + 1)-ES when minimizing spheri
al fun
tions. InChapter 3, the Borel-Cantelli Lemma was used to show the almost sure 
onvergen
e (ordivergen
e) of the s
ale-invariant (1 + 1)-ES when minimizing noisy spheri
al fun
tions.Then, in the same 
hapter, we used the LLN for Markov 
hains to rigorously derive theexpressions of 
onvergen
e (or divergen
e) rates of the algorithm. However, in order toobtain the log-linear behavior of the algorithm, one has to show that the 
onvergen
e (ordivergen
e) rates are not equal to 0. Though it is di�
ult to have a theoreti
al estimationof this 
onvergen
e rate, our study shows that the expressions of the 
onvergen
e (or di-vergen
e) rates derived 
an be estimated using Monte Carlo simulations. Therefore, one
an show numeri
ally that the 
onvergen
e (or divergen
e) rates are not equal to 0. Forthe s
ale-invariant (1, λ)-ES minimizing noisy spheri
al fun
tions, the LLN for orthogonalrandom variables is used again in Chapter 4 to show the log-linear of behavior of thealgorithm. In the same 
hapter, numeri
al simulations have investigated the 
onvergen
e(or divergen
e) rate that was theoreti
ally derived to distiguish 
onvergen
e and diver-gen
e 
ases. Moreover, it is theoreti
ally proven (Chapter 4) that the 
onvergen
e rate is167



Summary and Con
lusionasymptoti
ally (in the sear
h spa
e dimension) linear as a fun
tion of the inverse of thesear
h spa
e dimension. Note that for rank-based algorithms [137℄ or any Hit-and-Rundire
t sear
h method [75℄, we know that the 
onvergen
e rate is asymptoti
ally linear asa fun
tion of the inverse of the sear
h spa
e dimension.The 
onvergen
e results obtained in Chapter 2 (Theorem 2.10) and in Chapter 4(Theorem 4.8) were obtained using the LLN for orthogonal random variables. Note thatthe same results 
an be obtained using LLN for independent random variables.Optimization of noisy obje
tive fun
tions When obje
tive fun
tions are noisy, EShad been shown to be more robust than other optimization methods in previous empiri
alstudies [9, 106℄. As pointed in [24℄, the di�
ulty when handling noisy obje
tive fun
tionsarises for high noise levels. If the noise level is high, relatively to the ideal obje
tivefun
tion value, the sele
tion pro
ess 
an be de
eived and therefore the performan
e of thealgorithm is altered. This may lead to a non 
onvergen
e of the method. Therefore, weinvestigated a multipli
ative noise model for whi
h the random noise is the ratio betweenthe noisy obje
tive fun
tion value and the ideal one. We investigated both the s
ale-invariant plus and 
omma strategies:1. For the (1 + 1)-ES (Chapter 3), the only relevant fa
t is whether the noisy fun
tion
an take negative �tness values or not. If a negative �tness value 
an happen,the s
ale-invariant (1 + 1)-ES will diverge, be
ause of the elitist sele
tion. Thisresult may appear in 
ontradi
tion with the result that has been previously derivedin [8℄, stating that the algorithm is expe
ted to 
onverge, be
ause of its positiveexpe
ted progress rate. The point is that, in the numeri
al simulations investigatedin that paper, negative �tness values were never sampled be
ause they had a verysmall probability to o

ur. This was due to the use of normalizations of the noisestrength with respe
t to the sear
h spa
e dimension. This also shows that numeri
alsimulations have to be 
onsidered with 
are, and that both theoreti
al and numeri
alapproa
hes have to be investigated in a 
omplementary approa
h.2. For the (1, λ)-ES (Chapter 4), the 
on
lusions are di�erent. The (1, λ)-ES 
an
onverge even in the 
ase where negative �tness values 
an happen, provided thatthe varian
e of the noise (the noise strength) is su�
iently small. On the otherhand, if the noise strength is su�
iently high, divergen
e o

urs. In the spe
i�

ase of Gaussian noise, the distin
tion between 
onvergen
e and divergen
e 
ases wastheoreti
ally (respe
tively numeri
ally) shown for in�nite (respe
tively �nite) sear
hspa
e dimension. For in�nite dimension, similar results had been obtained using thelimit of the normalized progress rate [25℄, whi
h is equal to the opposite of the limitof the normalized 
onvergen
e rate derived in our study. Moreover, for 'large' noisestrength values where divergen
e o

urs, 
onvergen
e 
an nevertheless be obtainedby in
reasing the number of o�spring λ, and/or reevaluating ea
h o�spring severaltimes and setting its �tness value to the average of these reevaluations. Thesesolutions had been previously proposed in [25℄, and are also dis
ussed in Chapter 4.168



Elitist strategies and 
omparing ES in noisy environments The results of Chap-ter 3 show that, if negative obje
tive fun
tions values have a stri
tly postive probabilityto happen, then the s
ale-invariant (1 + 1)-ES 
annot 
onverge be
asue of the elitist se-le
tion. Therefore, the non 
onvergen
e holds also even if the number of the o�spring isin
reased, i.e., even when using a (1 + λ)-ES with λ > 1. It is worth noti
ing that thenon robustness of the elitist sele
tion have been already noti
ed in previous studies [119℄(where the obje
tive fun
tions is not noisy), where it had been shown that the (1+1)-ESusing the 1/5-su

ess rule 
an get stu
k in a lo
al optimum. To over
ome the non 
onver-gen
e of the (1 + 1)-ES (when minimizing noisy obje
tive fun
tions) shown in Chapter 3,a possible solution is to reevaluate the parent at ea
h sele
tion step. Therefore, the obje
-tive fun
tions values of the solutions generated by the algorithm are no more de
reasing.Another solution is to use the (1, λ)-ES whi
h has been analyzed in Chapter 4 using theLLN for orthogonal random variables. The study of the s
ale-invariant (1 + λ)-ES withreevaluation of the parent has not been investigated here but it 
an be done, similarly tothe (1, λ)-ES, using the LLN for orthogonal random variables. Moreover, the (1 + λ)-ESwith reevaluation is similar, for in�nite dimension, to a (1, λ + 1)-ES as suggested bythe limits of the normalized progress rates derived in [25℄. Note that our study does notin
lude the 
omparison of the performan
es of plus and 
omma ES in noisy environments.However, our study gives a guideline for pra
titionners about whi
h strategy to use whensome qualitative or quantitative informations on the noise distribution are available. Ifthe noise is su
h that negative obje
tive fun
tion values 
an happen one should not useplus strategies with no reevaluation of the parent. In this 
ase, 
omma strategies (andprobably plus strategies with reevaluation, relying on results in [25℄) 
an be used with thepossible solutions of reevaluating o�spring or in
reasing their number if the noise level is'high'.In a previous study that 
ompared the performan
es of ES in the presen
e of a Gaussiannoise [7℄, it had been shown that, for small values of the noise strength, the plus strategies(with or without reevaluation) perform better than the 
omma strategies, and that theopposite happens for large normalized noise strength values. However, a

ording to ourstudy and from a theoreti
al view point, plus strategies with no reevaluation should notbe used in the 
ase of Gaussian noise as they lead to a non 
onvergen
e of the algorithm.Therefore one has to investigate, in 
ase of (theoreti
al) 
onvergen
e, the 
omparisonof the 
onvergen
e rates of the (1 + λ)-ES with reevaluation of the parent, and of the
(1, (λ+1))-ES. Note that in pra
ti
e, when the noise is Gaussian with a su�
iently smallnoise strength, the study of Chapter 3 shows that 
onvergen
e 
an be seen in numeri
alsimulations as the event leading to the non-
onvergen
e of the algorithm requires a hugenumber of iterations whi
h is not the 
ase of almost all numeri
al simulations. In these
ases, and if one knows that (ideal) obje
tive fun
tions have to be positive, the (1+1)-ES
an be used as a fast strategy (as suggested by the study in [7℄) until a negative �tnessvalue is sampled or another stopping 
riteria is met.Finally, ES with re
ombination has to be theoreti
ally and numeri
ally investigated and
ompared with the other strategies. Another point that should be investigated, in noisyenvironments, is the behavior of ES using a
tual adaptation te
hniques (e.g. SA-ES and,of 
ourse, CMA-ES). 169



Summary and Con
lusionOn the use of in�nite dimension approximations and link with the progress ratetheory The limit of the (normalized) 
onvergen
e rate (or normalized progress rate) ofan ES has in general, a simpler expression than that relative to a �xed dimension. Thismakes the distin
tion of 
onvergen
e and divergen
e 
ases easier and the results obtainedwhen the sear
h spa
e dimension goes to in�nity 
an be 
onsidered to be reliable forsu�
iently large dimensions.In Chapter 4, we also extend a result from [17℄ to the noisy 
ase: when optimizingspheri
al fun
tions, the normalized progress rate, whi
h is related to the 
onvergen
e inmean of an ES, and (the opposite of) the normalized 
onvergen
e rate, whi
h gives thealmost sure 
onvergen
e, have the same limit when d goes to in�nity.On the other hand, for �nite dimensions of the sear
h spa
e, Figure 4.5 and Figure 4.6 inChapter 4 show that for some 
ases, divergen
e 
an hold in the 
ase of in�nite dimensionwhile 
onvergen
e holds for some �nite dimensions. This 
on�rms the observation thathas already been done in the 
ase of sphere fun
tion in [27℄: The authors show that in�nitedimension results do not 
over all 
onvergen
e 
ases for �nite dimensions.Moreover, our study shows rigorously (Chapter 4) the reliablity of an approximationfor large dimensions that has been previously done in [8℄ when optimizing noisy obje
tivefun
tions. This approximation assumes that, for high dimensions of the sear
h spa
e, theparent and its o�spring have the same noise level.However, the �nite dimension plots of the
onvergen
e rates that are shown in Chapter 4, and espe
ially in Figure 4.2, demonstratethat for the same noise varian
e and the same step-size mutation, the original modeland the approximating one 
an have 
ompletely di�erent behaviors (
onvergen
e for theformer and divergen
e for the latter). Therefore, su
h approximations has to be takenwith 
are.Appli
ationIn Chapter 5, CMA-ES was applied to solve a real-world problem en
ountered in 
hem-i
al engineering. This study 
on�rms previous empiri
al 
omparison dealing whith thee�
ien
y and the robustness of deterministi
 and randomized sear
h methods. In thisspe
i�
 
ase study, CMA-ES is demonstrated to be more robust than a gradient based ap-proa
h: CMA-ES found the same solution than the gradient method, but independentlyof the starting point, whereas gradient sear
h is very sensitive to its initialization. Infa
t, the solutions proposed by CMA-ES were also slightly more a

urate. But the moststriking result is that CMA-ES su

eeded to handle the full optimization problem whereasthe gradient-based approa
h failed unless some parameters were �xed by the user to someexperimentally determined values.
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