
Thesis : Improvements and Evaluation of the
Monte-Carlo Tree Search Algorithm

Arpad Rimmel

15/12/2009



ii



Contents

Acknowledgements ii

Citation ii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Game of Go . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Other Problems . . . . . . . . . . . . . . . . . . . . . . 2

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Minimax . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Alpha Beta . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Nested Monte Carlo . . . . . . . . . . . . . . . . . . . 5

1.2.4 Dynamic Programming . . . . . . . . . . . . . . . . . . 7

1.3 Bandit Based Monte Carlo Tree Search . . . . . . . . . . . . 9

1.3.1 Monte Carlo Simulations . . . . . . . . . . . . . . . . . 9

1.3.2 Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . 13

1.3.4 Classical Improvements . . . . . . . . . . . . . . . . . . 15

2 Parallelization 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Results on the Multi-Core Parallelization . . . . . . . . 22

2.2.2 Cluster Parallelization . . . . . . . . . . . . . . . . . . 25

Generalization of the multi-core approach . . . . . . . 25

An alternate solution with less communications . . . . 28

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



CONTENTS

3 Opening Database 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 38

Why we should mutate very bad moves only . . . . . . 40
Robustness of the Opening Books . . . . . . . . . . . . 41

3.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Expert Knowledge and Diversity Preservation 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Adding Expert Knowledge in the Tree . . . . . . . . . 49
4.2.2 Adding Expert Knowledge and preserving diversity in

the Monte Carlo part . . . . . . . . . . . . . . . . . . . 53
Fill the Board: Random Perturbations of the Monte

Carlo Simulations . . . . . . . . . . . . . . . . 54
The “Nakade” Problem . . . . . . . . . . . . . . . . . . 55
Approach Moves . . . . . . . . . . . . . . . . . . . . . 56

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Threshold Ascent applied to Graph 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Library Performance Tuning . . . . . . . . . . . . . . . 63
Background: Linear Transforms . . . . . . . . . . . . . 64
Adaptive Libraries and Search . . . . . . . . . . . . . . 66

5.1.2 State of the art: Dynamic Programming . . . . . . . . 67
5.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Formal Problem Statement . . . . . . . . . . . . . . . . 67
5.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 68

Descend . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Backpropagate . . . . . . . . . . . . . . . . . . . . . . 72
Pseudocode and Remark . . . . . . . . . . . . . . . . . 72
Applicability of TAG . . . . . . . . . . . . . . . . . . . 72

5.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



CONTENTS

6 Conclusion 79

A Commentaries on Games played by MoGo in Taiwan 81
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Game Results of MoGo vs. Human Players in Taiwan . . . . . 82

A.2.1 Comments on 9x9 games . . . . . . . . . . . . . . . . . 83
A.2.2 Comments on 19x19 games . . . . . . . . . . . . . . . . 88

Weakness in the corners . . . . . . . . . . . . . . . . . 88
Scaling with time . . . . . . . . . . . . . . . . . . . . . 92
MoGo in handicap games . . . . . . . . . . . . . . . . 92
Strength of MoGo in contact fights . . . . . . . . . . . 92

A.2.3 Numerical analysis of performance . . . . . . . . . . . 101
A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B Commentaries on Games played by MoGo in Jeju 103
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2 Results and comments . . . . . . . . . . . . . . . . . . . . . . 103

B.2.1 Ability for fights . . . . . . . . . . . . . . . . . . . . . 104
B.2.2 9x9 opening books . . . . . . . . . . . . . . . . . . . . 104

Handcrafted opening books . . . . . . . . . . . . . . . 104
Self-built opening books . . . . . . . . . . . . . . . . . 105

B.2.3 Weaknesses in corners . . . . . . . . . . . . . . . . . . 105
B.2.4 Robots are too aggressive . . . . . . . . . . . . . . . . 106
B.2.5 Weaknesses in semeais and sekis . . . . . . . . . . . . . 106

B.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Index 111

Bibliography 111

v



CONTENTS

vi



Chapter 1

Introduction

1.1 Motivations

In this thesis, we deal with the problem of taking decisions in a discrete
observable uncertain environment with finite horizon. The reward is only
given at the end. We focus in particular on problems where the number of
states is huge (too large to be explored entirely) . In those cases, traditional
methods like alpha-beta (for two player games) or dynamic programming
(for control) have been outperformed by some recent techniques, namely the
Monte Carlo Tree Search (MCTS). This holds even if the problem is very
well formalized like for the game of Go, which is the current main testbed
for Monte Carlo Tree Search methods.

For some problems, it is possible to create a function f that associates
to every positions after a certain depth D a value f(pos) correlated to the
reward you would obtain by following the best path from pos. We call such
function an evaluation function. A good evaluation function gives values
highly correlated to the reward for positions at a low depth. By using such a
function, it is possible to reduce the size of the problem by studying it only
until the depth D. When this is the case (like in chess), classical methods
like alpha-beta give good results. In the following, we will focus on problems
where it is not possible (or would take too much time) to construct a good
evaluation function.

1.1.1 The Game of Go

The game of Go is an ancient Asian game with the nice property that
it is much harder for computers than is chess and is therefore still un-
solved. The main reason for this is that is has turned out to be much sim-
pler to devise a good evaluation function in chess than in Go. Whereas

1



1. INTRODUCTION

nowadays computers play handicap games in chess against top-level hu-
mans (the handicap is here for helping the human!), the top human
Go players still win very easily handicap games against humans (with
the handicap for helping the computer!). In 1998, a 6D human player
could win with 29 handicap stones [Müller, 2002] against a top program,
Many Faces of Go. However, we will see that the methods originating in
[Coulom, 2006, Chaslot et al., 2007, Kocsis and Szepesvari, 2006], improved
in this thesis and implemented in the program MoGo have greatly reduced
this difference. In 2009, MoGo won a game against a top professional player
(9Dan) with only 7 handicap stones. Additional results and analysis of
Games from MoGo are given in the appendices.

The game of Go is a two-players (black and white) board game with com-
plete information (see figure 1.1). It is mainly played on two different size of
board: 19x19 and 9x9. The time setting of a game correspond to the amount
of time given to each player for each move (byo yomi) or the amount of time
given for the entire game (sudden death). A typical time setting for a 19x19
game is 30s per move or 60min for the game.

The rules are the following. Each player plays a move after another.
Black plays first. A move consists in putting a stone on the board on an
empty intersection. The stones of the same color that are next to each other
horizontally or vertically belongs to a group. The empty intersections next
to a group are the liberties of this group. If a group has no more liberties, it is
removed from the board. To prevent infinite loop, it is forbidden to make a
move that will put the board in a situation where it had already been before.
At the end of the game, we count the points for each player. The player with
the more points wins the game. The points are counted in the following way:

• each stone on the board gives one point to its owner;

• each empty intersection gives one point to the player with the closest
stone;

• the white player has 7,5 more points to compensate the fact that he
plays in second.

1.1.2 Other Problems

Games are not the only problems of decision taking in a large search space.
Most of planning problems can be described in the same way. In fact, one of
the papers introducing MCTS [Kocsis and Szepesvari, 2006] was applied to

2



1.2. STATE OF THE ART

Figure 1.1: Example of a game of go. This game was played by MoGo.

the sailing problem. We will show another successful one-player application
of this algorithm in section 5.

1.2 State of the art

In this section, classical methods for tree exploration in the case of one-player
games or two-player games are described.

1.2.1 Minimax

Minimax is an algorithm for exploring the tree in the context of a two-player
zero-sum game. It supposes the existence of a good evaluation function at a
fixed depth D. The algorithm does an exhaustive search to the depth D, one
player trying to maximize the evaluation function while the other is trying
to minimize it (see algorithm 1 and figure 1.2).

Algorithm 1 : minimax(node,depth)

if node is terminal or depth = 0 then
return value of node

else
let α = −∞
for each child of node do

let α = max(α,−minimax(child, depth− 1))
end for
return α

end if

3



1. INTRODUCTION

Figure 1.2: tree representation of the minimax algorithm.

This algorithm has been successfully applied in a lot of domains, usu-
ally with some modifications: transposition tables [Zobrist, 1990], itera-
tive deepening [Korf, 1985], MTD(f) [Plaat et al., 1996], best-first search
[Korf and Chickering, 1994] and SSS* [Stockman, 1979].

This algorithm will return the best answer as it does an exhaustive search.
However, the search time will increase exponentially with the depth.

1.2.2 Alpha Beta

AlphaBeta is an improvement of Minimax. It avoids exploring nodes when
they can’t modify the final result. In order to do that, the algorithm always
remember:

• the minimum score the max player is assured of: α

• the maximum score the maximum player is assured of: β.

If β becomes inferior to α, there is no need to explore the situation any
further (see algorithm 2 and figure 1.3).

This algorithm returns the same answer as Minimax, however, the number
of nodes explored vary depending on the problem. Let b be the branching
factor and let D be the depth. Minimax is exhaustive and therefore will
explore O(bD) nodes.

In the worst case, Alphabeta will also explore O(bD) nodes.
In the best case, the algorithm will explore only O(

√
bD) nodes, this

corresponds to exhaustive search with a branching factor of
√

b.

4



1.2. STATE OF THE ART

Algorithm 2 : alphabeta(node,depth,α,β)

if node is terminal or depth = 0 then
return value of node

else
let α = −∞
for each child of node do

let α = max(α,−alphabeta(child, depth− 1,−β,−α))
if β ≤ α then

break
end if

end for
return α

end if

An other interesting value is the mean number of nodes explored by the
algorithm. If we suppose that the repartition of the nodes is random, then
Alphabeta will explore O(b3D/4) in average and asymptotically, it will explore
O((b/log(b))D).

A more detailed analyze of the Alphabeta algorithm is given in
[Pearl, 1984].

When the size of the problem is too big, the search is limited to a certain
depth and an evaluation function is used. One limitation of this algorithm
is that the maximum depth is the same for all the tree while we would like
to explore deeper the area of the tree are promising.

1.2.3 Nested Monte Carlo

This section is based on the article from Tristan Cazenave [Cazenave, 2009].
Nested Monte Carlo search uses nested calls with uniformly distributed sim-
ulations: Monte Carlo simulations. This algorithm is recursive. At each step,
it evaluates every possible move by playing a game until the end using the
lower level of Nested Monte Carlo. The level 0 is a Monte Carlo simulation.

The Nested Monte Carlo algorithm is presented in algorithm 3. It uses
the function monteCarlo(position) which plays a game until the end starting
from position by choosing moves based on a uniform distribution and return
the final score.

Tristan Cazenave shows that the results are greatly improved by modify-
ing the algorithm in order to memorize the move associated to the best score
of the lower level. As this algorithm explores only a fraction of the search
space, it is able to deal with huge problems even if there is no good evaluation

5



1. INTRODUCTION

Figure 1.3: tree representation of the Alphabeta algorithm. The branches
with a cross are not evaluated.

Algorithm 3 : nested(position,level)

while not end of the game do
if level = 1 then

move = argmaxm(monteCarlo(play(position, m)))
else

move = argmaxm(nested(play(position, m), level − 1))
end if
position = play(position, move)

end while
return score

function. It is very efficient in the case of one-player game like Samegame and
Sudoku. It is also at the origin of a new world record in Morpion Solitaire.
The main difference with classical algorithms like Alphabeta is the utiliza-
tion of Monte Carlo simulations instead of an evaluation function in order
to estimate a position. The problem of using an evaluation function is that
it gives an uncertain value and that the confidence interval gets larger when
the situation is far from a terminal position. A Monte Carlo simulation gives
an rough estimation but the quality is independent of the depth. This will
allow to achieve better results in all the games where there is a lot of states
far from the end of a game. This is illustrated by the difference between the
game of Chess and the game of Go. In chess, a situation can changed really
fast to a won or a lost position. There are fewer situations far from the end
of the game. Classical methods with evaluation functions works well. In the

6



1.2. STATE OF THE ART

game of Go, on contrary, almost all positions are equally far from the end
of the game. In this case, algorithms based on Monte Carlo simulations will
give better results.

1.2.4 Dynamic Programming

Dynamic Programming is a method used to optimize the objective function
in a planning problem. It is the one-player equivalent of Minimax. It can
be applied when the problem possesses the optimal substructure property:
when an optimal solution can be constructed from optimal solutions to its
subproblems. In this case, the principle of Dynamic Programming is to
recursively decompose the problem, solve the subproblems and construct the
global solution. This method has the advantage of being exact when the
property is verified.

An example of problem where this algorithm is efficient is the problem
of finding the shortest path in a graph, where each arrow is associated to a
distance. An example of this kind of problem is given on figure 1.4. If the
problem is in such a way that the nodes of the graph are in n layers and that
the path has to go from the first layer to the nth layer, then it possesses the
substructure property: you can solve the problem recursively for each layer.

Let N i be a node from the layer i. Let f(N) be the function that asso-
ciates the length of the shortest path starting from N to the node N . Let
l(N, M) be the distance between the nodes N and M .

f(N i) = min
M in layer i+1

l(N i, M i+1) + f(M i+1)

Figure 1.4: An example of a problem where the goal is to find the shortest
path from A to G. The numbers on the arrows represent the distance. The
nodes are arranged in 4 layers.

7



1. INTRODUCTION

We can apply this formula to the problem from figure 1.4. There is 4
layers. Let’s start with the layer 3.

• f(E) = 2

• f(F ) = 3

Now we use the formula for the layer 2.

• f(B) = minimum of

– l(B, E) + f(E) = 2 + 2 = 4

– l(B, F ) + f(F ) = 5 + 3 = 8

⇒ f(B) = 4

• f(C) = minimum of

– l(C, E) + f(E) = 7 + 2 = 9

– l(C, F ) + f(F ) = 1 + 3 = 4

⇒ f(C) = 4

• f(D) = minimum of

– l(D, E) + f(E) = 6 + 2 = 8

– l(D, F ) + f(F ) = 4 + 3 = 7

⇒ f(D) = 7

And finally we apply the formula to the layer 1.

• f(A) = minimum of

– l(A, B) + f(B) = 3 + 4 = 7

– l(A, C) + f(C) = 4 + 4 = 8

– l(A, D) + f(D) = 6 + 7 = 13

⇒ f(A) = 7

The shortest path from A to G is ABEG and is of length 7.

8



1.3. BANDIT BASED MONTE CARLO TREE SEARCH

This method is the state of the art in a lot of domains like in
revenue management [Quante et al., 2009] and in energy management
[Korpaas et al., 2003, Siu et al., 2001], when the dimension of the search
space is not too large. It is often combined with approximation techniques
for improved performance [Bertsekas, 2009].

However, the algorithm is not anytime; if stopped before then, there is
no result.

1.3 Bandit Based Monte Carlo Tree Search

All the algorithms presented in the previous part have the drawback that
they don’t work very well in the cases where the tree is really large and
there is no good evaluation function. In this section, we will introduce a
recent exploration tree algorithm: Bandit based Monte Carlo Tree Search
(BBMCTS). It achieves very good results in the case of the game of Go.
This algorithm will be the main topic of this thesis.

The principle of this algorithm is based on the construction of a highly
unbalanced tree. The nodes represent situations and the branches represent
decisions. The nodes are evaluated by Monte Carlo simulations. The growth
of the tree is directed by a bandit formula. A very efficient improvement of
the algorithm is Rapid Action Value Estimation (RAVE).

1.3.1 Monte Carlo Simulations

Monte Carlo methods have been used for a very long time(see
[Metropolis and Ulam, 1949]) and they are still used today in a lot of
domains like physical sciences (see [DP Landau, 2005]) and finance (see
[P Boyle, 1997]). The principle is to use several uniformly distributed sam-
plings to explore the space, when it is too large to be explored entirely. For
example, a Monte Carlo method can be used to compute an estimation of the
value of π (see figure 1.5 and algorithm 4). The principle is to draw a quarter
of circle in a square of size 1. Then we randomly select a points inside the
square. An approximation of π is given by multiplying by 4 the proportion
of points in the square in comparison to the total number of points.

The Monte Carlo method has been adapted for decisions-taking problems.
The principle is to take decisions uniformly at each step until a situation that
can be directly evaluated is reached. This is called a Monte Carlo simulation.
This simulation will take bad decisions but uniformly. By using a large

9



1. INTRODUCTION

Algorithm 4 : approximation of π by using a Monte Carlo method

nbtotalpoints = 0
nbpointsinsquare = 0
while there is some time left do

x = random(0, 1)
y = random(0, 1)
nbtotalpoints = nbtotalpoints + 1
if

√
x2 + y2 ≤ 1 then

nbpointsinsquare = nbpointsinsquare + 1
end if

end while
π ≈ 4 ∗ nbpointsinsquare

nbtotalpoints

number of those simulations, one can have an estimation of the evaluation of
the initial situation.

This has been used for the game of Go in [Bruegmann, 1993] and
[Bouzy and Helmstetter, 2003]. In this case, a Monte Carlo simulation con-
sists in playing random moves from the current position until the game is
finished (see figure 1.6). Then the result of the game (win or loss) is the
result of the simulation.

The underlying assumption is that the space explored by taking decisions
uniformly is not biased in comparison to the space explored by taking good
decisions. This assumption is not always true. In section 4.2.2, we give
example of ways to modify those Monte Carlo simulations in order to make
them more efficient. A detailed description of Monte Carlo algorithms is
given in [Krauth, 2006].

1.3.2 Bandits

A classical k-armed bandit problem is defined as follows (see figure 1.7):

• A finite set A = {1, . . . , k} of arms is given.

• Each arm a ∈ A is associated to an unknown random variable Xa with
an unknown expectation µa.

• At each time step t ∈ {1, 2, . . . }, the algorithm chooses at ∈ A depend-
ing on (a1, . . . , at−1) and (r1, . . . , rt−1).

• The bandit gives a reward rt, which is a realization of Xa.

10



1.3. BANDIT BASED MONTE CARLO TREE SEARCH

Figure 1.5: illustration of the Monte Carlo method used to compute
an approximation of π. Image from the website of Vincent Zoonekynd
(http://zoonek2.free.fr/UNIX/48 R/16.html#2).

Figure 1.6: illustration of a Monte Carlo simulation for the game of Go.

The goal of the problem is to maximize the cumulative reward at each
time step.

A concrete example of the k-armed bandit problem is in a casino. You
have k slot machines. Each machine have an unknown reward function based
on a random variable. You have a certain amount of coins. Your goal is for
each coin to chose to next machine in order to maximize the sum of your
gains.

Maximizing the cumulative reward is equivalent to minimizing the so-
called regret: the loss due to the fact that the algorithm will not always
chose the best arm.

Let Ta(n) the number of times an arm has been selected during the first
n steps. The regret after n steps is defined by

11



1. INTRODUCTION

Figure 1.7: illustration of the k-armed bandit problem.

µ∗n−
k∑

j=1

µjE[Tj(n)] where µ∗ = max
1≤i≤k

µi

As the other terms of the formula are fixed, the only way to minimize the
regret is to minimize E[Tj(n)].

In the paper [Lai and Robbins, 1985], Lai and Robbins give an inferior
bound on the regret by proving that, for any strategy and for any suboptimal
arm j:

E[Tj(n)] ≥ ln(n)

D(pj||p∗)
where D(pj||p∗) =

∫
pjln(

pj

p∗
)

pj is the reward density if the machine j.
The D(pj||p∗) are constants that depend on the problem. This formula

means that the best regret possible asymptotically is in O(ln(n)).
Auer & al achieve such a logarithmic regret uniformly over time in

[Auer et al., 2002] with the following algorithm: first, tries one time each
arm; then, at each step, plays the arm j that maximizes

x̄j +

√
2ln(n)

nj

(1.1)

x̄j is the average reward for the arm j.
nj is the number of times the arm j has been selected so far.
n is the overall number of trials so far.
This formula is chosen at each step the arm that has the highest upper

confidence bound. It is called the UCB formula.

12



1.3. BANDIT BASED MONTE CARLO TREE SEARCH

To give an intuition of the meaning of this last formula, we can look at
both parts of the sum separately.

The first part x̄j has a high value when the arm j have given good rewards
so far. This corresponds to the fact that we want to play often the good arms.
This is the exploitation part.

The second part
√

2ln(n)
nj

has a high value when the arm j has not been

tested often in comparison to the other arms. This corresponds to the fact
that we want to verify that we have not missed a good arm. This is the
exploration part.

1.3.3 Monte Carlo Tree Search

The idea of the MCTS algorithm is to construct in memory a subtree
T̂ of the global tree T representing the problem in its whole (see algo-
rithm 5 and figure 1.8). It was introduced by Kocsis and Szepesvari in
[Kocsis and Szepesvari, 2006].

The construction of the tree is done by the repetition while there is some
time left of 3 successive steps:

1. descent,

2. evaluation,

3. growth.

Descent

The descent in T̂ is done by considering that taking decision (choosing
a branch to follow) is a k-armed bandit problem. We use the formula 1.1
to solve this problem. In order to do that, we suppose that the necessary
informations is stored for each node. Once a new node has been reached, we
just repeat the same principle until we reached a situation S outside of T̂ .

Evaluation

Now that we have reached S and that we are outside of T̂ , there is no
more information available to take a decision. As we are not at a leaf of T ,
we can not directly evaluate S. Instead, we use a Monte Carlo simulation
(see section 1.3.1) to have a value for S.

13



1. INTRODUCTION

Algorithm 5 MCTS(s) //s a situation

T̂ = ()
info = () //info associates statistical information to a node
while there is some time left do

s′ = s
game = ()
//DESCENT//
while s′ in T̂ and s′ not terminal do

s′ = reachable situation chosen according to the UCB formula (1.1)
game = game + s′

end while
S = s′

//EVALUATION//
while s′ is not terminal do

s′ = random reachable situation
end while
result = result(s′)
//GROWTH
T̂ = T̂ + S
for each s in game do

info(s) = update(info(s), result)
end for

end while

14



1.3. BANDIT BASED MONTE CARLO TREE SEARCH

Figure 1.8: Illustration of the Monte Carlo Tree Search algorithm.

Growth
We add the node S to T̂ 1. We update the information of S and of all the

situations encountered during the descent with the value obtained with the
Monte Carlo evaluation.

1.3.4 Classical Improvements

Since the creation of this algorithm, several improvements have been pro-
posed.

Improvements of the bandit formula
The UCB formula (1.1) proposes a fixed coefficient for the trade-off ex-

ploration exploitation. However, it appears that the weight the more efficient

1it is possible to add several nodes per growth step or to add on node every few growth
steps depending on the problem and the memory limitation.

15



1. INTRODUCTION

for the exploration part depends on the application. The formula becomes
the following:

x̄j + α

√
ln(n)

nj

(1.2)

x̄j is the average reward for the arm j.

nj is the number of times the arm j has been selected so far.

n is the overall number of trials so far.

α is a parameter that controls the trade-off between exploration and ex-
ploitation.

The classical way of solving the bandit problem is to first try each arm in
order to have information and then use a formula to chose the next one. This
is a problem when the number of trials is small in comparison to the number
of arms. In the MCTS algorithm, this situation arises often for the nodes
near the end of T̂ . Two solutions have been proposed to solve this problem
in [Chaslot et al., 2007]: progressive unpruning and progressive bias. This
methods are described in section 4.1.2.

Improvements of the Monte Carlo simulations

Monte Carlo simulations can be improved by the addition of rules. If a
rule matches, then it is applied, if not, the decision is taken uniformly (see
algorithm 6). This has been successfully applied for the game of Go with
rules like not filling eye, saving group or killing group.

Algorithm 6 Monte Carlo Simulation improved by the addition of rules.
rule(s) returns a reachable situation from s.

input=s
while s is not terminal do

if rule(s) exists then
s = rule(s)

else
s = random reachable situation

end if
end while

Other examples of rules and discussions about the improvement of Monte
Carlo simulations are given in section 4.2.2.

16



1.3. BANDIT BASED MONTE CARLO TREE SEARCH

Rapid Action Value Estimation (RAVE)
RAVE was introduced in [Gelly and Silver, 2007]. It can be applied if

the problem is such that the decision sequences can be transposed. Then,
instead of averaging the results of simulations where the arm j has been
immediately selected (x̄j in 1.1), we average the results of simulations where
the arm j has been selected at any subsequent time during the simulation:
R̄j. This idea is also known as all moves as first in the domain of computer
Go ([Bruegmann, 1993]). This term will have a low variance very quickly
and therefore can be used to guide the exploration of the arms when the
number of simulations is still low. However, this term is biased, so we want
to use the real average at the limit. The new bandit formula will then be the
following one.

x̄j + α

√
ln(n)

nj

+ β(n)R̄j (1.3)

x̄j is the average reward for the arm j.
R̄j is the average reward of simulations where the arm j has been subse-

quently selected.
nj is the number of times the arm j has been selected so far.
n is the overall number of trials so far.
α is a parameter that controls the trade-off between exploration and ex-

ploitation.
β(n) decreases with n

17



1. INTRODUCTION

18



Chapter 2

Parallelization

2.1 Introduction

This chapter is based on the article [Gelly et al., 2008] written with Sylvain
Gelly, Jean-Baptiste Hoock, Olivier Teytaud and Yann Kalemkarian.

The efficiency of BBMCTS algorithms highly depends on the number
of descents in the tree. However, the time allowed to take the decision as
well as the computational power of a computer are limited. On the other
hand, it becomes easier and easier to have access to a very large number
of machines. Furthermore, the very principle of BBMCTS algorithms is
based on the repetition of a single elementary part: the descent in the tree.
Therefore, it is possible to decompose the execution of the code. For those
reasons, in this chapter we will focus on the parallelization of the algorithm.

2.1.1 Difficulties

While the descents are similar, they are not entirely independent. Each new
descent depends on the results of the previous ones. Even if the paralleliza-
tion consists only in the repartition of the descents among the machines, it
won’t be equivalent to the sequential algorithm.

It is possible to directly extend the sequential algorithm to a parallel
version by launching the sequential version on each machine and sharing all
the information. However, the speed-up of such an algorithm is necessarily
limited. This point will be further developed in section 2.2.2.

2.1.2 State of the art

In all this chapter, when we refer to ”sharing the information of a node X
of the tree between the computation units C1, ..., Ck”, we mean ”averaging

19



2. PARALLELIZATION

the number of wins and losses of the node X over the computation units
C1, ..., Ck”. Every affected unit is supposed to have the node X.

Cazenave and Jouandeau in [Cazenave and Jouandeau, 2007] compare
three ways of parallelizing the BBMCTS algorithm: single-run paralleliza-
tion, multiple-runs parallelization and at-the-leaves parallelization.

• The single-run parallelization consists in running independently one
MCTS on each computation unit. Each unit has its own tree in mem-
ory. At the end, the information of the root of each tree(one tree per
machine) is shared in order to take the decision.

• The multiple-runs parallelization is similar to the single-run paralleliza-
tion but the information of the root is shared periodically during the
process. The period is typically in the order of the second.

• The at-the-leaves parallelization consists in replacing the random game
at a leaf of the tree with multiple random games run in parallel. There
is only one tree stored in the memory of the ”master” and the ”slaves”
are doing the simulations.

They conclude that all the parallelizations give similar results. However, the
at-the-leaves parallelization seems to be more efficient in the case of multiple
cores on a single machine.

In his article [Chaslot et al., 2008], Guillaume Chaslot and al discuss
three parallelization methods for BBMCTS: at-the-leaf parallelization, root
parallelization (corresponds to the single-run parallelization) and a new
method: the tree parallelization. A summary of those methods is presented
on the figure 2.1. The new method uses one shared tree from which several
simultaneous games are played. This method needs the memory of the sys-
tem to be shared and therefore is designed for multi-core. The tests were
run on his program Mango. The root parallelization performs very well over-
all. However, the tree parallelization is the most promising method on small
boards. In the following, we will refer to the multi-core parallelization. This
method is similar to the tree parallelization. We will show that it achieves
very good results.

Hideki Kato and Ikuo Takeuchi propose another way to par-
allelize the BBMCTS algorithm by using a client-server model in
[Kato and Takeuchi, 2008]. This method is a variation of the at-the-leaves
parallelization in the sense that there is only one tree stored on the ”master”
computer and that the ”slave” computers are doing Monte Carlo simulations.
But instead of launching several Monte Carlo simulations at the same time
from one leaf, the algorithm consists in launching only one simulation on

20



2.2. CONTRIBUTION

Figure 2.1: (a) Leaf parallelization (b) Root parallelization (c) Tree paral-
lelization with global mutex (d) and with local mutexes. Figure from Guil-
laume Chaslot. Extracted from [Chaslot et al., 2008]

a free ”slave” and then beginning a new descent in the tree. This method
allows us to get on-the-fly connection or disconnection of servers. It obtains
good results with four computers.

In those previous works, an efficient parallelization has been proposed for
the case where the memory is shared: the multi-core parallelization. How-
ever, the experiments are done only on a small number of cores. We propose
a study of this algorithm when the number of cores becomes large.

For the case where the memory is not shared, no efficient algorithm has
been proposed that is efficient on a large number of machines, we propose
our own and experiment it in real conditions.

2.2 Contribution

We will first present new results about the tree parallelization (here named
multi-core parallelization) after a detailed explanation on its algorithm. Then
we will present a new parallelization algorithm: cluster parallelization. This
algorithm was created in order to parallelize on several computers (without
shared memory).

21



2. PARALLELIZATION

O
n
e
 t

h
re

a
d

F
o
u
r 

th
re

a
d
s

Figure 2.2: Multi-core parallelization. Left: sequential algorithm (one simu-
lation at a time). Right: quad-core case: four simulations at a time, and each
simulation updates the tree when it reaches the end of a game. Therefore,
the difference with the 4 times accelerated sequential algorithm is that when
a simulation is launched at the root, there are 3 updates which have not been
performed (because 3 simulations are in progress).

2.2.1 Results on the Multi-Core Parallelization

The multi-core parallelization is intuitively the most natural one: the memory
is shared. We just have to distribute the global loop (the succession of the 3
steps, see section 1.3.3) on various threads (each thread performs simulations
independently of other threads as in Fig. 2.2, with just mutexes protecting
the updates in memory), leading to algorithm 7.

Consider N the number of threads. This algorithm is not equivalent to
the sequential one: possibly, N − 1 simulations are running when one more
simulation is launched, and the updates of the tree corresponding to these
N − 1 simulations are not taken into account. There is a N − 1 delay, and
the analysis of this delay is not straightforward - we will quantify this effect
experimentally. Table 2.1 presents results that were established with 4-core
machines on 9x9 board and table 2.2 presents the results on 16-core machines
on 9x9 board.

Table 2.1 confirms the roughly 63% success rate known when doubling
the computational power. Table 2.2 shows that the speed up is linear up to
4 cores but the results are not so good with more threads.

In the following, we will compare the speed up in term of number of
simulations per second as we can’t hope to have a better winning rate if we
don’t have more simulations. The results are shown on figure 2.3 and 2.4.
The runs have been done on a Power-5 of Huygens, a 32-cores computer. The
threads above 32 cores are based on the supposition that the hyperthreading
is efficient. The speed up is much better on a board of size 19x19. It is

22



2.2. CONTRIBUTION

Algorithm 7 Multi-core Monte Carlo planning algorithm.

T̂ = ()
info = () //info associates statistical information to a node
for each thread simultaneously do

while there is some time left do
s′ = s
game = ()
//DESCENT//
while s′ in T̂ and s′ not terminal do

s′ = reachable situation chosen according to the UCB formula (1.1)

game = game + s′

end while
S = s′

//EVALUATION//
while s′ is not terminal do

s′ = random reachable situation
end while
result = result(s′)
//GROWTH
T̂ = T̂ + S
for each s in game do

info(s) = update(info(s), result)
end for

end while
end for

23



2. PARALLELIZATION

Nb threads × 10 20 40
comp. time sec.procs secs.procs secs.procs

mono- 51.1 62.0 74.4
-thread ± 1.8 ± 2.2 ± 2.4

two 62.9
threads ± 1.8

four 66.4
threads ± 2.1

Table 2.1: Success rate against mogoRelease3, for various computation times
on 9x9 board on a 4-cores computer with the multi-core parallelization. We
see that a linear speed-up leads to a success rate 74.4 ± 2.4 %. The im-
provement with 4 cores is 66.4% ± 2.1 %. Under the two-assumptions (1)
almost N times more simulations per second with N cores (2) no impact of
the “delay” point pointed out in the text, the speed-up would be linear and
all the raws would be equal. We see a decay of performance for 4 threads.

4s vs 1s 74.4 % ± 2.4 %

4 cores against 1 core 80.0 % ± 3.4%
16 cores against 4 cores 69.5% ± 4.5%

Table 2.2: Success rate against mogoRelease3 on 9x9 board on a Power-5
node of Huygens, a 32-cores computer with the multi-core parallelization.
The results are very good with 4 threads but drop when the number of
threads increases.

24



2.2. CONTRIBUTION

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  10  20  30  40  50  60  70

Nb Threads

MultiCore speed up on 9x9
Nb Sims / s

Real Speed-up
Linear Speed-up

Figure 2.3: Comparison between the linear speed up and the speed up we
obtain on 9x9 board with the multi-core parallelization. The speed-up is
measured in term of number of simulations. The speed up is almost linear
until 8 threads. Then the performances are still going up until 24 cores.
After that, adding new threads doesn’t improve the number of simulations
and can even make it worse.

interesting to note that on 9x9, using too much threads has a negative impact
on the performance. Also, the best performance is reached with only 24 cores.
The results of the figure 2.4 show that in 19x19, the parallelization is much
more efficient when the Monte Carlo simulations are slow. This has to be
taken into consideration when analyzing the effect of a modification of the
Monte Carlo simulations.

2.2.2 Cluster Parallelization

In this section, we will compare two different solutions:

• the generalization of the multi-core approach to a cluster;

• an alternative solution.

Generalization of the multi-core approach

First, let us consider the generalization of the multi-core approach to a clus-
ter, i.e. a version with massive communications in order to keep exactly the
same state of the memory on all nodes. As the memory is not shared here, we
have to broadcast on the network many update-information; each simulation

25



2. PARALLELIZATION

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  10  20  30  40  50  60  70

Nb Threads

MultiCore speed up on 19x19
Nb Sims / s

Real Speed-up
Linear Speed-up

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  10  20  30  40  50  60  70

Nb Threads

MultiCore speed up on 19x19 slow sim
Nb Sims / s

Real Speed-up
Linear Speed-up

Figure 2.4: Left: comparison between the linear speed up and the speed up
we obtain on 19x19 board with the multi-core parallelization. The speed-up
is measured in term of number of simulations. The speed up is almost linear
until 10 threads. Then the performance are still going up until 28 cores.
After that, adding new threads doesn’t improve the number of simulations.
Right: comparison between the linear speed up and the speed up we obtain
on 19x19 board with the multi-core parallelization with slow simulations.
The speed-up is measured in term of number of simulations. The speed up is
almost linear until 16 threads. Then the performance are still going up until
50 cores.

on one node leads to one broadcast. Possibly, we can group communications
in order to reduce latencies. This leads to the algorithm 8.

A time delay of 0 between the sharing of the information is perhaps
possible, for high performance clusters or processors inside the same machine.
Let’s consider the idealized case of a cluster with negligible communication
cost (this is a reasonable hypothesis for many case, as the simulations and the
updates are expensive, e.g. in computer-Go) and infinite number of nodes.
Let’s assume that a proportion α of time is spent in the updates. Also, let’s
assume that the delay of updates does not reduce the overall efficiency of the
algorithm. What is the speed-up in that case ?

Consider M the number of simulations per second on one node in the
(mono-node) case. With N nodes, at each time steps, we get NM simula-
tions. The number of updates is therefore NM per second of simulation. If
the time of one update is T , for each group of M simulations,

• each node performs M simulations (costs 1− α second);

• each node sends M update-information (costs 0 second by assumption);

• each node receives (N − 1)M update-information (costs 0 second by
assumption);

26



2.2. CONTRIBUTION

Algorithm 8 Cluster algorithm for Monte Carlo planning. As there are
many paths leading to the same node, we must use a hash table, so that with
the right key (the goban) we can find if a node is in the tree and what are
its statistics in constant time.

for Each node do
T̂ = ()
info = () //info associates statistical information to a node

end for
for each computer simultaneously do

for each thread simultaneously do
while there is some time left do

s′ = s
game = ()
//DESCENT//
while s′ in T̂ and s′ not terminal do

s′ = reachable situation chosen according to the UCB formula
(1.1)
game = game + s′

end while
S = s′

//EVALUATION//
while s′ is not terminal do

s′ = random reachable situation
game = game + s′

end while
result = result(s′)
//GROWTH
T̂ = T̂ + S
for each s in game do

info(s) = update(info(s), result)
end for
Add game to a stack of to-be-sent simulations.
if time delay has passed and this is the first thread then

Send all the game in the stack to all other nodes.
Reset the stack.
Receive many game from all other nodes.
for Each game received do

T̂ = T̂ + S(if not present).
for each s in game do

info(s) = update(info(s), result)
end for

end for
end if

end while
end for

end for

27



2. PARALLELIZATION

• each node updates its tree with these (N − 1)M update information
(costs α(N − 1) second).

If we divide by the number N of nodes and let N →∞, we get

• a cost (1− α)/N → 0 for simulations;

• a cost 0 for sending update-information;

• a cost 0 for receiving update-information;

• a cost α(N − 1)/N → α for updates.

This implies that the main cost is the update-cost, and that asymptotically,
the speed-up is 1/α. This limitation of the overall system when only part
of the system is improved is called the Amdahl’s law [Amdahl, 1967]. In
the case of MoGo, this leads to α ' 0.05 and therefore roughly 20 as max-
imal speed-up for the case of a tree simultaneously updated on all nodes.
As communications are far from negligible, as preliminary experiments were
disappointing and as we expect better than a speed-up of 20, we will not
keep this algorithm in the sequel.

An alternate solution with less communications

Whenever communications are perfect, the speed-up1 of the approach above
is limited to some constant 1/α, roughly 20 in MoGo. We propose the fol-
lowing algorithm (Algorithm 9), with the following advantages:

1. much less communications (can run on usual Ethernet);

2. tolerant to inhomogeneous nodes (as other algorithms above also);

3. our implementation is not yet fault-tolerant, but it could be done;

4. self-assessment possible (in the case of the game of Go, an amount of
time is given for the whole game. It is therefore possible to spend more
or less time on some decisions. If we had a distance between trees,
we could allow more time for one particular move if, when doing the
sharing, we realize that the trees from the different computers are far
from each other.).

The algorithm is detailed in Algorithm 9. The function Share() is called
20 times per second in our implementation.

1This is not a “real” speed-up, as the parallel algorithm, even in the multi-core case,
is not equivalent to the sequential one - the difference is the “delay” detailed in section
2.2.1. We here consider that the speed-up is k if the parallel algorithm is as efficient as
the sequential one with k times more time.

28



2.2. CONTRIBUTION

Algorithm 9 The “share” algorithm. The MPI ALL REDUCE has a cost
logarithmic in the number of nodes. B has been empirically set to 10, α to
0.05.

Begin of function Share(node)
Let n be the total number of simulations at the root of the tree.
Let xi be the number of simulation of the ith son of node.
MPI ALL REDUCE(x,sum), i.e. x is replaced by its sum over all nodes.
If xi > αn and depth(nodei)< B, then Share(nodei) with nodei the ith son
of node.
End of function.

Configuration of game Winning rate in 9x9 Winning rate in 19x19
32 against 1 75.85 ± 2.49 % 95.10±01.37
32 against 2 66.30 ± 2.82 % 82.38±02.74
32 against 4 62.63 ± 2.88 % 73.49±03.42
32 against 8 59.64 ± 2.93 % 63.07±04.23
32 against 16 52.00 ± 3.01 % 63.15±05.53
32 against 32 48.91 ± 3.00 % 48.00±09.99

Figure 2.5: Experiments showing the speed-up of “slow-tree paralleliza-
tion” in 9x9 and 19x19 Go. Experiments were reproduced with different
parametrizations without strong difference; in this table, the delay between
two calls to the “share” functions is 0.05s, and x is set to 5%.

An important advantage of this technique is that averaging vectors of
statistics is possible quickly on a large number of nodes: the computational
cost of this averaging over N nodes is O(log(N)).

Using the function Share() only at the end of the thinking time (no
communication before the final step of the decision making) is just a form of
root parallelization. For computer-go, we get 59 %± 3% of success rate with
an averaging over 43 machines versus a single machine, whereas a speed-up
2 leads to 63%. This means that averaging provides a speed-up less than 2
with 43 machines; this is not a good parallelization.

We present in figure 2.5 the very good results we have in 19x19 and the
moderately good results we have in 9x9.

We see that a plateau is reached somewhere between 8 and 16 machines
in 9x9, whereas the improvement is regular in 19x19 and consistent with a
linear speed-up - a 63% success rate is equivalent to a speed-up 2, therefore
the results still show a speed-up 2 between 16 and 32 machines in 19x19.

29



2. PARALLELIZATION

2.3 Conclusion

A main advantage of the approach is that it is fully scalable. Whereas many
expert-based tools have roughly the same efficiency when doubling the com-
putational power, bandit-based Monte Carlo planning with time 2t has suc-
cess rate roughly 63% against a bandit-based Monte Carlo planning algorithm
with time t. This leads to the hope of designing a parallel platform, for an
algorithm that would be efficient in various tasks of planifications.

The main results are the followings:

• Doubling the computational power (doubling the time per move) leads
to a 63% success rate against the non-doubled version.

• The straightforward parallelization on a cluster (imitating the multi-
core case by updating continuously the trees in each node so that the
memory is roughly the same in all nodes) does not work in practice
and has strong theoretical limitations, even if all communication costs
are neglected.

• A simple algorithm, based on averages which are easily computable
with classical message passing libraries, a few times per second, can
lead to a great successes; in 19x19, we have reached, with 32 nodes,
95 % success rate against one equivalent node. This success rate is far
above simple voting schemas, suggesting that communications between
independent randomized agents are important and that communicating
only at the very end is not enough.

• Our two parallelizations (multi-core and cluster) are orthogonal, in the
sense that:

– the multi-core parallelization is based on a faster breadth-first
exploration (the different cores are analyzing the same tree and
go through almost the same path in the tree; in spite of many
trials, we have no improvement by introducing deterministic or
random diversification in the different threads.

– the cluster parallelization is based on sharing statistics guiding
the first levels only of the tree, leading to a natural form of load
balancing. The deep exploration of nodes is completely orthogo-
nal.

Moreover, the results are cumulative; we see the same speed-up for
the cluster parallelization with multi-threaded versions of the code or
mono-thread versions.

30



2.3. CONCLUSION

• In 9x9 Go, we have roughly linear speed-up until 8 cores and 9 nodes.
Beyond 24 cores, each new thread has a negative effect.

• In 19x19 Go, the speed-up remains linear until 16 cores and at least 32
machines. Beyond 50 cores, each new thread has a negative effect.

• Using slow simulations improves a lot the speed up.

31



2. PARALLELIZATION

32



Chapter 3

Opening Database

3.1 Introduction

This chapter is based on the article [Audouard et al., 2009] written with
Pierre Audouard, Guillaume Chaslot, Jean-Baptiste Hoock, Julien Perez and
Olivier Teytaud.

In the case of planification tasks, the beginning is the most difficult part
for a BBMCTS algorithm. As a matter of fact, this is the time where the
number of possibilities is the largest, so the algorithm needs more simulations
to find the best path. It is also the moment where the end is the furthest
away, so the result of the Monte Carlo simulation will be less correlated with
the leaf of the tree it originates in.

However, for the first few steps, it often happens that the situation at
hand has already been encountered by the algorithm in a previous run. By
using an Opening Book (OB), we could take advantage of that fact by spend-
ing a lot of time off-line to compute the best move in those situations.

Finally, in the case of go, it exists a lot of human knowledge about open-
ing; this knowledge is however difficult to formalize.

3.1.1 Difficulties

Complexity of OB in Go.
Handcrafting OB in Go is quite hard because the usual knowledge is not

encoded as a mapping situation → answer but much more as a set of local
rules (termed Joseki), to be applied only after consideration of the global
situation of the board. Also, a well known proverb in Go says “Learn Joseki,
loose two stones” (LJLTS): when a player learns these rules, he becomes
weaker in a first time. The simple explanation to this fact is that local
context in Go must always be related to the global situation of the board;

33



3. OPENING DATABASE

so, blindly applying newly learned opening sequences leads to likely mistakes
concerning the global context of the game known as “errors in the direction
of play”. Indeed, choosing between several opening sequences depending
on the global context is one of the hardest skill to acquire in the game of
go, because the amount of experience required to handle the extraordinary
degree of freedom at the beginning of the game.

In the case of 9x9 Go, efficient computer players are very recent and
there’s no positive result on 9x9 Go OB. Also, as these recent (and strong)
players are mainly best-first search, i.e. focus on a small number of moves
and not on all moves, it is not clear whether they can be used for building OB.
As a matter of fact, you need some diversity in order to build an OB. We will
here present an efficient approach. This result, besides its positive efficiency,
is also interesting for understanding how best-first search algorithms can be
efficient for games in spite of the fact that they only study a small set of
moves (without efficient expert pruning).

Best first research in games.

One main element in games is to take into account the branching factor
(number of possible decisions in each situation). More than the incredible
number of legal situations [Tromp and Farnebäck, 2006], the trouble in Go is
that pruning rules are quite inefficient and therefore the “practical” branch-
ing factor is not much less than the “theoretical” branching factor. This is in
particular true for building OB. One way of doing it is to ask a professional
player for the correct answer in some positions. But requesting suggestions
from professional players is quite difficult when the number of possible sit-
uations is huge as in the case of Go. How do we handle this problem? A
naive approach would require 1 request to the professional player for the first
move, 81 for the second move, and so on. How to reduce this combinatorial
explosion? In the same way that MCTS is efficient in front of the combina-
torial explosion of Go, we show here that a meta-level of MCTS (MCTS on
top of MCTS, see below) is efficient against the combinatorial explosion of
OB.

MCTS leads to a “best-first” approach1 in the sense that when we build
a tree of future situations, a move is further analyzed insofar as it is the
move with best success rate in the simulations. Is this reasonable for OB?
The experimental answer given in this chapter is positive, and we justify it

1MCTS has often been emphasized as a trade-off between exploration and exploitation,
but many practitioners have seen that in the case of deterministic games, the exploration
constant, when optimized, is zero or indistinguishable from zero, leading to a best-first
approach.

34



3.1. INTRODUCTION

as follows: (i) assume that for a fixed depth d (i.e. there are d moves at
most before the end), the estimate of the probability of winning converges
respectively to 1 or 0, depending on whether this situation is a winning
position or not; (ii) then for a situation with depth d+1, the move with best
success rate will be evaluated more often than the others. If this is a losing
move, its success rate will converge to 0. As all the success rate are between
0 and 1, this move will not stay the one with best success rate, and this
will ensure diversification. Of course, this is quite “sequential”: no alternate
move is explored if the first explored move is still at a high success rate in
spite of the fact that it is not the best move. But MCTS has shown that with
a strong enough computational power, this approach is in fact very reliable
and better than classical approaches; we here show that it is also reliable in
the difficult framework of OB in spite of the intuitive diversity requirement.

3.1.2 State of the art

Michael Buro presents in [Buro, 2001] a generic way to automatically gener-
ate OB for various board games. This algorithm guaranties that you won’t
lose two games in the exact same way: if you lost one game and the opponent
plays the same way for a new game, you will change one move.

The algorithm supposes the existence of a heuristic function H able to
associate a value to every situation. A good heuristic will associate to a
position a value highly correlated to the winning chance of the position.

The algorithm is based on a tree constructed from all previous games (see
figure 3.1). The root is the beginning of the game. Each branch represents
a move played in a previous game and each node represents the situation
reached after playing the move. The leaves are the end of the games and
therefore have a result: win or loss (or draw for some games). We associate
the value −∞ to losing leaves and +∞ to winning leaves.

Now, for each non-terminal node N , we will create a new child. This child
corresponds to a situation never played before, reachable from N and with
the best value according to H. This node corresponds to the best variation
from N . We associate the value given by H to this leaf.

Finally, we use an Alphabeta algorithm to determine which move to play.
As the values given by the heuristic are different from −∞, the algorithm
won’t choose a path that lead to a previous loss.

The problem with this algorithm is that it assumes that the opponent has
the same information as the player and the algorithm will propose desperate
moves in situations that could have been good if the opponent had been less
informed.

35



3. OPENING DATABASE

Figure 3.1: Example of opening book tree. Plain lines represent move from
previous games, doted lines represent best variations. The move v4 will be
selected next. Extracted from [Buro, 2001].

36



3.2. CONTRIBUTION

Donninger and Lorentz in [Donninger and Lorenz, 2006] propose a way
of constructing an OB from a collection of games. It is supposed to have
information describing each game.

The classical way of using such a collection of games is to compute the
percentage of win for each situation and then play the move with the highest
score. They propose instead to first remove non relevant games of the OB
by applying filters (for example, remove every game with the word “blitz”).
Then they use a formula based on a linear combination of the winning per-
centage and other term depending on the information about the games to
give a value to each move.

For example, in the case of chess, they propose a linear combination of
the following term:

• winning percentage

• draw percentage

• winning percentage of top games (games played by top professional)

• draw percentage of top games

• number of times the move has been played in top games

• number of times the move has been played in recent games (after
1.1.2000)

• number of times the move has been played by aggressive players

The weight of each term are tuned by experiments. They apply this
method to the top chess program Hydra. They compare the effect of this
OB against the chess program Shredder and they obtain a difference of 70
elo between the version with OB and the version without OB.

The main drawbacks of this method is that it supposes the existence of
a large number of games played by very good players and with additional
information. Also, once the optimal weights have been found, this algorithm
does not propose a way to improve the OB further.

3.2 Contribution

We will present two new algorithms to automatically generate an Opening
Book (OB): mutate bad moves (MBM) and mutate very bad moves
(MVBM). Then we will present the results obtained by using the two re-
sulting OB in MoGo.

37



3. OPENING DATABASE

3.2.1 Algorithm

The goal is the incremental building of a set of games (an OB), supposed to
be used by a (human or computer) player as follows: If the current situation
is in the set of games, choose the most frequent move in won games.

We choose the most simulated move in won games, instead of the move
with highest success rate - there are far less erroneous moves with the most
simulated move in won games. This is consistent with the MCTS literature
(see e.g. [Wang and Gelly, 2007]). We use self-play as a basic tool for build-
ing OB, as in [Nagashima et al., 2006] (for computer-Shogi). Precisely, while
looking for a methodology for building an OB with coevolution, we under-
stood that MCTS is precisely a tool for building OB, usually applied to a
naive random player and with small time settings, and that what we need is
essentially MCTS with however

1. large time settings

2. a good computer player

In this chapter, the good player is itself the original MCTS.

We first present two non-evolutionary methods for building OB: the expert
OB and the 4H-OB. The best one will serve as a reference for comparison
with the two new automatic methods we propose after.

Expert OB

A handcrafted set of games played by top level players and optimized
manually (even pro games can be optimized off line by experts). This method
gives good results and will be used for comparison.

4H-OB:

A version of MoGo spending 4 hours studying each move plays against a
MoGo spending 1s per move. After 4 moves, the MoGo playing 1s per move
resigns. These two MoGos use no OB and are not adaptive (no learning).
The idea was that MoGo with 1s per move will have a lot of diversity and
will explore a lot of different moves. The MoGo plays the role of the expert.
However, the 4H-OB was weaker than the expert OB. In fact, 4 hours is too
close to the time used in real games and we don’t have enough computing
power to generate an OB with more time per side. This OB won’t be used
in the rest of this chapter.

38



3.2. CONTRIBUTION

Now we will present our two new algorithms based on coevolution. Co-
evolution has already been used for building partial strategies in Chinese
chess [Ong et al., 2007] and also in the game of Go [Drake and Chen, 2008],
but with less impressive results. Our coevolutionary algorithm is “MCTS
applied to MoGo-black and MoGo-white”, as well as MoGo is “MCTS ap-
plied to a naive random black player and a naive random white player” (not
“very” naive; see [Wang and Gelly, 2007] for details). Our co-evolutionary
techniques for building OB are as follows, starting from a part of the hand-
crafted OB (the complete version was not available at that time).

Mutate bad moves (MBM, Algo. 10):

MoGo plays against itself (each player has 6h per side on a quad-core,
roughly equivalent to 24h per side as the speed-up of MCTS for 4 cores is very
good). The two MoGo use the OB and choose the move with highest success
rate if at least one move with success rate > 50 % is available. Otherwise,
the standard MoGo algorithm is used.

Mutate very bad moves (MVBM):

Mogo plays against itself (each player has 6h per side). The two MoGo
use the OB and choose the move with highest success rate if at least one
move with success rate > 10 % is available. Otherwise, the standard MoGo
algorithm is used.

MVBM was introduced because, with MBM, there were too many cases
in which black did not follow any OB at all because the success rate of black
was lower than 50 %.

Both algorithms are a coevolution, in which an individual is a game (the
games won by black (resp. white) are the black (resp. white) population;
each won (resp. lost) game is a good (resp. bad) partial strategy), and as
in the Parisian approach [Collet et al., 2000], the solution (the OB) is made
of all the population. This algorithm is used on a grid (www.grid5000.fr,
a large grid provided freely for scientific experimentation). This introduces
some constraints: λ is not known in advance and not constant (λ depends
on the number of available CPUs, and jobs might be preempted). In order
to have preliminary results, we first run MBM on a simplified setting (see
section 3.2.1). We see first that the depth-first approach works fine, which
is a great success as building OB in Go is quite difficult; these results, quite
good for white, are based on MBM. We will see however that this approach
is not satisfactory for black which lead us to derive the MVBM approach.

39



3. OPENING DATABASE

Algorithm 10 The “mutate bad move” (MBM) algorithm. λ is the number of ma-
chines available. The random choice is performed by MoGo with long time settings,
therefore it is quite expensive. Readers familiar with UCT/MCTS might point out that
there is no exploration term in the version of MCTS presented here; however, this is the
case in many successful MCTS implementations, and other implementations often have a
very small constant which is equivalent, in fact, to 0.

Population = small handcrafted OB.
while True do

for l = 1..λ, generate one individual (a game) in parallel with two steps as follows do
s =initial state; g = (s).
while s is not a final state do

bestScore = 0.5
bestMove = Not A Move
for m in the set of possible moves in s do

score =frequency of won games in Population with move m in s
if score > bestScore then

bestScore = score
bestMove = m

end if
end for
if bestMove = Not A Move then

Mutation: bestMove = RandomChoice(s).
end if
s = nextState(s, bestMove) (transition operator)
g = concat(g, s)

end while
Population = Population ∪ {g}

end for
end while

Why we should mutate very bad moves only

We here experiment the MBM approach, on a simplified case of 10 seconds
per move, 8-cores machine; in this easier framework we could generate 3496
games. The results follow:

Conditions Before learning After learning Against handcrafted OB
Success rate (white) 51.5 % ± 1.8 % 64.3 % ± 1.9 % 64.1 % ± 1.8 %
Success rate (black) 48.5 % ± 1.8 % 48.0 % ± 1.9 % 46.1 % ± 1.8 %

The first column sums to 100 % as it is the success rate of white (resp. black)
in the case of no learning. The second column shows the results for white
(resp. black) after learning against a non-learning version: the sum is higher
than one as MBM did a good job on average. The third column shows that
the learning has provided better results than the handcrafted OB. However,
we see no progress for black. This can be explained as follows: as long as
black has not found a move with success rate > 50%, he always mutates.
Therefore, white improves his results by choosing moves with higher success
rates, but not black. This is why in next sections, we will use the “mutate
very bad moves” approach - asymptotically it is probably equivalent, but non-
asymptotically it’s better to use an approach that differentiates situations

40



3.2. CONTRIBUTION

where the success rate is below 50%(e.g. 40% of success rate is better than
30% of success rate) instead of repeatedly mutating in order to find at least
50 %.

Robustness of the Opening Books

These results above look quite promising, but we then tested what happens
if we use this learned OB in a stronger version of MoGo (i.e. with larger time
settings), using 60s per move instead of 10s (still on 8-cores machines).

Success rate of the handcrafted OB against no OB for 60 s per move: 50
% as black, 63 % as white. Clearly the handcrafted OB still works for this
stronger MoGo.

Success rate of the learned OB (learned as above, with 10s per move
games) against handcrafted OB: 30.6 % as black, 40.7 % as white. The
learned OB, learned for 10s per move, is definitely not sufficiently strong
for 60s per move. These numbers show that a weak player can’t estimate
efficiently an opening sequence, whenever this weak player performs hundreds
of games - the opening sequence might be good for this weak-player, but
this opening sequence will become a handicap when the player will become
stronger.

3.2.2 Validation

In this section we present the results of the real-size experiments on MVBM.
Each game is played with 6 hours per side on a quad-core. 3000 games are
played, i.e. the final population has 3000 individuals. MVBM is “Parisian”:
all the population is the solution. Also, there’s no removal: the population is
incrementally increasing, and no individual is never eliminated (it might just
become negligible). The handcrafted OB used in this section is an improved
version of the one used in the previous section.

We first show that the learning version becomes stronger and stronger in
front of the non-learning version. Results are presented in figure 3.2 and 3.3.
The curves are not monotonous because the OB is generated by self-play.
Once that a color found a good move, the other color spend some time to
found a refutation and during this time, the percentage of victory decreases.
But in average, the winning percentage grows for both color against the
non-learning version.

The figure 3.4 describes the evolution of the results during the run of
the algorithm. It represents the winning percentage of the program with the
generated OB against itself from the point of view of white (the curve for

41



3. OPENING DATABASE

 35

 40

 45

 50

 55

 60

 65

 70

 100  200  300  400  500  600  700  800

                          

Figure 3.2: Success rate as black against the non-learning version (range from
35% to 70%). The x-axis is the time index (number of test games played);
the plot is made on a moving average on 100 games.

 55

 60

 65

 70

 75

 80

 85

 90

 100  200  300  400  500  600  700

                          

Figure 3.3: Success rate as white against the non-learning version (range from
55% to 90%). The x-axis is the time index (number of test games played);
the plot is made on a moving average on 100 games.

42



3.2. CONTRIBUTION

Color Coevolutionary Handcrafted
opening book opening book

White 74.5% ± 2.3 % 62.9 % ± 3.8 %
Black 64.6 % ± 2.4 % 49.7 % ± 3.8 %

Table 3.1: Comparison between the OB generated by the coevolution algo-
rithm and the handcrafted OB. They are both tested against the version
without OB.

 20

 30

 40

 50

 60

 70

 80

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

                                  

Figure 3.4: Success rate of the self-learning version against itself, as white.
The x-axis is the time index (number of test games played); the plot is made
on a moving average on 100 games. This is consistent with usual knowledge
about 9x9 Go with komi 7.5 for strong players: the white player has the
advantage.

black would be the same but horizontally inversed). There are some very
important variations depending which color has currently the best opening
line. It seems to converge to 100% of win for white. This is consistent with
the opinion of experts: on 9x9 with a komi of 7.5, white should win.

Finally, we compare the automatically generated OB with the handcrafted
OB. Both are tested against the version without OB. The results are shown
on table 3.1. This approach is successful: for both colors, the generated OB
wins 15% more than the handcrafted OB.

43



3. OPENING DATABASE

3.3 Conclusion

We used a coevolutionary algorithm for generating OB for a BBMCTS al-
gorithm and tested it for the game of Go. There’s no large efficient OB
available. First, the positive results follow.

First, efficiency. The resulting OB is satisfactory. It leads to quite
good results in the sense that the program is much stronger with the OB
than without. It also outperforms a handcrafted OB. It is also satisfactory,
in most cases, from the point of view of an expert human player: some known
rules have been found independently by the algorithm (Kosumi, Mane Go,...).

Second, grid-compliance. Thanks to preemptable jobs (the algorithm
is completely fault tolerant), the use of the grid was not too much a trouble
for other users. It was also possible to have simultaneously a small number
of non-preemptable jobs and plenty of preemptable jobs, so that the grid is
used adaptively.

Third, parallelization. The speed-up is seemingly good, as (i) there’s
very little redundancies between individuals in the population (ii) the indi-
viduals are different just a very few moves after the initial sequence which is
not randomly mutated. This is consistent with [Teytaud and Fournier, 2008]
which has shown that evolution strategies have a very good speed-up
when the problem has a huge dimensionality: the domain here is huge
[Tromp and Farnebäck, 2006].

Fourth, user-friendly aspect. It is easy to monitor the optimization,
as at any fixed time step we can see which sequence is currently analyzed by
the algorithm.

Fifth, generality. We applied our algorithm to the empty Goban (ini-
tial situation), but it could be applied easily to a given situation (Tsumego
analysis). Also, it can be used for analyzing a particular situation for any
Markov Decision Process. After all, MVBM is an adaptive Monte Carlo al-
gorithm: it is based on an initial strategy, and incrementally improves this
strategy, based on simulations - it is like a Monte Carlo algorithm used for
plotting a Value-At-Risk, but used adaptively. Applications in finance or
power plant management are straightforward.

Some less positive points are as follows:
First, instability. One of the solution proposed by the algorithm is weak

according to an expert. We have an algorithm which is therefore consistent,
but we can’t guess a priori that a solution is still unstable.

Second, no free lunch. The OB generated by a poor ran-
dom player (MoGo with small time settings) is useless for a better
MoGo (with longer time settings). This is consistent with result in

44



3.3. CONCLUSION

[Donninger and Lorenz, 2006]: the presence of erroneous moves is a major
trouble when building OB. Therefore, only long time settings can be used.

45



3. OPENING DATABASE

46



Chapter 4

Expert Knowledge and
Diversity Preservation

4.1 Introduction

This chapter is based on the article [Chaslot et al., 2009] written with Guil-
laume Chaslot, Christphe Fiter, Jean-Baptiste Hoock and Olivier Teytaud.

In a lot of domains, some expert knowledge (EK) already exists . The
efficiency of an algorithm can often be improved by the addition of this
knowledge but depending on the algorithm, this is not always easy. In this
chapter, we will study two different ways of adding expert knowledge to
the BBMCTS algorithm: adding it in the tree and adding it in the MC
simulations. We will take the example of the game of go where the amount
of existing expert knowledge is huge.

Adding expert knowledge as another term in the bandit formula is quite
natural. As a matter of fact, with the original formula, the first choices at a
node (before having any information) are done with a uniform distribution.
But it can take a lot of simulations to realize that a choice is bad. So we can
improve the algorithm by doing those first choices according to the expert
knowledge instead. If the expert knowledge is relevant, we should find the
good moves faster on average.

In spite of many improvements in the bandit formula, there are still situ-
ations which are poorly handled by MCTS. MCTS uses a bandit formula for
moves early in the tree, but can’t figure out long term effects which involve
the behavior of the simulations far from the root. The situations which are
to be clarified at the very end should therefore be included in the Monte
Carlo part and not in the bandit.

We therefore propose three improvements in the MC part:

47



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

• Diversity preservation as explained in section 4.2.2;

• Nakade refinements as explained in section 4.2.2;

• Elements around the Semeai, as explained in section 4.2.2.

4.1.1 Difficulties

The difficulties encountered concern the validation part. As the expert knowl-
edge consists of a lot of small rules, each one has only a small effect on the
efficiency of the algorithm and requires a lot of testing to be validated.

For the Monte Carlo part, the problem is even more complicated as the
effect of a modification is unpredictable and often counter intuitive: improv-
ing the level of the random player doesn’t necessarily improve the global
level of the algorithm. For the moment, the solution is to try and validate
by extensive experimentations.

4.1.2 State of the art

[Chaslot et al., 2007] have already combined off-line learning (statistic from
professional games) and on-line learning (bandit choice of the move). They
first use the expert knowledge to create a heuristic function Hi that associates
a value to the move i. Then, they propose two different ways of using it.

The first is called “progressive bias”. It consists in adding a term in the
bandit formula that decreases with the number of simulations. In the paper,
they propose a linear decrease: Hi

ni
, where ni is the number of simulation for

the move i.

The second is called “progressive unpruning”. It consists in choosing
the next move only among the first U(ni) moves. U(ni) is a function that
associates a integer value to ni and that increases with ni. The moves are
ordered according to Hi.

They test the effect of those modifications by using them in the Go pro-
gram Mango. The version with the modifications wins 80% of the time
against the version without the modifications. Furthermore, the version with
modifications wins 58% of the time against an other Go program: Gnugo,
while the version without modifications wins only 25% of the time.

In the following, we will propose an improved version of the progressive
bias. However, we won’t use the progressive unpruning because not studying
at all some moves has a very bad effect for some situations where the heuristic
is wrong.

48



4.2. CONTRIBUTION

[Gelly and Silver, 2007] combines on-line learning and transient learning
(RAVE values) and experiments the utilization of off-line learning. The off-
line values are generated by using a reinforcement learning algorithm. They
propose two different ways of using those values.

First, they use them to modify the Monte Carlo policy. However, they
obtain only negative results. We will propose in this chapter some successful
modifications of the Monte Carlo policy.

Then, they propose to use the off-line information to initialize the number
of wins and the number of simulations in the RAVE part of the formula (see
section 1.3.4). This method achieves an improvement of 9% of winning rate
against the program Gnugo.

4.2 Contribution

We will present two different ways of adding expert knowledge to a BBMCTS
algorithm. The first way is to modify the bandit formula used to descend
in the tree by adding a bonus. The second is to change the Monte Carlo
simulations. Instead of using only uniform distribution to chose the next
move, we first check if some appropriate rules match and play accordingly if
this is the case.

4.2.1 Adding Expert Knowledge in the Tree

In this section we present a modification of the bandit formula used in
MCTS (see sections 1.3.2 and 1.3.4). We combine online learning (ban-
dit module), transient learning (RAVE values), expert knowledge (detailed
below) and offline pattern-information. RAVE values are presented in
[Gelly and Silver, 2007]. We point out that this combination is far from
being straightforward: due to the subtle equilibrium between online learning
(i.e. naive success rates of moves) transient learning (RAVE values) and of-
fline values, the first experiments were highly negative, and became clearly
conclusive only after careful tuning of parameters1.

We modify the bandit formula of MCTS by adding the ”progressive
bias”. However, instead of the original weight that decreases linearly with
the number of trials: 1/ni, we propose a new formula for the weight:
(γ + C

log(2+nj)
). This weight still decreases with the number of trials but

logarithmically. This new weight leads to better results. The progressive
bias plays the role of the exploration; the original exploration part of the

1We used both manual tuning and cross-entropy methods. Parallelization was highly
helpful for this.

49



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

UCB formula (see 1.1 is not necessary anymore. Therefore, the α parameter
in 1.3 is set to 0 (this value has been verified by several experiments). The
new formula for the score of a decision j (i.e. a legal move) is:

x̄j︸︷︷︸
Online

+β(n) R̄j︸︷︷︸
Transcient

+(γ +
C

log(2 + nj)
) Hj︸︷︷︸

Offline

(4.1)

where the coefficients β, γ and C are empirically tuned coefficients depending
on nj (number of simulations of the decision j) and n (number of simulations
of the current board) as follows:

β =
#{ravesims}

(#{ravesims}+ #{sims}+ c1#{sims}#{ravesims})
(4.2)

γ =
c2

#{ravesims}
(4.3)

(4.4)

#{ravesims} is the number of Rave-simulations.

#{sims} is the number of simulations.

C, c1 and c2 are empirically tuned constants.

For the sake of completeness, we make clear that C, c1 and c2 depend
on the board size, and are not the same in the root of the tree during the
beginning of the thinking time, in the root of the tree during the end of
the thinking time, and in other nodes. Also, this formula is computed most
often with an approximated (faster) formula, and sometimes with the com-
plete formula - it was empirically found that the constants should not be
the same in both cases. All these local engineering improvements make the
formula quite unclear and the take-home message is mainly that MoGo has
good results with γ ' c2/#{ravesims} and with the logarithmic formula
C/ log(2 + n(d)) for progressive unpruning. These rules imply that:

• initially, the most important part is the offline learning;

• later, the most important part is the transient learning (RAVE values);

• eventually, only the “real” statistics matter.

Hj is the sum of two terms: patterns, as in [Bouzy and Chaslot, 2005,
Chaslot et al., 2007, Coulom, 2007], and rules detailed below:

50



4.2. CONTRIBUTION

• capture moves (in particular, string contiguous to a new string in atari),
extension (in particular out of a ladder), avoid self-atari, atari (in par-
ticular when there is a ko ), distance to border (optimum distance = 3
in 19x19 Go), short distance to previous moves, short distance to the
move before the previous move; also, locations which have probability
nearly 1/3 of being of one’s color at the end of the game are preferred.

The following rules are used in our implementation in 19x19, and improve
the results:

• Territory line (i.e. line number 3), Line of death (i.e. first line),
Peep-connect (ie. connect two strings when the opponent threatens
to cut), Hane (a move which “reaches around” one or more of the op-
ponent’s stones), Threat, Connect, Wall, Bad Kogeima(same pattern
as a knight’s move in chess), Empty triangle (three stones making a
triangle without any surrounding opponent’s stone).

They are used both (i) as an initial number of RAVE simulations (ii) as an
additive term in H. The additive term (ii) is proportional to the number of
RAVE simulations.

These shapes are illustrated on Figure 4.1. With a naive hand tuning of
parameters, only for the simulations added in the RAVE statistics, they pro-
vide 63.9±0.5 % of winning rate against the version without these improve-
ments. We are optimistic on the fact that tuning the parameters will strongly
improve the results. Moreover, since the early developments of MoGo, some
“cut” bonuses are included (i.e., advantages for playing at locations which
match “cut” patterns, i.e. patterns for which a location prevents the oppo-
nent from connecting two groups).

Following [Bouzy and Chaslot, 2005], we built a model for evaluating the
probability that a move is played, conditionally to the fact that it matches
some pattern. When a node is created, the pattern matching is called,
and the value it returns is used as explained later (Eq. 4.1). The pattern
matching is computationally expensive and we had to tune the parameters
in order to have positive results.

The following parameters had to be modified, when this model was
included in H:

• time scales for the convergence of the weight of online statistics to 1
(see Eq. 4.1) are increased;

• the number of simulations of a move at a given node before the subse-
quent nodes is created is increased (because the computational cost of
a creation is higher).

51



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

Threat Line of Peep Hane Connect
death connect

Wall Bad Empty Empty Line of
Kogeima triangle triangle influence

Line of Kogeima Kosumi Kata Bad Tobi
defeat

Figure 4.1: We here present shapes for which exact matches are required
for applying the bonus/malus. In all cases, the shapes are presented for the
black player: the feature applies for a black move at one of the crosses. The
reverse pattern of course applies for white. Threat is not an exact shape to be
matched but just an example: in general, black has a bonus for simulating
one of the liberties of an enemy string with exactly two liberties, i.e. to
generate an atari.

52



4.2. CONTRIBUTION

Tested version Against Conditions Success rate
MoGo + P MoGo 3000 sims/move 56 % ± 1%
MoGo + P MoGo 2s/move 50.9 % ± 1.5 %
MoGo + P MoGo + P 1s/move 55.2 % ± 0.8 %

+ TC
MoGo + P MoGo + P 1s/move 61.7 % ± 3.1 %
+ TC + C + TC

Table 4.1: Effect of adding patterns extracted from professional games in
MoGo. P: patterns, TC: tuning of coefficients, C: adding and tuning the con-
stant C. The first tuning of parameters is the tuning of β and γ as functions
of n(d) (see Eq. 4.1) and of coefficients of expert rules. A second tuning
consists in tuning constant C in Eq. 4.1.

• the optimal coefficients of expert rules are modified;

• importantly, the results were greatly improved by adding the constant
C (see Eq. 4.1). This is the last line of Table 4.1.

Results are presented in Table 4.1.

4.2.2 Adding Expert Knowledge and preserving diver-
sity in the Monte Carlo part

There exists no easy criterion to evaluate the effect of a modification of the
Monte Carlo simulator on the global MCTS algorithm in the case of Go or
more generally two players games. Many people have tried to improve the
MC engine by increasing its level (the strength of the Monte Carlo simulator
as a stand-alone player), but it is shown clearly in [Wang and Gelly, 2007,
Gelly and Silver, 2007] that this is not the good criterion: a MC engine MC1

which plays significantly better than another MC2 can lead to very poor
results as a module in MCTS, whenever the computational cost is the same.
Some MC engines have been learned on datasets [Coulom, 2007], but the
results are strongly improved by changing the constants manually. In that
sense, designing and calibrating a MC engine remains an open challenge: one
has to intensively experiment a modification in order to validate it.

Various shapes are defined in [Bouzy, 2005, Wang and Gelly, 2007,
Ralaivola et al., 2005]. [Wang and Gelly, 2007] uses patterns and expertise.
We present below two new improvements, both of them centered on an in-
creased diversity when the computational power increases; in both cases,

53



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

the improvement is negative or negligible for small computational power and
becomes highly significant when the computational power increases.

Fill the Board: Random Perturbations of the Monte Carlo Simu-
lations

The principle of this modification is to play first on locations of the board
where there is large empty space. The idea is to increase the number of
locations at which Monte Carlo simulations can find pattern-matching in
order to diversify the Monte Carlo simulations.

As trying every position on the board would take too much time, the
following procedure is used instead. A location on the board is chosen ran-
domly; if the 8 surrounding positions are empty, the move is played, else the
following N − 1 positions on the board are tested; N is a parameter of the
algorithm. This modification introduces more diversity in the simulations:
this is due to the fact that the Monte Carlo player uses a lot of patterns.
When patterns match, one of them is played. So the simulations have only
a few ways of playing when only a small number of patterns match; in par-
ticular at the beginning of the game, when there are only a few stones on
the goban. As this modification is played before the patterns, it leads to
more diversified simulations (Figure 4.2). This modification is even more ef-
ficient on large boards(19x19) because there are less possible moves on small
board(9x9) and therefor the diversity loss in less important in comparison.
The detailed algorithm is presented in Algorithm 11, experiments in Figure
4.3.

Figure 4.2: diversity loss when the “fillboard” option was not applied: the
white stone is the last move, and the black player, starting a Monte Carlo
simulation, can only play at one of the locations marked by triangles.

54



4.2. CONTRIBUTION

Algorithm 11 Algorithm for choosing a move in MC simulations, including
the “fill board” improvement. We experimented also a constraint of 4, 12
and 22 empty locations instead of 8, but results were disappointing.

if the last move is an atari, then
Save the stones which are in atari if possible.

else
“Fill board” part.
for i ∈ {1, 2, 3, 4, . . . , N} do

Randomly draw a location x on the goban.
IF x is an empty location and the eight locations around x are empty,
play x (exit).

end for
End of “fill board” part.
Sequential move, if any (see above).
Capture move, if any (see above).
Random legal move, if any (see above).

end if

The “Nakade” Problem

A known weakness of MoGo, as well as many MCTS programs, is that nakade
is not correctly handled. We will use the term nakade to denote a situation
in which a surrounded group has a single large internal, enclosed space in
which the player won’t be able to establish two eyes if the opponent plays
correctly.

The group is therefore dead, but the baseline Monte Carlo simulator some-
times estimates that it lives with a high probability, i.e. the MC simulation
does not necessarily lead to the death of this group. Therefore, the tree will
not grow in the direction of moves preventing difficult situations with nakade
— MoGo just considers that this is not a dangerous situation.

This will lead to a false estimate of the probability of winning. As a
consequence, the MC part (i.e. the module choosing moves for situations
which are not in the tree) must be modified so that the winning probability
reflects the effect of a nakade .

Interestingly, as most MC tools have the same weakness, and also as
MoGo is mainly developed by self-play, the weakness concerning the nakade
almost never appeared before humans found the weakness (see post from D.
Fotland called “UCT and solving life and death” on the computer-Go mailing
list). It would be theoretically possible to encode in MC simulations a large
set of known nakade behaviors, but this approach has two weaknesses: (i) it

55



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

9x9 board 19x19 board
Nb of playouts Success rate Nb of playouts Success rate

per move per move
or time/move or time /move

10 000 52.9 % ± 0.5% 10000 49.3 ± 1.2 %
5s/move, 54.3 % ± 1.2 % 5s/move, 77.0 % ± 3.3 %
8 cores 8 cores
100 000 55.2 % ± 1.4 % 100 000 73.7 % ± 2.9%
200 000 55.0 % ± 1.1 % 200 000 78.4 % ± 2.9 %

Figure 4.3: results associated to the “fillboard” modification. As the mod-
ification leads to a computational overhead, results are better for a fixed
number of simulations per move; however, the improvement is clearly signif-
icant. The computational overhead is reduced when a multi-core machine is
used: the concurrency for memory access is reduced when more expensive
simulations are used, and therefore the difference between expensive and
cheap simulations decays as the number of cores increases. This element also
shows the easier parallelization of heavier playouts.

is expensive and MC simulations must be very fast (ii) abruptly changing the
MC engine very often leads to unexpected disappointing effects. Therefore
we designed the following modification: if a contiguous set of exactly 3 free
locations is surrounded by stones from the opponent, then we play at the
center (the vital point) of this “hole”. The new algorithm is presented in
Algorithm 12.

We validate the approach with two different experiments: (i) known po-
sitions in which old MoGo does not choose the right move (Figure 4.4) (ii)
games confronting the new MoGo vs the old MoGo (Table 4.2).

We also show that our modification is not sufficient for all cases: in the
game presented in Fig. 4.4 (e), MoGo lost with a poor evaluation of a nakade
situation, which is not covered by our modification.

Approach Moves

Correctly handling life and death situation is a key point in improving the
MC engine. Reducing the probability of simulations in which a group which
should clearly live dies (or vice versa) improves the overall performance of the
algorithm. For example, in Fig. 4.5, black should play in B before playing in

56



4.3. CONCLUSION

Algorithm 12 New MC simulator, reducing the nakade problem.

if the last move is an atari, then
Save the stones which are in atari if possible.

else
Beginning of the nakade modification
for x in one of the 4 empty locations around the last move do

if x is in a hole of 3 contiguous locations surrounded by enemy stones
or the sides of the goban then

Play the center of this hole (exit).
end if

end for
End of the nakade modification
“Fill board” part (see above).
Sequential move, if any (see above).
Capture move, if any (see above).
Random legal move, if any (see above).

end if

A for killing A. This is an approach move. We implemented this as presented
in algorithm 13. This modification provides a success rate of

• 52.68 % (± 0.33 %) in 9x9 with 20 000 simulations per move;

• 54.69 % (± 2.27%) in 19x19 with 50 000 simulations per move.

We can see on Fig. 4.5 that some semeai situations are handled by this
modification: MoGo now clearly sees that black, playing first, can kill on
Fig. 4.5. Unfortunately, this does not solve more complicated semeai as e.g.
Fig. 4.5 (e).

4.3 Conclusion

We showed some successful ways of adding expert knowledge and preserving
the diversity of a BBMCTS algorithm and made the following observations.

First, as well as for humans, all time scales of learning are impor-
tant: offline knowledge (strategic rules and patterns) as in [Coulom, 2006,
Chaslot et al., 2007]; online information (i.e. analysis of a sequence by men-
tal simulations) [Gelly and Silver, 2007]; transient information (extrapola-
tion as a guide for exploration).

Second, reducing diversity has been a good idea in Monte Carlo;
[Wang and Gelly, 2007] has shown that introducing several patterns and rule

57



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

Algorithm 13 New MC simulator, implementing approach moves. Random
is a random variable uniform on [0, 1].

if the last move is an atari, then
Save the stones which are in atari if possible.

else
Nakade modification (see above).
“Fill board” part (see above).
if there is an empty location among the 8 locations around the last move
which matches a pattern then

Randomly and uniformly select one of these locations.
if this move is a self-atari and can be replaced by a connection with
another group and random < 0.5 then

Play this connection (exit).
else

Play the select location (exit).
end if

else
Capture move, if any (see above).
Random legal move, if any (see above).

end if
end if

58



4.3. CONCLUSION

(a)

(b)

(c)

(d)

(e)

Figure 4.4: In Figure (a) (a real game played and lost by MoGo), MoGo
(white) without specific modification for the nakade chooses H4 (triangle);
black plays J4 (square) and the group F1 is dead (MoGo looses). The right
move is J4; this move is chosen by MoGo after the modification presented in
this section. Examples (b), (c) and (d) are other similar examples in which
MoGo (as black) evaluates the situation poorly and doesn’t realize that his
group is dead. The modification solves the problem. (e) An example of more
complicated nakade , which is not solved by MoGo - we have no generic tool
for solving the nakade .

greatly improves the efficiency of Monte Carlo Tree-Search. However, plenty
of experiments around increasing the level of the Monte Carlo simulator as a
stand-alone player have given negative results - diversity and playing strength
are too conflicting objectives. There is a trade-off between these two criteria.

Approach moves are an important feature. It makes MoGo more rea-
sonable in some difficult situations in corners. We believe that strong im-
provements can arise as generalizations of this idea, for solving the important
semeai case.

Importantly, whereas exploration by a UCT term

+

√
log(n)

nj

as in UCB (see formula 1.1) is important when scores are naive empirical
success rates, the optimal constant in the exploration term becomes 0 when
learning is improved (at least in MoGo, and the constant is very small in
several UCT-like programs also). In MoGo, the constant in front of the

59



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

Nb sims Success Nb sims Success
per move rate per move rate

9x9 board 19x19 board
10000 52.8 % ± 0.5%
100000 55.6 % ± 0.6 % 100 000 53.2 % ± 1.1%
300000 56.2 % ± 0.9 %

5s/move, 8 cores 55.8 % ± 1.4 %
15s/move, 8 cores 60.5 % ± 1.9 %
45s/move, 8 cores 66.2 % ± 1.4 %

Table 4.2: Experimental validation of the nakade modification: modified
MoGo versus baseline MoGo. Seemingly, the higher the number of simula-
tions (which is directly related to the level), the higher the impact.

exploration term was not null before the introduction of RAVE values in
[Gelly and Silver, 2007]; it is now 0. Another term has provided an important
improvement as an exploration term: the constant C in Eq. 4.1.

60



4.3. CONCLUSION

Figure 4.5: Left: Example of situation which is poorly estimated without
approach moves. Black should play B before playing A for killing the white
group and live. Right: situation which is not handled by the “approach
moves” modification.

61



4. EXPERT KNOWLEDGE AND DIVERSITY PRESERVATION

62



Chapter 5

Threshold Ascent applied to
Graph

5.1 Introduction

This chapter is based on the article [De Mesmay et al., 2009] written with
Frederic De Mesmay, Yan Voronenko and Markus Puschel.

In the previous chapter, several improvements of the BBMCTS algorithm
have been presented. But the algorithm was always applied to the game of
Go. In this chapter, we address three problems. We show that a BBMCTS
algorithm can work with other bandits than the classical one. We present a
way to adopt this algorithm in the case of graphs and call it Threshold Ascent
applied to Graph (TAG). We apply the algorithm to an industrial problem
and achieve better results than the previous method. The problem is to find
the fastest among all the possible ways of computing a linear transform on
a particular computer. Once it has been found, an already-existing program
(Spiral) automatically generates a Library from it.

5.1.1 Library Performance Tuning

Our target application is the automatic performance tuning in adaptive
libraries based on divide-and-conquer algorithms with inherent degrees of
freedom. Specifically, we implemented TAG to operate as a search strat-
egy in the adaptive general-size linear transform libraries generated by Spi-
ral [Voronenko et al., 2009].

We first give brief background on transforms, transform algorithms, their
implementations, and the notion of an adaptive library. Then we discuss
the need for search and finally match the performance tuning problem to
Problem 1, which shows that TAG is applicable.

63



5. THRESHOLD ASCENT APPLIED TO GRAPH

Background: Linear Transforms

Transforms. A linear transform is a matrix-vector product y = Mx, where
x is the input vector, y the output vector, and M the fixed transform matrix.
We focus on the discrete Fourier transform (DFT) defined as

DFTn = [e−2πik`/n]0≤k,`<n, i =
√
−1.

Näıve computation of the matrix-vector product incurs O(n2) operations,
however, fast, O(n log(n)), algorithms, which exploit the particular structure
of matrix M , exist for many transforms including the DFT.

Fast algorithms. One way of writing transform algorithms is as sparse
factorizations of the transform matrix. For example, the famous Cooley-
Tukey fast Fourier transform (FFT) algorithm can be written as

DFTn = (DFTk⊗ Im) Tn
m(Ik⊗DFTm) Ln

k , n = km. (5.1)

Here, In is the identity matrix of size n; Tn
m is a diagonal matrix and Ln

k a
permutation matrix, whose precise definition is not relevant here. Finally,
the tensor (or Kronecker) product ⊗ of two matrices is defined as

A⊗B = [ak,l B], where A = [ak,l].

We show below a visualization of the non-zero values in the matrices for
k = m = 4.

DFT16 DFT4⊗ I4 T4
4 I4⊗DFT4 L16

4

=

In both tensor products, all parts of equal gray shade constitute a single
DFT4. We observe that all four matrices are sparse, that the computation
uses a divide-and-conquer approach, and that there is a degree of freedom
(choice of k|n). Assuming that n is a power of two1, recursive applications
of the algorithm yield O(n log(n)) computations.

Implementation and search space. The above FFT suggests a li-
brary implementation using a recursive function dft. Given the input x, the
function would first permute (t = Ln

k x), then call dft on multiple segments
of x, then scale the result with the entries of Tn

m, and then call again dft

1Recursive application of equation (5.1) require to provide base cases for all prime
factors of n. For simplicity, we will therefore only consider power-of-two sizes n = 2t.
Note that these sizes also happen to be the most important usage cases of the DFT.

64



5.1. INTRODUCTION

10
0

10
3

10
6

10
9

2
0

2
5

2
10

2
15

2
20

DFT size

Number of di!erent DFT algorithms using only Cooley-Tukey

Figure 5.1: Number of DFT algorithms based on standard Cooley-Tukey
FFT, implemented näıvely. All algorithms for a given DFT input size have
roughly the same operations count.

on segments, extracted in a stride, of the result. The resulting library would
have a simple call graph, as shown in Figure 5.2(a). Even such a simple
implementation has a degree of freedom in the recursion due to the choice
of k. Recursively compounded this yields an algorithm space of Θ(5t/t3/2)
that this library covers (see Figure 5.1) [Johnson and Püschel, 2000]. All of
these have roughly the same operations count, yet, the performance can differ
widely due to cache misses and other effects.

The above implementation makes four passes through a vector of length
n and has hence poor memory hierarchy performance. The performance can
considerably improve as done in FFTW 2.x by replacing the explicit (and
expensive) permutation Ln

k with a readdressing in the subsequent smaller
DFTs. Similarly, scaling by Tn

m can be fused with the subsequent DFTs.
However, this creates the need for additional functions—variants of the DFT
with modified interfaces. The call graph of such a library is shown in Fig-
ure 5.2(b).

The situation gets considerably more complicated with state-of-the-art
libraries on current off-the-shelf computers. The reason is that to get max-
imal performance, the libraries need to apply several restructuring trans-
formations to (5.1). In particular, the algorithm must be 1) vectorized, to
take advantage of vector instructions (e.g., SSE on x86 architectures); 2)
parallelized, to exploit multiple processor cores using threading; 3) trans-
formed by loop optimizations for buffering; 4) allowed to load from a pre-
computed table the constant elements of Tn

m from (5.1), also called “twiddle
factors” [Frigo and Johnson, 2005, Püschel et al., 2005, Voronenko, 2008,
Voronenko et al., 2009].

Applying the restructuring transformations described above increases
the number of different mutually recursive functions that comprise the li-
brary, and also enlarge the algorithm search space. For example the Spiral-

65



5. THRESHOLD ASCENT APPLIED TO GRAPH

generated DFT library with all optimizations 1–3 contains 31 different func-
tions which form the call graph in Figure 5.2(c).

dft

(a)

dft

dft_scaled

dft_strided

(b)

1

2

3

46

57

9

8

11

10

13

12

15

14

16 17

18

19 20 21

24

25

27

26 28

29

30

3132

33

(c)

Figure 5.2: Call graphs of three different recursive libraries: (a) näıve, (b)
optimized scalar and (c) optimized vectorized parallelized.

The above discussion holds for many other linear transforms including the
discrete cosine transforms, the real discrete Fourier transform, finite impulse
response filters, and the discrete wavelet transform. Furthermore, not all
algorithms decompose a transform into transforms of the same type. In this
case the search space is further increased.

Adaptive Libraries and Search

Consider a recursive library as discussed above. In each recursion step, the
library has a degree of freedom. As a consequence, it can compute the
transform in many different ways. What makes the library adaptive is the
use of online search to find a fast recursion strategy. This search is part of
an initialization routine (called planner in FFTW) that takes the input size
n and returns a function pointer implementing the fastest known recursion
strategy. After this initial overhead, the user can now compute as many
transforms of size n as desired, compensating for the overhead.

The main search strategy in FFTW, UHFFT, and Spiral generated li-
braries is dynamic programming (DP). It is based on the assumption that
the best solution to a problem is built out of optimal solutions to subprob-
lems. Here, this means that an algorithm’s performance is independent of its
context which, unfortunately, does not always hold2. However, in practice,
DP has shown to work quite well except for very large transforms as we will
see later in our benchmarks. Over these large search spaces, DP has another
weakness which is that it is not an anytime algorithm: one has to wait for

2It is fairly easy to build counter-examples: for instance, an algorithm running on one
core will be slower if another core is active due to conflicts in the shared cache.

66



5.2. CONTRIBUTION

DP to solve all subproblems before it gives any solution. This waiting time is
significant: for FFTW it can amount to days in the case of large transforms
on multicore systems.

A simple anytime strategy is Monte-Carlo (MC) which, each time there is
a decision to take, chooses according to a uniform distribution. At the end of
the descent, it evaluates the candidate and restarts. At any point in time the
user can interrupt the search to retrieve the best known candidate. Since at
each step, there is an equal chance for all branches to be picked but branches
are not laid out uniformly, the overall space is not sampled uniformly.

5.1.2 State of the art: Dynamic Programming

As described in section 1.2.4, Dynamic Programming (DP) is a method that
recursively constructs solutions of large problems from solutions of smaller
problems. It is implemented for the problem of library performance tuning
in the following way. Given a transform T , we expand T using all applicable
rules. A set of children is extracted from them. Then DP is called recursively
to expand each children until a terminal node is reached. This node can
be evaluated by a timer. Finally the set of rules with the minimal cost is
returned.

There are two problems with using DP in this context. The first one is
that it is very time consuming when used on linear transforms of large size.
The second is that the property of optimal substructure doesn’t hold in this
case because the solution to a subproblem is context-dependent. Even if this
is a good approximation and therefore can achieve very good results, there
is no guaranty to obtain the optimal solution.

5.2 Contribution

After describing the problem in a formal way, we are going to present the new
algorithm TAG. Then we will present the results on the problem of library
performance tuning and conclude.

5.2.1 Formal Problem Statement

Below, we formally state the problem considered in this chapter. Later, we
will show that automatic tuning in the considered transform libraries is an
instantiation of this problem.

Problem 1 Given is an acyclic formal grammar F = (T, N, P, S) with T the
set of terminals, N the set of nonterminals, P the set of production rules or

67



5. THRESHOLD ASCENT APPLIED TO GRAPH

T = {a, b, ac}
N = {S, A, B}
P = {S→ AB,

A→ a,

B→ b,

aB→ ac}
ab ac

S

AB

aBAb

Figure 5.3: Formal grammar F = (T, N, P, S) (left) and associated derivation
graph G(F ) (right). S, A, B are nonterminals and a, b, c are terminals.
The graph has two sinks (double circled), i.e., the language L(F ) has two
elements.

simply rules, and S the starting symbol. L(F ) is the associated language and
f is an objective function from L(F ) into the positive reals IR+. We want to
compute

wbest = argmax
w∈L(F )

f(w).

F has an associated derivation graph G = G(F ) which is directed, acyclic and
weakly connected as shown in Figure 5.3: S is the root, the directed edges
(arrows) correspond to applications of rules in P , the nodes are partially
derived words in the language, and the sinks (outdegree = 0) are precisely
the elements of L(F ). Hence we can reduce Problem 1 to:

Problem 2 Given a weakly connected, acyclic, directed graph G = (V, E)
and an objective function f (as above) on the sinks S(G) of G. We want to
compute

wbest = argmax
w∈S(G)

f(w).

We assume the graph G(F ) to be large such that it is impossible to generate
and evaluate all sinks in a reasonable time. Our goal is an algorithm that
finds a “very good” sink with a small number of evaluations.

5.2.2 Algorithm

TAG is an anytime algorithm that determines an approximate solution to
Problem 2. Due to the size of the graph, it is not meant to run until com-
pletion, in which case it would be equivalent to an exhaustive search.

68



5.2. CONTRIBUTION

TAG finds solutions by incrementally growing and exploiting the sub-
graph Ĝ = (V̂ , Ê) of G = (V, E): V̂ ⊂ V , Ê ⊂ E, starting with
Ĝ = ({S}, {}). Evaluations are used to direct the growth of Ĝ towards
the expected bests sinks.

Assume the current subgraph is Ĝ. Then TAG proceeds in three high
level steps visualized in Figure 5.4:

1. Descend: G is traversed starting at its root. Each choice along the
way is solved by a bandit algorithm. The descent stops when it uses an
arrow e that is not in Ê.

2. Evaluate: If e is incident with a vertex not in V̂ , this vertex is evaluated
using a Monte-Carlo expansion.

3. Backpropagate: The evaluation is stored in all ancestors of the vertex.

S

sinks

G

G

S

f(w)

S

store

f(w)

Descend Evaluate Backpropagate

Monte
Carlo

Figure 5.4: Visualization of the three main steps in TAG. Note that Ĝ
(shaded area) and G are not trees (e.g., see Figure 5.3).

We proceed with describing the three steps in detail, describe the pseu-
docode and conclude the section with a presentation of related algorithms.

Descend

The goal of the descent step is to select the next edge to add to the subgraph
Ĝ. It is chosen so that Ĝ grows towards the sinks that present the best
expected rewards. Starting from the root S, the most promising path is
layed out by successively choosing the most promising outgoing edges. Each
choice is solved using a bandit algorithm that we describe first.

Background: Max k-Armed Bandit Problem. The maximum k-
armed bandit problem considers a slot machine with k arms, each one hav-
ing a different pay-out distribution (Figure 5.5). The goal is to maximize the
single best reward obtainable over n̄ trials [Cicirello and Smith, 2005]. For-
mally, if each arm has distribution Di and Rj(Di) denotes the j-th reward

69



5. THRESHOLD ASCENT APPLIED TO GRAPH

obtained on arm i, the goal is to solve

maxPk
i=1 n̄i=n̄

max
1≤i≤k

max
1≤j≤n̄i

Rj(Di).

We use a variation: an anytime version of the problem where the total number
of pull n̄ is not known in advance. Only the n previous pulls and their
associated rewards are known.

bandit

D1

arm 1

D2

 arm 2

D3

arm 3

Figure 5.5: A 3-armed bandit. The choice of the arm i leads to a realization
of the distribution Di.

Streeter & Smith in [Streeter and Smith, 2006] solve the problem using
Threshold Ascend, an algorithm that makes no assumptions on the form of
the distributions. Using their notations, we present here a straightforward
adaptation to the anytime variation.

The main idea of the algorithm is to track only the s best rewards and
the arms they are coming from. Let si be the number of such rewards among
the ni rewards received by the arm i. Also, let δ be a positive real parameter.
The algorithm advises to pull the arm ibest given by

ibest = argmax
1≤i≤k

h(si, ni),

with h(si, ni) =

{
si+α+

√
2siα+α2

ni
, if ni > 0

∞, else

and α = ln(2nk/δ).

This formula keeps the same principle as the original formula from the
classical k-armed bandit problem: the trade-off between exploration and
exploitation. The first part, si

ni
, corresponds to the percentage of chance that

a reward from the arm i be in the s best rewards. This is the exploitation

term. In the second part, we find a term in

√
ln(n)

ni
which is very similar to

the exploitation in the classical k-armed bandit formula.
Descend. The graph descent is responsible for incrementally building

the subgraph Ĝ ⊂ G, initially restricted to the root. The purpose of the
descent is to select an arrow in E \ Ê that leads towards an expected good

70



5.2. CONTRIBUTION

sink. It does so by tracing a path starting from the root and considering
each successor choice as a max k-armed bandit problem (Figure 5.6). For
now, assume that a table of positive real rewards R(v) has been maintained
for each vertex v ∈ V̂ .

Let v denote the current vertex in the descent. Starting from v, there
are multiple ways to continue the path since it can follow any of the arrows
originating from v (we denote these with E(v)). The arrows in E(v) that
are also in Ê(v) lead to vertices of V̂ corresponding to “arms” that have
already been played (they have previous rewards attached to them). The
other arrows lead to arms that have never been played. The bandit algorithm
discussed above decides which arrow to follow, which has to be one that was
not followed before if such an arrow exists (due to the infinite weight in
h(si, ni)). If the arrow belongs to Ê(v) and the successor is not a sink, the
successor becomes the new descent vertex and the descent continues. If not,
the descent ends.

bandit A

bandit B

arm A1
 arm A3arm A2

arm B1 arm B2

Figure 5.6: The descent in the graph is done as a cascade of multi-armed
bandits. Solid arrows, circles and boxes are in Ĝ, dashed arrows and circles
are in G\ Ĝ. For bandit A all arms had been played before, and A1 is chosen
based on the stored rewards. Bandit B will now choose B1, since it is the
only arrow not played before.

Evaluate

Assume the descent ended on an arrow pointing to a vertex v that is not
part of V̂ . The arrow and vertex are then immediately added to Ĝ and v is
evaluated.

If v is a sink of G, then f(v) can be directly computed. Otherwise a
path to a sink of G is chosen by “Monte-Carlo,” which means in each step
a (uniformly drawn) random choice is made until a sink w is obtained. The
evaluation f(w) gives a value for v.

71



5. THRESHOLD ASCENT APPLIED TO GRAPH

Also, if the evaluation is better than f(wbest), the current best sink is
replaced.

Backpropagate

After v has been evaluated, the reward is added to its reward list R(v) and
to the reward lists of all its ancestors.

Note that if the descent ended on an arrow pointing to a vertex v that is
already a part of V̂ , we just discovered a new way to connect to an already
evaluated vertex. In this case, we add the new arc to Ê and propagate the
rewards of v only to the vertices that would not be ancestors of v without
the new arrow (since the other ancestors already have these rewards).

Pseudocode and Remark

Pseudocode. Algorithm 1, the pseudocode of TAG, summarizes the previ-
ous discussion. After initialization, the graph Ĝ = (V̂ , Ê) is grown one arc
at a time until the user signifies an interruption. The vertex pointed by an
arrow e is denoted head(e). BANDIT refers to the Treshold Ascend algorithm
summarized in subsection 5.2.2. RANDOM refers to an uniform draw.

Remark. In practice, if the objective function is deterministic, it is
useless to evaluate a sink twice. It is therefore possible to modify the algo-
rithm to guarantee that it never returns in a branch where choices have been
exhausted.

Applicability of TAG

Applying TAG in the context of adaptive libraries requires to identify the
grammar G = (T, N, P, S) and the objective function f such that the per-
formance optimization can be mapped to Problem 1.

The start symbol S is the transform specification as entered by the user.
The terminals T are the base cases, the set of problems that can be directly
solved by the library. The non-terminals N are the set of all non base case
subproblems that could be needed to solve the problem. The production rules
P breakdown a problem from N into one or more subproblems by fixing a
degree of freedom. The function to maximize, f , is the performance of the
implementation. The acyclicity of the grammar is guaranteed by the fact
that the underlying algorithms provably finish. Note that the grammar itself
changes with the problem size.

For instance, if a näıve DFT library based on Cooley-Tukey is used to

72



5.2. CONTRIBUTION

compute DFT8, we would define

S = DFT8 P = {DFT8 → (DFT2,DFT4),

T = DFT2 DFT8 → (DFT4,DFT2),

N = {DFT8,DFT4} DFT4 → (DFT2,DFT2)}

5.2.3 Validation

Experimental Setup. We evaluated our search algorithm on a complex
DFT C++ library generated by Spiral from (5.1). The library is vector-
ized using intrinsics, threaded using OpenMP, and optimized as explained in
Section 5.1.1.

We add TAG and Monte-Carlo (MC) methods to the already existing
DP search infrastructure. We compile using the Intel Compiler 10.1 and
benchmark on a 64-bit Linux platform using two dual core 3 GHz Intel Xeon
5160 processors.

We display performance using pseudo mega floating-point operations per
second (MFlops) with the complex DFT operation count assumed to be
5n log2 n (standard practice).

Parameter tuning. We tune the parameters for TAG on a specific
problem, DFT219 . The sensitivity of the algorithm with variations in the
s parameter of the bandit is shown on Figure 5.7(a). Since s is the size of
the best rewards vector, a low s tweaks the bandit towards exploitation of
previous good branches, while a bigger s leads to the exploration of new
promising branches. We find that δ = 0.1 and s = 30 work best and we use
them for all following experiments.

Comparison with Monte-Carlo. We compare the performance of
TAG and MC on DFT218 . Figures 5.7(b) and 5.7(c) show that TAG per-
forms better (higher mean) and more reliably (lower standard deviation)
than Monte-Carlo. Note that the plots are done with respect to a fixed “wall
clock” time and not to a fixed number of simulations. This is realistic in
that the simpler MC algorithm performs more simulations than our more
complex algorithm in the same time frame. Also it is worth remembering
that, asymptotically, TAG and MC match since they both explore the full
finite search space.

Comparison with dynamic programming. We compare TAG with
DP on a single problem on 5.8(a). We observe that TAG quickly reaches the
same performance as DP and then caps 10% above it. On Figure 5.8(b) we
plot the time it takes for TAG to get results of the same quality as DP. We
observe that TAG finds solutions of equal performance significantly faster on
various DFT sizes.

73



5. THRESHOLD ASCENT APPLIED TO GRAPH

Comparison with other FFTs. Figure 5.8(c) shows the best perfor-
mance attained by the generated library (with TAG and DP) and its com-
petitors. We compare against FFTW 3.2 alpha 2 and Intel IPP 5.3. FFTW
does platform adaptation using dynamic programming. As far as we know,
IPP does not use search and branches out to a specialized implementation
for each platform.

5.3 Conclusion

In this chapter, we tackled the problem of using a BBMCTS algorithm on an
industrial problem. In order to do that, we needed to optimize an objective
function over the sinks of a directed acyclic graph. We solved it using a new
anytime algorithm, TAG, that grows a subgraph towards the expected best
sinks. Similarly to UCT, TAG traces the most promising path by considering
local bandits and valuates nodes using Monte-Carlo simulations. In our con-
text however, the optimization problem requires to consider the maximum
variant of the k-armed bandit problem.

Implementation inside a high-performance adaptive library for linear
transforms considerably decreased the search time while providing a 10%
increase in the quality of the solutions. One interesting feature of our prob-
lem setup is that evaluating “bad” nodes is much more costly than evaluating
“good” ones since the objective function is the timer from the processor. In
future work, we will try to modify the algorithm to take advantage of that
fact.

74



5.3. CONCLUSION

Algorithm 1 TAG

Ĝ← S
wbest ← ∅
R(V̂ )← ∅
while not interrupted do

e← BANDIT(E(S)) Descend
while e ∈ Ê & E(head(e)) 6= ∅
do

e← BANDIT(E(head(e))
end while
v ← head(e)
if v /∈ Ĝ or e ∈ Ĝ then

add v and e to Ĝ
e← RANDOM(E(v)) Evaluate
while E(head(e)) 6= ∅ do

e← RANDOM(E(head(e))
end while
w ← head(e)
if f(w) > f(wbest) then

wbest ← w
end if
r ← f(w)
add r to R(v) Backpropagate
for a ancestor of v in Ĝ do

add r to R(a)
end for

else
for a ancestor of v in Ĝ do

mark a
end for
add e to Ĝ

for a ancestor of v in Ĝ do
if a is marked then

unmark a
else

add all R(v) to R(a)
end if

end for
end if

end while
return wbest

75



5. THRESHOLD ASCENT APPLIED TO GRAPH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  10  20  30  40  50  60  70  80  90

Time (seconds)

Sensitivity to parameter s for DFT 512k
Performance (MFlop/s)

s = 5
s = 30
s = 100
s = 200

(a)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  10  20  30  40  50  60  70  80  90

Time (seconds)

Comparison between anytime strategies for DFT 256k
Performance (MFlop/s)

TAG

MC

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60  70  80  90

Time (seconds)

Standard deviation of anytime strategies for DFT 256k
Performance (MFlop/s)

TAG

MC

(c)

Figure 5.7: (a) Parameters for TAG are optimized on DFT219 . (b) Mean
performance (and standard error of the mean) for DP and Monte-Carlo on
DFT218 . Data is averaged over 100 runs. (c) Standard deviation on the same
experiment.

76



5.3. CONCLUSION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 20  40  60  80  100  120  140

Time (seconds)

Performance over time of DP and TAG (DFT 64k)
Performance (MFlop/s)

TAG DP

(a)

 1

 10

 100

 1000

 10000

64k 128k 256k 512k 1M

DFT size

Comparison of search time between DP and TAG
Time (seconds)

TAG

DP

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16k 32k 64k 128k 256k 512k 1M

DFT size

DFT, double precision, up to 4 threads
Performance (MFlop/s)

Spiral-TAG
Spiral-DP
FFTW 3.2a
Intel IPP 5.3

(c)
Figure 5.8: (a)Average performance of TAG compared with DP on a single
problem size. (b)Search time of TAG and DP to achieve the same perfor-
mance on different libraries. (c)Comparison with different FFT libraries.

77



5. THRESHOLD ASCENT APPLIED TO GRAPH

78



Chapter 6

Conclusion

MCTS is a new type of algorithm which achieves great results in the case of
observable problems with high dimension. Some works have even been done
in the non-observable case in [Rolet et al., 2009]. It has been proved to be
successful in particular for the game of Go.

In chapter 2, we presented the study of the parallelization of the algo-
rithm. While the numerical results are good, they are somewhat disappoint-
ing because the bias inherent to the method is not reduced by the paralleliza-
tion. Therefore, it does not bring so much improvement against humans. The
proposed parallel version of the MCTS algorithm is completely independent
from the application to the game of Go. The fact that an efficient paralleliza-
tion is possible is an important feature of this algorithm. Today, multi-cores
computers are becoming the norm and algorithms not able to take advantage
of it will have some serious trouble to be competitive in the future.

In chapter 3, we presented a generic way of constructing an opening book
for a MCTS algorithm. This method combined with analyzes from expert
leads to great successes in 9x9 Go. MoGo won the 9x9 KGS tournament of
September 2009, with 3 victories against Zen, the second program. For one
of the victory, MoGo played 7 moves in the opening and only 4 moves outside
before Zen resigned. This method can also be applied to other games and to
construct opening book for other algorithms.

In chapter 4, we introduced different modifications of the Monte-Carlo
part of the algorithm. This leads to great improvements for MoGo thanks
to (i) inclusion of expert knowledge, like for the Nakade problem, and yet
more with (ii) careful analysis of diversity loss, like for the so-called “fill
board” modification of MoGo. The basic version of the MCTS algorithm is
independent from the domain of application. This is an advantage because
it can be applied to a lot of situations. However, very often, it already exists
some knowledge and not being able to use it would be a serious limitation.

79



6. CONCLUSION

By proposing several generic ways of adding expert knowledge to the MCTS
algorithm, we give the possibility to use it even in situation where experts
have already found useful information.

In chapter 5, we proposed an application to grammars with a real-world
application in which a variant of MCTS, namely our TAG algorithm, clearly
outperformed a baseline method which was heavily optimized by teams of
engineers. It shows that the algorithm is not limited to the use of the classical
k-armed bandit formula. It also shows that the algorithm is not restricted
to games and to artificial benchmarks.

The main difference with algorithms like Minimax and AlphaBeta is that
the search is much more in depth. This allows the exploration of a space
of higher dimension. This principle is not new as we find the same idea in
variants of AlphaBeta like iterative deepening.

The MCTS algorithm has also some serious limitations as the study on
the game of Go has shown. For example, it has some trouble to analyze
local situations where a lot of moves are equivalent. This is the case for
the problem of semeai in Go (see chapter 4). This task is easy for a human
because he can see the equivalence and generalize the solution. But MCTS
has to consider every variation in order to take the correct decision. As
this is impossible because of the number of possibilities, the situation will
be wrongly evaluated for a non negligible percentage of times. Solving this
problem will be the key to improve the performance of MCTS algorithms in
the near future.

An other improvement of the algorithm would be to find a way to handle
partially observable states. In many applications, some elements needed to
describe the situation are unknown. For example in the case of Poker, the
cards of the opponent are needed to know which actions are possible for him.
Or in the case of taking decision in an environment where some random
elements will affect the situation. The basic version of MCTS can not be
applied directly to those cases. If an efficient solution is found to improve
the MCTS algorithm to solve those problems, it could be applied to a much
larger range of applications.

80



Appendix A

Commentaries on Games
played by MoGo in Taiwan

A.1 Introduction

In order to promote and strengthen Computer Go programs and to advo-
cate the research, development and application of related fields, Chang Jung
Christian University (CJCU), National University of Tainan (NUTN) and the
Taiwanese Association for Artificial Intelligence (TAAI) collectively hosted
the “2008 Computational Intelligence Forum and World 9x9 Computer Go
Championship”. This event was conducted in Taiwan to fulfill the purpose
“Enjoy Learning in the Digital Life through Computer Go playing.” The
activities were composed of two main parts: “Computational Intelligence
Forum” and “World 9x9 Computer Go Championship”. The World 9x9
Computer Go Championship was divided into two sections. Section A was
computer program competitions, won by MoGo with no defeat, while section
B was human versus computer competitions. The organizers hope through
the championship, the fun in Go playing by human interaction with com-
puter programs can be promoted, as well as stimulating the development
and research in Computer Go.

In this chapter, we focus on the invited games for “Taiwanese Go players
vs. computer program MoGo” held at NUTN in Taiwan. Several Taiwanese
Go players, including one 9-Dan Professional (9P) Go player and eight am-
ateur Go players ranging from 1 Dan (1D) to 6D, were invited by NUTN to
play with MoGo from August 26 to October 4, 2008. In particular, Mr. Jun-
Xun Zhou, a 9P Go player, played 9x9 and 19x19 games with MoGo running
on a supercomputer with 800 CPUs, through KGS Go server on September
27, 2008. Mr. Zhou is the strongest Go player in Taiwan. He won the 2007

81



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Title Name Age Sex Dan Grade

Mr. Jun-Xun Zhou 28 Male 9D Professional
Mr. Biing-Shiun Luoh 45 Male 6D Amateur
Prof. Shang-Rong Tsai 55 Male 6D Amateur
Mr. Cheng-Shu Chang 50 Male 6D Amateur
Prof. Cheng-Wen Dong 70 Male 5D Amateur
Child Yu-Shu Huang 12 Female 4D Amateur
Child Yu-Xin Wang 11 Male 3D Amateur
Mr. Wen-Tong Yu 50 Male 3D Amateur

Child Sheng-Yu Tang 10 Male 2D Amateur

Table A.1: Profiles of all the Go players competing with MoGo.

Game Board Komi Time per side (min)

9x9 7.5 (unless otherwise stated) 30
19x19 7.5 45

Table A.2: Parameters of the games.

World LG-Cup. MoGo lost three games against Mr. Zhou, including two
9x9 games and one 19x19 game with 7 handicap stones. There was also one
19x19 game with 7 handicap stones and 45 minutes per side in the “Mr.
Zhou versus MoGo” contest. MoGo had a very favorable situation in the
first 9x9 game but made a big mistake and lost. The invited eight amateur
Go players in Taiwan included the retired professor of NUTN (Prof. Dong,
70-years-old, 5D), the CIO of a software company (Mr. Chang, 50-years-old,
6D), the Chief Referee of this championship (Prof. Tsai, 55-years-old, 6D),
two teachers of Tainan’s Go Association (Mr. Luoh, 45-years-old, 6D, and
Mr. Yu, 50-years-old, 3D), and three children of Tainan’s Go Association
(12-years-old, 4D, 11-years-old, 3D, and 10-years-old, 2D). The results re-
vealed that MoGo might reach about 3D based on the amateur Taiwanese
scale.

A.2 Game Results of MoGo vs. Human Play-

ers in Taiwan

The profiles of all the Go players competing with MoGo in Taiwan are listed
in Table A.1. The Chinese rule was adopted and the related parameters of
the game are listed in Table A.2.

During the tournament, MoGo ran respectively on the DELL PowerEdge

82



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

R900 machine with 16 cores and on the Supercomputer “Huygens” provided
by the Dutch research organizations SARA and NCF. MoGo was allowed to
use at most 25 out of the 104 nodes of the Supercomputer, i.e., 800 cores
at 4.7GHz, with a floating point processing power of 15 Teraflop (more than
1000 times Deep-Blue). The game was played through the KGS Go server
platform when MoGo ran on the Huygens cluster with different numbers
of cores. Table B.1 and A.4 lists the related information and the results
of the games that MoGo played against nine Taiwanese Go players in the
tournament. The first column shows the game number and the second column
denotes the performance of MoGo. The performance is represented by XD+
or XD- with X = L - H, where L is the rank of a player and H is the handicap
level. If MoGo won, then its performance is XD+, otherwise its performance
is XD-. The level Xkyu corresponds to -(X-1) Dan; the higher the Dan
number, the stronger the player. The 9P Mr. Zhou (9Dan on pro scale) is
assumed to be equivalent to 10D (10Dan on amateur scale). We also invited
Mr. Biing-Shiun Luoh, who is a Go teacher with 6D amateur, and Professor
Shang-Rong Tsai to comment on some game results. Their comments on 9x9
and 19x19 games are stated in the next two subsections, respectively.

A.2.1 Comments on 9x9 games

The games No. 15 and No. 16 are 9x9 and very interesting. In the two
games, MoGo played with the 9P Go player, Mr. Zhou. The boards for
these two 9x9 games are shown in Fig. A.1 and Fig. A.2, respectively.

According to Professor Tsai’s and Mr. Zhou’s comments, the game No.
15 was worth studying because MoGo might have had a chance to win. But
unfortunately, MoGo was tricked by Mr. Zhou with White 20 to lose the
game. Mr. Zhou analyzed that if the time per side could be lengthened, then
MoGo would take much more advantage, which can be revealed in Fig. A.3.
It indicates that the probability of playing the good move (E9) instead of one
of the two bad moves was below 50% since 5 minutes cores of computation,
which are quickly reached with the parallelization. The probability of playing
D8, E2 or E9 depends on the computational effort. The bad moves D8 and
E2 are probably played when MoGo has little time, and the probability of
E9 increases with increasing computational effort.

9x9 Go is the first field invaded by the MCTS methods. However, the
playing results in Taiwan were not good against top-level human players, as
MoGo lost most of his 9x9 games: two games against Mr. Zhou, three games
against Mr. Luoh. However, the komi has been modified in some games
so that MoGo did not play the komi for which its openings were optimized.
Besides, the first game against Mr. Zhou was difficult. The professional

83



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

No Performance Date Setup opponent

1 9x9 5D+ 08/26/2008 9x9 5D
2 1kyu+ 08/26/2008 19x19 H5 5D
3 9x9 6D+ 08/26/2008 9x9 6D
4 9x9 6D- 08/26/2008 9x9 6D
5 2 kyu+ 09/24/2008 19x19 H6 5D
6 1D+ 09/24/2008 19x19 H4 5D
7 1D+ 09/25/2008 19x19 H4 5D
8 1D+ 09/25/2008 19x19 H4 5D
9 1D+ 09/25/2008 19x19 H4 5D
10 9x9 6D- 09/25/2008 9x9 6D
11 9x9 6D- 09/25/2008 9x9 6D
12 2D- 09/25/2008 19x19 H4 6D
13 1D+ 09/27/2008 19x19 H5 6D
14 1D+ 09/27/2008 19x19 H5 6D
15 9x9 10D- 09/27/2008 9x9 9P
16 9x9 10D- 09/27/2008 9x9 9P
17 3D- 09/27/2008 19x19 H7 9P
18 3D+ 10/02/2008 19x19 3D
19 2D+ 10/02/2008 19x19 H4 6D
20 1D- 10/03/2008 19x19 H5 6D
21 1D- 10/03/2008 19x19 H5 6D
22 4D+ 10/04/2008 19x19 4D
23 3D+ 10/04/2008 19x19 3D
24 9x9 2D+ 10/04/2008 9x9 2D

Table A.3: Related information and results of the games that MoGo played
against humans in the tournament.

84



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

No Environment White Black Result

1 Huygens with 150CPUs MoGo Prof. Dong W+0.5
2 Huygens with 150CPUs Prof. Dong MoGo B+0.5
3 Huygens with 150CPUs Prof. Tsai MoGo B+Resign
4 Huygens with 150CPUs MoGo Mr. Luoh B+Resign
5 R900 machine Prof. Dong MoGo B+Resign
6 R900 machine Prof. Dong MoGo B+Resign
7 R900 machine Prof. Dong MoGo B+Resign
8 R900 machine Prof. Dong MoGo B+Resign
9 R900 machine Prof. Dong MoGo B+0.5
10 Huygens with 320CPUs Mr. Luoh MoGo W+Resign
11 Huygens with 320CPUs MoGo Mr. Luoh B+Resign
12 Huygens with 320CPUs Mr. Luoh MoGo W+Resign
13 Huygens with 480CPUs Prof. Tsai MoGo B+1.5
14 Huygens with 480CPUs Mr. Chang MoGo B+1.5
15 Huygens with 800CPUs Mr. Zhou MoGo W+Resign
16 Huygens with 800CPUs MoGo Mr. Zhou B+Resign
17 Huygens with 800CPUs Mr. Zhou MoGo W+Resign
18 R900 machine MoGo Mr. Yu W+11.5
19 R900 machine Mr. Luoh MoGo B+7.5
20 R900 machine Prof. Tsai MoGo W+Resign
21 R900 machine Prof. Tsai MoGo W+Resign
22 R900 machine Child Huang MoGo B+0.5
23 R900 machine Child Wang MoGo B+2.5
24 R900 machine Child Tang MoGo B+0.5

Table A.4: Related information and results of the games that MoGo played
against humans in the tournament.

85



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Figure A.1: Game No. 15. 9x9 game played against Mr. Zhou (9D Pro).
MoGo was black and lost the game. The komi was 6.5, whereas MoGo had
hard-coded first moves for komi 7.5. Comments by Prof. Tsai: MoGo was
black. 20 was a good move of White (Mr. Zhou): black answered 21 E2
whereas E9 would lead to a win for black. Comments from Prof. Luoh:
MoGo could also play C3 as a reply to D2. A posteriori analysis by MoGo
on the situation after move 20: (1) MoGo inferred that it was likely to win
with the move E9 (65% probability of winning, estimated after a few seconds
of thinking) (2) MoGo did not see clearly that E2 was a bad move (MoGo
stayed a long moment and got an estimate of roughly 50%), (3) MoGo was
likely to play the good move E9, but could also play move D8 (loosing move)
or E2. The probability of a good move increases with the computational
effort, which can be observed in Fig. A.3.

86



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

Figure A.2: Game No. 16. 9x9 game played against Mr. Zhou (9D Pro).
MoGo was white and lost the game. The komi was 6.5, whereas MoGo
had hard-coded first moves for komi 7.5. Comments by Prof. Tsai: White
(MoGo) played a bad move 16 (C5). A posteriori analysis by MoGo on the
situation before move 16 (C5): With the limited time per move, MoGo was
likely to play the bad move C5 with 50% probability, and play G6 with the
other 50% probability. Interestingly, MoGo, when playing C5, was aware
of the fact that this move did not lead to a good situation. It, however,
did not find a move with a better probability of winning. Some tricks like
distributing the computational power on several moves when the situation
seemed to be very good might be a good idea.

87



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Figure A.3: Probability of playing the good move (E9).

player estimated during the game that MoGo was likely to win the game,
before its big mistake. Nonetheless, MoGo won one out of the two games
against 6D Professor Tsai. Figure A.4 and Fig. A.5 show the results of the
game No. 3 and game No. 4, respectively. Figure A.6 shows the result of
the game No. 10.

A.2.2 Comments on 19x19 games

In this subsection, we will discuss the properties of MoGo on 19x19 games.
We focus on the following four features: (i) the main weakness of MoGo,
namely corners, (ii) the scaling with time, (iii) the behavior in handicap
games, and (iv) the main strength of MoGo in contact fights.

Weakness in the corners

The weakness in the corner appeared very clearly in the game against Mr.
Zhou, in which MoGo lost his advantage in all the corners. Figures A.7 and
A.8 display the results of the games No. 17 and No. 21, respectively. The
game No. 17 with seven handicap stones clearly shows a strong weakness
of the program. That was, life and death conditions in the corners could
not be correctly judged by MoGo. The reason was that the Monte-Carlo
simulator did not properly estimate “Semeai” situations. “Semeai” situations
are the situations which involve a different way of reasoning based on counting

88



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

Figure A.4: Game No. 3. 9x9 game won by MoGo (Black) against Prof. Tsai
(6D) Comments by Prof. Tsai: With Black (MoGo) playing good moves 11,
13 and 15, MoGo shows a good yose technique. Therefore, Black gets yose
at 17.

89



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Figure A.5: Game No. 4. 9x9 game lost by MoGo (White) against Mr.
Luoh (6D) Comments by Prof. Tsai: This game focused on complex fights.
Therefore, there were so many variations in the game that it was difficult to
analyze.

90



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

Figure A.6: Game No. 10. 9x9 game lost by MoGo (Black) against Mr. Luoh
(6D) Comments by Mr. Luoh: If MoGo (Black) had played 37 at G2 instead
of C7, Mr. Luoh (White) would have played at H4. In response to it, if Black
had answered 46, Black would have won the game. But unfortunately, Black
played 37 at C7 not G2, so Black lost the game.

91



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

liberties of groups. Other games, such as game No. 21, shown in Fig. A.8,
illustrate the same weakness.

Scaling with time

It is well known that MoGo needs time to reach its best level. In particu-
lar, the 8P Go player, Myung-Wan Kim, could win against MoGo with 11
handicap stones by a setting a short time limit. In this game, the MoGo
ran on the supercomputer Huygens with only 45 minutes per side. On the
other hand, MoGo could win against Mr. Kim at the 2008 US Congress in
Portland with 9 handicap stones for 90 minutes per side. In addition, Mr.
Kim commented that MoGo could also probably win with 8 handicap stones
only. Although humans also become stronger with a longer period of time,
the results of Table IV below show that the improvement for humans is not
so significant as for computers. But humans can spend a long time on some
important moves whereas Monte-Carlo Tree Search programs usually spend
a very regular time on each move. Criteria for deciding that spending more
time on the current situation are necessary.

MoGo in handicap games

MoGo, as well as other Monte-Carlo Tree Search algorithms, is based on the
best-first search. Hence, in the beginning of very strong handicap games,
MoGo just studies a few moves and keeps simulating one of them to ensure
that they keep a high probability of winning. As all moves have a high prob-
ability of winning at the beginning, for the underlying assumption of equal
strength between the two players (essential assumption in the MCTS algo-
rithms), MoGo keeps simulating only these initial moves. As a consequence
MoGo plays the first moves almost randomly. This can be contrasted with
the case of an equilibrated situation without handicap, in which MoGo will
spend a lot of time on various moves until MoGo finds a move with a higher
probability of winning. Interestingly, the same situation happens in games in
which MoGo has the advantage (see the comments of the first 9x9 game lost
against M. Zhou in Fig. A.1). This is clearly illlustrated by the successes of
MoGo in non-handicap games, which are shown in Figs. A.9, A.10 and A.11,
and by the statistics in section A.2.3.

Strength of MoGo in contact fights

It is well known that MCTS algorithms have a very strong ability in local
fights. Figures A.12, A.13, and A.14 illustrate it.

92



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

Figure A.7: Game No. 17. Game against Mr. Zhou (6D), with 7 handicap
stones. MoGo was Black and lost the game. Comments by Prof. Tsai: This
game was a bad game which MoGo played in this championship. White (Mr.
Zhou) profited from the four corners which meant that MoGo might not be
good at processing the corners in the game. So, White quickly won the game
after Black (MoGo) lost points at the four corners.

93



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Figure A.8: Game No. 21. Game against Prof. Tsai (6D), with 5 handicap
stones. MoGo was Black and lost the game. Comments by Prof. Tsai: In
this game, Black (MoGo) made a mistake on the right upper corner so that
Black lost the game. After playing with Black for some games, Prof. Tsai
thought that Black had made such a mistake many times. This was not a
good move.

94



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

Figure A.9: Game No. 18. Game against Mr. Yu (3D), without handicap
stones. MoGo was White and won the game.

95



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Figure A.10: Game No. 22. Game against Child Huang (4D), without
handicap stones. MoGo was Black and won the game. A big fight was
important in the game, which was favorable for MoGo.

96



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

Figure A.11: Game No. 10. Game against Child Wang (3D), without hand-
icap stones. MoGo was Black and won the game.

97



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Figure A.12: Game No. 13. Game against Prof. Tsai (6D), with 5 handicap
stones. MoGo was Black and won the game. Comments by Prof. Tsai:
Originally, White (Prof. Tsai) should have had a great chance to win in the
middle of the game. When White played 142 to attempt to break into Black’s
territory, Black played 143 and 145 to cut White’s stones. Meanwhile, White
made another mistake. That is, White played a bad move at 146. If White
had played 146 at G8 instead of H7, White would have successfully intruded
into Black’s territory to get more than 10 points. From the board of this
game, Prof. Tsai said that MoGo had a good performance on the contact
fight. In spite of the fact that Black (MoGo) also lost some points at the
corners in this game, White ended up losing the game because of this vital
mistake. Another key point of this game was the ko fight at 156 and 157.
From the result of ko fight, Black also performed ko fight well in this game.

98



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

Figure A.13: Game No. 12. Game against Mr. Luoh (6D), with 4 handicap
stones. MoGo was Black and lost the game. Comments by Prof. Tsai: Black
(MoGo) played well in the beginning of the game, but made big mistakes at
the end of the game. The key point of this game was at the fight located at
the left side. Most of the time, Black played reasonable moves, but critical
mistakes, such as Black 68, caused Black to lose the game. Anyway, Black
had a good performance in this game.

99



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

Figure A.14: Game No. 19. Game against Mr. Luoh (6D), with 4 handicap
stones. MoGo was Black and won the game. Comments by Mr. Luoh: Black
(MoGo) played the locally optimal move when White (Mr. Luoh) played 25,
which caused White to play in a difficult situation later. Therefore, Black
won the game. From the result of this game, Mr. Luoh said that Black
could not only detect the locally optimal move but also had a strong center
territory performance. But, Black performed poorly in managing the edges
and corners of the board.

100



A.2. GAME RESULTS OF MOGO VS. HUMAN PLAYERS IN TAIWAN

A.2.3 Numerical analysis of performance

A classical formula of likelihood used in the IGS rating system
(http://www.pandanet.co.jp/English/ratingsystem/) estimates the level by
likelihood maximization, based on the following formulas. The probability
of losing against the L Dan player with H handicap stones if one’s level is
B, is estimated by the following evaluation:

• Effective advantage of the opponent A = L−H −B;

• Likelihood = 1− (3/4)2A/2 if A > 0;

• Likelihood = (3/4)2A/2 if A < 0.

MoGo’s level can then be evaluated by maximizing the overall likelihood, i.e.
the product of all likelihoods. The following results can be obtained.

• (i) MoGo’s level against all games was evaluated as a bit less than 2D
(1.6D). It can further be divided into two kinds: - Games played by
the R900 machine (16 cores, 3GHz): 2.5D, and - Games played by the
Huygens cluster: 1.7D. This is quite surprising at first view, as the
Huygens cluster is a powerful machine and the speed-up is very good.
The reason is that Huygens has been devoted to the games against Mr.
Jun-Xun Zhou and 6D players, with a large number of handicaps, and
thus has low performance in the framework. This could be contrasted
with the fact that the R900 machine was tested against players in the
range of 1D to 4D. This effect introduces a much stronger bias than
the computational power. In particular, strong players always defeated
MoGo in corners, whatever may be the handicap and this will not be
solved by computational power.

• (ii) MoGo’s level against the games with at most 4 handicap stones (as
it is known that MCTS algorithms do not handle handicap properly)
was evaluated as 5D (5.3D). This is surely too high as an estimate.
The won game against a 4D player involved big fights, a situation
which was quite favorable to MoGo. Besides, MoGo might have lost
in other situations - changing just one game would have a big impact
on the estimate, due to the small number of games. We conclude
that MoGo is estimated to have a 2D-3D with (i) good skills for fights
(ii) weaknesses in corners (iii) weaknesses in favorable situations as in
handicapped games.

101



A. COMMENTARIES ON GAMES PLAYED BY MOGO IN TAIWAN

A.3 Conclusion

In this chapter, the advances in computational intelligence of MoGo are
revealed from Taiwan’s Computer Go tournaments. MoGo is introduced
through the Monte-Carlo player, the formulas used for biasing the Monte-
Carlo simulator, and the discussion over the parallelization. According to
the comments made by the Go players, MoGo performed well in fighting and
surrounding center territory. In addition, MoGo is very intelligent and its
capability is beyond their expectations. Therefore, MoGo should be around
1P professional and 2D-3D amateur for 9x9 and 19x19 games in Taiwan, re-
spectively. However, according to the Go players’ comments, MoGo still has
some drawbacks such as the skill in corners and edges, as the Monte-Carlo
player does not solve these issues.

102



Appendix B

Commentaries on Games
played by MoGo in Jeju

B.1 Introduction

During IEEE Fuzz, in Jeju Island, games were played between four of the cur-
rent best programs against a top level professional player Chou-Hsun Chou
and a high-level amateur Shen-Su Chang, with in particular the first win of a
computer program (the Canadian program Fuego) against a 9p player in 9x9
as white. On the other hand, none of the program could win against Chou-
Hsun Chou in 19x19, in spite of the handicap 7, showing that winning with
handicap 7 against a top level player is still almost impossible for computers,
in spite of the win by MoGo a few months ago with handicap 7.

Chou-Hsun Chou is a top level professional player born in Taiwan. He
became professional in 1993 and reached 7P in 1997 and 9p in 1998. He won
the LG Cup in 2007, beating Hu Yaoyu 2 to 1.

Shen-Su Chang is a 6D amateur from Taiwan.

B.2 Results and comments

The overall results are presented in Table B.1 and discussed in the rest of
this chapter. All comments around the game of Go are given by experts:
Chun-Hsun Chou 9P, Shen-Su Chang 6D, Shi-Jim Yen 6D, Shang-Rong Tsai
6D. The ability of MCTS for fights is illustrated in section B.2.1. The 9x9
opening books are discussed in section B.2.2. The weaknesses in corners are
discussed in section B.2.3. The aggressivity of bots is discussed in section
B.2.4. The weakness in semeais and in seki, probably the current most
important weakness, is discussed in section B.2.5.

103



B. COMMENTARIES ON GAMES PLAYED BY MOGO IN JEJU

No Rank Date Setup White Black Result
Scheduled games

1 9P 08/21/2009 19x19 H7 Mr. Chou Many Faces of Go W+Res.
2 6D 08/21/2009 19x19 H4 Mr. Chang MoGo W+Res.
3 9P 08/21/2009 9x9 MoGo Mr. Chou B+Res.
4 6D 08/21/2009 9x9 Many Faces of Go Mr. Chang B+6.5
5 9P 08/21/2009 9x9 Mr. Chou MoGo W+Res.
6 6D 08/21/2009 9x9 Mr. Chang Many Faces of Go W+Res.
7 9P 08/22/2009 9x9 Fuego Mr. Chou W+2.5
8 6D 08/22/2009 9x9 Zen Mr. Chang W+Res.
9 9P 08/22/2009 9x9 Mr. Chou Fuego W+Res.
10 6D 08/22/2009 9x9 Mr. Chang Zen B+Res.
11 9P 08/22/2009 19x19 H7 Mr. Chou Zen W+Res.
12 6D 08/22/2009 19x19 H4 Mr. Chang Fuego B+Res.

Table B.1: Overview of results; games played during IEEE-Fuzz at Jeju
Island, Korea.

B.2.1 Ability for fights

MCTS/UCT algorithms are known for being very strong in killing. This is
illustrated in the game won by Zen as white against Shen-Su Chang 6D (Fig.
B.1, left).

B.2.2 9x9 opening books

We distinguish below handcrafted opening books and self-built opening
books.

Handcrafted opening books

Fuego’s opening book is handcrafted; nonetheless, Fuego plays a bad move
very early, namely the “kosumi” (move 3, Fig. B.2, left). This move was
supposed to be good with a komi of 6.5 but is not aggressive enough with a
komi of 7.5. Kosumis (diagonal move), according to [Audouard et al., 2009],
are very often bad moves in the beginning of a 9x9 game. On the other hand,
Fuego won as white with good opening moves (only 3 moves in the opening
book), see Fig. B.2 (right).

Opening moves by Zen were all good in 9x9 according to experts; Zen
won one game as black and one game as white against Shen-Su Chang 6D
(Fig. B.1). There were very few moves in the opening book.

104



B.2. RESULTS AND COMMENTS

Figure B.1: Left: game won by Zen as white against Shen-Su Chang 6D;
black made a mistake (move 29 at B6 instead of B4), immediately punished
by White killing E5. Right: game won by Zen as black against Shen-Su
Chang 6D. In both cases, Zen had good opening moves. As black, Zen had
a big moyo.

Self-built opening books

MoGo has a huge opening book built on a cluster [Audouard et al., 2009].
However, the two openings (black and white) contained mistakes which were
exploited by Chun-Hsun Chou 9P, who won both as black and as white
against MoGo (Figure B.3).

B.2.3 Weaknesses in corners

It is known that MCTS algorithms have a bad strategy, as they try to develop
a big moyo instead of focusing in corners; this has been related to cosmic go.
In 9x9, having a big moyo can be efficient, as in e.g. Fig. B.1 (right) where
Zen, with a big moyo only, wins the game as black. On the other hand, in
19x19, protecting the moyo is very difficult, and it is therefore often preferable
to take care of corners.

For example, ManyFaces lost against Chun-Hsun Chou 9P in spite of
handicap 7 with 4 corners taken by the pro, and then the moyo also invaded
(N15, N11 at least can have access to the moyo, Fig. B.4, left). Zen and
MoGo lost against Chun-Hsun Chou 9P with the same settings. Shen-Su
Chang won his games with H4, except the one against Fuego (Fig. B.4,
right) in which he made a mistake and could not invade the moyo.

105



B. COMMENTARIES ON GAMES PLAYED BY MOGO IN JEJU

Figure B.2: Left: game won as white by Chun-Hsun Chou 9P against Fuego.
Move 3 (handcrafted move from the opening book) is a kosumi and is con-
sidered to be bad in early 9x9 game. Right: game won as white by Fuego
against Chun-Hsun Chou 9p; according to experts the opening by Fuego was
good.

B.2.4 Robots are too aggressive

It is often said that MCTS programs are quite efficient for killing, but that
they are too confident on their ability to kill. This is confirmed in e.g. Fig.
B.6.

B.2.5 Weaknesses in semeais and sekis

MCTS programs are known for being weak in semeais; this is also true for
sekis.

Figure B.2, where Fuego made a mistake in the opening, is also an exam-
ple of semeai, as B8 could only live by killing A5; however there are much
more liberties for white which easily kills B8 by nakade.

Figure B.7 (left) shows an example in which a seki was used by the human
for winning as black against ManyFaces in 9x9. Fig. B.7 (right) shows an
example in which the human won by semeai against ManyFaces, also in 9x9.

Figure B.5 (left) shows that Zen lost a semeai in the upper-right corner,
and Fig. B.5 (right) shows that MoGo lost a semeai in the upper right corner,
and only understood it when the situation was completely clarified by the
pro.

106



B.3. CONCLUSIONS

Figure B.3: Situation at the end of MoGo’s opening book as white (left)
and black (right). According to Chun-Hsun Chou 9P, the situation at the
end of the opening book (the two situations presented here) was bad.

B.3 Conclusions

During IEEE Fuzz in Jeju Island, Fuego won the first ever victory of a com-
puter against a top pro in 9x9 with komi 7.5 as white. Komi should be
smaller according to the experts, if we want the setting to be fair; this would
have a big impact on the opening book. The 9x9 opening books could easily
be made stronger with the help of high-level players; current handcrafted
opening books are too short, and automatically built opening books con-
tain errors. Humans suggest 13x13 as a future challenge, and also consider
that ensuring a win with handicap 7, from the current strength of programs,
should be possible by including a big fuseki database.

Technically speaking, semeais and sekis are still poorly analyzed by
MCTS, in spite of many research on criticality [Coulom, 2009] and introduc-
tion of tactical solvers [Cazenave and Helmstetter, 2005]. Also, MCTS pro-
grams are too much interested in the moyo and neglect the corners. There’s
no learning from one branch of the tree search to another, and no learning
on the Monte-Carlo part in current programs.

It is interesting to point out the tools that were used also in
other successful applications of MCTS/UCT. UCT is the most classi-
cal formula used in one-player applications ([Auger and Teytaud, pted,
Rolet et al., 2009] for non-linear optimization and active learning respec-
tively), but there are other bandit rules also ([De Mesmay et al., 2009] for
optimization on grammars, using max-bandits). There are plenty of ap-
plications to other games; for Havannah (a game which is specially dif-

107



B. COMMENTARIES ON GAMES PLAYED BY MOGO IN JEJU

Figure B.4: Left: ManyFaces was black, handicap 7, against Chun-Hsun
Chou 9P and lost with the 4 corners taken by the pro; the pro also invaded
the moyo. Right: Fuego was black, H4, against Shen-Su Chang 6D. White
was in very good situation on the picture, but played a bad move instead of
L15 which would invade the moyo and win. Fuego could keep the moyo and
therefore won.

ficult for computers and for which the RAVE heuristic is highly efficient
[Teytaud and Teytaud, 2009]), general game playing [Sharma et al., 2008];
multiplayer games [Sturtevant, 2008] and in particular multiplayer Go
[Cazenave, 2008]. It has been shown that for sudden-death games there are
fruitful possible modifications [Winands et al., 2008], and for partially ob-
servable games like phantom-Go heuristic adaptations have been proposed
[Cazenave, 2006, Cazenave and Borsboom, 2007] - a principled application
to the partially observable case has been proposed in [Rolet et al., 2009] but
it is deeply limited to one-player applications.

108



B.3. CONCLUSIONS

Figure B.5: Left: Zen was black, handicap 7, against Chun-Hsun Chou 9P
and lost with 3 corners taken by the pro (white stones on the bottom right
are dead); the pro also invaded the moyo. The situation was good for black
at move 65 but after that Zen made some mistakes by not defending the
corners which caused the lost. Right: MoGo was black, H7, against Chun-
Hsun Chou 9P; as in other 19x19 games, the pro takes most of the corners,
invades the moyo by playing K4 and wins. MoGo could have prevented the
invasion by playing K4 itself instead of F13.

Figure B.6: MoGo is playing as black against Shen-Su Chang with H4. MoGo
plays the circled black stone, trying to kill the two white stones; this was
impossible, and as MoGo was keeping trying to kill white, it lost the upper
center part of the goban and lost.

109



B. COMMENTARIES ON GAMES PLAYED BY MOGO IN JEJU

Figure B.7: Left: ManyFaces plays as white and has two groups alive;
nonetheless, black wins thanks to the seki in the upper right corner (the
two black stones are alive). Right: ManyFaces plays as black and looses
by semeai in the lower part. In both cases, ManyFaces was playing against
Shen-Su Chang 6D.

110



Bibliography

[Agrawal, 1995] Agrawal, R. (1995). The continuum-armed bandit prob-
lem. Society for Industrial and Applied Mathematics J. Control Optim.,
33(6):1926–1951.

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single processor ap-
proach to achieving large scale computing capabilities. In AFIPS ’67
(Spring): Proceedings of the April 18-20, 1967, spring joint computer con-
ference, pages 483–485, New York, NY, USA. ACM.

[Audouard et al., 2009] Audouard, P., Chaslot, G., Hoock, J.-B., Rimmel,
Arpad, Perez, J., and Teytaud, O. (2009). Grid coevolution for adaptive
simulations; application to the building of opening books in the game of
Go. In EvoGames, Tuebingen Allemagne. Springer.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Machine Learning,
47(2/3):235–256.

[Auger and Teytaud, pted] Auger, A. and Teytaud, O. (Accepted). Contin-
uous lunches are free plus the design of optimal optimization algorithms.
Algorithmica.

[Banks and Sundaram, 1992] Banks, J. S. and Sundaram, R. K. (1992).
Denumerable-armed bandits. Econometrica, 60(5):1071–96. available at
http://ideas.repec.org/a/ecm/emetrp/v60y1992i5p1071-96.html.

[Berry et al., 1997] Berry, D. A., Chen, R. W., Zame, A., Heath, D. C., and
Shepp, L. A. (1997). Bandit problems with infinitely many arms. Ann.
Statist., 25(5):2103–2116.

[Bertsekas, 2009] Bertsekas, D. P. (2009). Neuro-dynamic programming. In
Encyclopedia of Optimization, pages 2555–2560.

111



BIBLIOGRAPHY

[Bouzy, 2005] Bouzy, B. (2005). Associating domain-dependent knowledge
and monte carlo approaches within a go program. In Chen, K., editor,
Information Sciences, Heuristic Search and Computer Game Playing IV,
volume 175, pages 247–257.

[Bouzy and Chaslot, 2005] Bouzy, B. and Chaslot, G. (2005). Bayesian gen-
eration and integration of k-nearest-neighbor patterns for 19x19 go. In G.
Kendall and Simon Lucas, editors, IEEE 2005 Symposium on Computa-
tional Intelligence in Games, Colchester, UK, pages 176–181.

[Bouzy and Helmstetter, 2003] Bouzy, B. and Helmstetter, B. (2003). De-
velopments on monte carlo go. In Advances in Computer Games 10.

[Bruegmann, 1993] Bruegmann, B. (1993). Monte-carlo go. available at
http://www.cgl.ucsf.edu/go/Programs/Gobble.html.

[Buro, 2001] Buro, M. (2001). Toward opening book learning. In Machines
that learn to play games, pages 81–89, Commack, NY, USA. Nova Science
Publishers, Inc.

[Cazenave, 2006] Cazenave, T. (2006). A phantom-go program. In Advances
in Computer Games, pages 120–125.

[Cazenave, 2008] Cazenave, T. (2008). Multi-player go. In Computers and
Games, pages 50–59.

[Cazenave, 2009] Cazenave, T. (2009). Nested monte-carlo search. Interna-
tional Joint Conferences on Artificial Intelligence, pages 456–461.

[Cazenave and Borsboom, 2007] Cazenave, T. and Borsboom, J. (2007).
Golois wins phantom go tournament. International Computer Games As-
sociation Journal, 30(3):165–166.

[Cazenave and Helmstetter, 2005] Cazenave, T. and Helmstetter, B. (2005).
Combining tactical search and monte-carlo in the game of go. IEEE CIG
2005, pages 171–175.

[Cazenave and Jouandeau, 2007] Cazenave, T. and Jouandeau, N. (2007).
On the parallelization of UCT. In Proceedings of Computer Games Work-
shop 2007, pages 93–101.

[Chaslot et al., 2009] Chaslot, G., Fiter, C., Hoock, J.-B., Rimmel, Arpad,
and Teytaud, O. (2009). Adding expert knowledge and exploration in
Monte-Carlo Tree Search. In Advances in Computer Games, Pamplona
Espagne. Springer.

112



BIBLIOGRAPHY

[Chaslot et al., 2007] Chaslot, G., Winands, M., Uiterwijk, J., van den
Herik, H., and Bouzy, B. (2007). Progressive strategies for monte-carlo
tree search. In Wang, P. et al., editors, Proceedings of the 10th Joint
Conference on Information Sciences (JCIS 2007), pages 655–661. World
Scientific Publishing Co. Pte. Ltd.

[Chaslot et al., 2008] Chaslot, G., Winands, M., and van den Herik, H.
(2008). Parallel monte-carlo tree search. In van d. Herik., H., X.Xu, Ma,
Z., and Winands, M., editors, Proceedings of the Conference on Computers
and Games 2008 (CG 2008), volume 5131 of Lecture Notes in Computer
Science, pages 60–71. Springer, Berlin Heidelberg.

[Chatriot et al., 2008] Chatriot, L., Fiter, C., Chaslot, G., Gelly, S., Hoock,
J.-B., Perez, J., Rimmel, Arpad, and Teytaud, O. (2008). Combiner con-
naissances expertes, hors-ligne, transientes et en ligne pour l’exploration
Monte-Carlo. Revue d’Intelligence Artificielle.

[Cicirello and Smith, 2005] Cicirello, V. and Smith, S. (2005). The max k-
armed bandit: A new model for exploration applied to search heuristic
selection. In Proc. 20th National Conf. on Artificial Intelligence (AAAI),
pages 1355–1361.

[Collet et al., 2000] Collet, P., Lutton, E., Raynal, F., and Schoenauer, M.
(2000). Polar ifs + parisian gp = efficient inverse ifs problem solving.
Genetic Programming and Evolvable Machines, 1(4):339–361.

[Coquelin and Munos, 2007] Coquelin, P.-A. and Munos, R. (2007). Ban-
dit algorithms for tree search. In Proceedings of Uncertainty in Artificial
Intelligence 2007.

[Coulom, 2006] Coulom, R. (2006). Efficient selectivity and backup operators
in monte-carlo tree search. In P. Ciancarini and H. J. van den Herik,
editors, Proceedings of the 5th International Conference on Computers and
Games, Turin, Italy.

[Coulom, 2007] Coulom, R. (2007). Computing elo ratings of move pat-
terns in the game of go. In Computer Games Workshop, Amsterdam, The
Netherlands.

[Coulom, 2009] Coulom, R. (2009). Criticality: a monte-carlo heuristic for
go programs. Invited talk at the University of Electro-Communications,
Tokyo, Japan.

113



BIBLIOGRAPHY

[Dani and Hayes, 2006] Dani, V. and Hayes, T. P. (2006). Robbing the ban-
dit: less regret in online geometric optimization against an adaptive ad-
versary. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 937–943, New York, NY, USA.
ACM Press.

[De Mesmay et al., 2009] De Mesmay, F., Rimmel, Arpad, Voronenko, Y.,
and Püschel, M. (2009). Bandit-Based Optimization on Graphs with Ap-
plication to Library Performance Tuning. In International Conference on
Machine Learning, Montréal Canada.

[Donninger and Lorenz, 2006] Donninger, C. and Lorenz, U. (2006). Innova-
tive opening-book handling. In Advance in Computer Games, pages 1–10.

[DP Landau, 2005] DP Landau, K. B. (2005). A guide to Monte Carlo sim-
ulations in statistical physics.

[Drake and Chen, 2008] Drake, P. and Chen, Y.-P. (2008). Coevolving par-
tial strategies for the game of go. In International Conference on Genetic
and Evolutionary Methods. CSREA Press.

[Frigo and Johnson, 2005] Frigo, M. and Johnson, S. (2005). The design and
implementation of FFTW3. Proc. IEEE, 93(2):216–231.

[Gelly et al., 2008] Gelly, S., Hoock, J.-B., Rimmel, Arpad, Teytaud, O.,
and Kalemkarian, Y. (2008). On the Parallelization of Monte-Carlo plan-
ning. In International Conference on Informatics in Control, Automation
and Robot, Madeira Portugal.

[Gelly and Silver, 2007] Gelly, S. and Silver, D. (2007). Combining online
and offline knowledge in uct. In ICML ’07: Proceedings of the 24th inter-
national conference on Machine learning, pages 273–280, New York, NY,
USA. ACM Press.

[Hussain et al., 2006] Hussain, Z., Auer, P., Cesa-Bianchi, N., Newnham, L.,
and Shawe-Taylor, J. (2006). Exploration vs. exploitation challenge. Pascal
Network of Excellence.

[Johnson and Püschel, 2000] Johnson, J. and Püschel, M. (2000). In search
of the optimal Walsh-Hadamard transform. In Proc. Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), volume 6, pages 3347–3350.

[Kato and Takeuchi, 2008] Kato, H. and Takeuchi, I. (2008). Parallel monte-
carlo tree search with simulation servers. In 13th Game Programming
Workshop (GPW-08).

114



BIBLIOGRAPHY

[Kocsis and Szepesvari, 2005] Kocsis, L. and Szepesvari, C. (2005).
Reduced-variance payoff estimation in adversarial bandit problems. In
Proceedings of the ECML-2005 Workshop on Reinforcement Learning in
Non-Stationary Environments.

[Kocsis and Szepesvari, 2006] Kocsis, L. and Szepesvari, C. (2006). Bandit-
based monte-carlo planning. In European Conference on Machine Learning
2006, pages 282–293.

[Korf, 1985] Korf, R. (1985). Depth-first Iterative Deepening: an Optimal
Admissible Tree Search. Artificial Intelligence, 27:97–109.

[Korf and Chickering, 1994] Korf, R. and Chickering, D. (1994). Best-first
search. Artificial Intelligence, 84:299–337.

[Korpaas et al., 2003] Korpaas, M., Holen, A. T., and Hildrum, R. (2003).
Operation and sizing of energy storage for wind power plants in a mar-
ket system. International Journal of Electrical Power & Energy Systems,
25(8):599–606.

[Krauth, 2006] Krauth, W. (2006). Algorithms and Computations. Oxford
University Press.

[Lai and Robbins, 1985] Lai, T. and Robbins, H. (1985). Asymptotically
efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4–
22.

[Lee et al., 2009a] Lee, C.-S., Mei Hui, W., Hong, T.-P., Chaslot, G., Hoock,
J.-B., Rimmel, Arpad, Teytaud, O., and Kuo, Y.-H. (2009a). A Novel
Ontology for Computer Go Knowledge Management. In IEEE FUZZ, Jeju
Corée, République de.

[Lee et al., 2009b] Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rim-
mel, Arpad, Teytaud, O., Tsai, S.-R., Hsu, S.-C., and Hong, T.-P.
(2009b). The Computational Intelligence of MoGo Revealed in Taiwan’s
Computer Go Tournaments. IEEE Transactions on Computational Intel-
ligence and AI in games.

[Metropolis and Ulam, 1949] Metropolis, N. and Ulam, S. (1949). The monte
carlo method. In Journal of the american statistical association, volume 44.

[Müller, 2002] Müller, M. (2002). Computer go. Artificial Intelligence, 134(1-
2):145–179.

115



BIBLIOGRAPHY

[Nagashima et al., 2006] Nagashima, J., Hashimoto, T., and Iida, H. (2006).
Self-playing-based opening book tuning. New Mathematics and Natural
Computation (NMNC), 2(02):183–194.

[Ong et al., 2007] Ong, C., Quek, H., Tan, K., and Tay, A. (2007). Discover-
ing chinese chess strategies through coevolutionary approaches. In IEEE
Symposium on Computational Intelligence and Games, pages 360–367.

[P Boyle, 1997] P Boyle, M Broadie, P. G. (1997). Monte carlo methods for
security pricing. In Journal of Economic Dynamics and Control.

[Pearl, 1984] Pearl, J. (1984). Heuristics. Intelligent search strategies for
computer problem solving. Addison-Wesley.

[Plaat et al., 1996] Plaat, A., Schaeffer, J., Pils, W., and de Bruin, A. (1996).
Best-first fixed depth minimax algorithms. Artificial Intelligence, 87:255–
293.

[Püschel et al., 2005] Püschel, M., Moura, J. M. F., Johnson, J., Padua, D.,
Veloso, M., et al. (2005). SPIRAL: Code generation for DSP transforms.
Proc. of the IEEE, 93(2):232– 275.

[Quante et al., 2009] Quante, R., Fleischmann, M., and Meyr, H. (2009).
A stochastic dynamic programming approach to revenue management in
a make-to-stock production system. Research Paper ERS-2009-015-LIS
RevisionDate: 2009-07-29, Erasmus Research Institute of Management
(ERIM), ERIM is the joint research institute of the Rotterdam School of
Management, Erasmus University and the Erasmus School of Economics
(ESE) at Erasmus University Rotterdam.

[Ralaivola et al., 2005] Ralaivola, L., Wu, L., and Baldi, P. (2005). Svm and
pattern-enriched common fate graphs for the game of go. In Proceedings of
European Symposium on Artificial Neural Networks 2005, pages 485–490.

[Rolet et al., 2009] Rolet, P., Sebag, M., and Teytaud, O. (2009). Optimal
active learning through billiards and upper confidence trees in continous
domains. In Proceedings of the European Conference on Machine Learning.

[Sharma et al., 2008] Sharma, S., Kobti, Z., and Goodwin, S. (2008). Knowl-
edge generation for improving simulations in uct for general game playing.
pages 49–55.

[Siu et al., 2001] Siu, T. K., Nash, G. A., and Shawwash, Z. K. (2001). A
practical hydro, dynamic unit commitment and loading model. Power
Systems, IEEE Transactions on, 16(2):301–306.

116



BIBLIOGRAPHY

[Stockman, 1979] Stockman, G. (1979). A minimax algorithm better than
Alpha-Beta ? Artificial Intelligence, 12:179–196.

[Streeter and Smith, 2006] Streeter, M. J. and Smith, S. F. (2006). A sim-
ple distribution-free approach to the max k-armed bandit problem. In
Principles and Practice of Constraint Programming (CP), pages 560–574.

[Sturtevant, 2008] Sturtevant, N. R. (2008). An analysis of uct in multi-
player games. In Computers and Games, pages 37–49.

[Teytaud and Teytaud, 2009] Teytaud, F. and Teytaud, O. (2009). Creat-
ing an Upper-Confidence-Tree program for Havannah. In Advances in
Computer Games 12, Pamplona Espagne.

[Teytaud and Fournier, 2008] Teytaud, O. and Fournier, H. (2008). Lower
bounds for evolution strategies using vc-dimensio n. In Parallel Problem
Solving From Nature, pages 102–111.

[Tromp and Farnebäck, 2006] Tromp, J. and Farnebäck, G. (2006). Combi-
natorics of go. In Proceedings of 5th International Conference on Computer
and Games, Torino, Italy.

[Voronenko, 2008] Voronenko, Y. (2008). Library Generation for Linear
Transforms. PhD thesis, Electrical and Computer Engineering, Carnegie
Mellon University.

[Voronenko et al., 2009] Voronenko, Y., de Mesmay, F., and Püschel, M.
(2009). Computer generation of general size linear transform libraries. In
Int. Symp. on Code Generation and Optimization (CGO).

[Wang et al., 2008] Wang, Y., Audibert, J.-Y., and Munos, R. (2008). Al-
gorithms for infinitely many-armed bandits. In Advances in Neural Infor-
mation Processing Systems, volume 21.

[Wang and Gelly, 2007] Wang, Y. and Gelly, S. (2007). Modifications of
UCT and sequence-like simulations for Monte-Carlo Go. In IEEE Sympo-
sium on Computational Intelligence and Games, Honolulu, Hawaii, pages
175–182.

[Winands et al., 2008] Winands, M. H. M., Björnsson, Y., and Saito, J.-T.
(2008). Monte-carlo tree search solver. In Computers and Games, pages
25–36.

117



BIBLIOGRAPHY

[Zobrist, 1990] Zobrist, A. (1990). A new hashing method with applica-
tion for game playing. International Computer Chess Association Journal,
13(2):69–73.

118


	Acknowledgements
	Citation
	Introduction
	Motivations
	The Game of Go
	Other Problems

	State of the art
	Minimax
	Alpha Beta
	Nested Monte Carlo
	Dynamic Programming

	Bandit Based Monte Carlo Tree Search 
	Monte Carlo Simulations
	Bandits
	Monte Carlo Tree Search
	Classical Improvements


	Parallelization
	Introduction
	Difficulties
	State of the art

	Contribution
	Results on the Multi-Core Parallelization
	Cluster Parallelization
	Generalization of the multi-core approach
	An alternate solution with less communications


	Conclusion

	Opening Database
	Introduction
	Difficulties
	State of the art

	Contribution
	Algorithm
	Why we should mutate very bad moves only
	Robustness of the Opening Books

	Validation

	Conclusion

	Expert Knowledge and Diversity Preservation
	Introduction
	Difficulties
	State of the art

	Contribution
	Adding Expert Knowledge in the Tree
	Adding Expert Knowledge and preserving diversity in the Monte Carlo part
	Fill the Board: Random Perturbations of the Monte Carlo Simulations
	The ``Nakade" Problem
	Approach Moves


	Conclusion

	Threshold Ascent applied to Graph
	Introduction
	Library Performance Tuning
	Background: Linear Transforms
	Adaptive Libraries and Search

	State of the art: Dynamic Programming

	Contribution
	Formal Problem Statement
	Algorithm
	Descend
	Evaluate
	Backpropagate
	Pseudocode and Remark
	Applicability of TAG

	Validation

	Conclusion

	Conclusion
	Commentaries on Games played by MoGo in Taiwan
	Introduction
	Game Results of MoGo vs. Human Players in Taiwan
	Comments on 9x9 games
	Comments on 19x19 games
	Weakness in the corners
	Scaling with time
	MoGo in handicap games
	Strength of MoGo in contact fights

	Numerical analysis of performance

	Conclusion

	Commentaries on Games played by MoGo in Jeju
	Introduction
	Results and comments
	Ability for fights
	9x9 opening books
	Handcrafted opening books
	Self-built opening books

	Weaknesses in corners
	Robots are too aggressive
	Weaknesses in semeais and sekis

	Conclusions

	Index
	Bibliography

