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RÉSUMÉ 
 
 
 
Enjeux : 
Le pétrole ne se manifeste à distance par aucune propriété physique permettant sa découverte. C'est pourquoi 
l'exploration pétrolière consiste à imager par la méthode sismique les pièges susceptibles d'en contenir. Le but de la 
migration, ou rétropropagation numérique des enregistrements sismiques, est de former une image des structures 
géologiques en replaçant en profondeur les réflecteurs qui ont causé les échos enregistrés. Les variations de la 
vitesse de propagation des ondes, de 1500 m/s dans l'eau à 6000 m/s et plus dans les roches sédimentaires 
compactes, rendent cette tâche critique car un modèle de vitesse erroné donne une image très distordue. Le coût 
énorme des forages effectués sur des structures fausses impose l'obtention d'images précises du sous-sol et donc la 
détermination du champ des vitesses sismiques, surtout en contexte de piémonts lorsque les images sont peu 
lisibles.  
 
Positionnement du sujet : 
Toutes les méthodes de détermination des vitesses exploitent la redondance des données sismiques : chaque portion 
de réflecteur renvoie plusieurs échos correspondant à des couples source-récepteur dont le déport, la distance de la 
source au récepteur, diffère. Certaines méthodes telles que la tomographie fonctionnent bien lorsque les structures 
géologiques sont assez simples pour que les réflexions soient bien reconnaissables sur l'ensemble des 
enregistrements, mais ce n'est pas le cas dans les piémonts. Nous avons donc choisi la migration itérative, dont le 
principe est que, la Terre étant unique, les images obtenues avec les différents déports doivent être superposables. 
Ce critère ne suffisant généralement pas à déterminer les vitesses correctes, il est nécessaire d'introduire des 
informations géologiques. Pour l'optimisation du champ des vitesses, les méthodes de gradient étant 
d'implémentation fort lourde, nous avons choisi un algorithme évolutionnaire pour sa simplicité, son adaptabilité, et 
surtout son automaticité. De plus, la diversité de la population optimale donne une idée de l'incertitude qui entache 
le résultat. 
 
Résultats : 
Parmi tous les champs de vitesses possibles, bien peu ont une géométrie géologiquement acceptables, d'où l'idée de 
ne manipuler que des modèles satisfaisant au critère de coupe équilibrée. Une coupe est équilibrée lorsqu'elle est 
compatible avec les hypothèses de conservation des épaisseurs et des longueurs mesurées le long des couches. 
Dans une première partie, nous avons montré que l'on pouvait non seulement générer des modèles 
géométriquement plausibles, mais aussi les optimiser relativement à des données de pendage de couches ou de 
position de chevauchements disponibles à l'affleurement ou dans des puits. La seconde partie concernant 
l'optimisation des vitesses n'a pu être reliée à la première. Dans cette seconde partie, nous avons représenté le 
champ de vitesses par des grilles. Par le choix d'un algorithme évolutionnaire multi objectif, nous avons pu faire 
coopérer efficacement les critères de semblance et de semblance différentielle qui, tous deux, mesurent l'invariance 
de l'image migrée quant au déport. Nous avons amélioré le réalisme des solutions en les lissant dans la direction du 
pendage. Enfin, nous avons extrait, des écarts à cette invariance, des corrections des grilles de vitesse qui 
accélèrent notablement la convergence. Les résultats obtenus sur les données Marmousi, un cas synthétique 
réaliste, sont satisfaisants. Sur les données réelles de Mer du Nord, le dôme de sel reste un problème non résolu par 
les méthodes automatiques, mais ses environs sont bien imagés. 
 
Transfert des résultats vers l’industrie : 
Le principal intérêt de la méthode développée est son automaticité et sa souplesse. Son créneau est le dégrossisage 
rapide de problèmes difficiles, avant qu'un interprétateur ne reprenne la main avec des méthodes interactives plus 
poussées, mais aussi plus exigeantes en expérience et plus consommatrices de temps humain. 
 
Mots clés : 
Imagerie sismique, piémonts, analyse de vitesse, semblance, algorithmes évolutionnaires, algorithmes génétiques, 
multi objectif. 
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Chapter 1 

Introduction 
 
 
 
To have significant geological information of earth requires an integration of different 

types of data and approaches. However one of the most successful approaches uses 

geophysical methods based on seismic data. Goal of seismic data processing is to convert 

a recorded wave field into a structural or lithological image of the subsurface. This 

requires a model of the wave propagation velocities of the subsurface. Nevertheless 

obtaining this model is often the most difficult processing step, in areas of complex 

structure such as foothill or salt body. The goal of this work is to develop an automatic 

seismic velocity estimation technique for such region using Migration Velocity Analysis 

(MVA) and global optimisation methods. 

 

1.1. Migration Velocity Analysis 
Most velocity estimation methods are based on the measurement of the kinematics of the 

reflections. An important difference among them lies in the way kinematics are measured, 

either directly from the data in the time domain, or after migration in the image domain. 

When geology structures are mild and lateral velocity variations are smooth, the 

kinematics measured on data space are usually robust and accurate. However in the 

presence of complex structure and/or strong lateral velocity variations, measurement of 

kinematic on the image space is more robust and accurate, even if migration velocity is 
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far from true velocity. Since migration focuses the energy, the incomplete focusing of 

reflection is a measurement of velocity error. Velocity estimation methods that use the 

focusing capability of migration to extract kinematics error are commonly known as 

Migration Velocity Analysis (MVA) methods.  

  

MVA is an iterative process where each iteration is made of two distinct steps: (1) data 

are imaged by prestack migration and (2) the velocity function is updated based on the 

kinematics error measured on the migrated data. Due to the highly non-linear relationship 

between the velocity model and the focusing quality of image, velocity estimation is 

better solved when posed as optimisation problem. Both gradient and global optimisation 

methods have been used to estimate velocity. But because the objective function that is 

optimised during MVA is non-convex and has several local minima, the quality of initial 

velocity model is crucial for global convergence with gradient methods. On the other 

hand extreme computation cost is severe hindrance with global optimisation methods. 

The goal of this thesis is to develop a robust and efficient migration velocity estimation 

technique that uses global optimisation methods and remains computationally tractable.  

 

 

1.2. Global optimisation methods 
The objective of global optimization is to find the globally best solution of model, in the 

(possible or known) presence of multiple local optima. Since velocity optimisation 

problems in geologically complex regions are non-linear, non-convex and ambiguous, we 

have chosen Evolutionary Algorithms (EAs) for optimisation. EAs are stochastic search 

methods that mimic the metaphor of natural biological evolution. EAs operate on a 

population of potential solutions, applying the principles of blind variation plus survival 

of the fittest to produce hopefully better and better solutions.  

 

Generic EAs have to search a large parameter space with a little exploitation of domain-

specific information from previous iteration to find global optimal solutions. 

Consequently they are usually computationally expensive and/or have to give up on 
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precision. In this thesis attempts have been made to reduce the computational cost of EA 

by adding geological and geophysical knowledge to the component of the algorithms, at 

the representation level, in the variation operators and in the objective function.  

 

1.3. Representation 
Acute computation demand of global methods imposed to a concise representation of 

velocity model. A lot of attempts have been made for representations e.g. B-spline, Bi-

cubic, horizontal layers, and Voronoi representation. It has been noticed that some 

representations are very concise, however unable to represent a real geological structure, 

whereas other which are geologically significant require a large number of parameters. 

Therefore in this thesis we made an attempt to represent a velocity model for foothill 

structure that is concise as well as geologically significant.  

 

In this work, after some effort to design a concise and geologically meaningful 

representation, we finally concluded that the grid representation was the most flexible 

one, even though it implies a large number of unknown parameter and induces a high 

computational cost. Hence we started to look for domain specific ways to reduce the 

computational cost. 

  

1.4. Domain Knowledge 
 Traditional methods extract a lot of  information about the velocity  model from the 

geological knowledge and the migrated data to correct the velocity model, as for example 

the geological  knowledge that  “generally velocity increase with depth, varition of 

velocity along layer is small” and “salt body have almost fix velocity”. A lot of 

information about the velocity can also be extrated from the gathers using residual move 

out (RMO) curves. They also provide information about global as well as local goodness 

of a velocity model. Hence we decided to use these information in our approach and have 

therefore developed domain specific operators. The result is a  customised hybrid 

algorithms. 
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1.5. Thesis overview and contributions 
Review of EAs and MOEAs: Because we made the choice of EAs as optimisation 

methods we started by giving in chapter 2, an overview of Evolutionary Algorithms. First, 

concepts and development of evolutionary algorithms along with different components of 

EAs (crossover, mutation, and selection) are described. Multiobjective optimisation and 

related concept are then introduced and state-of-art MultiObjective Evolutionary 

Algorithms (MOEAs) are surveyed. 

  

State of art in velocity optimisation tools: In chapter 3, we review the state of the art of 

seismic velocity estimation techniques. We discuss time domain techniques i.e. 

tomography and waveform inversion, depth domain techniques i.e. tomography migration 

velocity analysis, and fully automatic techniques based on Differential Semblance 

Optimisation (DSO).      

 

Representation: In chapter 4, we present a cross-section balancing representation for 

foothills (Singh et al. 2005a and 2005b). The goal is to represent a subsurface structure in 

a geologically sound manner, thus obtaining a concise representation of velocity models. 

We successfully apply this representation to the seismic velocity inversion with 

optimised geological structure (Singh et al. 2005).  However the limited success of a first 

attempt to simultaneously invert both geological and geophysical criteria leads to go back 

to grid representation. At this point, looking for an optimal grid size, some experiments 

on different grid sampling demonstrate that a too coarse sampling may lead to ambiguity. 

  

Ingredients of velocity inversion: In Chapter 5, we modify the Differential Semblance 

function (Symes, 1991) in both offset and angle domains. Modified differential 

semblance functions are “more convex” than the original one, and less sensitive to 

migration parameter settings, even for large velocity errors (Singh et al. 2005) (we shall 

use those modified differential semblance function and semblance function 

simultaneously to optimize velocity model in Chapter 6). We also present an automatic 
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Residual MoveOuts (RMO) extraction technique from gathers to estimate the 

approximate velocity error (that will be used in Chapter 6 for correcting the velocity error 

of the models during their optimization). Structural trends of the geological model 

provide significant information about the velocity model. Here we extract this 

information and use it reduce the velocity variation along the layers. 

 

Automatic seismic velocity estimation using MOEA: In Chapter 6, we present our 

main realization, the algorithm for automatic seismic velocity inversion, and some results 

obtained on both two problems. This velocity analysis method inherits the characteristics 

of wavefield extrapolation, mainly robustness in presence of large and sharp velocity 

contrast, as well as its ability to cope with multipathing. Since a global optimisation 

method is used, we are free from linearization of the wave equation. The basis of our 

algorithm is a Multi-Objective Evolutinoary Algorithm, but, in order to increase its 

efficiency, we first customize the algorithm itself, and also propose a new exploitation 

operator. The goal of the customization is to strive to have both the robustness of global 

methods and the efficiency of local optimisation methods. We present examples of 

migration velocity analyses mainly on Marmousi model, together with a few results on 

the North-Sea L7 model. We demonstrate that our automatic velocity analysis technique 

is able to cope with large velocity error and is as efficient as the gradient methods except 

in salt body.     

 

Conclusions and Perspective: In Chapter 7, we conclude our research and discuss about 

the possible 3D extension of our approach. Also, there is a need for adding human 

information during the optimisation, and integrating with some other linearized approach 

(Save and Biondi, 2004; Shen et al., 2004) to get a precise model. For 3D extension one 

may require to smartly and efficiently use migration algorithms, exploit the information 

from migrated data for further improvement and generation of models.  
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1.6. Summary of Contributions 
In this thesis our first contribution is the development of an automatic cross-section 

balancing algorithm for foothill structure (Chapter 4). It can be generalized to other 

structures. We made an effort to analyze the influence of different type of representations 

(i.e. Voronoi, geological, and grid). We notice that representation is mostly geologically 

dependent and that the number of parameter is not the main issue when choosing a 

representation. Our second and major contribution is the development of an automatic 

tool for seismic velocity estimation, using a customized MOEA, and domain-specific 

operator where we have introduced domain knowledge. Using such tool, we were able to 

solve model with a large number of unknown parameters at a reasonable computation 

cost.       
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Chapter 2 
 

Survey of Evolutionary Algorithms (EAs) and 

Multiobjective Evolutionary Algorithms (MOEAs) 

 
 This chapter provides a quick overview of evolutionary algorithms (EAs). First we give 

a general and historical introduction of EAs, and then we introduce variants (i.e. 

crossover, mutation) and selection operators. Finally we introduce the concept of 

multiobjective optimisation, and give a brief outlook of state of the art MOEAs. 

 
 

2.1 Introduction  
The buzzword doing the beats at all hierarchical levels of the industry today is 

optimisation. Calculus had been the reigning emperor of optimisation techniques until 

recently, when global  optimisation techniques have been put to use.  Among those 

various techniques, one of the most promising is Evolutionary Computing (EC), which 

mimics the natural process of evolution. It is based on Charles Darwin’s theory of 

evolution, where nature selects the best genetic settings to survive in the next generation 

and some random change may occur during next generation birth. Evolutionary algorithm 

similarly selects the best performing solutions from the current population, and uses the 

variation operators of crossover and mutation to generate further solutions. An important 

feature of biological evolution is robustness - which is what evolutionary algorithm (EA) 

strives to achieve. 

Essentially, EAs are a method of “breeding” solutions of a optimisation problem by 

means of simulating evolution. Since it is inspired by the natural selection and genetics, 

evolutionary computation borrows much of its dialect from genetics, cellular biology and 

evolutionary theory. In EC, a candidate solution is known as an individual. The collection 
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of current individual in the system is collectively known as the population. The actual 

encoding of an individual’s solution is known as its genome (or chromosome) and 

representation is known as genotype. The way solution operates when tested in the 

problem environment is known as the individual’s phenotype. When the individuals are 

modified to produce new individuals, they are said to be breeding. After the evaluation, a 

individual gets a mark, known as its fitness, which indicate how good a solution it is. The 

period of evaluation and assignment of fitness to a individual is known as fitness 

assessment. The whole process of finding an optimal solution is known as evolving a 

solution. 
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2.2. EA Development history and distinction between EA’s 
Historically, four evolutionary computation paradigms have emerged. They are: (i) 

evolution strategies, (ii) evolutionary programming, (iii) genetic algorithms, and (iv) 

genetic programming. Though during the last few years, these paradigms have crossbred 

and their lines of distinction have blurred, each of them had different features (Figure 

2.1). The main difference between these evolutionary algorithms lies in their 

representation and genetic operators (Bäck, 1996). The operators are closely related with 

the underlying representation scheme of each evolutionary algorithm.  

 

Genetic algorithms typically work on fixed-size bit-strings using crossover as its main 

operator. Evolution strategies are based on vectors of real values for representation and 

use mutation as the main operator. Evolutionary programming usually manipulates 

graphs using mutation as the single genetic operator. Genetic programming represents 

individuals as trees of flexible size. Another difference lies in the way selection is 

applied: GA use propositional selection and generational replacement, though rank based 

selection has become more popular over the years. Evolutionary strategies use 

deterministic replacement and no parent selection while evolutionary programming uses 

tournament replacement.  

 

From now onward we will not detail all possible variation of EAs (see instance Eilven 

and Smith, 2003) but only the ones that are uses within Multi-objective EAs. There are 

two common high level, conceptual procedures made use of in evolutionary computation. 

The first one is the traditionally used generational EA, whereas the second    approach is 

steady-state EA which is progressively a more popular newcomer. 

 

2.3.1 Generational Evolutionary Algorithms 
First, a set of random individuals (models) is generated. Then, each individual in the 

initial population is evaluated and fitness is assigned to them. The better individuals from 

the members of an initial or old population are selected for breeding and form a new 

population. This new population is evaluated and then mixed with the already existing 
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old population. An altogether optimal new population is created from this assembly (old 

+ new population). This process is continued until an ideal individual is discovered or 

resources are exhausted. The pseudo code of the generational Evolutionary is as follows: 

 

Algorithms : Generational Evolutionary Algorithm 

Begin EA; 

t = 0;   // Initializing time 

Random P(t); // Initialize a usually random population of individuals: 

Evaluate P(t); // Evaluate the fitness of all individuals 

While not done do // Testing for termination criterion 

  t = t + 1;    // Increasing time 

P’’ = select P(t);  // Select a sub-population for offspring production 

Recombine P’’(t); // Recombine the “genes” of selected parents 

Mutate P’’(t);  // Stochastically perturb genes of the mated population: 

Evaluate P’’(t); // Evaluate the new fitness 

P = survive P(t), P’’(t)  // Select the survivors from actual fitness: 

  End while; 

End EA; 

 

2.3.2 Steady-State Evolutionary Algorithms 
In contrast to the generational EA, where a whole offspring population is created in every 

generation, in steady state EA only one or a few individuals are created and immediately 

integrated back into the parent population in each generation.  The term steady-state 

means that in one step only a small change takes place without the whole population 

changing. The pseudo code of the steady-state EA is given below  
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Algorithms: Steady-state Evolutionary Algorithm 

Begin EA; 

t = 0;   // Initializing time 

Random P(t); // Initialize a usually random population of individuals 

Evaluate P(t); // Evaluate the fitness of all individuals 

While not done do  // Testing for termination criterion 

t = t + 1;     // Increasing time 

P’’i = select P(t);  // Select a few parents  for offspring production: 

Recombine Pi’’(t); // Recombine the “genes” of a few selected parents 

Mutate Pi’’(t);  // Stochastically perturb genes of the mated parents 

Evaluate Pi’’(t); // Evaluate the new fitness of offspring 

P = survive P(t), Pi’’(t)  // Select the survivors from actual fitness: 

End while; 

End EA; 

Of course the practical meaning of the word “generation” is fairly different in both cases: 

important population modification for generational evolutionary algorithms, modification 

of a few individual in for steady state evolutionary algorithms. 

2.4. Representation 
The choice of representation is one of the most critical point of the design of any EA, 

since it will likely have a strong impact on the algorithm’s overall performance. The EA 

design decision should be parsimonious in defining the representation, to limit the size of 

search space and to avoid generating potentially infeasible solutions. The design should 

be based on the physics of the problem and it should also be constrained by the domain 

knowledge.  To avoid the generation of infeasible solutions, each parameter should be 

constrained by the feasible range. In Chapter 4 few geological representation techniques 

and related issues are described. 
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Once the model is chosen, then might be different way to encode it (i.e. binary, real, 

integer, finite state automata). For a given problem, certain encoding (or encodings) may 

result in a relative compact search space, which is beneficial. For example binary 

encoding for discrete search space, real encoding for real valued parameters are most 

favorable. Similarly, structural encoding, such as grammatical encoding, is one of the 

most efficient ways to represent network topologies.  

 Our discussions about the EA operators are  w.r.t real value. The various operators of the 

real–value EAs are briefly described in the following section.  

 

2.5. Operators for the real–valued EA 
In real-coded EA, parameter, considered as genes, are used directly to form a genotype. 

The use of real–valued EAs for real function optimisation facilitates the problem of 

coding and decoding genotypes and phenotypes.  A genotype represents a solution, and 

population is a collection of such solutions. The operators (selection, recombination and 

mutation) modify the population of the solutions of any representation to create a new 

(and hopefully better) population. The various cross-over and mutation operators are 

briefly explained in the following subsections. 

 

2.5.1 Crossover (or Recombination) operator  
The recombination operator combines the genes of two or more parents to generate better 

offspring. The main purpose of a crossover operator is to recombine the partial good 

information from two or more parents so as to generate better offspring. Crossover occurs 

during evolution according to a user-definable crossover probability. The crossover plays 

a central role in EAs, in fact it may be considered as one of the algorithms defining 

characteristics. It is one of the components to be borne in mind to improve the behaviors 

of EAs (Liepins et al., 1992).  

 

In real parameter EA, the main challenge is how to use the real parameter vectors to 

create a new pair of offspring vectors. In what follows, a real parameter crossover is 
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described followed by few real-parameter mutation operators. A good overview of many 

real parameter crossover and mutation operators can be found in Herrara et al. (1998) 

 

2.5.1.1. Discrete recombination (DR)  
DR corresponds to a standard uniform crossover in the binary case. Geometrically it is 

represented in Figure 2.2. Only cross sites are allowed to be chosen at the variable 

boundaries (green point). The offspring O1i∈(P1i, P2i) for each 1≤i≤n. This crossover operator 

does not have adequate search power because the set of the possible values for each 

parameter is unchanged. Therefore we need mutation operator to change the set of 

possible values. 

Figure 2.2: Discrete recombination on two decision variables. Parents are represented 

in pink and offspring are represented in green. This operator does not have adequate 

search power.  

2.5.1.2. Blend Crossover (BLX-α) 
The BLX cross-over was proposed by Eshelman and Schaffer (1993). For the ith 

parameter, and two parents Pt
1i and Pt

2i the blend recombination (BLX- α) creates at each 

generation t one offspring Ot+1
i that can be represented as follow: 

Ot+1
i     = Pt

1i + β (Pt 2i   - Pt
1i ), 

where β is a random variable in the interval [-α , 1+ α]. The value α defines the size of 

area for possible offspring (Figure 2.3). If α value is more than 0 than it add exploration 

property whereas α =0 adds the exploitation property. If α is set to zero, this 

recombination creates a solution inside the range defined by the parents (see Figure 2.3) 

given area. It is also called arithmetic by Michalewig and intermediate by Rechenberg 

and Schwafel. 

P1i

P2i O1i

O2i 

P1

P2 
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Figure 2.3: The BLX- α operator. Parents are represented in pink, offspring in green and 

upper and lower limit in rose colour. BLX-a uniformly picks new individuals with values 

that lie in [P1i- α I, P2i+ α I]. 

 

If the distance between the parents solution is small, the difference between the offspring 

and parents solution is also small. This property makes the search operator partially 

adaptive. 

 

2.5.1.3. Fuzzy recombination (FR)  
Fuzzy recombination operator was proposed by Voigt et al. (1995). The probability that 

the offspring has the value Oi is given by a bimodal distribution 

p(Oi)∈ (φ(P1i), φ(P2i) ) 

With triangular probability distribution ψ(r) having the modal values P1i  and P2i with 

P1i – d.| P2i - P1i | ≤ r ≤  P1i +d. | P2i - P1i | 

P2i –d.| P2i - P1i |≤ r≤ P2i +d.| P2i - P1i | 

for P1i ≤ P2i and d ≥1/2. Geometrically, it is represented in Figure 2.4 

 
Figure 2.4: The FR operator, parents are in pink colour and offspring in green, lower 

and upper limits in rose colour. Each triangle denotes the probability of the offspring to 

resemble each of its two parents. 
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This operator gives importance to the creation of a solution near to its parents. The 

distribution can be changed with the parameter d. If d is large the solution will be away 

from the parents and vice versa.  

 

2.5.1.4. Simulated Binary Crossover (SBX) 
Simulated binary crossover (SBX) operator for real variables was first introduced by Deb 

and Agrawal (1995). This operator gives similar results to those that would be given if 

the parents were binary encoded, and binary single crossover were to be performed. This 

operator respects the interval schemata processing, in the sense that common interval 

schemata of the parents are preserved in the offspring’s. The SBX crossover puts the 

stress on generating offspring in proximity to the parents. So, the crossover guaranties 

that the range of the children is proportional to the range of the parents, and also favors 

that near parent individuals are more likely to be chosen as children than individuals 

distant from the parents. These crossovers are self-adaptive in the sense that the spread of 

the possible offspring solutions depends on the distance between the parents, which 

decreases as the population converges. 

 

The procedure of computing offspring P1i 
t+1 and P2i 

t+1  from the parent solutions P1i 
t   

and P2i 
t  is as follows. First, a random number ui is generated between 0 and 1, thereafter  

a spread factor βi = | P2i 
t+1  - P1i 

t+1 | /  | P2i 
t - P1i 

t |  
 is calculated using specified probability 

distribution function given below. These probability distribution functions are used to 

create an offspring using the following relation (Deb and Agrawal, 1995): 

P(βi) = 0.5 (ηc
 +1) βi

η
c  , if  βi  ≤ 1 ; 

P(βi) = 0.5 (ηc
 +1) / βi

η
c  , otherwise. 

ηc 
 (distribution index) is a non-negative real number.  βi   is calculated by equating area 

under the curve equal to ui using the   following relation.   

βi 
  = (2ui )1/η

c 
+1   if ui ≤ 0.5 ; 

    βi 
  = (1/2(1-ui ))1/η

c 
+1    otherwise . 

After getting the   βi 
   from the above relation the offspring is calculated as follows 

xi 
(1, t+1)   =  0.5 [ (1 +  βi 

  ) xi 
(1, t)   +    (1 -  βi 

  ) xi 
(2, t)   ] , 
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xi 
(2, t+1)   =  0.5 [ (1 -  βi 

  ) xi 
(1, t)   +    (1 +  βi 

  ) xi 
(2, t)  ] . 

A large value of ηc   gives a higher probability to generate 'near parent' offspring (Figure 

2.6).  

Figure 2.6: A large value of ηc   has a higher probability to generate offspring similar to the 

parents and vice versa (Deb and Agrawal, 1995).   

 

2.5.2. Mutation 
Mutation provides a mechanism for maintaining diversity in a population. In one way, it 

acts as a safeguard against premature convergence by randomly changing the value of 

one or more allele in a chromosome. However, for real-coded genetic algorithms, it often 

plays the main role. Several mutation types are in use and we describe below few widely 

used ones.  

2.5.2.1. Random mutation  
Each variable that is going to be mutated is assigned a value, laying within its feasibility 

range (see Michalewicz, 1992). 

 

2.5.2.2. Gaussian mutation  
This mutation is similar to the previous one, except that the mutation step ∆Pi is 

calculated according to a Gaussian’ distribution. Smaller mutation steps are much more 

probable then large mutation steps. This is the standard in evolutionary strategies 
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(Rechenberg 1973, Schwefel 1977, Bäck 1995a). Oi
t+1 = ri (Pi

U - Pi
L) where ri is a random 

number between [0,1].   

 

2.5.2.3. EXP mutation 
This mutation type comes from the idea that the role of mutation at the beginning is to 

make larger jumps, whereas later on, as the search progresses, fine tuning is achieved by 

making smaller jumps. 

 

2.5.2.4. Polynomial mutation  
Polynomial mutation was proposed  by Deb and Goyal (1995). If ix is the value of the ith 

parameter selected for mutation with a probability pm and the result of the mutation is the 

new value iy obtained by a polynomial probability distribution 

( ) ( )( ) mn
mP δηδ −+= 115.0  

L
ix and 

U
ix are the lower and upper bound of ix  respectively 

and ir is a random number in [0,1] 

i
L
i

U
iii xxxy δ)( −+=  

  

The distribution is controlled by the parameter mη (distribution index).  

 

2.5.2.5. Non-uniform mutation  
Non-uniform mutation was first introduced Michalewicz (1992). According to this, the 

probability to have the value y after mutation for the ith parameter is  
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where maxt  is the maximum number of generations, b a user is specified control 

parameter and τ a random bit, 0 or 1. The exponent of ir  approaches 0 as t approaches 

tmax and iy  is closer to ix . This allows reducing the search closer to the optimum value as 

the evolution proceeds. 

 

2.6. Selection 
An evolutionary algorithm performs a selection process in which the best fitting members 

of the population survive, whereas, the “least fit” members are eliminated. In a 

constrained optimization problem, the notion of “fitness” partly depends on whether a 

solution is feasible (i.e. whether it satisfies all the constraints), and partly on its objective 

function value. Selection provides the driving force in an evolutionary algorithm and the 

selection pressure is a critical parameter. If the selection pressure is too high the search 

will terminate prematurely, and if the pressure is too low progress will be slower than 

necessary. There exists a variety of selection algorithms: Goldberg and Deb (1991) 

performed some analysis on some of the most commone algorithms used in Genetic 

Algorithms (GAs). 

 

2.6.1. Proportional Selection  
In proportional selection, the individuals are selected according to their relative fitness 

values. The selection probability of ith individual Ii
g at generation is defined as 

P(Ii
g ) = f(Ii

g ) /Σλ
i=1 f(Ii

g ). 

This is a probabilistic selection method in which every individual having non-zero fitness 

will have a chance to be reproduced. This selection scheme is adopted by the simple 

genetic algorithm and believed to be the most similar mechanism that occurs in nature. 

One problem with the fitness-proportional selection is that it is directly based on the 

fitness. Assessed fitness is rarely an accurate measure of how “good” an individual really 

is.  
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2.6.2. Ranking selection 
Ranking selection is a selection method which assigns selection probabilities solely on 

the basis of the rank i of individuals, ignoring absolute fitness values. In (µ, �) uniform 

ranking (Schwefel, 1995), the best µ individuals are assigned a selection probability of 1/ 

µ while the rest are discarded: 

1/ µ   µi ≤≤0  

P(Ii
g ) =   0   λiµ ≤≤  

2.6.3. Tournament selection 
This is the most popular selection mechanism. It is popular because of it is simple, fast 

and has well understood statistical properties. Tournament selection (Blickle and Thiele, 

1995) is performed by choosing parents randomly and reproducing the best individual 

from this group. When the number of parents is q, this is called the q-tournament 

selection. The standard values of q are 2 and 7. Value 2 is used in GA whereas 7 is used 

in GP.  Value 2 is weakly selective whereas value 7 is highly selective. 

 
There are many other types of crossover operator like unimodal normally distributed 

crossover (UNDX) (Ono and Kobayashi, 1997), simplex crossover (Tsutsui et al., 1999), 

fuzzy connective based crossover (Herrara et al., 1995) and uniform average crossover 

(Nomura and Miyoshi, 1996). The comparisons of these crossover operators are mainly 

context dependent. The issue of exploration and exploitation make a crossover dependent 

on a chosen selection operator. Beyer and Deb (2001) argued that in most situations 

selection operator reduces the diversity. The reduction of diversity due to the selection 

operator can be related to the exploitation property of selection operator. Hence, in 

general, crossover operator should enhance the population diversity. Such a balance 

between the descent and ascent of diversity will allow EA to have an adequate search 

property (Figure 2.5) Based on this argument; two postulates have been recently 

suggested by Beyer and Deb (2001).  

First population mean should be invariant before and after the crossover. 

Second population diversity may increase after the crossover.   
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Figure 2.5: When selection is reducing the diversity, the variation should increase the 

diversity. Balancing the two allows EAs to have adequate search property.  

 

Since real parameter crossover operator directly manipulates two or more real number to 

create one or more number as an offspring, one may wonder if there is a special need for 

using another mutation operator. The confusion arises because both operators seem to 

perform the same task, i.e. perturb every solution in the parent population to create a new 

population. The distinction among various operators lies in the extent of perturbation 

allowed in each operator. Although it is highly debated in literature, Deb (2000) believed 

that distinction between these two lies in the number of parent’s solution used for 

perturbation process. If only one parent is used for perturbation then it is called mutation 

On the other hand, if more than one parents are involved for perturbation then it is called 

crossover. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Population After Selection After crossover
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2.7. Multiobjective optimization 
 

2.7.1 Introduction  
Multiobjective optimisation is different from single-objective optimization in that it 

involves consideration of more than one, and often conflicting, objective functions. Many 

real world design problems involve multiple, usually conflicting optimization criteria. 

Often, it is very difficult to weigh the criteria to build a global criterion. Multiobjective 

evolutionary algorithms use the principle of Pareto optimality, which states that, a model 

is “Pareto optimal” if it is not possible to improve it with respect to any criterion without 

worsening it with respect to at least one other criterion. This in turn allows the user to 

choose among many alternatives.  

 
Figure 2.6: Ideal Multiobjective Optimisation and traditional preference based 

optimisation. Traditional preference based methods require multiple run and need to 

define weight for obtaining trade of solution, whereas ideal multiobjective optimisation 

gives possible trade of solution in a single run.   
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Multiobjective is not only different in terms of number of objective function but also in 

term of number of search spaces. Single objective optimisation has only parameter search 

space, whereas multiobjective optimisation has two search space parameter and objective 

space (Figure 2.7).  As a result multi-objective optimizations produce a number of 

compromise solutions, known as the Pareto-optimal solutions. It is not a consequenc of 

algorithms, it is a choice.  The task in a multi-objective optimization problem is to find as 

many Pareto-optimal solutions as possible. Classical optimization methods are not 

efficient in finding multiple Pareto-optimal solutions. The major difficulty with all 

classical methods is that they require multiple run and need to define weight to each 

objective to obtain multiple Pareto-optimal solutions (Figure 2.6) and they sometime can 

not find whole front (concave front). 

Evolutionary algorithms (EAs) are ideally suited to solve multi-objective optimization 

problems, simply because multiple Pareto-optimal solutions can be captured in a single 

population by suitably modifying the EA selection operators. Additionally, evolutionary 

algorithms are less sensitivity to the shape or continuity of the Pareto front (Coello, 

2001). 

 

With multiobjective optimization problems, knowledge about the Pareto-optimal set 

helps the decision maker in choosing the best compromise solution. For instance, when 

simulating a mountain front, a geologist works on an existing model space exploring 

multiple model possibilities to arrive at the best possible model. Thereby, the model 

space is reduced to a set of optimal trade-offs. However, generating the Pareto-optimal 

set is computationally expensive and often infeasible, because of the complexity of the 

underlying application, which prevents exact methods from being applicable. EAs also do 

not guarantee the identification of optimal trade-offs but try to find a set of solutions that 

are (hopefully) not too far away from the optimal front (Figure 2.6). 

 

2.7.2. Multiobjective Optimisation Problem (MOP) 
A multiobjective problem (MOP), also called multi-criteria optimization, or multi-

performance or vector optimization involves a vector of N parameter x , a vector of M 
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objective functions, and a vector of L dimensional constraint g
l

x . The objective 

function as well as constrains are functions of the parameter. Since minimizing Fm( x ) is 

equivalent to maximizing - Fm( x ), we may assume minimization in all cases without  

any  loss of generality. 

Minimizing  ))x(f),x(f),x((f=)x(F mm
rrrr .........21  m=1, 2...M; 

subjected to gl x g1 x ,g2 x , .. .. . ..gl x 0 )  l= 1,2…L; 

where x x1, x2 , .. . .. .. . xn  x
i
L x

i
x

i
U

  i= 1,2,…..N 

Each parameter x
i has to take a value within a lower bound x

i
L

  and an upper 

bound x
i
U

.  If any solution x  satisfies all the L constraint g
l

x  and all the 2N variable 

bounds, it is called as a feasible solution, and infeasible in other cases. In the presence of 

constraints, the entire parameter space need not be feasible.  

 
Figure 2.7:  Representation of parameter space and corresponding objective space. 

2.7.3. Pareto Concept 
The concept of Pareto-optimum was first introduced by Vilfredo Pareto (Pareto 1886). 

The key Pareto concepts for the minimization problem are defined as follows: 

a

x2 

x3 

x1 f1

f2Parameter Space Objective Space 
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2.7.4. Pareto Dominance   

For any two decision vector  ),........,( 21 naaaa =
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r
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rrrr

≠∧≠   

Based on the Pareto dominance concept in a multi-objective problem, a solution for 

which there is no way of improving any-objective without worsening at least one other 

objective is called a Pareto-optimal solution. A graphical representation of Pereto optimal 

(non-dominated) and dominated solutions is depicted in Figure 2.8. 

Figure 2.8: Representation of Pareto optimal solutions and dominated solution. Blue 

front is the final Pareto optimal solution, whereas green and pink fronts were Pareto 

optimal at particular instant. Now they are dominated by Blue front solution.  

 

2.7.5 Pareto Optimality 

2.7.5.1. Non-dominated set 
Among a set of solutions S, the subset of non-dominated solutions S’ are those that are 

not dominated by any member of S. In Fig. 2.8, blue dots represent the non dominated 

solutions and they are called Pareto-optimal solutions. Fig. 2.9 shows the Pareto-optimal 

sets for different possible combinations of maximization and minimization functions. 

Pareto optimal = non-dominated 

F1

F2

Dominated
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2.7.5.2. Globally Pareto-optimal set  
The non-dominated set of the entire feasible search space S is the globally Pareto-optimal 

set.  

 

2.7.5.3. Locally Pareto-optimal set 
If for every member x in a set P, there exists no solution y (in the neighborhood of x such 

that ⎜⎜y-x⎜⎜∞ ≤ε , where ε is a small positive number) dominating any member of the set 

P, then the solutions belonging to the set P constitute a locally Pareto-optimal set 

(Miettinen, 1990 ; Deb, 1999c). 

 
Figure 2.9: Representation of Pareto front shape in different Min –Max condition of 

objective function. 
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2.7.6 Multiobjective optimisation approach 
To solve multiobjective problem with EA, the only things that need to be modified is the 

selection. In multiple-objective fitness assessment, an individual receives separate 

assessments in each of the criteria of interest, and the system must determine how to 

select individuals based on some function of these criteria. There are two common 

strategies for doing this, aggregate fitness and Pareto ranking. Now a day a recently 

developed approach based on ε-dominance concept is routinely used. Here we present 

aggregate fitness, Pareto ranking and ε-dominance based strategy for selection. 

 

2.7.6.1. Aggregate fitness 
Here the strategy is to join each individual’s assessments into single aggregates fitness by 

which the individual is selected. The most straightforward aggregation approach is 

simply to add the various assessments as a weighted sum (Hajela and Lin 1992). An 

alternative way to do this is to set the standardized fitness to the maximum (worst) of the 

various fitness assessments (Wilson and Macleod 1993). A third aggregation technique 

known as lexicographic ordering is used with ranking and tournament selections 

(Fourman, 1985). Lexicographic ordering assumes that there is an order of importance 

among the criteria. Here, individuals are first sorted (for ranking or tournaments) by the 

most important criterion. Ties are then broken by ranking by the second criterion, then 

the third criterion, etc. 

 

2.7.6.2. Pareto based ranking 
In this set of method, individuals are ranked according to some Pareto based mechanism. 

There are two common techniques which result in Pareto ranking. The first technique, by 

Goldberg (1989), consists in assigning rank “1” to all the individuals who are not 

dominated rank ‘”2” to nondominated remaining individuals and so on. This ranks 

individuals in layers based on their domination of others (Figure 2.10a). The second 

technique by Fonseca and Flemming (1993) simply sets an individual’s standardized 

fitness as the number of individuals in the population which dominate that individual 

(Figure 2.10 b). In this method ties may be broken by random choice.  
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The Pareto ranking procedures based on the above two procedures are summarized in 

Table 2.1. 

 
Figure 2.10: Pereto ranking according to Goldberg’s (1989) at left and according to 

Fonseca and Fleming (1993) at right. 

Table: Steps of Pareto ranking for Goldberg’s (1989) and Fonseca and Fleming (1993).    

 

procedure:  

Goldberg’s method (1989) 
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step 1: rank 1 is given to the nondominated 
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individual, removing them from 
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step 4: process continues until the entire 

population is ranked, and 
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output: fitness eval(fk) 
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step 4: process continues until the entire 
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2.7.6.3 ε-dominance ranking 
The ε-dominance sorting is done in two steps: (1) sorting of non-dominance solutions (2) 

ε-box (εi*fi , where fi 
min   is the minimum possible value of the ith   objective and εi   is the 

allowable tolerance in the ith objective, below which the values are insignificant for the 

user.) is created for each solution and after that  ε non-dominance box solutions are sorted. 

This approach maintains the diversity along the Pareto front and help in fats convergence.   

The concept of ε-dominance is illustrated (Figure 2.11).   

 
Figure 2.11: Illustration of ε-dominance concept.(a) dominance solution (b) the ε-

dominant solution by star and  ε-dominant region by background colour (c) After sorting  

ε-dominant solution. 

 

2.7.7 Overview of Multi-Objective Evolutionary algorithm (MOEA)  
Multi-objective problems (MOP) were first discussed by Rosenberg in 1967. The first 

reported implementation and test of a multi-objective evolutionary approach was the 

Vector Evaluated Genetic Algorithm (VEGA) by Schaffer (1984). Since this branch of 

EA has attracted many researchers dealing with non-linear, non-convex and  integer-

variable multi-objective optimization problems.  

 

Recently, there has been a surge in research on new, and particularly genetic/ 

evolutionary multi-objective optimization algorithms and their applicability to various 

optimization problems (Coello, 2001; Corne et al., 2000; Deb et al., 2002; Jensen, 2003; 

Knowles and Corne, 2000; Tan et al., 2002; Zitzler and Thiele, 1999). Fonseca and 

Flemming (1993) classified the MOEA into three groups, namely: (i) plain aggregation 

based (ii) population-based non-Pareto, and (iii) Pareto-based approaches. The main 
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approaches used to handle the MOP are Non-Pareto and Pareto based approaches. The 

evolution of MOEA is shown in Figure 2.12  

 

 
Figure 2.12: Key developments of multi-objective evolutionary algorithms. 

 
 

2.7.7.1. Non-Pareto based approaches 
The Vector Evaluated Genetic Algorithm (VEGA; Schaffer, 1985) is a non-Pareto based 

approach. It is a straight forward extension of single objective GA. In each generation, 

GA population is randomly divided into subpopulations, equal to the number of 
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objectives. Each subpopulation is assigned a fitness based on different objective 

functions. In this way, each objective function is used to evaluate some members in the 

population. It is reported that this method tends to accumulate results at extremes to the 

solution space, often yielding poor convergence of the Pareto front (Fourman (1985)). A 

more recent algorithm, based on scalarization with a weighted sum function, is proposed 

in Ishibuchi and Murata (1998) where the weights are chosen at random. Recently, 

Coello and Christiansen (1999) proposed two different methods based on aggregated 

functions and min-max optimization. 

 

2.7.7.2. Pareto based approaches 
The major objective of MOEA is to find a set of well-distributed solutions close to the 

true Pareto-optimal front.   The goals in the development of MOEA are  i) convergence to 

the true Pareto-optimal front, ii) maintenance of a well-distributed set of non-dominated 

solutions and iii) achieving both the above tasks with computational efficiency. To fulfill 

above criteria many approach has been used. 

 

These methods use the concept of Pareto optimality explicitly. Many successful 

evolutionary multi-objective optimization algorithms were developed based on the two 

ideas suggested by Goldberg (1989): Pareto dominance and niching. Pareto dominance is 

used to exploit the search space in the direction of the Pareto front. Niching explores the 

search space along the front to keep diversity. The well-known first generation Multi-

objective Evolutionary Algorithm’s (MOEA) is Multiobjective Genetic Algorithm 

(MOGA) (Fonseca and Flemming, 1993), Niched Pareto Genetic Algorithm (NPGA) 

(Horn et al., 1994), Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and 

Deb, 1994), Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler, Laumannas and 

Thiele, 1999), etc. In the recent past, the first generation MOEA were modified using  

more effective approaches  such as  rMOGAxs (Purshouse and Fleming, 2001) NSGA-II 

(Deb et al., 2001), SPEA2 (Zitzler, Laumannas and Thiele, 2001), Generalized 

Regression GA (GRGA) (Tiwari and Roy 2002) and so on.   
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Pareto-based ranking correctly assigns all nondominated individuals the same fitness, 

however, this does not guarantee that the Pareto set is uniformly sampled. In order to 

avoid such a problem, Goldberg and Richardson (1987) proposed the additional use of 

fitness sharing. The main idea behind this is that individuals in a particular niche have to 

share the available resources. The more number of individuals located in the 

neighborhood of a certain individual; the more its fitness value is degraded. Detailed 

discussions of MOEA approaches can be found in Coello et al.(2002) and Deb (2001). 

We now briefly describe below the most frequently used first generation MOEAs 

(NSGA, SPEA, PAES) and the second generation MOEAs (PEAS, NSGAII and SPEA2). 

 

2.7.7.3   Nondominated Sorting Genetic Algorithm (NSGA) 
This was first proposed by Srinivas and Deb (1994). In NSGA the population is first 

ranked using the Goldberg’s (1989) Pareto ranking. As a result a large fitness is assigned 

to the individual in the first non-dominated front, namely the set of the non–dominated 

individual with rank 1 (Figure 2.13). Better non-dominated sets are emphasized 

systematically and NSGA progress towards the Pareto-optimal region front wise.  The 

flow chart of NSGA algorithms is shown in the Figure 2.13.  Moreover, performance 

sharing in parameter space allows phenotypically diverse solutions to emerge with 

NSGAs. NSGA includes some fundamental MOEA components, but is now surpassed by 

other state of the art algorithms. 
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Figure 2.13 Non-Dominated Sorting Genetic Algorithm  

 

2.7.7.4 Strength Pareto Evolutionary Algorithms (SPEA):  
This was first introduced by Zitzler and Thiele (1999). This algorithm introduced an elite-

preserving strategy by using an archive P’ which contains the non-dominated solutions 

found previously. A clustering method (average linkage method) based on the objective 

space was implemented to preserve the diversity in the population.  The flow chart of 

SPEA is shown in Figure 2.14 
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Figure 2.14: Strength Pareto Evolutionary Algorithms 

 

In this algorithm, at each generation, nondominated individuals are copied to the external 

non dominated set (Archive). For each individual in the Archive, the strength value is 

proportional to the number of solution to that this individual dominates. The fitness of the 

member of the current population is computed according to the strength of all the Archive 

solutions that is dominates.  

 

2.7.7.5 Pareto Archived Evolutionary Strategy (PAES) 
This was first introduced by Knowles and Corne (2000a). The basic idea in this is shown 

by a flow chart (see Figure .2.15).  
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Figure 2.15: Flow chart of  Pareto Archived Evolution Strategy (Knowles and Corne, 

2000a) 

 

This consists of a (1+1) evolution strategy (i.e., a single parent that generates a single 

offspring) in combination with Archive that records some of the non-dominated solutions 

previously found. 

 

A new crowding method is introduced in this algorithm to promote the diversity in the 

population. The objective space is divided into hypercube by a grid in a recursive 

manner, which determines the density of individuals. Each solution is placed in certain 

grid location based on the values of its objective functions. A map of such grid is 

maintained, indicating the number of solutions that reside in each grid location. The zone 

with lower density is favored. Moreover the procedure has lower computation complexity 
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than traditional niching methods (Knowles and Corne, 2000b). They have also proposed 

(1+λ) and (µ+λ) variation of PAES. Nevertheless they argue that the use of a population 

did not in general, improve the performance but rather add extra computation cost to the 

algorithms (Knowles and Corne, 2000b).  

2.7.7.6   Pareto Envelope-based Selection algorithms (PESA) 

 
Figure 2.14: Pareto Envelope-based Selection Algorithms. 

 

PESA was proposed by Corne et al. (2000). PESA not only use the same PAES hyper-

grid division of objective function space to maintain the diversity, but also its selection 

mechanism. The same crowding measure is used to decide what solution to introduce into 

the Archive. This Approach uses a small internal population (PI) and a large external 

population (PE).  A revised version of this algorithm, PESA-II is similar to PEAS except 

that it uses region based selection. The PESA algorithm is shown in Figure 2.14 
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2.7.7.7 Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 
The nondominated sorting genetic algorithm (NSGA-II) is a well known and extensively 

used algorithm based on its predecessor NSGA. It was formulated by Deb et al.(2000) as 

a fast and very-efficient MOEA that incorporates the features mentioned earlier, i.e. an 

elitist archive and a rule for adaptation assignment that takes into account both the rank 

and the distance of each solution regarding others.  

 
Figure 2.15: A schematic diagram of NSGA-II. 

 

Figure 2.15 demonstrates the meaning of rank in a minimization case. The value of 

adaptation is equal to its rank. When comparing two solutions belonging to the same 

rank, isolated solutions prevail over non-isolated ones. If both solutions are not extreme, 
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norm” calculated between the two nearest neighbors) wins (see Figure 2.18). In this way 

isolated solutions and less crowded areas are encouraged. A schematic representation of 

NSGA2 is shown in Figure 2.16. 

 

 
Figure 2.16: Flowchart of NSGA-2 algorithms. It is one of the most efficient MOEA. 

 

In NSGA-II, the offspring population is first created by using the parent population 

through a crowded tournament selection, where the better individual in the parent 

population and the “elites” are selected so as to maintain the diversity in the population. 

Selected individuals will then go through cross-over and mutation operations to form an 

offspring population. Both offspring and parent populations are combined and sorted into 

non-dominated fronts. Among individuals in each front, there is no unique best solution. 

Each one of them performs better in some objective than the other individual, but worse 

in remaining objective.   However, the individual in worse front are dominated by all 
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is called “niching “. Accordingly, once the next generation population has been filled, the 

algorithm loops back to create an offspring population from this new parent population. 

Figure 2.16 shows the various procedures followed in NSGA-II. 

 

2.7.7.8 Strength Pareto Evolutionary Algorithms 2 (SPEA2): 
A improved version of SPEA called SPEA2 was proposed by Zitzler et al.,(2001b). 

SPEA2 uses an improved fitness assignment scheme, a nearest neighborhood density 

estimation technique and a new archive truncation method. In SPEA2 the size of Archive 

is fixed.  The flowchart of SPEA2 is shown in the Figure 2.17 

 
Figure 2.17: Flow chart of SPEA2. This is improved version of SPEA. Improved fitness 

assignment and new archive tractions method is introduced. 
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In the following section we brief describe the ε-MOEA, we used for the foothill structure 

and velocity optimization. 

2.7.7.9 ε-Dominance Based Multi-Objective Evolutionary Algorithm 
To achieve a fast convergence and well distributed solution with computational 

efficiency (Figure 2.19) is the major goal of all the MOEAs. 

Figure 2.19: The goal of MOEA is to achieve fast convergence toward the Pareto front 

and diversity along that front. 

 

 There are many algorithms that try to achieve the above goals. Though some converge 

very fast towards the Pareto-optimal front they end up with a sparse distribution of the 

solution (i.e. PEAS). On the other hand, there are some algorithms that give dense 

distributions of solutions at the Pareto-optimal front, but they are computationally highly 

expensive (i.e. SPEA2). 

 

To achieve the above goals in an efficient manner, a variant of MOEA, called ε-MOEA 

was proposed by Deb et al (2005).  
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Figure 2.20: Flow chart of ε-MOEA. It is a steady state MOEA. 

 

ε-MOEA uses two co-evolving populations: an EA population P(t) and an archive 

population A(t). The initial archive population E(0) is assigned from the initial population 

P(0) using  ε-non-dominated solution.  Thereafter two solutions, one from the P (t) and 

other from A(t) are selected using population and archive selection procedure and an 

offspring solution o is created. This offspring o can then enter into each population using 

population acceptance procedure or archive acceptance procedures, which are as follows:  

Start

Initialize Population P(0) & Archive A(0)

N, Individual P(t) Variable individual A(t) 

Crossover 

Mutation 

Tournament 
 Selection 

Random 
 Selection 

Individual 

Pareto Dominance ε-Dominance 



 41

  
Figure 2.21: Epsilon -MOEA flowchart. One solution from each Population and Archive 

are selected for generation of offspring by cross-over and mutation. After evaluating the 

offspring they get their place in Population and Archive only if the offspring is dominant 

or ε-dominant.  

 

Population_selection procedure  

To chose a solution from population P(t), two population members from P(t) are picked 

up at random and dominance is checked. Of the two, the dominant one is selected, 

however in the absence of a dominant member, one of the two is selected randomly. 

Archive_selection procedure  
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of them randomly. On the other hand, if the population members dominate the offspring, 
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the individual is not accepted. When both the above mentioned conditions fail, then the 

offspring replaces a randomly chosen member of the population, thereby ensuring that 

the EA population size remains unchanged. 

Archive_acceptance procedure 

For the archive acceptance, the offspring o is compared with the archive population using   

ε-dominance criterion (Laumanns et al.(2002)). Discretization of objective space fi 

fi
d = INT(|fi| / εi )  for minimizing fi 

εi   is the allowable tolerance in the ith objective, below which the values are insignificant 

for the user. The identification array divides the whole objective space into hyper-boxes, 

each having εi   size in the ith objective (see Figure 2.22). 

 
Figure 2.22: The ε dominance acceptance procedure. Region ABCD is ε-dominant 

region for solution P whereas original dominance region is PECF. The ε-dominant 

solution nearest to the axis is selected.   

 

In Figure 2.22, solution P is a ε-dominant in the entire region ABCDA, where as the 

original domination definition allows P to dominate only the region PECFP. The 

identification arrays of P (Figure 2.22) are the coordinate of point A in the objective 

space. This discrete Pareto front held with possible ties. Ties removal by distance 

criterion (inside a box, small distance is preferred, Figure 2.22). This insures that each 

hyper-box is occupied by only one solution. Tie also removed with strict dominance. It 

provides two properties (1) the well distributed solution can be maintained (2) the total 
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number of archive solution in the final Pareto-optima will be bounded. This avoids the 

need to prefix the upper limit of archive size. The archive will get bounded according to 

the chosen ε-vector. To summarize 

 

ε-MOEA has the following properties.  

It is a steady-state MOEA. 

It emphasizes on non-dominated solution. 

It maintains the diversity without redundancy in the archive by allowing only one 

solution in each hyper-box on the Pareto-optimal front. 

It is an elitist approach. 

By choosing appropriate ε-vector, emphasize on the selected objective can be given. 

 

2.7.7.10 Micro Genetic Algorithms 
This was introducing by Coello Coello and Toscano Puliodo (2001). This is a GA of 

small population and reinitialization process. The flowchart of micro-GA is shown in 

Figure 2.23. The initial population is made of two subpopulation called as replaceable 

and non-replaceable. The non-replaceable population will never change and provide help 

in maintaining diversity whereas replaceable population will experience change during 

the each cycle of the micro-GA.  In the beginning of each cycle both subpopulation take 

parts in generation of new population.  After each micro-GA cycle the non-dominated 

solution copied into the extern memory (Archive). The member of external memory 

updates replaceable subpopulation after certain interval. 
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Figure 2.23: The flowchart of Micro-GA (Coello & Pulido, 2001). Micro-GA use a small 

population and divide it in two sub-population, replaceable and non-replaceable during 

evolution. 

Conclusion 

In this chapter we made an attempt to give an overview of EAs and more particularly 

MOEA. We also discussed the genetic operator (i.e. crossover, mutation, selection etc.). 

We notice that SBX crossover operator is an adaptive crossover that does not require 

explicit mutation (since crossover includes some implicit mutation, see Figure 2.6); hence 

we chosen to use it in our application. It has been shown that, ε-MOEA is one of the most 

efficient MOEA (Deb et al 2005). It maintains the diversity and has elitist approach. 

Hence it will be our choice for the foothill and velocity optimisation. Not only this, 

MOEA also provides a set of Pareto optimal solutions, the knowledge of which helps 

decision maker in choosing the best compromise. Hence we are going to use ε-MOEA 

with SBX crossover operator in our optimisation process. 
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Chapter 3 

 

Velocity model determination methods for complex seismic data 
 
 
This Chapter provides a quick overview of velocity estimation techniques generally used 

in geologically complex regions. First we give general overview of time domain methods 

and then a mix of time and depth domain methods i.e. tomographic migration velocity 

analysis methods and finally we discus about the depth domain methods and parametric 

curves. of common image gathers. We discuss state of the art automatic seismic velocity 

analysis techniques using Wave Equation Migration Velocity Alalysis (WEMVA). 

Finally we give flavor of migration algorithms. 

 

3.1 Introduction 
Seismic velocity model estimation for complex seismic data (complex surface and 

sub-surface structure, irregular data coverage, large lateral velocity variation) is one of 

the most challenging tasks. Due to the non-linear relationship between seismic data and 

velocity model, it is usually posed as an optimisation problem. For this optimisation 

usually iterative methods have been used. Depending on how the objective function is 

constructed for velocity optimisation, it can be divided into two groups: data domain 

methods and image domain methods. In the data domain methods error is mostly 

measured on the time scale, whereas in the image domain methods error is measured on 

depth scale. Hence it can also be divided as a time domain methods and depth domain 

methods.  
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3.2 Time domain methods 
In data domain methods, objective functions are formulated to measure the 

deviation of predicted data from the observed data. Measured deviation is mostly the 

measurement of time difference between observed and predicted data. Goal of 

optimisation problem is to minimize the data residual. 

 
2

)(,
d

preobs pdd    (3.1)  

where 
d

 indicates an appropriate norm of data domain  and )( pd pre denote the 

predicted data from parameter vector p.  

Early tomography methods and Full waveform inversion technique are examples of data 

domain methods.   

3.2.1 Tomography methods 
Early velocity estimation techniques attempted to find the velocity models that best fitted 

the data. When the observed data is simplified and restricted to the arrival times, and 

interval velocity is estimated by fitting model travel time to measured traveltime using an 

inversion procedure, the method can be categorized as reflection tomography method. 

Traveltime reflection tomographic inversion (Bishop et al. 1985) can resolve the velocity 

model determination problems. It assumes that the travel times of reflection are readily 

available. This is not true in practice, and actually obtaining accurate and robust measures 

of reflected traveltime is one of the main challenges of reflection tomography.  

 

Though picking of the individual traveltime directly from the data is conceptually simple, 

and it has been used in earliest tomography methods (Bishop et al. 1985; Stroke and 

Clayton, 1991). However access of kinematic information (travel times) associated with 

reflection events can be anywhere from difficult to impossible for complex seismic data. 

On the other hand picking 4D reflection can be easily done in depth domain (depth 

domain more interpretable) (Lailly and Ehinger, 1991). Current industrial approach 

mostly realizes on depth domain.  
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3.2.2 Full waveform inversion methods 
Seismic waveform inversion is potentially a very powerful tool to extract all possible 

information (compressional wave velocity, Poisson's ratio and impedance contrasts) from 

seismic data, by minimizing the differences between observed and synthetic seismic data. 

However optimisation is quite difficult even in case of a simple structure and to the best 

of our knowledge no effective optimisation method (gradient or global methods) is 

available. The gradient based waveform inversion tries to fit the observed data by solving 

the wave equation. The data residual is formulated by linearzing the wave equation with 

respect to velocity, which is limited by the first-order Born linearization. If the phase 

differences between the modeled and recorded wavefields are larger than a fraction of the 

wavelet, then the assumption made under the Born linearization is violated and velocity 

inversion methods diverge (Woodward, 1992; Pratt, 1999; Dahlen et al., 2000). 

Consequently, calculation using a gradient method requires a good guess of initial 

velocity model, which is one of the severe obstacles in geologically complex regions. The 

gradient calculation is formulated as a adjoint of Born modeling. The Physical meaning 

of adjoint of Born modeling is understood as a projection of data residual back to the 

model space through downward continuation of source and residual wavefields.  

 

To avoid the Born linearization, a decoupling approach is used where low and high 

wavenumber information, inverting for each parameter set alternately (Hicks and Pratt, 

2001). For low frequency, such projection produces reasonable search direction for 

updating velocity.  For high frequency, the back projected data residual reconstructs the 

image asymptotically, and thus is equivalent to reverse time prestack depth migration. 

Hence the increasing frequency scheme where data correspondence to the low frequency 

is first fitted and then gradually increased to higher frequency (Pratt 2001). Time domain 

implementations of such methods have been presented by Tarantola 1997, Tarantola & 

Vallette, 1982. 

The wave form inversion approach is limited by the lack of good guesses of initial 

velocity model and absence of low frequency content in seismic data. Global 

optimisation methods are not constrained by the local linearization of the wave equation. 

Thus the local minimum of the objective function may be avoided by performing a global 
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search on the objective function (Sen and Stoffa, 1991). Global optimisation methods 

carry out a systematic exploration of the multidimensional search space using for 

example, Monte-Carlo, genetic algorithms or simulated annealing algorithms. Although 

these techniques are capable of handling non-linear behavior by inverting, for both low 

and high wavenumbers, they require number of computation of the same order of forward 

modeling as there are model parameters involved. Hence high computation costs prohibit 

the use of large data set with complex velocity models, so global methods can not be used.  

3.3. Depth domain methods   
In geologically complex regions due to strong alter as well as vertical velocity changes, 

the reflections are not only hyperbolic, but may be completely uninterpretable and thus 

no continuous event can be interpreted in time domain seismograms. To overcome these 

difficulties, it is interesting to use a method based on a combination with some depth 

domain based access to kinematic information, i.e. interpretation in the prestack depth 

migrated domain instead of prestack time domain.  In the depth domain, events are more 

interpretable than in the time domain, even migration is performed with only an 

approximate velocity. This is because migration removes the propagation effects from the 

data and thus enhances the coherency of events.  Hence recent trend of velocity analysis 

is more toward depth migrated image domain methods, where linearity to the data is 

expressed by the depth migrated image. 

 

4D reflection data picking can be easily done in depth domain and also CIG after 

migration can be described by a family of curves (Section 3.4). Therefore a 4D 

interpretation reduces to 3D interpretation (zero offset or shot migrated cube + 1 

parameter for each (x,y,z) describing curve). As a result tomographic migration, velocity 

analysis approaches are mow routinely used in oil industry whereas differential 

semblance based approaches nonetheless need some more research to get mature.  

3.3.1 Tomography migration velocity methods 
Access of kinematic information (travel times) in complex seismic data is difficult. 

Therefore new industrial trend of tomography is shifting from data domain to image 

domain for the measurement of kinematic information. New tomography methods 
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incorporate migration to access more accurate and robust kinematic information. In these 

methods, traveltime error is measured on the migrated image and not from the data. 

When either the reflector geometry is complex or the wavefronts are distorted by a strong 

lateral velocity variation, the analysis of kinematics is more robust in the image domain 

after the migration than in the data domain methods before migration. The CIGs obtained 

after the migration is more robust and accurate in providing the kinematic error, even if 

the migration velocity is not a good approximation of the true velocity.  

 Migration velocity analysis is an iterative process of interval velocity estimation. It 

consists of the following steps (Figure 3.1). (1) Data is migrated with the current best 

estimate of interval velocity. (2) The Prestack image is analyzed for kinematics errors on 

CIGs. (3) The measured kinematics errors are inverted into the interval velocity update. 

Different algorithms differ in how to update the velocity on the basis of measurement of 

residual curvature (or flatness of gathers) or image difference. 

 
Figure 3.1: Illustration of migration velocity estimation process. (1)Data is migrated 

with the current best interval velocity model (2) the velocity errors are measured on the 

CIGs obtained after migration. (3) The measured kinematics errors are used for velocity 

update.  

 

For a correct velocity model the gather should appear flat. For example Marmousi data 

migrated with correct velocity model produces flat events on coherency panels (or 

gathers) (Figure (3.2)).   
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Figure 3.2:Pre-stack migration of Marmousi data with correct velocity model. On the 

coherency panel, event they are appearing flat. 

 

In the tomographic migration velocity, the aim is to flatten the migrated CIGs, or in other 

words, to minimizing the RMO function measured from the CIGs, RMOn . Hence one 

needs to minimize following the objective function: 

( ) ( ) .
2

+= vnvJ
RMOtomo  (3.2) 

Different authors also include some regularization term, constrain handling technique.  

RMO function can be directly picked from migrated CIGs for each value of reflection 

angle(s) or offset(s). However a more robust and automatic approach to measure RMO 

function is to use RMO curve or residual- migration analysis described in the next section  

(Section 3.4). Automatic RMO estimation technique is described in chapter 5. 

Differential semblance optimisation (DSO) is another viable approach for flattening the 

RMO function.     

Still tomographic migration velocity methods require picking, which is quite heavy and 

interpretative. Hence some attempts have been made for automatic velocity inversion in 

the image domain. 

3.3.2 Image domain methods 
Here the objective function measures the quality of the reconstructed image. The goal of 

optimization is to maximize the quality of image i.e. to accurately focus the energy. In 

other words it amounts to minimizing the unfocused energy. 

( )IOIcmin      (3.3) 

Pre-Stack migration
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where ..  indicates the proper norm of image domain and Oi  provide the required 

measurement of the image domain. A proper semblance measurement criterion can make 

image domain methods less vulnerable to local minima during velocity inversion.  

In the presence of complex wave propagation, ray based migration are often not capable 

of producing high quality images, while wavefield continuation methods yield better 

results. Recently some attempts have been made to optimize the velocity using wave 

equation migration velocity analysis (WEMVA) (Shen et al., 2003; Sava and Biondi, 

2004). Sava and Biondi (2004) WEMVA is based on the linear relationship between the 

image perturbation and velocity perturbation which is a linearized version of DSO, 

whereas Shen et al., (2004) use the concept of optimal focusing (a non-linear version of 

DSO). Both approaches have used gradient optimisation technique. In the next section we 

will summarize the gradient computation technique for both methods.   

3.3.2.1 Image perturbation criteria 
This method tries to maximize the quality of the migrated image. It is also similar to the 

differential semblance optimisation (Symes and Carazzone, 1991). It is based on the 

general principle that a change in the velocity model will result in a change in the image. 

Suppose that we are given a downward-continued migrated image Ic(x,z,h) which is the 

function of space (x, z)  and subsurface offset h, and assume that the true background 

velocity is c. Due to the background velocity change δc results in the new migrated 

image is I. Hence in the linear approximation, the perturbation in images δI(x) is related 

to the velocity perturbation by  

Ic(x) - I(x) =δI(x)= c
c
I δ

∂
∂      (3.4) 

Ic(x) = I(x)+ c
c
I δ

∂
∂ ≡ I(x)+Lδc    (3.5) 

where L=
c
I

∂
∂   

The goal of wave equation velocity analysis is to solve this equation for δc, given a 

suitable image perturbation δI(x). A linearized inverse problem based on the first order 

perturbation of image can be framed as    
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cLI
c

δδ −min    (3.6) 

Here the major difficulty is to obtain the image difference δI because the true velocity (c) 

is unknown. The image perturbation δI is estimated using prestack residual migration 

technique as  

δI≈  δρ
ρ ρ 1=d

dI    (3.7) 

Here ρ  is the ratio of velocity to which the background velocity is migrated. Using the 

chain rule of differentiation, one can write  

δI≈  δρ
ρ ρ 1=d

dk
dk
dI z

z

  (3.8) 

This image perturbation consists of three parts, first is the derivative of the image with 

respect to depth of the wavenumber (
zdk

dI ) and two weighting factors, derivative of the 

depth wavenumber with respect to velocity ratio (
ρd

dkz ) and the magnitude δρ of the 

perturbation from the reference to the improved image.  

The image derivative in Fourier domain 
zdk

dI is straight forward to compute at ρ=1, 

izI
dk
dI

z

−==1ρ     (3.9) 

This derivative of the image is represented by the imaginary part of migrated image 

scaled by depth. 

Secondly, the image derivative of depth wavenumber 
ρd

dkz  is formulated through the 

Double-Square-Root equation (Sava, 2003). 

rs
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kr, ks, and kz0 are spatial wavenumbers for the sources, receivers and vertical component 

corresponding to the current background velocity  respectively.  

Finally, an optimum velocity ratio ρ* is picked, according to the semblance or 

differential semblance criteria through the repeated residual migration, which is suitable 

only for constant velocity ratio. The perturbation of velocity ratio is estimated by  

δρ ≈ ρ* -1       (3.12) 

After estimating all the three parameters, the image perturbation can be evaluated by 

combining equations(3.9), (3.10) and(3.12). Once the image perturbation δI is calculated, 

the velocity perturbation δc can be solved from the linear least square problem 

(equation(3.6)).   Since the nonlinear objective function is not clearly defined, it is hard to 

analyze the convergence. However this image perturbation approach maintains the 

singularity of the image whereas the residual image tends to remove them. 

3.3.2.2 Differential Semblance Optimisation  
The basic principle of DSO is similar to that of conventional MVA; i.e. it relies on 

measurement of horizontality of gathers. However, instead of minimizing the RMO of the 

image at each angle (or offset) with respect to the normal-incidence (zero-offset) image, 

the DSO method minimize the relative difference in image depth between neighboring 

angle (or offset). Differential semblance (DS) function (Symes and Carazzone, 1991; 

Symes, 1994; Chauris and Noble, 1998; Plessix et al. 2000; Pratt and Symes 2002; 

Mulder and Ten Kroode, 2002 ) has been widely used  for  velocity estimation. The DS 

function has also been used for the optimization of waveform tomography (Symes, 1994, 

Plessix et al. 2000,Pratt and Symes 2002).  

 

Recently Shen at al. (2003; 2004) proposed WEMVA method based on Claerbout's 

principle of survey sinking. According to Claerbout's principle, the correct velocity 

model is the one in which all the energy is optimally focused at zero subsurface offset 

and zero time.  If the velocity model is not correct, then migration will not focus the 

energy. The failure of migration to focus the image in subsurface offset is an index of 

velocity error. This index is the remaining wavefield after annihilating the focused energy 
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from the migration. The remaining wavefields can be measured on the migrated gathers.  

Shen at al. (2004) proposed the following relation to measure the unfocused energy 

2

2
1 hIDS =   (3.13) 

This is a mean square of the image volume scaled by the subsurface offset (h). For detail 

discussion about this formulation please see Shen at al. (2004). In angle domain it is 

equivalent to measuring the flatness of the migrated gather (equation (3.14)).  
2

2
1 IDS ℜ

∂
∂

=
θθ      (3.14) 

Where ℜ is Radon transform from offset to angleθ  (Sava and Fomel, 2003) and θDS  is 

minimum, when velocity is correct. Detailed analysis of DS properties is presented in 

chapter 5.  For the sake of completeness here we are presenting the main components of 

this approach. For detail discussion please see Shen et al. (2004).  

 

The measurements of the residual wavefield on the gather do not explicitly involve the 

correct image. Hence Shen et al. (2004) solved the slowness perturbation directly in the 

adjoint sense.  The gradient at depth k could be presented by 

( )
,

k k k k
c adj adjk k

s w

H HJ S S R R
c c

∗ ∗∂ ∂⎛ ⎞ ⎛ ⎞∇ = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∑      (3.15) 

Where [ ]2, zk N∀ ∈ , the adjoint field adjS  (equation  (3.16)) and adjR (equation  (3.17)) 

can be written as  

( ) ( ) ( ) ( ) ( )ωτωω ,,,,,),,( 21 shxRhxIhhsxScHsxS kk

h

k
adj

kk
adj ++∗= ∑−      (3.16) 

and 
( ) ( ) ( ) ( ) ( )ωτωω ,,,,,),,( 21 shxRhxIhhsxScHsxS kk

h

k
adj

kk
adj +−+∗= ∑−   (3.17) 

Here ( )kcH  is the operator that allows to propagate wavefield from depth zk∆  to 
zk ∆+ )1(  with a velocity kc .   

( ) ( )ωω ,,),,(1 sxScHsxS kkk =+    (3.18) 
( ) ( )ωω ,,),,(1 sxRcHsxR kkk =+     (3.19) 

where S  stands for the source and R  stands for the receiver. kI  is the image at depth k . 

The detail derivation of the equation is presented in the appendix (A). 
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Like other gradient methods, this method is also limited by the Born approximation, as a 

result it requires a good guess of initial velocity model and a very fine migration 

parameter sampling to calculate gradient. Computation of gradient is expensive and 

equivalent to four migrations per iteration. These methods are well suited for the final 

velocity refinement once a good guess of initial velocity is obtained by other methods. 

 

Flatness criteria can also be measured by semblance function. Properties of semblance 

function are discussed in the next section.  

3.3.3 Semblance function 
Ssemblance function has often been used for velocity optimization (Jin and Madariaga, 

1994; Docherty et al., 1997; Mansanne et al. 2001) using global methods. It is based on 

the flatness on the coherency panels. A measure of flatness of events in the semblance 

panel is given by the sum of the total energy of the traces. Semblance is measured on 

angle gather and  can be presented as: 

 

2

2

z

x

z

d z Id

S d x
d z I d

θ

θ

θ

θ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦=

⎡ ⎤
⎢ ⎥
⎣ ⎦

∫ ∫
∫

∫ ∫
      (3.20) 

Where I is the migrated image, z is the depth and θ  is the reflection angle. This 

semblance relation can be obtained in offset domain by replacing angle parameter θ by 

offset parameter h. The response of semblance function for a flat reflector is shown in the 

Figure (3.3). 
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Figure 3.3: The response of semblance function (equation (3.20) ) of a flat reflector 

embedded in a homogeneous medium for different velocity scaling factor. For a small 

velocity error the semblance measurement is very sensitive to the velocity error factor, 

especially near to the true velocity field (velocity factor=1). 

  

One of the most attractive features of semblance function is its strong sensitivity near the 

true velocity. For a large velocity error CIGs are highly non-flat, different events may 

interfere and local minima can appear in the semblance objective function. Therefore 

semblance may be unable to make suitable adjustment to the velocity (Claerbout, 1985). 

Semblance and differential semblance measurement tell us about the flatness of the 

gather; however, they do not provide any direct information about the amount of error in 

each location. Whereas RMO function gives the approximate amount of error at each 

location. A vast majority of MVA methods and tomographic methods are based on the 

measurement of RMO in CIGs. This RMO function can be directly picked from the 

migrated CIGs, However a more robust way for measuring this RMO function is to use 

either the RMO or residual-migration analysis. Measurement of RMO provides a way to 

get rid of picking and helps in automation. In the next section we are presenting 

parametric curve for RMO estimation, from the gathers obtained by shot profile wave 

equation migration.   
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3.4. Kinematics of the image in offset and angle domain 
The migration velocity analysis methods use the kinematics information contained in the 

prestack partial image to update the velocity. The vast majority of MVA methods are 

based on the measurement of Residual MoveOuts (RMO) in CIGs. RMO analysis of 

migrated CIGs is equivalent to the stacking velocity analysis of common mid point 

(CMP) gathers in the data domain.  First we will analyze the kinematics of the image in 

offset domain. 

3.4.1. Kinematics of the local–offset gathers for horizontal reflectors 
Let a reflector be located at depth z. This reflector (x, Z) can be associated with 

the pair of source (S) and receiver (R) at the surface in coordinates (x-H, 0) and (x+H, 0) 

respectively. These S and R are separated by surface offset 2H with respect to the mid-

point (x, 0) (Figure 3.4). Hence timetime taken to travel from S to R via the Reflector (x, 

Z) is 

c
ZHT ZH

22

,
2 +

=    (3.21) 

Figure 3.4: Kinematics of the image in offset domain. Image at the point (x,Z) is obtained 

by correlation of ( , , )S x h S ω+ and ( , , )R x h R ω− at each point x in the model. The point 

of correlation x is not necessary on the surface. 

 

For c the constant true velocity, the migration travel time in offset is denoted by sub-

surface co-ordinates [x, h]  and is expressed as the sum of the migration traveltime from 

the source (x+H,0) to a sub-surface point (x+h, z) and receiver (x-H,0) to a subsurface 

point (x-h, z) , 

H 

h
S(x+h)R(x-h)

Z

R S

(x,Z
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v
zhH

T zH

22

,

)(2 +−
=   (3.22) 

where v is the constant migration velocity. The constructive interference occur at sub-

surface coordinate [h,z] only when  T H,Z = T H,z. from the above equations we obtain 

( ) ( )22222 ZHzHh +=+− γ   (3.23) 

( ) ( )22222 HhZHz −−+= γ   (3.24) 

where c
v=γ  is the ratio of the migration velocity and the true velocity. 

An image is formed when depth z is stationary with respect to the change in surface 

offset H. Which means dz/dH=0, 

0=2ϒ2H +2(h-H)   (3.25) 

i.e. 2H=h/(1 - ), γ  This equation gives the relation between surface offset (H) and 

subsurface offset (h). Replacing the surface offset H by subsurface offset (equation(3.24)) 

we derive 

1
)1( 22

2

22

2

=+
− Z

z
Z

h
γγ

  (3.26) 

 

This equation (3.26) is characterized by the kinematics of the common image in offset for 

some fixed mid-point x. When the migration velocity v is less than the true velocity c, we 

have 1pγ , and equation (3.26) becomes a hyperbola. The moveout starts at an 

undermigrated depth z <Z and is curved toward the smaller depth. When the migration 

velocity v is greater than the true velocity c, we have 1fγ , and equation (3.26) became 

an ellipse. Here moveout starts at an overmigrated depth z>Z and is curved toward the 

larger depth. At 1=γ , migration velocity equals to the true velocity, all the energy will 

fall at depth point (Z, 0). Thus, the curvature of the moveout curve on wave equation 

offset gathers indicates velocity errors, which is the desired behavior for velocity analysis 

application.  
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3.4.2. Kinematics of the Angle gathers for horizontal reflectors 
The angle domain relation can be directly obtained from the offset domain relation (3.26) 

by replacing the offset parameter (h) to the apparent angle parameter.  

The apparent angle tanφ= -h/Z 

)1( 2

22
222

−
−=

γ
γγ hZz    (3.27) 

)1(
tan

2

222
222

−
+=

γ
ϕγγ ZZz   (3.28) 

The linearization version of RMO function  for a  flat reflector  is (Biondi and Symmes , 

2004) 

RMOZ =− ϕγ 2tan)1(   (3.29) 

and for  inclined reflector (geological dip α ) is 

ZRMO
)sin(cos

sin
cos

)1(
22

2

ϕα
ϕ

α
γ

−
−

= .  (3.30) 

Similar kinematics relation has also been derived for 3D Angle domain CIG (Biondi and 

Tisserant 2006). In chapter 5, an automatic approach of RMO extraction from the gather 

will be presented.  These gathers are produced by either Kirchhoff migration (ray tracing) 

or wave field extrapolation. In MVA tomography, generally ray tracing based approach is 

used whereas wavefield extrapolation methods are mostly suited for geologically 

complex region. Both migration approaches are routinely used in the velocity estimation 

process. Here we are reviewing them for sake of completeness.  

 

3.5 Migration 
When either the reflector geometry is complex or the wavefronts are distorted by a strong 

lateral velocity variation, the analysis of kinematics is more robust in the image domain 

after the migration than the data domain methods before migration. Migration (Figure 

3.1) can be defined as a "map" from data space to image space and the image is a 

reflectivity picture. 
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Figure 3.5: A schematic diagram showing transformation from data space to image 

space. Here migration maps data space to image space. 

 

Migration algorithms can be divided into two main classes: Kirchhoff methods and 

downward-continuation methods. A very short description of both methods and their 

compressive advantages and disadvantages is given below.   

3.5.1 Kirchhoff migration  
Kirchhoff migration is based on the integral solution of the wave equation and has a 

kinematics and amplitude part to the solution. To perform a Kirchhoff migration (Figure 

3.6) one first needs to compute travel time through a velocity depth model. Then to each 

travel time of the computed travel time table, a sample of the input data is matched. The 

amplitude of this sample is then scattered along the migration impulse response 

corresponding to a wave front or a location of an equal travel time. Amplitude decay is 

then considered along the impulse response curve. Impulse responses are then stacked to 

recreate a seismic reflector. Here, the Green's function is computed by ray tracing: it 

consists of kinematics and amplitudes parts. The kinematics parts define the traveltime of 

a diffraction shape, while the amplitude part provides amplitude weighting that is applied 

along the diffraction. Modern inversion techniques (Bleistein 2001) also result with the 

same Kirchhoff type solution but require “true amplitude” type processing and may apply 

different amplitude weightings along the diffraction. 

 
Kirchhoff methods are an asymptotic approximation of Green's function and typically use 

a single arrival (usually the most energetic). It has proven to be a robust migration 

method because it is computationally efficient and can handle irregular acquisition 

geometry (Bancroft, 2004). Further, it can be target oriented, that is image at a specific 

depth level or levels can be obtained without requiring to imaging the entire volume. In a 

Data Space  Image Space  

Migration

( )5 , , , ,s s r rx y x y tℜ ( )3 , ,x y zℜ



 61

high-fidelity Kirchhoff implementation, honors correctly the extremely large apertures 

(e.g. 12 to 15 km radius) and image overturn dips.  Its reliance, however, on ray-traced 

traveltime means that it is sensitive to ray behaviors, which, in complex geology, can be 

erratic and can result in migration noise in poorly illuminated areas. Strong lateral 

velocity variations, however induce multipathing i.e. appearance of multiple raypaths 

connecting the source and the receivers location with the image point (Stolk and Symes 

2004).  To overcome these difficulties a lot of attentions has been given to wave field 

extrapolation (or downward continuation) migration – that implements differential 

solution of one-way wave equation performing the downward extrapolation of the 

wavefield.   

Figure 3.6: In the Kirchhoff migration (a) , for an image point, Green functions (b) are 

computed through the velocity model for all raypaths from image point to source and 

receivers. The process yields time and weight for each offset, indicating where 

corresponding sample should be read from the data set. All the samples are then 

weighted and summed to produce the estimated reflectivity at the image point. The 

process is repeated for all the image point and shots.  
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3.5.2. Downward continuation methods 
Downward continuation can be defined as the process in which the surface recorded data 

is stepped down into the subsurface.  In this method an image in the subsurface is 

constructed by the downward continuing of data through small depth step and invoking 

the imaging condition at each depth level (Berkhout 1981).  The imaging condition can 

be defined as the process by which the reflectivity information is extracted from the 

extrapolated data (downward continuation).  These methods are also called recursive 

methods because the wavefield at each depth level is computed from the wavefield at 

previous depth level using one-way or full (two-way) wave equation.  There are different 

implementations of downward continuation migration methods: shot record 

implementation, plane wave implementation, s-g implementation..... They all have in 

common a wavefield propagator kernel. The accuracy of these kernels directly impacts 

the efficiency of the migration algorithms and the quality of the resulting migrated image. 

 
 

The wavefied extrapolation using the full wave equation can theoretically model 

arbitrarily steep reflectors and arbitrary lateral variations in velocity. Unfortunately, it 

remains too expensive to use, as it requires computation in the time domain on a very fine 

grid to avoid numerical dispersion. To overcome some of these difficulties, an approach 

based on the one-way wave equation has been developed. Different wavefield 

propagation methods differ primarily in the numerical domain used to solve one-way 

equation.  Selection of domain to solve one-way wave equation depends on the available 

computational resources, geological complexity and required quality.  

 

The wave equation methods also differ by the way of implementation of the imaging 

condition. The two most commonly used approaches are shot profile migration (SPM), 

and source receiver migration. Source receiver is also commonly referred as the survey 

sinking or the double-square root method, and despite its name, it is commonly applied in 

the midpoint-offset domain (Claerbout, 1971,1985). 
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3.5.2.1 Shot-profile migration (SPM) 
The shot-profile migration forms a subsurface image by an interferometric extraction of 

energy from the extrapolated source and receiver wavefields. Claerbout's imaging 

principle (Claerbout, 1971) states that a reflector exists at a point where the upgoing and 

the downgoing wavefields coincide in time and space (Figure 3.7). He proposed to obtain 

the reflector maps by crosscorrelating upgoing (R) and downgoing (S) wavefields in the 

earth. The upgoing and downgoing wavefields can be obtained by continuing downward 

into the earth, the recorded wavefield and source function respectively. 

( , ) ( , , , ) ( , , , )
s

I x z S x z s R x z s
ω

ω ω= ∑∑       (3.31) 

where  x and z are the surface and depth positions, respectively, ω is the frequency, s is  

the shot position and ( )  is  the complex conjugate. 

 

Figure 3.7: Principle of wave equation migrations. Propagation the wave downward to 

the image point and crosscorrelating of the upgoing (R) and downgoing (S) wavefields in 

the image point to obtain the reflectivity. 
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 In shot profile migration, each shot can be migrated independently, and PSDM image is 

formed by stacking of the individual image.  

 

Rickett and Sava, (2002) generalized the equation (3.31) by cross correlating the wave-

fields and shifting them horizontally with respect to each other. The prestack image then 

becomes a function of the horizontal relative shift, which has the physical meaning of a 

subsurface half offset (xh). It is defined as 

( , , ) ( , , , ) ( , , , )
s

I x z h S x h z s R x h z s
ω

ω ω= − +∑∑     (3.32) 

In equation (3.32), ( , , )I x z h  is the common image gather at an horizontal offset x.  

Sava and Fomel (2003) presented a simple method for transforming the offset domain 

common image gather into Angle Domain Common Image Gathers (ADCIGs) by a slant 

stack transformation applied to each offset domain CIGs as given below:  

Ix (z, x, tanγ ) = SlantStack [ ( , , )I x z h ]   (3.33) 

where  γ is the aperture angle of the reflection. 

 

This transformation from offset domain CIG to ADCIG is based on the following 

relationship between the aperture angle and the slope, ∂z/∂xh, measured in image space: 

-∂z/∂xh = tan(-kxh / kz)  ; (3.34) 

where kxh and kz are respectively the half-offset wavenumber and the vertical 

wavenumber. The relationship between tanγ and the wavenumbers suggests that the 

transformation to ADCIGs can be accomplished in the Fourier domain by a simple radial-

trace transform (Sava and Fomel, 2003). 

3.5.2.2 Source-receiver migration 
Source receiver migration is based on the survey sinking principle (Claerbout,1985). At 

each depth level, the downward-continued shot gathers are sorted into the receiver 

gathers, which are downwards, continued to the same depth level. The extrapolated data 

is equivalent to the data that would have been recorded if all the sources and receivers 

were placed on that level.  The reflectivity is then estimated by invoking the zero time 

and zero-offset imaging conditions.  
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It has been shown mathematically that properly implemented DSR and SPM have 

equivalent accuracy and produce equivalent results (Wapenaar and Berkhout, 1987; 

Biondi, 2002). Based on algorithm considerations and imaging results, there are different 

areas of applicability for different imaging formulations. SPM are well suited for land 

and ocean bottom data, while DSR-based wave equation migration is best for marine 

streamer data. 

 

3.5.3 Comparison of Kirchhoff and wavefield-continuation method: 
In following table pros and cons of both Kirchhoff (integral methods) and wavefield-

continuation (differential methods) are summarized (Jones & Lambaré, 2003).  

 

Kirchhoff method wavefield continuation methods 
• Kirchhoff and Gaussian beam are the 
best known and they are usually 
implemented in time domain.  

• A distinguishing feature is the separation 
of calculation of travel time from imaging 
thus a subset of image can be computed 
without needing to image the entire 
volume. 

• Finite difference wavefield continuation 
is the best known, in conjuction with phase 
shift plus corrections. Each depth slice of the 
wavefield is computed from the previously 
computed slice, thus essentially the entire 
image volume needs to be formed. Dip 
response is dependant on the order of 
expansion used (Thus it is potentially costly) 

Strength: 
• It delivers a subset of the image 

volume, including  offset (thus it is cost 
effective for the iterative model 
building) 

• good dip response 

• can yield sub-set of the full two-way 
solution (turning waves) 

Strength: 
• image all arrivals 

• simple amplitude treatment 

• A full two-way implementation can 
yield all wave-path, including prism 
waves turning waves and (perhaps) 
multiples  

Weaknesses: 
• Inherently kinematic 

• usually delivers only one arrival path 

Weaknesses: 
• Images whole volume (thus costly) 

• obtaining good dip response is expensive 
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• velocity field coarsely sampled for 
travel time computation, then arrival 
times interpolated back to seismic 
spacing. 

• no readily extendible to a full-wave 
solution 

• does not readily produce pre-stack data 

• thus difficult to achieve cost–effective 
iterative model building without  
'restrictive' assumption (e.g. mono-
azimuth)  

• very expensive to invoke a full two-way 
solution  (but can use approximate two 
pass one-way) 

 

Conclusions 
In this chapter we reviewed state-of-the-art velocity estimation techniques for velocity 

analysis in geologically complex region.  Travel time tomography requires a 4D picking 

of data which is difficult in time domain for geologically complex. This picking can be 

easily done on depth domain because it is more interpretable. Still picking is heavy (4D 

interpretation). Moreover observation on the gathers can be described by a family of 

curves which reduces a 4D interpretation into 3D. There are many implementation, most 

of them base on ray tracing method (sensitive to sharp velocity variation) to flatten the 

Common Image Gathers (CIGs). However Differential semblance optimisation (DSO) 

methods do not need picking, the objective function is also based on the flatness of the 

CIGs, directly linked to velocity errors. Hence in our approach we are going to use DSO 

based approach using wave equation migration.   
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Chapter 4 
 

Representations for evolutionary multi-objective 
subsurface identification 

 
There are two problems dealing with subsurface identification: The geological problem, 

tries to identify the subsurface structure using either data from surface geologic surveying 

or well logging; the geophysical problem aims at identifying subsurface velocity 

distribution from seismic data. In both problems however the first issue to be addressed is 

that of the subsurface representation. 

In this chapter we are investigating different representation techniques for subsurface 

structure (i.e. Voronoi, spline, grid and geological). After a brief survey of Voronoi 

representation (section 4.2) we discuss its drawbacks and propose a new geological 

representation technique for foothill structure (section 4.3). An implementation of this 

representation is presented (section 4.4) and is tested on an artificial geological inverse 

problem in foothills structure (section 4.5). However, because the extension of the 

geological up to the geophysical problem was not efficient enough (section 4.6) we turn 

back to the grid representation (section 4.7) that we analyzed in depth here. We discuss 

that velocity representation is a subjective issue and it should be considered according to 

the geological complexity, available data information and computational resources.  

 

4.1. Introduction 
Representation of subsurface structure is one of the most critical issues in subsurface 

identification, as it controls the shape and size of the model parameters.  The traditional 

approach for geological modeling is to repeatedly evaluate geological models with 

respect to balancing principles, namely, rock volume and bed-length preservation. These 
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geometrical hypotheses, which are only approximations to reality, mean that geologic 

structures behave locally like a folded paperback book, with layers slipping on each other 

like pages during folding. This geological modeling, which may be backward (Moretti et 

al., 1989) or forward (Endignoux et al., 1989), is very cumbersome and human time 

consuming. 

 

Geophysical modelling, on the other hand, has taken advantage from the progresses of 

numerical modelling, and several works address the problem using classical gradient-

based identification methods. Because the problem either has to be oversimplified, or is 

ill-posed, several works used Evolutionary Algorithms (EAs), that are known to be well 

suited for solving complex, mathematically ill-posed identification problems (Schoenauer 

and Sebag, 2002). However, a critical question is the choice of a representation (and of 

the associated variation operators (crossover and mutation)). In the case of subsurface 

identification, state-of-the-art works either assumed some expert knowledge about the 

geometry of the subsurface structure (e.g. horizontal layers (Stoffa & Sen, 1991), or more 

complex geologically-driven topology (Boschetti et al., 1996)), or used global automatic 

models  that lack geological soundness (Mansanné et al., 2002) (e.g. the subsurface 

structures are not balanced).  

 

Mansanné et al., (2002) made an attempt identify subsurface by representing a blocky 

subsurface structure using Voronoi sites (Figure 4.1). The underlying hypothesis in their 

work was that the sub-surface structure can be partitioned into regions of homogeneous 

velocity, i.e. velocity is supposed to piecewise constant. The idea was to evolve both 

portioned and real-value velocities. Whereas spline (Jervis et al (1996); Docherty et al. 

(1997)) coefficient encoded into a binary strings were used to represent subsurface 

structure. 

 

The central issue when addressing such subsurface structure inversion problem is the 

trade-off one has to make between the complexity of the representation and the accuracy 

of the model in the resulting search space. For e.g. representing a grid of 

200x200=40,000 points can be represented as a full 40,000–long vector in full parametric 
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approach (one velocity per element of the mesh), packed into 20x10=200 spline 

coefficients if the spline approximation is preferred, or into a few dozens of Voronoi 

sites. 

 

The Voronoi representation is a compact unstructured representation. It has first been 

proposed in (Schoenauer 1995), as a first attempt toward unstructured representation for 

topological optimal design (TOD). Since then it has been used for different identification 

problems (Schoenauer et al., 1996; Schoenauer et al., 1998). A brief introduction of 

Voronoi diagram is given below before we highlight a typical situation where geological 

knowledge is crudely missing. 

 

4.2 Voronoi-Based Representations 
Voronoi Diagram: Consider a finite number of points V0,….VN (the Voronoi sites) of a 

given subset of Rn (the design domain). To each site Vi is associated the set of all points 

of the design domain for which the closest Voronoi site is Vi, termed Voronoi cell. The 

Voronoi diagram is the partition of the design domain defined by Voronoi cells. Each cell 

is polyhedral subset of the design domain, and any partition of design domain of Rn into 

polyhedral subset is the Voronoi diagram of at least one set of Voronoi sites (see 

Preperata and Shamos, 1985 for detailed introduction to Voronoi diagrams, and a general 

presentation of algorithmic geometry). 

 

Voronoi Site 

Voronoi cell 
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Figure 4.1: The yellow dots represent the sites. Voronoi diagram divides the sites into the 

regions (cell), such that the borders of the regions are equidistance from the two nearest 

sites. 

 

A 2D Voronoi velocity model will consists of several sites and each sites is represented 

by three parameters, two space co-ordinates (x, y) and one velocity parameter. These 

Voronoi sites can adopt any shape. Also it is straightforward, the extension from 2D to 

3D velocity models requires one more space co-ordinates and few more Voronoi sites to 

represent.  

 

Mansanné et al. (2002) optimised a simple 2D subsurface structure using genetic 

algorithm; they represented subsurface by Voronoi model and applied geophysical 

criteria (semblance function) to measure the fitness. Numerically, they were able to 

optimize (maximum semblance or flat gathers) the models, although the optimised 

subsurface structure was same times geologically insignificant (Figure 4.2). They 

experienced the need of some guidelines to optimize the subsurface structure and avoid 

the generation of absurd geological models.    

 

 

 

 

 

 

 

 

 

a
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Figure 4.2: (a) Flat gathers obtained from the velocity model.  (b)This Flat gather 

obtained from a geologically absurd velocity model (Mansanné et al. (2002)). 

 

4.3 Geological knowledge 
In this work we made an effort to generate geologically significant structure and 

incorporated geological information to guide the optimisation process. We propose an 

original indirect representation for subsurface identification. The morphogenesis process 

(from the encoded representation to the subsurface structure) can only generate balanced 

geometries. Moreover, it can be used to solve either or both the geological and the 

geophysical identification problems by EAs automatically, and without the need for any 

additional expert knowledge. The idea is to represent a subsurface structure by the 

combination of, first, an initial configuration (series of flat homogeneous layers of 

different geological nature), second, some initial faults in that simple structure, and third, 

a description of successive geological deformations along the ages. A kinematic model, 

that relates fold geometry to fault shape and displacement, is used to construct cross-

sections of the geological structures. These cross-sections are automatically balanced by 

virtue of the above-mentioned balancing principles (volume and bed-length preservation) 

upon which the kinematic model is based. The resulting complex subsurface structure is 

then used to compute the identification criteria: comparison with surface or subsurface 

geological data, geophysical simulation of some seismic experiment, etc (next sections). 

 

b 
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However, as already mentioned, the different types of available information may be 

conflicting. Therefore the problem is better reformulated into a multiobjective 

optimization problem: there is no unique optimal solution but a set of Pareto optimal 

solutions, also termed non-dominated non-inferior, admissible, or efficient solutions. 

Multiobjective evolutionary algorithms (MOEAs) as discussed in Chapter 3, more 

precisely, the Epsilon-MOEA [Deb-epsilon], have been used to tackle this multiobjective 

problem.  

 
 

4.3.1 Geology 
Complexity and ambiguity of mountain fronts are what makes them the most challenging 

fronts for a geologist or a geophysicist. Now the thrust regions (mountainous regions) are 

the next human quest for petroleum exploration. These fold-and-thrust belts are the 

manifestation of collision of tectonic plates. Most fold-and-thrust belts consist of 

foreland-progressing and hinterland-dipping thrusts (Boyer and Elliott, 1982) that may 

connect layer-parallel detachments (décollement horizons). The distribution of 

mesoscopic deformation features in fault-related folds has important consequences for 

hydrocarbon migration, trapping and production. Structural, environmental and 

stratigraphic factors control the spatial distribution and intensity of the deformation 

features (e.g. Fischer and Jackson, 1999) of mountains, under a given rheological 

stratigraphy (Woodward and Rutherford, 1989) and prevalent environmental conditions 

(Stewart and Alvarez, 1991; Jamison, 1992; Lemiszki et al., 1994). It is fault-fold 

kinematics which controls the distribution and intensity of deformation that develop in a 

rock sequence (Fischer et al., 1992; Storti and Salvini, 1996). 

 

4.3.2 Kinematic Models 
For the representation of mountainous structure mainly three types of kinematics 

models appear in the literature. 1) kink model (Suppe 1983, 1990), 2) trishear model 

(Erslev, 1991; Hardy and Ford, 1997; Allmendinger, 1998 ) and 3) force fold model 

(Johnson and Johnson, 2000). Amongst the above mentioned three types, the kink model 
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is considered best suited for thin skinned tectonic regions. Since we are interested in such 

regions, hence kink model is being used. 

 

 A two-dimensional geometric model of fault-bend folding for a thin-skinned tectonic 

was first formulated by Suppe (1983) based on the conservation of layer thickness and 

bed length. He showed its applicability in the simulation of the Pine Mountain thrust 

sheet in the southern Appalachians, and to the fold and thrust belt of Western Taiwan. 

The use of kink-band style folding with non-deforming footwalls (characteristic of such 

geometric models) has been criticized by Ramsay (1991) as being unrealistic. Another 

fault-bend folding model was proposed by Contreras and Suiter (1990), however it was 

also based on the conservation of area. Since their introduction, these geometric models 

have received a lot of attention (Medwedeff, 1989; Jordan et al., 1993) and have been 

used extensively to predict thrust fault geometries at depths based on observed fold 

geometries. They have also been used in a forward modeling sense to predict hanging 

wall geometries above thrust faults (Mitra, 1990; Contreras and Suiter, 1990, 1997; 

Zoetemeijer, 1993; Hardy S., 1995). 

 

4.3.3 The Contreras Model 
The kinematic model used in the current simulation was introduced by Contreras and 

Suiter (1990). This model can be applied to regions being deformed by shortening, 

extension and also for the duplex systems (Contreras and Suiter, 1997). This is a two-

dimensional model and is based on a coordinate transformation from less deformed state 

to a more deformed state (Figure 4.3). The medium is subdivided into domains of 

constant dip and homogeneous displacement vector fields that are delimited by the planes 

bisecting the fault inflections. The displacement occurs by translation. The displacement 

trajectory is of constant length for all the displaced particles throughout the medium and 

is parallel to the underlying active fault segment. This model also considers fault parallel 

simple shearing. A complete derivation Contreras fault bend folding (FBF) was provided 

by Contreras and Suiter (1990). The heterogeneity of the displacement vector field across 

axial planes introduces longitudinal and angular shear strains. Transformations from one 
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state to another state do not cause a change in area and also the deformation is isochoric, 

a characteristic typical of deformation by simple shear (Truesdell and Toupin, 1960). 

 
Figure 4.3: Principle of the Contreras forward tectonic model. The co-ordinate 

transformation from less deformed state to more deformed state. 

4.4. The Evolutionary Algorithm 
 

4.4.1 The Representation 
As mentioned in the introduction, the main difficulty when tackling a geological or 

geophysical identification of subsurface structure problem by EAs is to define a 

representation: structured representations are either unrealistic in complex regions like 

foothills (e.g. a fixed number of horizontal layers) or require some very specific expert 

knowledge about the geometry of the subsurface structure (Boschetti et al., 1996). 

Unstructured representations, on the other hand, don’t require any input from the expert –

but they lack of the minimal geological common-sense and hence can lead to quasi-

perfect numerical fit that are absurd from a geological point of view (Mansanné et al., 

2002). Note that some alternative possibilities have been proposed, that define a global 

model with numerous local parameters (e.g. using spline nodes uniformly spread on the 

considered domain), but such representations have the same lack of geological soundness, 

while additionally resulting in a huge optimization problem for the sake of precision. 

Moreover, it seems very difficult indeed to try to constrain the solution proposed by 

unstructured representations with some geological rules (e.g. some simple rules could be 

that the underground velocity should increase with the depth – but interesting regions are 

precisely regions where such rule is violated!). 

 

The representation proposed in this work deals with the above-mentioned problem by 

relying on a kinematic model of subsurface deformation from an initial simple state 
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(horizontal layers, that can be assumed to be universally true in all regions at some point 

in the past) and subsequent deformations based on one of the kinematic models discussed 

in section 4.3.3 that ensure the consistency of the structure at any time, including the final 

state of the model – the target subsurface structure.  

 

In EAs terminology (see Chapter 2), the genotype space, in which the algorithm will 

actually search, and where the variation operators are defined, is here the space of initial 

configurations plus initial faults plus series of deformations (see figure 4.4 for the 

detailed description of the complex data-type). The phenotype space, or behavioral 

space, where the fitness of each genotype is computed, is the space of subsurface 

structures, obtained from the genotypes by applying a transformation, called the 

morphogenesis process, or also the numerical Contreras model described in section 

4.3.3. The tectonic modeling presented in section 4.3.3 is sound because we will obtain 

only balanced subsurface structures by this morphogenesis process. 

 

 
Figure 4.4  A chromosome: Unknown parameters are the number of initial layers and, 

for each layer, its thickness; the number of faults and, for each fault, its origin, and 

number of segment, and, for each segment, its length and dip; and the displacements (for 

each fault, one horizontal displacement). 

 

4.4.2 Initialization and Variation Operators 
First note that the representation proposed in this work is possibly a variable length 

representation (variable dimension parameter space). However, in the experiments 

presented in section 4.5, we have used a fixed length representation: the number of faults 
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and the number of segments per fault will be fixed (from the target model). We shall 

hence here only describe the operators of this fixed-length restriction. 

4.4.2.1 Initialization 
Here a complex structure of real values is being used, therefore the parameters are 

initialized uniformly on a given interval, with some geometrical constraints:  

•  Displacement of a fault can not be more than the difference of distance between the 

first segments of two successive faults. 

•  The length of first segment increases in the successive faults. 

4.4.2.2 Crossover Operator 
Because the representation is at the moment fixed length, the Simulated Binary Crossover 

(SBX) (Deb and Agrawal 95) recommended with the epsilon-MOEA algorithm has been 

used. During the crossover, the geometry constraints listed above are respected.  

A quick parameter study (12 independent runs for each value of η) has been performed 

(on the 3-faults problem described in section 4.5.3). All final populations are merged and 

non-domination sorting is performed (result can be seen in Figure 4.5). It is found that 

high value of η is most suitable for this simulation, and thereon the distribution index η 

has been set to 15. Note that the recommended values of ε= 0.05 and ε2= 0.05 were 

found robust enough and used in all experiments presented in section 4.5.3. 

 

 

 

 

 

 

 

 

Figure 4.5 Influence of the distribution index η of SBX crossover on the results (results 

of 12 runs). Higher value of distribution index η seems more efficient for foothill 

inversion. 
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However, because the SBX crossover can hardly be applied on variable-length genotypes, 

some more variable-length specific crossover operators could be used in the variable-

length case (add number of fault and segment). 

4.4.2.3 Mutation Operator 
The SBX crossover is known to be self-adaptive in the sense that the spread of the 

possible offspring solutions depends on the distance between the parents, and decreases 

as the population converges (Beyer and Deb 2001). Hence it is generally used without 

any mutation (the use of mutation together with SBX in the context of the problems 

presented in section 4.5 did not seem to bring any benefit indeed, and was abandoned). 

However, because the variable-length case requires additional use of mutation, self-

adaptive Gaussian mutation (à la ES) is used on all real-valued parameters, while specific 

variable-length mutation operators are used to modify the numbers of faults and segments 

in each fault. 

4.4.2.4 The ε-Multiobjective Evolutionary Algorithm 
As mentioned in the introduction, various sources of data will be used for identification. 

Hence, the identification problems will be turned into Multi-Objective Problems (MOPs). 

Examples of such problems can be seen in section 4.2 for the geological modeling 

problem, or in (Mansanné 2002) for purely geophysical identification using both the 

semblance and the least-squares error on seismic signals. But the ultimate goal of the 

present work is to simultaneously use all available data, geological and geophysical, 

leading to even more objectives.   

 

For the optimization of foothill structure (section 4.5), we have chosen the recently 

proposed, ε-MOEA (Deb et al., (2003)) because it achieves all the above desired 

properties at a minimum computation cost.  The code of this algorithm is graciously 

offered by the authors at URL http://www.iitk.ac.in/kangal/soft.htm. This algorithm is 

already described in Chapter 2 (Section 2.7.7.9). For sake of completeness, here once 

again we are summarizing it. 
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ε-MOEA is based on the principle of ε-dominance that relaxes the strict Pareto-

dominance principle. It uses two co-evolving populations: an EA population and an 

archive population A, and is a steady-state EA. The initial archive population A is 

assigned from the initial EA population using ε-non-dominated solution. Thereafter two 

solutions are selected, one from the EA population using tournament selection and the 

other from archive A using random selection. From those parents, an offspring O is 

created, and is used to update the EA population on the basis of strict dominance, and the 

archive population on the basis of ε-dominance. Only one solution in each hyper-box on 

the Pareto-optimal front is allowed, to favor diversity. 

 

4. 5 First Results in Geological Modeling 

4.5.1. The Geological Identification Problem 
For identifying a foothill structure, a purely geological inverse problem is defined. In this 

inverse problem, the unknowns are the parameter of a structure, and the data are layer dip 

or fault location measured on the topographical surface or along a well (Figure 4.6). 

Experimental results are being presented on artificial problems: the “experimental” data 

are computed on a model that is in itself the result of an evolution using the Contreras 

kinematic model starting from a known initial configuration. Two models have been 

considered, a 3 fault and a 7 fault models.  

Figure 4.6 Data are the measured fault location (red circles) and the dip of the layers 

(blue circle) along surface and well. 

4.5.2 The Evaluation Functions 
Evaluation is the most costly and important step for real applications.  Kink model 

(Contreras and Suiter, 1990) is used for the deformation of the model from the initial 
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state to final state. After deformation, dip and fault location parameters are evaluated for 

optimization purpose. In general, dip of faults, stratigraphic unit, and fault location are 

easily obtained from the field observations, well logs (dip-meter) or by remotes sensing 

data. For the evaluation of a model, a least-squares criterion measures the discrepancy 

between the field data and corresponding dip and faults location on the current model. 

The relation is shown by the following equation.  

 

The computational cost of the evaluation function is hence negligible when compared to 

that of the morphogenesis process (the Contreras model that computes the deformation of 

the subsurface structure). For instance, for the experiments presented in next sub-sections, 

the total computational cost on a Pentium 3.4GHz is about 4 hours.  

4.5.3 A Three Fault Model  
A target mountain front model, with five layers and three faults, is shown in figure 4.7 

Because this model was generated from an initial genotype (as described in section 4.3.3) 

with the Contreras model, it is the exact solution to the identification problem. On this 

example, data is only available at the surface, light circles representing dip information, 

dark circles fault locations.  
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Figure 4.7: Good results on the 3-faults model: (a) is the target structure. (b) and (c) are 

result structures. Structure (b) is similar to target structure in all respects. Structure (c) 

is also similar to the target structure but fault locations are slightly different. However, 

both structures coincide with the target at the observation points. 

For this experiment, the population size was 30, Maximum archive size 30, number of 

generations 300, and, as mentioned in section 3, the representation was restricted to 

fixed-length 3 fault genotypes. 

 

Figure 4.7 shows some identified models that are very similar to the target model. Model 

4.7 (b) is similar to the target model in terms of surface and subsurface fault location and 

topography, while model 4.7(c) is also similar to the target structure but its fault positions 

are slightly different. However, some others models have also be obtained, which are 

numerically quasi-optimal too, but visually quite different from the target model (see 

a 

b 

c 
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figure 4.8). This leads to the conclusion that the problem is underdetermined: we need 

more information in order to uniquely define a solution.  

 

 
Figure 4.8 (a) and (b) are the others optimized models. The models (a) and (b) are 

similar along the topographic surface, but visually different below. 

 

4.5.4 Results on the Seven Fault Model 
A more complex seven fault model is shown in figure 4.9 (a). On this model the 

observation points are located both on the surface and in a well. For this experiment 

population size was 50, archive size 50, and number of iterations was 500. The identified 

models are shown in figure 4.9 (b) and (c). Again, they are very similar to the target 

model. In figure 4.9(b), the fourth fault is visually different from its analogue in the target 

model but the rest of the faults are both numerically and visually similar. Figure 4.9(c) 

also looks very similar to the target but for the sixth and fourth faults. Here also, as can 

be seen on figure 4.10, some identified models are quite different from the target model–

though being quasi-optimal numerically, i.e. the available data on the surface and in the 

well are almost perfectly fitted. 

 

a 

b 
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This situation is very typical of ill-posed problems: we do not have sufficient information 

to ensure the uniqueness of the solution. Remember that some basic geometry constraints 

have been added to the representation (e.g. successive faults first segment length will be 

more than the previous one, see Section 4.4.2.1). Such additional knowledge did prove 

beneficial:  without this information, the algorithm need around 1000 iterations to 

converge while only around 300 with the constraints. However, higher order of 

information like seismic, gravity or magnetic data, seem necessary to improve the results. 

 

 
 

Figure 4.9 (a) is the target structure, (b) and (c) are the numerically optimised structures. 

In spite of minor differences, models (b) and (c) are fairly similar. 

 

 

a 

b 

c 
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Figure 4.10  (a) and (b) are other numerically optimal structures for the 7-fault model. 

But models 7(a) and 7(b) are obviously different from the target mode 6(a). However they 

fit rather nicely available dip and fault position data as well. 

4.5.5 Convergence test  
Above experiments were performed with different random seeds to check the 

convergence of the algorithms. In the figure (4.11) symbol (R) represent the initial 

models and stars are the final models. We find that each time our algorithm converge 

toward the Pareto optimal solution. This shows that our optimisation process is 

independent of initial model.  

 

Figure 4.11: The letter R (green, red 

pink) represents the random models at 

different initialisation and stars (green, 

red pink) represents the final 

population. In each initialisation 

population is converging toward the 

optimal solution.  
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4.5.6 Discussion on foothill identification  
The complexity and ambiguity of mountain fronts pose a significant challenge for both 

geologist and geophysicist in determining the geological and geophysical parameters. In 

traditional approach, mountain front identification needed either rigorous human 

interaction, because of absence of established numerical criteria to act as an inversion 

target, noisy surface, and subsurface data and little prior information, or lead to 

geologically unrealistic results because, except for very simple regions, the geometry of 

the subsurface structure cannot be accurately predicted. 

 

We have proposed a new representation of  subsurface structures by a set of  

automatically balanced geological models. It has two advantages: (1) it is geologically 

relevant (all structures are balanced), and (2) it does not require human guesses about the 

geometry of the unknown structure. Moreover, this is the first time, to the best of our 

knowledge, that multiobjective optimization is applied to a subsurface identification 

problem. The first results, obtained on synthetic geological identification problems, show 

the power of the proposed representation, even if we restricted this representation to fixed 

length for those final experiments.  

 

Of course, this geological identification problem is ill-posed, and than more data is 

needed in order to reach good solutions with more robustness. We further perform 

experiment with the seismic data.  

 

4.6 Velocity inversion of a foothill structure 
One of the main goals of this thesis was to reconcile geology and geophysics by mean of 

EAs. After designing a geologically sound representation for sub-surface structure 

identification, there were at least two ways to proceed toward solving the complete 

geophysical identification problem: The first one is to first, perform the geological 

identification, and, then, freezing the sub-surface structure, identify the (constant) 

velocities in every layer;  the second one is to add the velocity parameters into the 

geological representation (one velocity per layer), and to optimize both the subsurface 
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structure and the velocity distribution at the same time. We shall now discuss in turn 

these two approaches. 

   

4.6.1 Two- step seismic velocity inversion  
 In our first approach we divide our velocity inversion into two steps. In the first step we 

performed geological inversion (as discussed in the previous sections of this chapter) and 

in the second step we perform the velocity inversion of the obtained geological model 

(Figure 4.12). In this second step, we assume that geometry of the foothill structure is 

known thanks to geological inversion and the only unknown parameters are then the 

velocities in every layer, that are assumed to be constant. We used semblance and 

differential semblance function (see Sections 3.3.3 and 5.2) to measure the fitness of a 

velocity model.     

 
Figure 4.12: Two step structural inversion. We assume that a geological model was 

inverted using geological criteria in a first step (in gray) Now, in the second step, we 

invert velocities using geophysical criteria.   

  

 We have optimised a five layers synthetic foothill structure (Figure 4.13) using 

semblance and MODS criteria (see Section 5.2.2) with the multiobjective evolutionary 

algorithm ε-MOEA (see section 2.7.7.9).  
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We also used offset domain differential semblance (ODS) function in place of modified 

offset domain differential semblance (MODS, see section 5.2.2). Optimisation process 

took large number of evaluation and also need good parameter setting with ODS function. 

Whereas using MODS function, we were able to optimised in only few evaluation (100-

150) and using half the number of shots and small frequency bandwidth. Results are 

shown in the figure (4.14).  

Figure 4.13: This is the migrated image obtained by optimizing the layer velocities of a 

model with known geometry using MODS and DS function (see Chapter 5). 

   

 

 

 

 

 

 

 

 

Figure 4.14: For each layer of the model displayed in figure 4.13, this bar chart shows 

the velocity of two initial random models (yellow and orange), the velocity of one 

optimised model (green,) and the true velocity (sky blue). Optimised result is very close to 

truth.    
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Doing this structural optimisation in two steps reduce the number of unknown variable, 

as a result optimisation speed is fast. This two step process can provides an option to 

verify the results and add some extra information during the optimisation. However 

velocity inversion completely depend on the models provided by geological inversion, 

which may results incomplete evaluation. This process may need human interaction and 

information. This process may also need human interaction and information. 

4.6.2 Single step seismic velocity inversion  
Since ε-MOEA provides a unique opportunity to optimize, models with different criteria 

independently, we decided, to evaluate a model both geologically and geophysically, in a 

single step (Figure 4.15). We used two geological objective functions (see section 4.5.2) 

and two geophysical objectives functions MODS and semblance to evaluate them. We 

generates horizontal layer model (see section 4.4.1) and add a velocity parameter 

corresponding to each layers. Then deform it using Contreras model (see section 4.3.3) 

and evaluate it using both geological and geophysical data and criteria.  

 

We did many experiments, some with more than 5000 iterations. We were unable to get 

geologically significant results.  

Figure 4.15: Single step structural inversion. Here a model is evaluated both by 

geological (see section 4.5.2) and geophysical (MODS and semblance) objective function 

together using ε-MOEA . 
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Doing both optimizations together increases the number of unknowns. Accuracy of 

geological parameters strongly influences the geophysical parameters. As a result 

optimization also requires a large number of evaluations. These large numbers of 

evaluations are not only because of number of unknown parameters but also due to 

increasing of the solution space dimension (4D, two geological and two geophysicist 

solution spaces).  

 

We also realized that these approaches are limited by the geological and geophysical 

information and quite dependent on each other. Incorporation of information obtained 

from the seismic inversion to initial state (horizontal layer, faults etc.) needs a two step 

process. In the first step we need to introduce the information on a temporary geophysical 

space and then again go back to geological space to finally introduce the information, 

which is quite ambiguous. Since nature is very complex, and there are many 

circumstances where it is difficult to find a perfect geological simulator. One other 

difficulty that we realized is to find a real data with complete geological and geophysical 

information. Therefore we decide to go back to the classical grid representation.  

4.7: Back to grid the representation 
Grid representation is robust in terms of representing any geological structure. Moreover 

it provides a flexible and adaptable representation scheme and it is independent from the 

geological representational constrained (like, faulting, folding, erosion and deposition, 

etc.) though it requires a large number of grid points to represent complicated structures. 

Hence it may not be a good choice with global optimisation methods because of large 

number of unknown parameters. In spite of the fact that grid representation is not concise, 

we decided to use it because of its flexible and adaptable property.  

 

First we are envisaged the effect of different size of grid representation on the velocity 

estimation. Representing velocity on a coarse grid is undesirable because it reduced the 

details that are present in the model. Whereas representing velocity on fine grid increases 

the unknown parameter for inversion. Some works have already addressed the effect of 

smoothing on the migrated image (Versteeg 1993, Gray 2001). However there is no any 
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definite answer to the question: how much one should smooth? Smoothing can be viewed 

as an averaging over a specific length. Velocity smoothing, though unnecessary for the 

finite difference migration, is usually a reasonable things to do before any depth 

migration, since we typically lack precise, detailed knowledge of the velocities inside the 

earth.  Similarly for velocity inversion we would like to represent velocity on a fine grid. 

However, a large increase of unknown parameter enforces a coarse grid representation. 

Hence for a velocity estimation there is a need to find a compromise between the size of 

representation and corresponding accuracy.   

  

Here we present some example of the Marmousi model for different grid size 

representations (Figure 4.16).  To get the different grid size representation of Marmousi 

model, we smoothen it by different filter length and then resample it on same length of 

grid size.  We applied damped least squares filter (Liu, 1994) to smoothen the original 

Marmousi velocity model. Smoothing is done on slowness (1/velocity) rather then 

velocity, to preserve the traveltime. We selected filter length of 100m, 200m, 300m and 

400m to smooth and resample (Figure 4.16) the Marmousi velocity model. We applied 

shot profile wave equation migration on this velocity model to investigate the effect of  

grid size on the migrated image (Figure 4.17) and gathers (4.18).  

 

First we notice that selection of a reasonable size of grid (e.g. 100m to 200m, Figure 

(4.16a and b)) does not make a noticeable impact on the migrated image even in complex 

region. This is similar to the Versteeg (1993) observation. However, large grid size 

(300m, 400m) representations deteriorate the quality of migrated image in the complex 

part. Whereas even a large grid size representation, does not have any significant impact 

on the simple part of migrated image.   

 

Effect of the size of representation appears more significantly on the gathers than on the 

image.  We can see that effect on the gathers start appearing since the beginning (Figure 

4.17a). Effect of the size of grid is very significant on the complex part of the model.  

From Figure (4.17 b, c and d) we can see that in the complex part distortion of gather is 

very significant whereas in the simple part of velocity model distortion have almost no 
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effect

Figure 4.16 Marmousi model smoothed with different filter size using damped least 
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square technique (Liu, Z 1994), smoothing window size (a) 100 m (b) 200 m (c) 300 m (d) 

400 m.  
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Figure 4.17:  Migrated image obtained for the smooth velocity models (Figure 4.16). 

Image quality and information content is decreasing with the increasing of the windows 

size. 
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Figure 4.18:  Angle gather obtained for the velocity models (Figure 4.16). In the complex 

part of the velocity model gathers are not flat. These effects become severe with the 

increase of window size. 

In previous research work, it has been shown that even a coarse grid representation of 

velocity model can provide a good image (Versteeg, 1993) and it can speed iterative 

velocity estimation methods. Iterative methods rely on the horizontality of gathers for 

correct velocity. In figure 4.18 gathers are not horizontal in the complex part of the model 

smooth velocity. Hence fully relying on the horizontality of the gather in this complex 

part with a coarse grid may lead to an ambiguous result. Whereas coarse grid 

representation could be a good choice in the simple part the model. Hence consideration 

of grid size should be according to the complexity of the geological model. Moreover a 

mixed type of representation or variable length representation can be a good choice. In 

mixed type of representation one can do both coarse and fine grid representation, where 

simple part of geological model by coarse grid and complex part by fine grid 

representation. Whereas in variable length representation one can go from coarse to fine 

grid representation during the optimisation. 

  

4.8 Conclusions 
 Representation of velocity model should be considered according to the assumed 

geological complexity, available data information and computational resources. 

Representing a salt body, where velocities are almost fixed can benefit from an adaptive 

and compact .representation like Voronoi diagrams. However finding the shape of salt 

body is in itself a challenge. On the other hand representation of foothill structure, where 

velocity variation adds the difficulty of finding the shape of the structure, a more flexible 

representation like grid should be preferred.  

On the other hand, if much information about the sub-surface structure is known, then the 

geological representation proposed in this Chapter might also be a good choice.  However, 

because we did not continue with the geological representation, we did not investigate its 

variable length extension. In the rest of the thesis we are going to use a grid 

representation. 
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Chapter 5 

Ingredients of migration velocity analysis 
 

In this chapter we discuss some geophysical technique that will be used to introduce 

domain knowledge in our algorithm in Chapter 6.  

First we develop a robust objective function that measures the discrepancy to flatness of 

the coherency panels. These objective functions are a modification of the offset and angle 

domain Differential Semblance Function. These functions are nicely convex for a quite 

large range of high and low velocities, and are stable with respect to the frequency 

content and to the depth of the events. 

We also develop a robust and automatic technique for gross velocity error estimaton 

using Residual MoveOut. We extract velocity ratio by picking the peaks of the envelope 

of the generalized Radon transform, of the angle or depth-offset gathers. Angle gathers 

appear to be less noisy than depth-offset gathers.  

Finally we also extract dip information from the migrated image to reduce the velocity 

variation along the layers. 

 

5.1 Introduction 
In geologically complex regions, velocity inference from wave field continuation 

migrated images is vital for accurate seismic imaging. The purpose is to optimize, in a 

robust and automatic way, the seismic velocity field from migrated images, by using 

local or global optimization methods. Velocity estimation using migration is 

computationally expensive and requires the full exploitation of the seismic information. 

 

Global optimization methods (e.g. Monte-Carlo or evolutionary algorithms) are 

expensive because they require the evaluation of many models in the search space. On 
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the other hand, local methods (e.g. gradient methods) were not much used because the 

calculation of the gradient is difficult and also two (Sava and Biondi, 2004) to four times 

(Shen 2004) more expensive than the migration itself. Global methods are able to cope 

with nonlinearities but did not come into practice because of their huge computational 

cost. We are trying to optimize the velocity using a global method: Evolutionary 

Algorithms (EAs) in order to make it converge quickly to the true velocity, first we need 

a good objective function that should be as convex as possible for a quite large range of 

high and low velocities, and also stable with respect to the frequency content and depth of 

the events. Second we need to estimate approximate velocity error,  to improve the 

current velocity model(s) and third we want to introduce geological knowledge and 

informaion in order to accelerate the convergence of velocity models.  

 

5.2 The Fitness Function 
The choice of the objective function is crucial for automatic seismic velocity estimation. 

The least-squares seismic functions, semblance (S) and differential semblance (DS) are 

widely used.  First we are analyzing the properties of the DS function for both offset and 

angle domains and then propose a modified differential semblance function. Then we will 

discuss the choice between S and DS.  

 

After realizing the non-convex property of semblance function, Symes and Carazzone 

(1991) proposed the differential semblance (DS) objective function for velocity 

optimization. The DS function is also used for the optimization of waveform tomography 

in the time domain (Symes, 1994, Plessix et al. 2000), and in the frequency domain (Pratt 

and Symes 2002). DS combines the concepts from the least-squares seismic inversion, 

migration velocity analysis (flatness criteria of CIG) and travel time tomography. DS 

function measures the sum of difference of near trace energy. Many versions of DS 

function were proposed with small modifications. Here we analyze it for shot profile 

wave equation migration in both offset and angle domain.  
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5.2.1 Offset Domain Differential Semblance (ODS) 
Recently Shen et al. (2003) presented a DS relation for the source receiver migration 

based on the Claerbout's principle of survey-sinking. This principle states that downward-

continued source and receiver spatially coincide at zero time if the velocity model is 

correct. According to the Claerbout's principle the correct velocity model focuses all the 

energy at zero time and zero offset that is )().,(),,( hzxfhzxI δ= , )(hδ being delta 

function, and hence 0),,(. =hzxIh . Therefore Shen et al. (2004) proposed the following 

relation  

2

2
1 hIdhdxODS

x h
∫ ∫=     (5.1) 

),,( hzxI  is the migrated image depending on abscissa x , depth z and offset h , which is 

minimum for the correct velocity model. The multiplication by offset wipe out wavefield 

at zero offset, differential semblances effectively removes focused energy from the 

migrated image.  The remaining wavefield after removing all focused energy is a direct 

measure of model fitness.  

 

We use data associated with a flat reflector (at depth 2000m) imbedded in a 

homogeneous velocity 3000m/s for the illustration of all DS functions. The offset domain 

differential semblance function using equation (5.1) for this flat reflector is shown in the 

Figure 5.1 for fine to coarse migration parameter settings 
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The abscissa corresponds to the ratio between the used velocity and the exact one. The 

black color curve represents a good parameter setting: frequency range 5 to 30Hz, all the 

shots, and 10 m propagation depth step. The red color curve differs by the frequency 

range, 10-20 Hz, the blue color curve by the propagation depth step, 40 m, and for the 

green color curve only half number of shots, is used. This parameter setting is also being 

used with MODS functions.  

 

The ODS response is reasonably good in both high and low velocity regions, but the 

objective function is significantly diminished with the coarse migration parameter setting. 

Though ODS function were found more suitable than the ADS (angle domain differential 

semblance) for velocity optimization with the gradient method (Shen et al., 2004). We 

noticed following shortcomings of this ODS function: 

1. ODS function  has small sensitivity near the true velocity model,  

2. its performance is significantly affected by the parameter setting, and  

3. it seems very sensitive to the data and migration amplitudes since it was not 

scaled by any factor like ∫ ∫z h
dhIdz 21 .  

Therefore we tried to improve this objective function. 

 

Figure 5.1: DS plots with fine to coarse migration parameter setting for ODS 
function. the performance of ODS is degrading with coarse parameter. 
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Chauris and Noble (1998) proposed to introduce the scaling factor ∫ ∫z h
dhIdz 21 , in the 

ODS relation. We got the following relation (equation 5.2) after introducing the scaling 

factor. 

∫
∫ ∫

∫ ∫

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

=
x

z h

z h

dhIdz

hIdhdz
dxSFODS

2

2

/     (5.2) 

 
Figure 5.2: For a simple homogeneous flat reflector the comparison of response of (a) ODS and 

(b) ODS/SF function. ODS/SF function is more sensitive for a large velocity error and less 

sensitive for small velocity error. 

 

The addition of denominator ∫ ∫z h
dhIdz 2  reduces the effect of data and migration 

amplitude. Equation (5.1) is used by Mulder and Kroode (2002) for velocity 

optimization. They used true amplitude ray tracing migration and suppressed the noise by 

preprocessing the data, therefore their DS function does not need to have a denominator. 

Figure 5.2 (b) shows the improvement obtained after introducing scaling factor in the 

ODS function. ODS/SF function seems more sensitive for a large velocity error. However 

it has a less sensitivity for small velocity error. To further improve the ODS/SF objective 

function we propose a modified offset domain differential semblance function (MODS).  
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5.2.2 Modified Offset Domain Differential Semblance function 
In this objective function we first introduce a new scaling factor ∫ ∫z h

dhIzdz 221  function 

to reduce the effect of data noise. Second, since amplitude decays with depth, the result 

will be more sensitive to shallow events than to deep events. To compensate this effect, 

first we introduce a depth factor z  and obtain following relation 

 

 ∫
∫ ∫

∫ ∫

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

==
x

z h

z h

dhIzdz

zhIdhdz
dxSFZODSMODS

22

2

/    (5.3) 

 

Response of the modified offset domain differential semblance (MODS) (equation (5.3)) 

function for a flat reflector is shown in the Figure 5.3 for a flat reflector 

 

 

Comparing the Figures 5.1 and 5.3 for the different parameter settings shows that the 

MODS is performing very well in both low and high velocity regions. In contrast with the 

ODS function, there is no significant change on MODS function with reduced frequency, 

reduced number of shots and larger propagation depth step. Even there is no significant 

change in the valley of attraction. The response of the MODS function is little affected by 

the detracting the parameter setting (Figure 5.3).  MODS function shows better sensitivity 

in the high and low velocity zone as compared to the ODS. It seems more stable than the 

ODS functions with respect to migration parameter setting. As the velocity scaling 

increases the proposed MODS function also increases which is very important for 

velocity optimization. We think that depth factor compensates the spherical divergence 

(associated with the used velocity model) and that scaling factor reduces the effect of data 

noise. Because the MODS function is not much affected by the migration parameter 

setting, we may use smaller frequencies and less shots, which is a key point to speed up 

the velocity optimization process. 
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Figure 5.3: MODS response for fine to coarse migration parameter settings. MODS function 

shows better sensitivity with high and low velocity error and is less affected by migration 

parameter setting.  

 

During our experiment we noticed that these DS functions are much affected by 

subsurface offset parameter. Increasing the subsurface offset also increases the 

computation cost. Hence initially we put maximum subsurface offset value 500 meters, 

and we observe that the DS function is behaving very well for low velocity factors 

whereas it starts to decrease for higher than 20% velocity factor. Therefore, we carried 

out an experiment for different subsurface offset parameter setting. In Figure (5.4) the 

responses of ODS (Figure 5.4a) and MODS (Figure 5.4b) functions for different 

subsurface offset parameter settings are shown. 
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Figure 5.4: (a) ODS. (b) MODS with depth offset 2500m (blue curve), 1500m (red curve) and 

500m (gray curve). MODS function is less affected by sub-surface offset parameter setting. A fine 

fast Fourier transform (FFT) sampling is required for very low velocity scaling.  

 

We notice that increasing the maximum depth offset improves the response of DS 

function for larger velocity factor. Bu comparing the responses of these DS functions 

with respect to different maximum  depth offset settings it is found that MODS is most 

stable. The response at 1500 and 2500 is similar in MODS while it is different in ODS. 

The performance of ODS is drastically affected by different maximum depth offsets.  The 

zigzag curve in both ODS and MODS for very low velocity is due to the periodicity of 

the Fourier transform. This should be avoided during migration.  

 

Now we also analyze the response of DS function in angle gather and proposing a 

modified angle domain differential semblance function.   

5.2.3 Angle Domain Differential Semblance (ADS) 
Sava and Fomel (2003) presented a simple method for transforming offset domain 

common image gathers into angle domain common image gathers (ADCIGs) by a slant 

stack transformation (Schultz and Claerbout, 1978) applied to each offset domain CIGs 

as given below:  

Ix (z, x,γ ) = SlantStack [ I (z, x, xh )]   (5.4) 
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where  γ is the aperture angle of the reflection. This transformation from offset domain 

CIG to ADCIG is based on the following relationship between the aperture angle and the 

slope,∂z/∂xh, measured in image space: 

 

-z/xh = tan(-kxh / kz)    ;   (5.5) 

where kxh and kz are respectively the half-offset wavenumber and the vertical 

wavenumber. The relationship between tan and the wavenumbers suggests that the 

transformation to ADCIGs can be accomplished in the Fourier domain by a simple radial-

trace transform (Sava and Fomel, 2003). 

 

The differential semblance in angle domain equivalent to offset domain (equation 5.1) 

can be posed as  

ADS= ( )∫ ∫ ∫ ∂
x z

Iddz 2
θ

θ

θ ;  (5.6) 

where θ is the angle. ADS function measure the sum of difference of near trace energy.  

The response of ADS function for a homogenous flat reflector is shown in the Figure 

(5.5a) and for a Marmousi model in Figure (5.5b).  For a homogeneous flat reflector its 

response is pretty good for a large velocity error whereas for a Marmousi model if the 

velocity error is more than  ±25%   the response of ADS function is not a consistent.  The 

ADS response significantly deteriorate at complex  part of Marmousi model (Figure 5.6). 
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Figure 5.5: Angle domain differential semblance function (a) response for a 

homogeneous velocity model is consistent for large velocity error (b) response for a 

Marmousi model is consistent upto ±25%. 

Figure 5.6: Angle domain differential semblance function response of Marmousi model at 6000 

m (most complex part of Marmousi model). The response is inconsistent with velocity error. 

 

 ADS function is also affected by the data and noise. To improve ADS function we divide 

it by a scaling factor (SF) similar to Chauris and Noble (1998). We obtained following relation.   
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( )2
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/ z
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dz I d
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θ
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∫ ∫
∫

∫ ∫
      (5.7) 

The SF ( ∫ ∫
z

dIdz
θ

θ2
) is a square of the image. 

 

The response for this function for a homogeneous flat reflector is shown in Figure (5.7a). 

The ADS/SF function for a homogeneous flat reflector shows significant improvement 

for low velocity error while no improvement for high velocity error. On the other hand 

response of ADS/SF function for a Marmousi model (Figure 5.7 b) shows significant 

improvement in both low and high velocity region. Moreover in the high velocity region 

it becomes sensitive up to +40% and after that it is flat.  As compare to the ADS function 

ADS/SF function perform better for both low and high velocity model. Moreover 

ADS/SF performance is also better at 6000m of Marmousi model (5.8) for low velocity 

error whereas for high velocity error only a small improvement. We can conclude that 

improvement in ADS/SF function is because of SF.    

 

This function is also affected by migration sampling (Figure 5.9a). However the influence 

of migration sampling is small as compared to ODS (Figure 5.1). This function is also 

affected by subsurface offset parameter setting (Figure 5.9b). Overall response of this 

objective function seems more stable than the ADS function. 
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Figure 5.7: ADS/SF function response (a) for a homogeneous velocity model it is 

consistent for large velocity error (b) the response for the whole Marmousi model is 

consistent upto +40% and after that flat. 

 

Figure 5.8: ADS/SF function response of Marmousi model at 6000 m. The response is 

consistent for low velocity error whereas for high velocity error it is little consistent.  
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Figure 5.9 (a) ADS/SF function for fine to coarse migration parameter settings. There is a small 

effect of migration parameter setting. (b) Similar to ODS function ADS/SF function is also 

affected by subsurface parameter setting.  

 

To further improve this objective function we propose to use a modified angle domain 

differential semblance (MADS) function. The improvements made in this function are 

similar to the MODS function.  

5.2.4 Modified Angle Domain Differential Semblance (MADS) 
We are also interested to see the effect of depth (z) factor on angle gather similar to offset 

domain. We introduced the z factor in ADS function and divide it by a SF, get the 

following relation.   
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We introduce z factor to compensate the effect of spherical divergence (associated with 

the used velocity model) and scaling factor to reduce the effect of data noise.  

 

The response of MADS objective function for a homogeneous flat reflector is shown in 

the Figure (5.10 a) and for whole Marmousi model (Figure 5.10b) and at the most 

complicated region of the Marmousi model (at X=6000m) is shown in the Figure 5.11). 

These response are obtained when every second shots and frequenct range 10-25Hz used.  
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This modified function is nicely convex for a large range of high and low velocities, and 

it is stable with respect to migration parameter setting. The modified function is not much 

affected by migration parameter settings, thus smaller frequencies and lesser shots can be 

used to speed up the velocity optimization process. 

Figure 5.10: MADS function performance (a) for a homogeneous velocity model it is 

consistent for both low and high velocity error (b) for a Marmousi model also it 

performance is pretty consistent for both low and high velocity error. 

Figure 5.11: MADS function response of Marmousi model at 6000 m. The performance is 

consistent for low velocity and high velocity error.  
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Figure 5.12: (a) The response of different DS function for Marmousi model. The 

combination of semblance (S) and modified differential semblance (ZADS/SF) are in 

subplot. The semblance function has narrow and steep valley of attraction near to the 

true velocity model whereas modified differential semblance function has a wide and 

gentle valley of attraction. (b) The response of different DS function for Marmousi model 

at X=6000m. Modified DS function response is better than the others DS function even in 

very complex part. 
 
All DS functions and a combination of   MADS and semblance function are shown in the 

Figure (5.12) for whole Marmousi model (5.12a) and at 6000m of Marmousi model 

(5.12b) for the purpose of comparison. These Figures clearly demonstrate that proposed 

objective function is performing quite well for both low and high velocity error and also 

in geologically complex region.  Whereas ADS function is unstable for large velocity 

error and geologically complex region. Hence combination of MADS and semblance 

function seems to be a good choice for velocity analysis. 

 

5.2.5 Differential Semblance or Semblance ? Both! 
It has been suggested by Chauris and Noble (1998) that Differential semblance function 

could be used in the first few iteration and subsequently followed by semblance function.  

Since in the beginning of optimization, the initial models are far from the true models, at 

that time MADS function can help in the convergence because of its strong sensitivity for 

far velocity models. Whereas when the models are near to the true model the semblance 

function can help in the fast convergence because of its strong sensitivity for near 

a b 
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velocity models. Multi-objective evolutionary algorithms provide a unique opportunity to 

use both objective functions independently.    

 
We have optimized a synthetic foothill velocity model (Figure 4.13) using the MODS and 

Semblance function with multi-objective evolutionary algorithms (MOEA) (Singh et al., 

2005).  The optimization process took a large number of iterations and also needed good 

parameter setting with ODS function. Whereas we are able to optimize the velocity 

model in few iteration and only using the half the number of shots and small frequency 

bandwidth with the MODS function (Figure 4.14).  

 

 
 
Automatic gross velocity error estimation 
 

5.3 Introduction of RMO 
It had been found that the velocity estimation using migration method is computationally 

very intensive. One of the important reasons for this is lack of the exploitation of 

information that is present in the gather.  Therefore we need a robust approach which 

could inform us about the approximate amount and direction of  change required to 

update the velocity model. 

 

Recently Sava (2003) made an attempt to get this information from a migrated image 

using Stolt residual migration. Stolt residual migration is applied in prestack domain as a 

velocity independent process for gross velocity error analysis from migrated image. The 

main advantage of residual prestack migration is its interpretative and structural 

dependencies. Residual prestack migration also reduces the effect of image dispersal 

between events that are imaged at the same physical location but with different aperture 

angle. However the main difficulty with residual migration is its computational 

complexity, interpretative and structural dependent nature which makes it very 

challenging to automate. It has been found that this technique may not work with large 

velocity variations and extreme complexity (Sava, 2003). Another effective and robust 

approach of gross velocity error analysis from migrated image is Residual Move Out 
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(RMO) analysis. Measuring the inconsistency in image amounts to compute the 

semblance scan as a function of one RMO parameter, and then pick the maximum of 

semblance scan (Biondi and Symes, 2004). The property of both methods is analyzed by 

Biondi and he showed that nonlinear RMO function for a flat event is equivalent to 

residual migration of flat events (Biondi 2003). 

 

Methods have been developed to perform this analysis on both offset and angle domain 

CIGs for the Kirchhoff and wave equation migration. The offset-domain RMO analysis 

methods using Kirchhoff migration were developed first by Al-Yahya (1989).This 

technique was further developed by Lee and  Zhang (1992), Lafond and Levander (1993), 

Liu and Bleistein (1995), Yan et al. (2001).  The geometrical and mathematical 

characteristics of RMO for the prestack Kirchhoff migration were appraised for velocity 

by Zhu et al. (1998).  The angle domain RMO analysis methods have also been proposed 

(Jiao et al., 2002). RMO properties for wave equation migration were analyzed by 

(Biondi and Symes, 2004; Shen P. 2004; Bartana et al., 2006; Sava and Fomel 2006).  

5.3.1 RMO and Radon Transform 
Here we are presenting an automatic approach of gross velocity error analysis using 

RMO technique for a source receiver wave equation migration. Our approach is tested on 

a variety of models ranked from simple to complex and ranging from small to large 

velocity contrast and it is found to be good. First we discuss the RMO function and their 

Radon transform for both offset and angle gather of a shot profile wave equation 

migrated image. Than the process of envelope creation and results are discussed. 

 

RMO curvature analysis is based on the concept of generation of flat gather in CIGs by 

PSDM for correct velocity model regardless of the structure. Regardless of the domain in 

which the prestack partial images are defined, the RMO function is usually parameterized 

by single parameter (The ratio of migration velocity and true velocity). Inaccurate 

velocity will cause the moveout artifacts on the migrated image and the shape of the 

artifacts depends on the velocity contrast. The low velocity estimation will produce smile 

shape and for high velocity estimation frown. The depth offset (Shen, 2004) and angle 

gather (Biondi, 2003) could be presented by following relations.   
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Here h denotes subsurface offset z migration depth, Z true depth, and ϕ reflection angle. 

First we did the Radon transform of the gathers. The Radon transform of a gather 

converts a curve detection problem in image space to a peak detection problem in 

parameter space. The peaks are the parameter of a reflection, which inform about the 

background velocity model. The radon transform of the depth offset gathers had been 

used for the surface multiple removal (Duquet and Marfurt, 1999). In the above equation 

at γ=1, we obtained z=Z for all angle or offset. Introducing a variable ζ=γZ in both offset 

and angle RMO function and their discrete radon transform could be written as 
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Process of Radon transforms for offset and angle gathers are shown in the Figures 5.16 

and 5.17 respectively.   
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Figure 5.15: Process of creating γ panel using Radon transform from the offset gather 

 
Figure 5.16: Process of creating γ panel using Radon transform from the angle gather 
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Figure 5.17: Four layer horizontal velocity model.  

 

 
Figure 5.18: offset and angle gathers γ value for four layer horizontal velocity model. The offset 

gamma amplitude is somewhat fluctuating.  
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Figure 5.19: The maximum γ value ( γ amplitude) of COG Radon transform  for each depth of 

a four layer velocity model for true 25% high and 25% low velocity. 

 
Figure 5.20: The maximum γ value ( γ amplitude) of CAG Radon transform  for each depth of 

a four layer velocity model for true 25% high and 25% low velocity 
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Figure 5.21: The envelop of the CAG gathers obtained by equation (5.13). 

 
Figure 5.22: Envelop of the COG gathers obtained by equation (5.13). 
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Figure 5.19 and 5.20 demonstrate the peak amplitudes of the γ panels at each depth 

interval for four layer velocity model (Figure 5.17). After getting the γ panels the next 

challenge is to exactly identify the peaks. To exactly identify the peaks we did following 

steps.  

1. We created envelops of the radon transformed signal using the Hilbert transform. The 

procedure is being described in the next section.  

2. We applied a liner low-pass filtering. 

3. Cloud separation scheme for pick identification 

5.3.2 Envelop  
Picking a burst on a zero-mean signal is difficult because the shape of the signal is (it a 

priori) unknown. For instance, picking symmetrical and anti-symmetrical signals are very 

different tasks. To solve that problem, the usual technique consists in computing the 

envelope e(z) of signal f(z) defined by following equation 

22 )()()( zhzfze +=     (5.13) 

with  h(z)  being the Hilbert transform of f(z), that is, * denoting convolution,  
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The Fourier transform of h(z) has the same amplitude than that of f(z), but the phase is 

shifted by π/4. The convolutive method is computationally more efficient than the Fourier 

method if the impulse response is sufficiently short. In our case, very low frequencies are 

absent in f(z) ,  and thus we may apodize the hyperbola -1/(πz) with some [-A,+A] 

supported function a(z), 

dx
x
xaxzfzh

AZ

AZ
∫
+

−

−
−=

π
)().()(   (5.15) 

For sake of simplicity, we have chosen the parabola a(z) =1 - z2/A2 truncated in [-A,+A]. 

To compute numerically equation (5.14) , we have the samples fi of f(z), and we need to 

sample hyperbola -1/(π z) . Unfortunately, direct sampling is very bad near the asymptote. 

Therefore, the method we used to get the value hi of h(z) at z=zi is schematically as 

follows: 
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1. compute the derivatives of  f(z) at z = zi with Holberg numerical schemes up to 

the eighth order (Léger, M.,  2000) 

2. build Taylor expansion  T1(z) of  f(z) around z = zi , 

3. multiply by the apodized hyperbola, which gives a new Taylor expansion T2(z), 

4. and integrate T2(z) to get hi. 

This method is twice as expensive as the convolution by the standard discretized 

hyperbola, the length of the operator being the same (A =30), but the numerical error is 

maintained below 40dB between 4% and 34% of the sampling frequency instead of 4% to 

10%. 

5.3.4 Results and Discussion 
We are presenting our results for a horizontal four layer velocity model (Figure 5.17).   

The   maximum γ value of a velocity model for the γ = 1, 0.75 and 1.25 is shown in the 

Figure (5.19, 5.20). However comparing the Figures 5.19 and 5.20, we could see that the 

amplitude of COG radon transform is noisy compared to the CAG. Although CAG and 

COG should give the same response. The CAG is derived by the slat stack of the COG. 

We think that because of the slant stacking (summation along offset) the noise get 

suppressed. Hence CAG seems more suitable for the velocity analysis as compared to 

COG. The peaks of the layers are very prominent in CAG. The response of each layer has 

positive as well as strong negative amplitude because of phase change. The positions of 

the layer lie in between the positive and negative signal. Once we get the γ panel either 

for the offset or for angle domain the most important challenge is to find the peaks 

parameters ),( γςR . 

 

Envelops of the Figures (5.19) and (5.20) is shown in the Figures 5.21 and 5.22 

respectively.  The parameter associated with the peak amplitudes of each curve are the 

desired output which could be easily obtained by peak detection process. The low 

amplitudes peaks, which remain even after the linear smoothing can be suppressed by 

applying a threshold. In both Figures the low amplitude peaks associated with very low 

velocity signal may be because of the periodicity. The periodicity is obtained by the 

Fourier transformed applied to the data for low velocity. The time data should be pulled 

so that the periodic of seismic event can not be imaged in the considered depth region. 
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Since we are interested in the direction and approximate amount of change that need to 

be applied to the velocity model at particular place to improve the image. These peaks 

could be directly used in wave equation migration for velocity analysis (WEMVA). 

Because WEMVA estimates the perturbation of seismic velocity model from the 

perturbation of seismic image (Biondi and Sava, 1999; Shen and Symes 2003). 

 

We have developed a robust and automatic technique for gross velocity error analysis 

using residual moveout. We get the velocity ratio by picking the peaks of the envelope of 

the generalized Radon transform of the residual moveout function of both angle and 

depth-offset gathers. Picking the envelope of the signal is more robust than picking the 

signal itself. Angle gathers appeared to be less noisy than depth-offset gathers. Except the 

gathers, migrated image also have a lot of information about the velocity. For example it 

is well known that velocity variation is very small or negligible along a layer. In the next 

section we are presenting a technique to extract the structural trend and dip of the layers.  

5.4 Structural trends and dip 
The  structural trend of a geological  model also  provides  significant information and 

has been used differently for velocity estimation. The basic assumption (see Delprat-

Jannaud and Lailly 1992) is that  the velocity follows structural dips or some other known 

trends and it can hence be incorporated as a term into the objective function (Delprad-

Jannaut and Lailly  1992),  Kaipio et al.,(1999) suggested using a prior structural 

information to create conditional covariance matrices. This has also been used as a model 

regularization operator  as well as a preconditioner (van Trier,1990; Claerbout, 1992; 

Clapp et al.,2004). It has been found that this information significantly improves the 

convergence speed. This dip could be extracted from a migrated image using prediction 

error filter (Claerbout  1998a) or by geostatistical  approch of covarience analysis (Clapp 

et al.,2004). 

5.4.1 Sobel operator 
 Here, we are not using the dip information as objective finction, regularization or 

preconditioner. Our goal is to extract  the dip inforrmation at each point of the migrated  

image and use this dip information to reduce the variation of velocity along the dip 
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direction. For identifying the reflection boundary and measuring the dip of the reflection, 

we have used the Sobel edge dectection tool (usually used in image processing).  Edges 

characterize the boundaries in image. Sobel operator gives the direction and magnitude of 

these edges. It is described in the next section.  

 

The Sobel operator performs a 2-D spatial gradient measurement on an image and so 

emphasizes the regions of high spatial frequency that correspond to edges. Typically it is 

used to find the approximate absolute gradient magnitude at each point in an input gray 

scale image. The Sobel Edge Detector uses a simple convolution kernel to create a 

component of gradient magnitudes. Mathematically convolution of kernel K to image I 

can be represented as:  
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 Sobel Edge Detector uses two convolution kernels, one to detect vertical component Kx 

and another to detect horizontal component Ky 
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Therefore we have the gradient magnitude (3a) and direction (4a): 

Where K=Sqrt(Kx
2+ Ky

2)   (3a)  and θ = tan-1(Ky/ Kx) ; (4a) 

The horizontal component Kx of a Sobel operator can be presented in a two separable 

component. The row components can be further divided into two components. 
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The column component of Sobel operator has strong normal smoothing whereas first 

component of row i.e. ( )121  have small parallel smoothing. This shows that Sobel 

operators have embedded smoothing operation.   If we normalized second component of 

row by 2, it becomes ⎟
⎠
⎞

⎜
⎝
⎛ −

2
10

2
1 , which is equivalent to the second order numerical 

scheme of 1st derivative.  

We can find similar expression of vertical component Ky. Though Sobel operator has 

embedded smoothing sometime it require more smoothing to reduce the noise. In certain 

implementations, this separable computation may be advantageous since it implies fewer 

arithmetic computations for each image point.  

 

The Sobel operator represents a rather inaccurate approximation of the image gradient, 

but is still of sufficient quality to be of practical use in many applications. More precisely, 

it uses intensity values only in a 5×5 region around each image point to approximate the 

corresponding image gradient, and it uses only integer values for the coefficients which 

weight the image intensities to produce the gradient approximation. A even better 

approximation of gradient can be obtained by normalizing the filter (e.g. here by 128
1 ). 

5.4.2 Example of Application 
We demonstrate dip estimation on the Marmousi model. The Migrated image o model is 

shown in the Figure 5.23. We migrated image is convolve to Sobel operator and estimate 

the dip (see figure 5.24). Migrated image and corresponding dip estimation is in fine 

scale (10mX25m) whereas we need ‘dip’ on the scale of velocity that may be 

100mX100m or more. Hence we smooth it up to the scale of velocity (Figure 5.25) and 

use it to smooth the velocity along the dip direction. 
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Figure 5.23: Migrated image of a Marmousi models.   

 

 
Figure 5.24: Dip extracted from the migrated image by convolving Sobel operator.  

 

 

 
Figure 5.25: Dip map is smoothed to reduce the small noise and convert this fine dip in 

to the scale of velocity model. 

DIP MAP

DIP MAP 
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5.5 Conclusions 
In this chapter we presented modified differential semblance function for both offset and 

angle domain to measures the flatness of the coherency panels. These functions are nicely 

convex for a quite large range of high and low velocities, and are stable with respect to 

the frequency content and to the depth of the events. In next chapter we will use modified 

differential semblance function incombination with semblance function, as objective 

functions in MOEA. Both function together provide a roboust and accurate criteria  for 

velocity estimation. 

We also develop a robust and automatic technique for gross velocity error estimaton 

using RMO technique on the gathers. In the next chapter, we will use this RMO 

information to correct the velocity model before the crossover. This helps in generating 

good models and fast convergence.  

We also extract dip information from the migrated image to smooth the velocity variation 

along the layers. In next Chapter , we will use this information in seismic velocity 

invesion. 
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Chapter 6 
 

Seismic Velocity Inversion using Multi-objective Evolutionary 
Algorithms 

 

This chapter presents our automatic seismic velocity inversion algorithm, obtained by 

assembling all ingredients presented in the previous chapter into an hybrid multiobjective 

evolutionary algorithms (MOEAs). Results of this algorithm on Marmousi and L7 data 

are also presented. Note that some results have been published as separate papers (Singh 

et al., 2006; Singh et al., submitted), and this chapter is built from these publications. On 

the one hand, this introduces some redundancies with the previous Chapters. But on the 

other hand, this chapter can also be read stand-alone, though more details can be obtained 

by referring to the corresponding mentioned sections.   

 

For precise estimation of background velocity, to get a good subsurface image, methods 

like waveform inversion or prestack depth migration (PSDM) work well. However, these 

methods are limited by the first-order Born linearization, and an acute computational cost. 

To tackle these issues, we present a new automatic velocity estimation technique based 

on Multi-Objective Evolutionary Algorithms (MOEAs) using both the Semblance and the 

Differential Semblance as two distinct objectives, as discussed in section 6.5.2. Our 

approach is able to cope with large velocity errors, and the computational cost of this 

algorithm is comparable to that of gradients methods. 
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After an overview of the background in Secion 6.1, Section 6.2 presents a very brief 

introduction of MOEAs. In Section 6.3, the classical application of a standard MOEA 

(the so-called ε–MOEA) is introduced. Section 6.4 presents modified ε-MOEA, in which 

several domain-specific ingredients are added to ease the optimization process. Section 

6.5 presents the main component of modified ε-MOEA. In Section 6.6, implementation 

of modified ε-MOEA and its components are presented. Finally, results on synthetic and 

real data are presented in section 6.7 and discussed in Section 6.8. 

 

6.1 Introduction 
One of the major interests in seismic exploration for oil is to correctly identify and 

localize the subsurface structure. Therefore, seismic processing demands precise 

estimation of background velocity so as to get a good subsurface image.  The process of 

converting normal move out (NMO) and /or stacking velocity into interval velocity is 

unstable for the layers with lateral velocity variation (Lynn and Claerbout, 1982). 

Consequently conventional velocity estimation techniques do not work well in 

geologically complex regions, such as foothills and salt structure.  It is also widely 

accepted that conventional seismic processing can not adequately overcome the above 

mentioned difficulties. However, tools like inversion or prestack depth migration 

(PSDM) work well. Common-image gathers (CIGs) produced by PSDM are sensitive to 

the velocity model and therefore CIGs could be used for more precise velocity estimation.   

 

The residual move out (RMO) curvature analysis (Al-Yahya, 1989) is generally used for 

migration velocity analysis.   This technique was further developed by Lee and Zhang 

(1992), Lafond and Levander (1993), Liu and Bleistein (1995), Yan et al. (2001).  The 

geometrical and mathematical characteristics of RMO for the prestack Kirchhoff 

migration were appraised for velocity by Zhu et al. (1998). RMO properties for wave 

equation migration were analysed by (Biondi and Symes, 2004; Shen P. 2004; Bartana et 

al., 2006; Sava and Fomel 2006). RMO curvature analysis is based on the concept of 

generation of flat gather in CIGs by PSDM for correct velocity model regardless of the 

structure.  
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Presently, iterative PSDM methods are widely used for velocity analysis. They are also 

based on the flatness criteria. The flatness criteria has been measured  on common 

receiver gathers (Al-Yahya, 1989),  common  offset gathers (Liu & Bleistein, 1995; 

Mulder & ten Kroode, 2002) , common scattering angle gathers (Brandsberg-Dahl et al., 

1999) and common shot gathers (Symes & Carazzone,1991) generated by Kirchhoff  

migration.  Kinematics migration artifacts in CIG typically arise in the prestacked image 

gathers when the medium is a strong refractor (Stolk & Symes, 2004).  As a result, the 

flatness principle may not be valid in CIGs produced by Kirchhoff migration.  To avoid 

these artifacts for general velocity models, wave equation migration is required for 

construction of CIG. Attempts have been made to estimate velocity using wavefields 

methods, such as the method of full waveform inversion (Tarantola 1984; Pratt 1999), 

diffraction tomography (Devaney & Oristaglio 1984), wave equation tomography 

(Woodward 1992;  Luo & Schuster 1991), differential semblance optimization (Symes 

&Carazzone 1991)  and wave equation migration (Sava et al.,2005; Sava & Biondi 2003;  

Shen P. et al.,  2003).  

 

Wave-equation based methods are limited by the first-order Born linearization. If the 

phase differences between the modeled and recorded wavefields are larger than a fraction 

of the wavelet, then the assumption made under the Born linearization is violated and 

velocity inversion methods diverge (Woodward, 1992; Pratt, 1999; Dahlen et al., 2000).  

Consequently, calculation of gradient in velocity optimization becomes one of the severe 

obstacles. Also, calculation of gradient is two (Sava and Biondi, 2004) to four times 

(Shen 2004) more computationally expensive than the migration itself.  Hence, 

computation of gradients and a lack of good guess of initial velocity models in 

geologically complex regions inhibit the application of gradient optimization methods for 

automatic velocity estimation.  

 

Conversely, global optimization methods (genetics algorithms, simulated annealing and 

Mont-Carlo method) are not constrained by the local linearization of the wave equation 

(Born limitation) and also are capable of coping with the non-linear relation of the 
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seismic data and velocity model (Jervis et al., 1996; Docherty et al., 1997; Mansane & 

Schoenauer, 2000). However, acute computational cost using global methods limits its 

routine use.  This is because the global method needs to search a large parameter space 

with little or no domain knowledge. Therefore, there is an urgent need to customize such 

optimization methods such that, it could use the domain knowledge as well as to guide 

the optimization in the right direction without losing the generality of the method. 

 

In this Chapter we present a new global optimization algorithm based on multi-objective 

evolutionary algorithms (MOEA) for automatic velocity estimation. This algorithm is 

able to cope with large velocity errors. Thanks to the customization of the MOEA 

according to domain knowledge that accelerate the convergence, the computational cost 

of this algorithm remains comparable to that of direct gradients methods. 

 

First we are going to give concise overview of multiobjective optimisation. We also 

discuss the limitations and advantages of MOEA, which will help in understanding the 

proposed customizations.  

    

6.2 Multi-objective Evolutionary Algorithms  
Multi-objective optimization (MO) is concerned with finding solution that optimize (min 

or max) several contradictory objectives, and eventually meet some additional constraints.  

Suppose for instance that we want to minimize a vector of functions: 

minimize ( ) ( ) ( )[ ]xfxfxf k......, 21   

subject to the m inequality constrains: 

( ) 0≤xgi  i=1,2,….m,  (inequality constrain) 

and the p equality constrains: 

( ) 0=xhi , i=1,2,……..p,  (equality constrain)  

Where k is the number of objective functions ƒi: Rn→R. Here [ ]nxxxx ,....., 21=  ∈X is a 

vector of decision variables and X is the feasible domain. We wish to determine from 

among the set F of all vectors which satisfy the constraints the particular set of values 
**

3
*
2

*
1 ,.......,, nxxxx  which yield optimum values of all the objective function. It is rarely the 
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case a single point simultaneously optimizes all the objective functions. Therefore, we 

normally look for “trade-offs”, rather than single solution when dealing with 

Multiobjective optimisation problems.   

 

A vector of decision variables Fx ∈* is said to dominate a vector x if ( ) )( *xfxf ii ≤  for 

all i=1,….,k and ( ) ( )*xfxf jj p  for at least one j. A vector *x is Pareto optima, or non 

dominated, l if there exists no feasible vector of decision variable Fx ∈  that dominates it, 

i.e. if it is not possible to decrease some criteria without causing a simultaneously 

increase in at least one other criteria. The set of Pareto-optimal solutions is also called the 

Pareto optimal set (Figure 6.10). The image of the Pareto optimal set under the objective 

function is called Pareto front. For a given positive ε, the notion of dominance can be 

relaxed to that of ε–dominance (see Chapter 2 for details).  

 

Evolutionary Algorithms can, in principle, find solutions to problems with non-smooth, 

nonlinear objective functions and constraints, whereas smooth and differentiable 

objective function are required by gradient-based methods. Furthermore, because they 

evolve a population of candidate solutions, they offer additional advantages when 

tackling a multi-objective optimization problem, being able to identify many Pareto-

optimal solutions in a single run. This explains why Multi-Objective Evolutionary 

Algorithms (MOEAs) are so popular today. Moreover, beside having no assumption w.r.t 

to problem space and they are easy to hybridized with other approaches (such as gradient 

or local methods), adding domain knowledge to improve their efficiency. MOEAs are 

also able to cope with noisy data . Different MOEAs are described in Chapter 2, and the 

choice of ε-MOEA was motivated by the study by Deb et al. (2003) in which it 

demonstrated similar performances than the best performing previous MOEAs but 

requiring much less computational efforts.  

 

 

However, the disadvantage of MOEAs, and even ε-MOEA, is that they are usually much 

slower than local optimization methods -often by several order of magnitudes. As 
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problem size scales up (from, say, ten to a hundred or a thousand decision variables), an 

evolutionary algorithm is often overwhelmed by the dimensionality of the problem and is 

unable to find anything close to an optimal solution, whereas it is still possible to solve 

such large problems with local optimization methods.  

 

The main reason of such high computational cost and inability to perform on a great 

number of variables is the blindness of those algorithms, i.e. the lack of exploitation of 

domain-specific information. Any efficient global optimization algorithm must carefully 

balance between two possible strategies to find the global optimum: exploration to 

investigate new and unknown areas in the search space and the exploitation to make use 

of the knowledge from previous iterations.  In Figure 6.1 a schematic representation of 

various optimisation algorithms in term of degree to which they explore the parameter 

space and exploit information is given.   

 

 
Figure 6.1: A schematic representation of various search/optimisation algorithms in 

term of degrees to which they explore the parameter space and exploit information. 

Shaded borders indicate deterministic methods. Global optimisation methods have good 

exploration property, whereas local optimizations have good exploitation property. 

(Sambridge and Mosegaard 2002). 
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These two strategies are contradictory, and therefore a good optimization algorithm must 

strive to find a balance between them. In the hybrid MOEA that we have designed 

(described in forthcoming section 6.4), an effort has been made to exploit and use 

domain-specific information, without reducing the exploration property of the original 

underlying MOEA, the ε-MOEA. Such ad hoc use of available expert knowledge from 

previous iterations is known to be mandatory for Evolutionary Algorithms to reach (fast) 

convergence toward the global solution even in large search spaces.    

 

In next section, we will describe how we used the standard  ε-MOEA algorithm to solve 

the problem of seismic velocity inversion, before presenting in section 6.4 the hybrid 

customized algorithm that we had to design to reach reasonable results. 

6.3 ε-MOEA for velocity inversion 
The standard  ε-MOEA was described in details in Chapter 2. Here we will specifically 

describe its implementation for seismic velocity inversion. 

A schematic diagram of ε-MOEA for velocity inversion is shown in Figure (6.2). Its step-

by-step description follows: 

 The Population is initialized with random models: a random value uniformly drawn 

in interval 1500 to 5500 m/s is set at each grid point. The evaluation process is 

applied to all models (Process of evaluation of each model is shown in Figure 6.2a) 

 The ε-dominant models are copied into the Archive.  

 One model is selected using tournament selection (see section 2.6.3) from Population 

and one model is uniformly selected from Archive. These models are called Parents. 

 These Parents are used to generate Offspring  using  Variation Operation (SBX 

crossover and Polynomial mutation ; see sections 2.5.1.4 and 2.5.2.4)   

 Each Offspring is evaluated, i.e. its semblance (S) and differential semblance (DS) are 

computed (Figure 6.2a). 

  Each offspring is then compared with the models in the current Population, and it 

replaces the first one it dominates (see section 2.7.6.2), otherwise it replaces one 

randomly chosen member of the population.  
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 Each Offspring is also compared with Archive members, and replaces all those that it 

ε-dominates (see section 2.7.6.3).  

 This process continues till the termination criterion is satisfied (here maximum 

number of iterations). (Go to step √) 

 
Figure 6.2: (a) Process of evaluations of one velocity model. (b) Schematic diagram of 

standard ε-MOEA. One model is selected from the current Population and one from the 

Archive. They are used to generate an Offspring using the variation Operators 

(crossover and mutation). This Offspring is put in the Population, replacing one member 

it dominates, if any, or one randomly chosen otherwise. It get placed in the Archive only 

if it ε-Dominates  at least one member of the current Archive. 

 

We performed velocity inversion for the Marmousi model using this algorithm. It was run 

many times for more than 3000 generations using different initializations.  We noticed 

that there is very poor convergence.  This was not surprising because number of unknown 

parameters was 457, which is utterly large for traditional ε-MOEA to solve in such a 

small number of iterations. Hence we decided to add exploitation property (a new guided 

crossover operator using some gradient-like information) as well as other domain-specific 

knowledge in several steps of the algorithm. Now we have presented standard ε-MOEA 
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we will present in the next section, the global framework of our customized ε-MOEA 

algorithm.   

6.4 Customized hybrid ε-MOEA for velocity inversion 
In customized ε-MOEA, we introduce Reference model to add exploitation property, 

RMO corrections that work like pseudo a gradient method and we add information by 

generating good velocity model (initial & Parents) and dip smoothing. A graphical chart 

of our proposed ε-MOEA is shown in Figure (6.3b). The customized part of this 

algorithm is shown with broken line (compare to Figure (6.2b)). The different steps of the 

algorithm will be described in the following, while detailed description of each step can 

be found in the corresponding mentioned section.  

 

First we initialize Population and Archive by generating and evaluating (Process of 

evaluation and information extraction of each model is shown in Figure 6.3a) the random 

models (Population (Figure 6.3b)) and we copy the ε-dominant models into the Archive 

(Figure 6.3b). The Population is initialized with random models: a random value 

uniformly drawn in interval 1500 to 5500 is set at each grid point. 

 The ε-dominant models are copied into the Archive (Figure 6.3b).  

 Reference models are initialized by copying one of the Archive members. 

 The population is divided in two parts: (1) replaceable (2) non-replaceable. Non-

replaceable member will not change during the evolution. This non-replaceable 

part will remain a source of diversity all along evolution. Such procedure is inspired 

by the micro-GA (see section 2.7.7.10). 

 Four models are randomly uniformly selected from the population with a 90% 

probability or among the Reference models with 10% probability. 
1.  Each selected model is smoothened using the extracted dip information (see 

section 5.4 and section 6.5.3 for implementation).   
2. Each selected model is corrected according to the extracted RMO information 

(See section 5.3). RMO information works here like pseudo-gradient (see section 

6.5.4 for implementation). 
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Figure 6.3: (a) Process of evaluation and information extraction from a velocity model. 
(b) Schematic diagram of our customized ε-MOEA. Four models are stochastically 
selected from Population or among the Reference models. Each selected model is first 
smoothened using Dip information and then corrected using RMO information. A parent 
model is synthesized from these four models using LS or LDS criteria. Synthesized 
Parent and one uniformly selected parent from Archive are used to generate an 
Offspring using variation Operation (SBX crossover).  
 This Offspring is compared with S-Reference and DS-Reference using LS and LDS 
criteria. If the Offspring has better LS or LDS than the reference models for some panel, 
column in the velocity grid corresponding to this panel is copied into the reference model. 
This Offspring replaces one member in Population that it dominates, if any, or one 
random member otherwise, whereas it get placed in Archive only if it ε-Dominate at least 
one of its members.  
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3. One Parent model is synthesized from these four models (for details, see section 

6.5.5). In few words, The Synthesized Parent model, results from copying the 

velocity columns corresponding to the best gather of each model using either 

semblance (LS) or differential semblance (LDS) criteria (here L stand for local, 

i.e.  for one gather). 
 

 Once this Parent is synthesized, one other Parent is uniformly selected from the 

Archive. 

 These two Parents (Synthesized parent and Archive parent) are used to generate 

Offspring using SBX crossover (see sections 2.5.1.4).   

 These Offspring are evaluated, and domain information is extracted (Figure 6.3a and 

table 6.1). 

 Each Offspring is compared with S-Reference and DS-Reference model using LS and 

LDS criteria respectively. If the Offspring has better LS or LDS than the Reference 

models, velocity corresponding to better LS or LDS of Offspring is copied to the 

corresponding Reference models (see section 6.5.6). 

 Each offspring is then compared with the models in the current Population, and if it 

dominates (see section 2.7.6.2) any member of population, then it replaces that 

member otherwise it replaces one randomly chosen member of the population.  

 Each Offspring is also compared with Archive members, and replaces all those that it 

ε-dominates (see section 2.7.6.3).  

 This process continues till the termination criterion is satisfied (here maximum 

number of iterations). (Go to step √) 

 

Because our main concern is to reduce the computational time of the inversion, we have 

adopted the micro-GA procedure that keeps half of the population fixed during evolution, 

as a diversity reservoir, and we are using only a small population (20-30). However, first 

experiments demonstrated that such an approach might not be able to generate diverse 

enough individuals to find a suitable solution. Hence our complete algorithm uses both 

the customized and the standard approaches: at each generation, the algorithm randomly 
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chooses to generate the offspring using either the standard approach or the customized 

approach with 40:60% probabilities respectively.  

 

 

Table 6.1.: Comparison with previous approaches. Standard EAs are weakly guided 

random search methods and hence convergence is rather slow. For example only global 

fitness of a model is measured in the previous approaches (i.e. Stoffa and sen 1992; 

Docherty et al, 1997; Mansanné et al., 2002). To accelerate this convergence in higher 

dimension parameter spaces we introduced more guiding information extracted from the 

domain knowledge. This information is, first, dip smoothing (it implicitely reduces the 

number of parameters), second, local fitnesses (LS, LDS) to reduce the coupling between 

parameters, and third, RMO based velocity improvemen (a step toward gradient 

methods).  

Information extraction from the migrated image and gathers 

All previous approaches Our approach 

  
 
 

Before giving the experimental results obtained using this hybrid approach, we will first 

give more details about the implementations of the domain-specific procedures used 

therein. 

 

6.5. Main components of the customized ε-MOEA 
First we begin by describing the representation of velocity in section 6.5.1 and then one 

of the most important components of algorithms that is objective functions in section 
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6.5.2. Then we discuss about the Dip smoothing and RMO correction in the section (6.5.3 

and 6.5.4). This will be followed by the construction of synthesized parents (in section 

6.5.5) and reference models (in section 6.5.6) and at the last implementation in ε-MOEA. 

6.5.1. Representation of velocity model 
The representation of velocity model is one of the important issues in velocity 

optimization as it controls the shape and size of the model parameters. A detailed 

discussion about the velocity parameterization can be found in Chapter 4.  We decided to 

use grid parameterization to represent our velocity models because any geological 

environment could be represented by a grid even though it requires a large number of 

parameters.  In grid representation it is easy to incorporate the information obtained after 

the migration of velocity model because the wave equation migration is performed on a 

regular grid whereas it is difficult with other representations (Voronoi or geological). The 

usual drawback of having a large number of parameters (CPU time is large) will be 

balanced by the introduction of domain knowledge (Good initialization, RMO correction 

and Dip smoothing). 

 

6.5.2. Objective functions 
For an automatic velocity estimation through PSDM image gathers, where no picking is 

introduced, the choice of the objective function is vital. In this work we are using both 

semblance (S) and differential semblance (DS) function as a objective function. S and DS 

functions measure the global goodness of a velocity model (effect of all the gathers in a 

model), whereas we also use semblance and differential semblance criteria to measure the 

goodness of each gather (hereinafter we called as LS and LDS respectively, L stand for 

“local”). we will now summarize the properties of both S and DS functions for sake of 

completeness (detailed discussion in chapter 5) and providing arguments to substantiate 

the use of both functions.  

 

Though both function measure the horizontality on the coherency panel. They differ by 

the way of measuring the flatness. Semblance measure the sum of the square of energy of 

the traces at each depth whereas differential semblance measure the sum of the, square of 
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difference of near trace energy at each depth level. Hence Semblance should be 

maximum and differential semblance minimum for true velocity.  In term of sensitivity to 

velocity error, smoothness and noise both function are quite different. For small velocity 

error semblance function and for large velocity error differential semblance function has 

strong sensitivity. Hence Chauris and Noble (1998) recommend to use differential 

semblance function for first few iteration and subsequently followed by semblance 

function. It has been also noticed that differential semblance function is very sensitive for 

smoothness (Shen et al.,2004) and noise (Mulder and ten Krood 2002) whereas 

semblance function is not much affected by smoothness and noise however not sensitive 

for large velocity error. Hence single use of either semblance or differential semblance 

function may lead towards local minima. Consequently an independent and 

simultaneously measurement of both functions can lead towards global minima. Multi-

objective evolutionary algorithms provide a unique opportunity to use more then one 

objective function, independently and simultaneously.  Hence one can utilize the property 

of both objective functions.  Since in the beginning of optimization, the initial models are 

far from the true models, at that time DS function will help in the convergence because of 

its strong sensitivity for far velocity models. On the contrary when the models are near to 

true model S function help in convergence because of its strong sensitivity for near 

velocity models. In the beginning when models are not smooth DS may produced local 

minima, however combination with the semblance can help in coming out from it. We 

decided to use MOEA so that we could exploit the property of both function and have 

more than one solution. 

 

It had been found that the velocity estimation using migration method with traditional 

global optimisation process is computationally very intensive. One of the important 

reasons for this is the lack of exploitation of information present in the image and gathers. 

To create a more geologically feasible velocity model and to speed the convergence of 

the migration velocity estimation problem, it is necessary to add extra information during 

inversion so as to construct geologically feasible models. This extra information can be 

taken from well logging, geologist’s structural model and preliminary stack or migration 

results. Other additional information could be from the migration of velocity models 
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(even from a wrong velocity model), such as their gross velocity error estimations as well 

as the structural trend of the geology.  We thus need a robust approach which could 

extract  approximate amount and direction of  gross velocity error and structral trend of 

the geology. In the next section we show how such additional information can be 

extracted from migrated image and gathers and can be incorporated in to the velocity 

model to improve it.  

 

6.5.3. Dip smoothing 
As already disucced in section 5.4 the  structural trend of a geological  model also  

provides  significant information and has been used differently for velocity estimation. 

The basic assumption (Delprat-Jannaud and Lailly 1992) is that  the velocity follows 

structural dips or some other known trends and it can hence be incorporated as a term into 

the objective function (Delprad-Jannaut and Lailly  1992),  Kaipio et al.,(1999) suggested 

using a prior structural information to create conditional covariance matrices. Here, we 

are not using the dip information as objective finction, regularization or preconditioner. 

Our goal is to extract  the dip information at each point of the migrated  image and use 

this dip information to reduce the variation of velocity along the dip direction. For 

identifing the reflection boundary and measuring the dip of the reflection, we have used 

the Sobel edge dectection tool.  Edges characterize the boundaries in image whereas the 

Sobel operator gives the direction and magnitude of the edges. 

 

We extract dip information from the migrated image. These migrated images are on a 

very fine scale grid, whereas we need dip information on a coarse scale velocity grid, 

therefore we smoothen migrated dip map up to the scale of velocity model. This dip 

smoothing can be viewed as some type of anti-aliasing. Once we obtained dip 

information to the scale of velocity model, we smooth the velocity model along the 

direction of dip.  

 

6.5.4. RMO correction 
Gross velocity errors from migrated images are generally estimated by the techniques of 

either Residual MoveOut (RMO) or Stolt residual migration (Sava 2003). In this work, 
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RMO technique is adopted as we are interested only in approximate amount and direction 

of change of velocity required at any place for correcting the velocity model. Here we are 

only reviewing it briefly, a detailed discussion can be found in Chapter 5. Regardless of 

the domain (offset or angle) in which the prestack partial images are defined, the RMO 

function is usually parameterized by a single parameter,  γ, the ratio of migration velocity 

and true velocity. Inaccurate velocities will cause move out artifacts on the migrated 

image, and its shape also depends on the velocity contrast. Smile and frown shapes are 

generally produced respectively for low velocity and high velocity contrasts.  

 

Here, we firstly perform the Radon transform of a gather (offset or angle gather). This 

enables us to work in parameter space (z,γ) rather than the image space where the curve 

detection problem is tedious.  The peaks determined from the Radon transform basically 

are the parameters of a reflection which gives the necessary information about the 

background velocity model. Although these peaks are a measure of the combined effects 

of both the local and global velocity variations, we assume here that the major 

contribution to the peak is by the local part of velocity variation. The peaks thus 

determined can then be used to improve the velocity models locally.  

 

To improve the velocity model we applied fraction of error correction using a triangular 

filter.  For example if in any particular place of velocity model, we estimate a velocity 

error of ±5%, we improve it by only ±2.5% or less. We do not apply full correction, so 

that we could avoid the effect of far velocity error (i.e. global velocity error). There may 

be many way to apply these correction, we applied by using a triangular window shown 

below. 

±
00800
04440
22222

W
γ  ; Here W=60 

Here γ is the velocity error and W is the weight which decide the fraction of correction we 

want to apply. All the points above the place of errors is multiplied by corresponding 

fraction and added or subtracted from that point.  
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This is a step toward the gradient methods because we not only handle the value of the 

fitness’s in the parameter space, but also vectors of correction. 

 

6.5.5. Synthesis of a parent 
Synthesis of a parent is based on the fitness of each gather of a model. For this we 

randomly select four models from the population. Each selected model is first improved 

on the basis of  γ (RMO) information (see chapter 5). Then, these models are smoothened 

along the dip direction, which reduces the variance of velocity along the layers. Once this 

information is introduced, the next goal is to synthesize a parent’s model from these four 

selected models.  

The strategy of synthesis of parents model is shown in Figure 6.4. Firstly, we compare 

the selected models for each gather on the basis of LS (semblance of one gather). Then 

the velocity model corresponding to the best LS gather are copied into corresponding 

parent synthetic velocity model. We adapt same strategy to synthesis the parent using 

LDS (differential semblance of one gather) criteria. Here we can synthesize parent by 

three ways.  First we could replace the model on the basis of best LS, second on the basis 

of LDS or third we could adapt Pareto dominance strategy for synthesizing the parents 

models. The schematic view of parent synthesize is shown in the Figure 6.4.  

 

We can also adapt this strategy to synthesis a parent based on horizontal panel, where we 

need to compute LS and LDS corresponding to each depth windows and synthesis 

parents using above methods (Figure 6.7).  
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Figure 6.4: Vertical Synthesis of parent. Each velocity model produces corresponding 

image gather. At each X position of all image gathers, local semblance (LS) and local 

differential semblance (LDS) are computed and compared with each other. Velocities 

corresponding to the best LS or LDS are copied into the synthesized parent model. 
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6.5.6. Reference Models 
It is well known that N inversions are cheaper than one N-times larger inversion. So we 

will apply this principle to our case by localizing, as much as possible, the problem at 

each abscissa. Indeed, the migrated image at some abscissa only depends on the velocity 

in the vicinity of this abscissa.  

 

 

 The global optimisation methods lacks by exploitation property. We decided to add the 

exploitation property in our ε-MOEA to make it more efficient. Generally globally good 

velocity models are preserving in the archive, where locally good model do not have such 

place, to be preserved. To exploits these locally good velocity models, we created two 

models which we hereby refer Reference models.  

 

 

These reference models are initialized by copying the one archive member, when 

evolution of the velocity model start, each new offspring is compared with the reference 

models. One reference model is compared on the basis of semblance function and 

referred as S-Reference model (Figure 6.2), and other model is compared on the basis of 

differential semblance function and referred as DS-Reference model. S-Reference model 

is compared by offspring for each gather using LS criteria and the offspring velocity 

corresponding to best LS gather is copied in to the S-Reference model. Same procedure is 

applied of DS-reference model, only difference is the use of LDS criteria.  

 

 

This enables us to better capture the local property. Reference models are then used in the 

process of crossover with other models. During the crossover, such reference models help 

in generating better models.  Thus, reference models not only help in fast convergence 

but also introduce exploitation property into the MOEA. 
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6.6 Implementation of Customized Evolutionary Components 
Once we have represented our model, found a better objective function and have the tools 

for providing the information during optimisation, we need now  to develop a good 

optimisation strategy. As we intend to use  two objective functions, multi-objective 

evolutionary algorithms (MOEA) is the preferred choice. Among MOEAs we can select a 

generational MOEA (NSGA-II(Deb et al 2000), SPEA-2( Zitzler and Thiele 2002), etc.) 

or a steady state MOEA (ε-MOEA (Deb et.al, 2003). Generally, steady state EAs are 

faster then generational EA . Because the superiority of  ε-MOEA over NSGA-II and 

SPEA-II  in term of fast convergence, diversity mainatenance as established (Deb et al., 

2003) we decided to use  it.  

 

As already advocated, one way to cope with the main drawback of EAs (their high 

computational cost) is to add domain- specific knowledge.. This necessitates to develop a 

good exploitation operator as well as to gather useful information so as to proceed in the 

right direction.  We  have given an outlook of  our customized ε-MOEA in (Figure 6.3),, 

in which a biased initial population (Population), information exploitation models 

(Reference models) and knowledge-specific crossover operator (Dip smoothing, RMO 

correction and synthesising a parent) are introduced. We will detailed these three 

specific parts in the following: 

 

6.6.1 Initial Population  
In MOEA, evolution starts from a population of specific size and made of random models. 

There are two practical issues in this approach (i) population size and (ii) initial 

population generation.  These two issuues are discussed separately below. 

 

 

Population size generally depends on the nature of the problem, but typically contains 

several hundreds or thousands of possible initial models.  The population size has a major 

effect on  the efficiency and performance of MOEAs. MOEAs usually do not work well 

for very small size population and a very large population size impacts the performance 
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of  the MOEA. The purpose of large population is to have diversity in the parameter 

space. However, a large population needs the evaluation of a large number of models. 

Since our evaluation process is costly, we decided to evaluate less models and at the same 

time to maintain the  diversity in the parameter space. To fullfill the above goals, firstly, a 

small number of models are generated in initial population and secondly this initial 

population is divided into two sub-populations: one sub-population is non-replaceble and 

the other sub-population is replaceble during the optimisation proces, in this way the 

diversity in the parameter space is maintained by the non-replaceble sub-population. A 

similar stretgy is adopted by Coello and Pulido (2001) for micro-multi-objective genetics 

algorithms (µ-MOGA). The replaceble part of the sub-population will (hopefully) 

converge to the Pareto front.  

 

 

A example of population convergence for Marmousi velocity model optimisation on a 

250m grid sampling is shown in the Figure 6.5, where initial population is shown by 

black colour balls and final population (after 600 iteration) in the blue colour balls. We 

can see that replaceable subpopulation of the final population is clustured (Figure 6.5 

inside oval) after 600 iterations, it means, it does not have a significant diversity, 

however we can expect good parameter values from them. Nevertheless required 

diversity of final population is being provided by non-replaceble subpopulation which is 

still distributed (Figure 6.3, distributed blue balls marked as 600, outside the oval). Hence 

non-replaceble subpopulation is helping in maintaing the diversity of the population. 

whereas repaceble subpopulation is helping in the convergence. 

 

 

 

 



 144

  
Figure 6.5: Initial (semi-random) population (black balls marked with zero) and final 

population after 600 iterations (blue balls marked with 600) in the objective space. In the 

final population all the replaceable sub-population is converged and make a cluster 

(inside oval), whereas non-replaceable sub-population are not changing (marked as 600 

blue colour, outside the oval) in the population and maintaining the diversity in the 

parameter space (for 250 grid sampling).      

 

The next important issue is the generation of the initial population. Generally, 

evolutionary algorithms start from random models. Such generation of completely 

random models is suitable for those problems where one does not have a prior 

information, knowledge and experience about the models. Initial population is an 

excellent place to embed knowledge from the problem domain. As a result a smart initial 

population can increase the likelihood of successful composing of the global solutions 

through the iterative process of information exchange.  

 

In our approach, we have prior information about the possible velocity from geological 

studies, well logs and seismic preprocessing along with the well known fact that velocity 

generally increases with depth. Besides, we have information from gathers.  Therefore we 
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need to generate approximate solutions by leveraging the resources that are generally 

available, i.e. domain knowledge and field data that characterize the system behavior. 

Consequently generation of knowledge and experience based semi-random models is 

more suitable. This process will speed up the convergence in addition to providing 

information to the system   However, it should be pointed out  that small populations with 

proper management, information and diversity are sometime better or as good as larger 

populations. 

 

An example of semi-random model is shown in Figure 6.6 for optimizing Marmousi 

model. For generating this random model, we increase the upper bound of random 

velocity with depth. This is one the simplest information that we can add. A lot of 

velocity information can be extracted from the preprocessing of the seismic data, well 

logs and regional geology. We can also extract structural information from regional 

geology and time migration of the data. Both structural and velocity information can be 

added together in velocity generation. Despite the fact we are using only velocity 

information for Marmousi model optimisation. Addition of structural information as well 

as velocity information can be a very robust choice for salt body velocity optimisation.  

 

  
Figure 6.6: Semi-random velocity model, upper bound of velocity is increasing with the 

depth. We are adding the well known domal knowledge that velocity increases with the 

depth.   
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After generation and evaluation of initial velocity models, the process of evolution start 

which is based on the Darwinian principle of natural selection and blind variation. In 

MOEA variation operators are crossover and mutation. Since we have a lot of 

information about each velocity model, we decided to use the information, to guide the 

crossover operation. In the next section we are presenting this guided crossover. 

6.6.2. Guided crossover 
The philosophy of MOEA is that good parent models should generate good offspring 

models with positive probability. The offspring is generated by the crossover of parents 

and the main purpose of a crossover operator is to recombine partial good information 

from two or more models so as to generate possible better offspring models. 

Conventionally models for crossover are selected from a population by some stochastic 

techniques (tournament selection, roulette wheel selection etc.). As we have a small 

number of models in the population, in which part of the models is non-replaceable, 

selecting a good solution each time for crossover will not allow us to generate a different 

solution. Thus traditional selection criteria of a model may lead to premature 

convergence or reduce the convergence speed drastically.  

 

In order to find the good models for crossover from a population, we decided to 

synthesize a parent model from a few randomly selected parent models. Among the many 

strategies that could be used to synthesize parent models, we have adopted two strategies: 

vertical and horizontal synthesis of parents. The process of vertical synthesis of parent 

has been already described in section 6.5.5 (Figure 6.4). In a similar way one can prepare 

a horizontal synthesized parent model. 

6.6.2.1 Horizontal synthesis of Parent 
Horizontal synthesis of a parent is based on the fitness of each horizontal depth windows 

of a gathers (Figure 6.7) in place of each gather. To synthesis a parent model, first we 

randomly select four models from the population then we smooth them along the dip 

direction, and also update them from γ (RMO) information. The semblance (LS) or 

differential (LDS) of each depth windows is used to synthesis a parent model (here L 
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stand for each depth window).  We copy the velocity model corresponding to the best LS 

or LDS windows into the synthesized parent model (Figure 6.7).   

We performed few experiment with both vertical and horizontal synthesis of parents. The 

combined synthesis has improved the convergence speed almost by a factor of two. 

Though it still require some more experiment to decide the factor of improvement. 

However it is sure that, mixture of both vertical and horizontal syntheses of   parents 

brought better convergence than the single synthesis of parents (vertical or horizontal). 

 

 Once we have synthesized a parent from four parents either by horizontal or vertical 

synthesis we apply simulated binary crossover (SBX) (Deb and Agrwall, 1995). SBX is 

implicitly adaptive crossovers that generate offspring close to the parents for near parents, 

and spread offspring further from the parents if they are far away, automatically reaching 

a balance between exploration and exploitation. Hence specifically they do not require a 

mutation operator.  By synthesizing one parent from several parents we have Increasing 

the probability of creating a parent of good attribute. Hence, if the parents of good 

attributes do the crossover they have a good chance to generate a good offspring.  In this 

way just by using the philosophy of MOEA, we guide the crossover to the right direction 

without disturbing the exploration property of MOEA. The whole process of guided 

crossover is shown in the Figure 6.8. 
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Figure 6.7: Horizontal synthesis of a parent model can be done by copying the velocity 

models corresponding to the best horizontal panels (it may be based on semblance or 

differential semblance criteria of corresponding depth windows). 
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Figure 6.8: The whole process of guiding the crossover. We uniformly select four parents 

velocity models from population and then we apply dip smoothing and RMO correction 

to each selected models. Then we synthesized single parent velocity model from these 

four parents’ models (see Figure 6.4 and 6.7).  We use synthesized parent model and 

archive parent models to SBX Crossover to generate an offspring. The whole process is 

called guided crossover.  

 

Though fixed sub-population is taking part during the synthesis of a new parent, we also 

crossover them separately with archive population. Since synthesis is based on the 

criteria of local fitness of a model, it is also necessary to do the crossover with global 

good and bad models. Crossover of non replaceable sub-population (random models) 

with archive models can help in producing a diverse model and maintain the diversity. 

Crossover with two reference models (collection of best velocity panels) will add the 

positive attribute to the offspring models and help in converging toward the global 

solution. 

SBX Crossover  

Synthesis  

Dip Smoothing RMO Correction  

Parent 

Population
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A guided crossover explores good regions by searching good gathers from randomly 

selected four models and synthesizing   a parent.  It exploits the good attributes of 

reference models and produces diversity by using the fixed sub-population. Therefore our 

crossover operator has all the good attributes required for a good crossover operator. Next 

section will present results based on the synthetic examples of Marmousi velocity model 

(Bourgeois et al. 1991) and one real field data. 

 

6.6.3 Reference Models 
The guided crossover operator is helping in generating a good offspring, however we also 

need some operator which can exploit the locally good properties of offspring and help in 

generating a good velocity model. We developed reference models to exploit these 

locally good velocity models.  The process of creation of reference models are described 

in section 6.5.6. We created two reference models which are based on the collection of 

velocities corresponding to the best semblance(S-Reference) and differential semblance 

(DS-Reference) gathers. 

 

Example of reference models for 250m and 100m grid sampling are shown in the Figures 

6.9 and 6.10. Figure 6.9a shows the trapping of velocity corresponding to the best 

semblance panel whereas Figures 6.9b shows trapping velocity corresponding to best 

differential semblance panel for 250m grid sampling. In the beginning (0th iteration) 

reference models are similar to random model. However reference models start 

improving with the number of iterations. Semblance reference (LS) model (Figure 6.9a) 

seems more sensitive to near surface velocity variations whereas differential semblance 

reference (LDS) (Figure 6.9b) sensitive for deeper part of the models. LDS reference 

models; strong sensitivity for deeper part of the model is due to “depth factor” that we 

have introduced in Chapter 5. 

 

Figure (6.10a and 6.10b) shows the trapping of velocity corresponding to the best 

semblance and differential semblance panel for 100m grid sampling with the number of 

iteration. Reference models start improving since the beginning of evolution however the 
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process of improvement is slower than that of the 250m grid sampling. As reference 

model improves it also get smoothen. Here also we can see strong sensitivity of LDS for 

deeper part whereas LS shows strong sensitivity for shallow part of the model.  

 

Concept of reference modes to capture locally good velocity models is similar to the 

Darwinian principle of survival of fittest, where best obtained velocity model 

corresponding to panel survival. This operator exploits the useful information that it 

generates during the optimisation, and adds exploitation property in MOEA. Hence it 

fulfills the requirement of exploitation operator in MOEA using almost negligible 

computation cost. Reference models also provide virtuous seeds for generating a new 

velocity model. As a result, it helps to increase convergence speed.  
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Figure 6.9 (a): LS Reference model: capture the velocity corresponding to the best semblance 

panel (LS) (250m grid sampling).  In the beginning (0th iteration) reference model is similar to 

the random model, it start improving with the number of iteration (100, to 600). It seem more 

sensitive for near surface velocity variation.  

 

LS 
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Figure 6.9 (b): LDS Reference model: capture the velocity corresponding to the best differential 

semblance panel (LDS) (250m grid sampling).  In the beginning (0th iteration) reference model is 

similar to the random model, it start improving with the number of iteration (100, to 600). It 

seems more sensitive for deeper part of velocity model.  

 

LDS 
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Figure 6.10 (a):  LS Reference model: capture the velocity corresponding to the best semblance 
panel (LS) (100 m grid sampling).  In the beginning (0th iteration) reference model is similar to 
the random model, it starts improving with the number of iteration (100, to 600). By visualizing it 
seem more sensitive for near surface velocity variation. 

 

LS 
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Figure 6.10 (b): LDS Reference model: capture the velocity corresponding to the best differential 

semblance panel (LDS) (100m grid sampling).  In the beginning (0th iteration) reference model is 

similar to the random model, it starts improving with the number of iteration (0, to 500). By 

visualizing it seems more sensitive for deeper part of velocity model.  

 

LD
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This concept can also be extended for constructing a reference models based on 

horizontal panel, similar to the synthesis of horizontal synthesis of parents (Figure 6.7). 

For constructing horizontal panel reference models, one need to compute semblance and 

differential semblance for each depth windows (Figure 6.7) of a offspring and then to 

compare with the horizontal reference model and copy the velocity corresponding to the 

best offspring depth windows into the reference models. Here also we can prepare at least 

two types of reference models based on the velocity model corresponding to both 

semblance and differential semblance function. Though we have applied this concept but 

we did not performed enough test. Therefore we are not putting any results.  This concept 

can also be very useful in 3D, where we need to apply a layer striping approach (as 

discussed in Chapter 7).  

6.7. Results  
We are demonstrating our results on synthetic Marmousi model and North Sea L7 real 

data. Here first we are describing the algorithms parameter setting and then we show the 

results one by one.  

6.7.1. Evolutionary Algorithms and parameters 
To optimize any velocity model, there are three types of parameter settings. The first type 

is related to the representation of model, second type is related to the migration and third 

type is related to optimization, here MOEA. To optimize the velocity model of Marmousi 

data and L7 data, we represent it on regular grid as discussed in Chapter 4.  

 

The MOEA related parameters are the number of models in population, crossover rate 

and coefficient of crossover and ε-parameters in objective space.  We have taken a 

population of 20 to 30 models and with almost equal probability for cross over each with 

synthetic parents and normal parents. The ε parameters are related to the objective 

functions and divide the objective space into grid and provide an opportunity to fine tune 

the objective function according to their importance see Chapter 2 (section 2.7.7.9) and 

figure 6.11.  The DS objective function is very sensitive when the initial models are far 

from the true models but its sensitivity fades out when models converge toward the true 

model. As a result, a coarse sampling (Figure 6.11) is chosen for DS function, thereby 
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resulting in shorting bad models and fast convergence. Conversely the S function is very 

sensitive when the models are close to the true one. Hence a fine sampling (Figure 6.11) 

is chosen for the S function. It can decide on the best model and converge quickly when 

the models are close to the solution. Although both S and DS functions measure the 

flatness criteria, a clever combination of the distinct properties of both functions with ε-

MOEA reduce the computation cost.   

  

 
Figure 6.11: Represent the ε-dominance concept and grid of the objective functions S 

and DS.  The points represent the solutions in objective space. The solution shown by 

green points is a non-dominance or Pareto optimal solution and the green curve is 

Pareto-front. The red color stars represent the ε-dominance solutions. The black color 

points are dominated solution.  

 

For optimization, firstly, the velocity model was divided into many horizontal blocks. In 

these blocks, random velocity was generated such that the minimum velocity increases 

DS 

S 

Dominated Solution 

ε-dominance 
DS-max 

εDS

ε
S S-m

in

Pareto-front 

Pareto optimal Solutions  



 160

with depth with maximum velocity limit of up to 5500m/s.   Migration is then performed 

on these velocity models and the corresponding S, DS, LS and LDS functions, RMO and 

smoothing dips are calculated. The ε-dominate models are copied into the archive 

population.  The LS and LDS function are also used to create the reference models. First 

reference model is created from population models by the combination of panels of good 

LS objective function and their velocity. Second reference model is created by the 

combination of panels of good LDS objective function and their velocity. After the 

generation of initial population, archive population and reference models, the process of 

optimization starts. The optimization procedure is shown in the (Figure 6.3). In this 

optimization process we have not used the mutation operator as it perturbs a solution 

obtained by the crossover in the hope of creating even better solution and also maintains 

the diversity of the solution. Since we have maintained a set of random models in the 

population to preserve the diversity, there is no need to have mutation operator. One other 

reason of not using the mutation operator is the use of SBX crossover operator, which 

also have desired property of mutation. Hence only crossover operator is used for 

optimization in this work.  

 

We are using both original ε-MOEA and customized ε-MOEA. The ratio of apppling 

both algorithms for generating a offspring is 40:60.  In customized ε-MOEA we take four 

parents and then apply RMO correction and dip smoothing on the models and then 

synthesize a single new parent. This new parents is a combination of panels of good LS 

or LDS functions and their corresponding velocity model. After synthesizing this parent, 

SBX cross–over is performed between the synthesized parents and archive selected 

parents.  The SBX crossover is also used for the ε-MOEA.  In the ε-MOEA we select one 

random parent from the population or from reference models and crossover it with the 

archive solution.   After the crossover, new velocity models are generated and migration 

is performed on these new generated models. Once migration is performed we have the 

migrated image and gathers (offset and angle). Migrated image is used for visualizing and 

gathers are used for the S or DS calculation.  Here the migrated image is used to get the 

information about the layers dip direction as well as dip smoothing. This process will 

reduce the variance of the velocity along the layers thereby producing a smooth image. 
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The gathers obtained after migration used for the RMO error estimation and LS and LDS 

are calculated for each panel. We associate the RMO errors and dip smoothing 

information with the models and have been used before crossover. After few hundreds of 

iteration we end up with   optimized velocity models. Results of velocity optimisation on 

250m and 100m grid sampling are presented in next subsection.  

6.7.2. Marmousi Velocity Model 
We have taken a complicated example of 2D-Marmousi velocity model to demonstrate 

the robustness of the approach. The Marmousi synthetic data set (Bourgeois et al., 1991) 

was first released as a blind test for velocity estimation. It is a complicated acoustic 2-D 

data set based on a profile of the North Quenguela through in the Cuanza Basin in Angola 

Versteeg (1993). The structural style is dominated by growth faults that arise from salt 

creep and cause the complicated velocity structure in the upper part of the model. The 

target zone is a reservoir located at a depth of about 2500 m. The model contains many 

reflectors, steep dips, and strong velocity variations in both lateral and vertical directions 

(with a minimum velocity of 1500 m/s and a maximum of 5500 m/s). The synthetic data 

set consists of 240 shots with 96 gathers each. Zero-phase source deconvolution was 

applied to the data used in this study as part of the preprocessing (Barut et al., 1991). 

 

Here we are presenting our results using different grid sampling one on 250x250 m and 

the other one 100x100 m.   The number of grids points is 432 for the 250 m grid sampling 

and 2700 for 100 m grid sampling.  

 

The main migration parameters are the frequency range, the number of shots, the 

propagation depth sampling, the maximum subsurface offset and the size of gathers. 

These migration parameters control the migration cost. Since global methods require a 

large number of evaluations, reduction of migration cost will help in reducing the 

optimization cost.  In this work, for migration we have used the frequency range 10-25 

Hz, every 2nd shot, propagation depth sample of 20 m, maximum subsurface offset of 

3000 m and gather at every 250 m. Since we are using every 2nd shots for migration the 

speed increases by a factor of two CPU time for a typical migration. At the same time, 

usage of a small frequency bandwidth and a reasonable propagation depth sample also 
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significantly reduces the migration cost. As small number of shots is used, shots artifacts 

appear in the gathers. We use here the robust objective function (MADS) which is less 

affected by the data and parameter setting. As a result of this, these artifacts will have 

negligible effect on the optimization process.   

 

6.7.2.1. 250m Grid sampling 
If the Marmousi model is represented by a coarse grid  sampling of 250 x250m grid size 

and if smoothed using dip information the generated velocity models almost become 

equivalent to the 500x500m grid size. Only 200-400 hundred evaluation needs to be done 

for obtaining a velocity models. The computational cost for this 200-400 hundred 

evaluation is equivalent or less than the cost of 50-100 migration. 

 

Here we are describing an example for 250m grid sampling optimisation. The parameter 

setting is already discussed. First step of optimisation is generation of random model, 

where we increase upper limit of velocity with depth. After looping of optimisation start, 

models gradually begin to improve. Reference models seem very efficient in capturing 

locally good velocity model (Figure 6.6a and b). In the beginning convergence speed of 

Archive (Figure 6.12) is very fast, whereas this speed decrease as models converges close 

to true model. 
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Figure 6.12: Convergence of Archive with the number of iterations for 250m grid sampling. 

In the begning convergence is very fast but after few hundred iterations it slow down. 

 

The evolution of optimised velocity models and corresponding image and gather with the 

number of iteration for the archive (ε-Pareto optimal solution) (Figure 6.12) are shown in 

Figures (6.13, 6.14 and 6.15). Only two models from each step are shown. The purpose 

of showing these results is to give a feeling of the improvement of model with the 

number of iteration.    

 

In the beginning there is a strong improvement in the near surface velocity model 

whereas this improvement shift to deeper part of velocity model in later iteration. This 

can be verified by seeing the improvement in image or gathers. In the complex part of the 

Marmousi model gathers are also very noisy even though migrated images are quite good. 

As we have already shown in Chapter 4 that velocity optimisation on a coarse grid may 

not be able to produced completely flat gather in complex part of the model because 

complex structures require a fine grid representation to accommodate lateral and vertical 

velocity variation.  
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Figure 6.13 (a): Evolution of velocity model with the number of iteration (first archive 

solution)   
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Figure 6.13(b): Evolution of velocity model with the number of iteration (Second 

archive solution)   
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Figure 6.14 (a): Migrated image obtained corresponding to the velocity model of 

archive (Figure 6.12) 
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Figure 6.14 (b): Migrated image obtained corresponding to the velocity model of 

archive (Figure 6.12) 
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Figure 6.15(a): Gathers obtained corresponding to the velocity model of archive   

(Figure 6.12) 
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Figure 6.15(b):Gathers obtained corresponding to the velocity model of archive 

(Figure 6.12) 
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Since velocity improvement gradually moves toward deeper part of the model, it is not 

essential to do whole velocity modeling in one step. Whole velocity modelings in one 

step need a large computational cost whereas improvement is very small. Hence once can 

adopt the layer striping approach to make it faster. 

 

6.7.2.2. Superimposition of migrated image 
One of the most interesting properties of MOEA is its ability to produce more than one 

optimised solution. Hence it provides an option to a user to decide an optimised model on 

the basis of available information’s (numerical, analytical or experience) or one can 

select partially good information from each optimised model. We noticed that after 

optimisation obtained velocity model are nearly similar (Figure 6.13a and b). One can 

take a mean velocity of the optimised model and hope to generate a better migrated 

image. We noticed those migrated images obtained from this velocity model are similar 

except around complicated part of Marmousi model. Hence to improve the visualization 

of the migrated image at complicated part, we made an experiment of merging the 

optimised migrated image. For example in Figure 6.16, we have merged two optimised 

migrated image 600a and 600b (Figure 6.14). After merging we are now able to see more 

detailed structural information even in complex part of the Marmousi model which is 

difficult to interpret by only one image.  Though a geophysicist will prefer to generate a 

migrated image by taking the mean velocity of optimised model, we preferred image 

merging approach. Similar approach also used in Remotesensing image processing, 

where we add, subtract, multiply and divide the images of different frequency band to 

enhance the certain features. 
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Figure 6.16: Merging of the two optimised migrated image (600a and 600b). This image 

can be interpreted even at complex part of the model (ellipse).    

6.7.2.3 100m Grid sampling 
100 m grid sampling requires 2700 unknown parameter to represent Marmousi model.  

Optimisation parameter settings are discussed above. Model generation and other strategy 

are similar to the 250 m sampling. 

 
Figure 6.17: Convergence of archive with the number of iteration for 100m grid 

sampling.  In the beginning convergence is very fast  but after few hundreds of  iterations 

become very slow. 
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We are smoothing velocity model along the dip direction, which reduced the variance of 

velocity model. As a result velocity model resolution is approximately 200 m to 300 m. 

Optimisation requires almost 600-800 evaluations. Increase in the number of evaluation 

is due to the increase in number of unknown parameters.  

 

 

Convergence of archive with the number of iterations is shown in the Figure (6.17). 

Convergence is very fast in the beginning whereas it starts slowing after certain iteration. 

There are no drastic changes noticed in the migrated image either obtained by 250m or 

100m grid (Figure 6.19). Whereas velocity model obtained by 100 m grid (Figure 6.18) 

gives a geological appealing velocity model. This gives us more confidence in velocity 

model at extra computational cost.  

 

Here also we obtained more than one optimised solution and provides an option to a to 

decide an optimised model on the basis of available information’s (numerical, analytical 

or experience) or one can select partially good information from each optimised model. 

On 100m scale even a single image is itself sufficient to interpret, though merging of the 

two optimised modem 500a and 500b (Figure 6.20) a better image.  
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Figure 6.18: Evolution of velocity model with the number of iteration. 
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Figure 6.19: Improvement in the image with the number of iteration. 

Figure 6.20: Merging of the migrated image obtained after 500 iterations (500a & 500b). 
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6.7.3. L7 Model  
We have applied our algorithms to a real data set of North Sea. A 3d data was acquired 

by the petroleum company Elf (now Total).  We have selected a 2D line from this data set. 

After optimisation, obtained velocity model, migrated image and gathers are shown in the 

figure 6.21, 6.22 and 6.23 respectively.   

 

The optimised velocity models are not able to recover the velocity models around the salt 

body. Since depth velocity ambiguity is very large around salt body and also data do not 

have proper information, a coarse grid or blocky representation like Voronoi might here 

be a better choice than of regular grid.  Because regular grid representation requires a 

large number of parameter as a result ambiguity increases whereas concise representation 

like Voronoi requires small number of parameters, they can be less ambiguous.  These 

velocity models are also looking blocky, since we have used a coarse grid of 200 m to 

represent the velocity model. A fine grid representation can be a good choice to recover a 

small velocity error in the simple part of L7 models. However it requires an even larger 

number of unknown parameter with a very high computation costs.  Since we have a set 

of optimised solution a final solution can be derived by the combination of all or one 

optimised solution can be selected based on the other available information. 
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Figure 6.21: Optimised velocity models for L7 data set. These velocity models are unable 

to estimate the salt velocity, whereas in other places they are able to estimate a good 

velocity model.    

 



 177

 
  
Figure 6.22: Migrated image obtained from the optimised velocity models of L7 data set. 
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Figure 6.23: Gathers obtained from the migration of optimised L7 velocity models  
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6.8 Discussion and Conclusion  
We have presented an automatic velocity optimization technique, one that does not 

require picking of the prestack migrated image gathers. This is the first time to our 

knowledge that MOEA has been used to estimate seismic velocity. We have modified the 

MOEA and introduced some exploitation techniques in such a way that it will not affect 

the global exploration property.  An effort is also made to utilize the good properties of 

both S and DS function. This proposed techniques use both RMO error and iterative 

methods. It also requires a smaller number of evaluations of models though the number 

of unknown parameters is large.  This technique resolves the major issue of computation 

cost for global optimisation methods. The computational cost of this technique is 

equivalent to that of the gradient methods.   

 The real and synthetic data example demonstrates that global optimization methods can 

be successfully applied to realistic scale seismic problems, at least in two dimensions. 

However it does not work well in the salt body. Therefore it requires a special attention 

for salt body. Our example shows that the technique presented here is robust and can be 

applied to noisy data as well. The little sensitivity of objective function for the data and 

noise adds extra robustness in optimization process and also boosts the optimization 

speed. 

 The technique presented here also differs from other global approaches (Jervis et al., 

1996; Docherty et al., 1997; Mansane and Schoenauer, 2000) with respects to the 

representation of models, evaluation process, exploitation property, and reproduction 

technique. Jervis et al. (1996) and Docherty et al., (1997) used binary coded spline 

representation and Mansane and Schoenauer (2000) used real coded Voronoi while we 

are using real coded regular grid representation. We are evaluating two objective 

functions simultaneously for a model whereas others evaluate one objective function at a 

time. We have added exploitation property by reference model, RMO correction and 

directional smoothing where other approaches have used the blind traditional algorithms.  

In our approach we are using crossover without mutation where as in other approaches 

both operator were used.  Before the crossover, the parent model is corrected (RMO) and 

smoothed then only a crossover operator is used. This goes with the philosophy of 

evolutionary algorithms which says that one should add as much as possible domain 
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specific information without perturbation the stochastic module of the algorithms. In the 

Table 6.2 a comparison is made with respect to number of unknown velocity parameter 

and required number of PSDM to convergence. We can note that though we have 50 to 

100 times more unknown velocity parameters, our convergence is almost 100 times faster 

than that of other methods. 

Table 6.2: Performance of different approach is shown with respect to number of 

unknown parameters and required number of PSDM to converge. 

Authors Number of 

Parameters 

 Required Number 

 of PSDM 

Jervis et al. (1996) 50 2000 

Docherty et al.(1997) 68 12994 

Mansanne & Schoenauer (2000) 100-200 20000 

250m Grid 457 200-400 

100m Grid 2700 300-600 

100m Grid 2700 150-300 

 

In the future we would like to extend our approach from coarse to fine modeling. There 

are two different aspects of coarse to fine modeling, one related to the migration and 

other related to the representation of models. In the migration, we can shift from small 

frequency bandwidth to large frequency band, increase the number of shots, and reduce 

the propagation sampling depth. This shifting will increase the computational cost of a 

model but at the same time it will increase the accuracy of the results. A model can be 

initially represented on a coarse grid and later on a refined grid. In this process the 

number of unknown parameters will increase while the model representation will shift 

from a smooth representation to a fine blocky representation. Both aspects will increase 

the computational cost but hopefully produce refined models and accurate results. This 

approach may be helpful in extending our optimization processes from 2D to 3D velocity 

optimization. 

 



 181

 
 
 

Chapter 7 

Conclusion and Perspective 
 
 
Velocity estimation in geologically complex regions is one of the most challenging 

problems in petroleum prospection because of strong lateral and vertical velocity 

variation, multipathing, uneven illumination, and irregular data coverage. Migration 

velocity analysis methods based on wavefield-continuation methods are robust for such 

region. To tackle the nonlinear relationship between seismic data and velocity model, a 

customized hybrid multiobjective evolutionary algorithm was designed, and efficiently 

used  for velocity estimation of both a synthetic and a real data.    

The main contributions of this thesis are: 

• We have developed an automatic cross-section balancing algorithms for foothill 

structure. This can be easily extended for other geological structure, using proper 

forward modeling algorithms (Chapter 4). 

• This geologically balanced cross-section was used to design a geologically-sound 

representation, that was successful in solving the geological structure inversion 

problem from dip measures. Furthermore, when the geological structure was 

correctly inversed, we were able to solve the velocity inversion problem and to 

get a good velocity model. However, our attemps to invert both geological 

structure and velocity model together only encountered partial success (Chapter 4). 

• We hence turned back to representing the velocity using a regular grid. We 

noticed that coarse grid representation is suitable for simple part of geological 

structure, whereas fine grid representation is necessary for the complex parts of 

geological structure. This part of our work also emphasized the importance of the  

representation issue (Chapter 4). 

• Previous works had given hints that  the Differential Semblance function could be 

misleading around the exact values of the velocities: we slightly modified the DS 

function to  make it ”more convex” around the exact values, and sensitive even 
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for quite large velocity error (Chapter 5). This modified Differential Semblance, 

together with the standard Semblance function, will then be our two objective 

functions.  

• We developed automatic RMO picking algorithms and some dip extraction 

technique from migrated image and gather (Chapter 5). Both will be used to 

locally improve the velocity models during the evolutionary optimization in 

Chapter 6.    

• We designed a complete algorithms, based on the results of Chapter 5, using: (1) 

Both semblance and modified differential semblance objectives; (2) A modified ε-

MOEA with very small population size; (3) Reference models that were used as 

some local archive of good parts of the previously encountered models (4) Guided 

crossover using local improvements based on: (5) RMO information and (6) Dip 

information (Chapter 6). 

• This hybrid algorithm was then intensively applied the artificial Marmousi 

problem, and, to a lesser extend, to the North-Sea L7 data. On the one hand, the 

results are rather satisfactory with respect to the accuracy of the identified 

velocities, and on the other hand they demonstrate the efficiency of the proposed 

customization with respect to the overall computing time of the inversion process, 

as its cost is equivalent or faster then that of gradient methods (Chapter 6). 

 

 

Perspectives 

Two Dimensional velocity inversion 
 
There is still much room for improvement for the performance of  the proposed velocity 
inversion algorithms. 
  
• To improve the efficiency, we have developed some layer striping approach, though it 

has not been sufficiently experimented with, and hence was not presented her. 
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• Though we have used ”vertical” reference models for exploiting the information, 

horizontal reference models can also be used. Moreover, mixing both approaches 

could be helpful in order to increase the efficiency of exploitation. 

• The user (expert geophysicist) usually plays an important role in the process of 

velocity inversion. Hence there is a need here to add some user reference model, in 

order to be able to exploit the information provided by users during the optimisation. 

For example, for velocity estimation in salt structure, user information can be very 

helpful in identifying the shape of salt structure.  Evolutionary algorithms are flexible 

enough to allow such interactive optimisation. 

• Finally, and especially for estimating velocity from a salt-body embedded structure, a 

mixed domain representation using both the grid representation used in chapter 6 and 

the Voronoi representation (proposed  by Mansanne et al., and briefly described in 

Chapter 4) could be used. 

 

 

Three Dimensional 
 
Extension to three dimensional (3D) is itself a big challenge. However a clever selection 

of migration algorithms, proper extraction and utilization of information obtained from 

the gathers and development of good exploitation operator can make it possible to extend 

this approach for 3D.  

For example (1)use of Common Azimuth Migration (CAM) with layer stripping 

approaches. (2) Generation of approximately good initial velocity model (3) use of 

Prestack residual migration for velocity error estimation from gathers (4) concise 

representation of velocity model (5) development of user reference model  and some new 

crossover strategy. 

 

Indeed, we do think that this technique is now ready for 3D extension. Tremendous 

reduction in the computation cost and strong increase in the computational efficiency in 

recent years make it likely that such approach will become routine use in industrial 

context. 
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