
THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SUD
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Abstract

In this dissertation, we present our study of the clustering issues on
large-scale data and streaming data, with the applicative purpose of building
autonomic grid computing system.

Motivated by the application requirements, we employ a new clustering
method called Affinity Propagation (AP) for modeling the grid jobs, the
first step towards the long-term goal: Autonomic Grid Computing System.
AP fits our clustering requirements by i) guaranteeing better clustering
performance; ii) providing representative exemplars as actual data items
(especially suitable for non-numerical data space). However, AP suffers from
the quadratic computational cost caused by the clustering process. This
problem severely hinders its usage on large scale datasets.

We firstly proposed the weighted AP(WAP) method. WAP integrates
the neighboring points together and keeps spatial structure between them
and other points. It makes sure that the clustering results of WAP on
integrated points are equal to that of AP on non-integrated points. The
merit of WAP is the lower computational complexity.

Hierarchical AP (Hi-AP) is the algorithm we proposed to solve the
large-scale clustering problem. It uses AP and our extension of weighted
AP (WAP) in the Divide-and-Conquer schema. In detail, it partitions
the dataset, runs AP on each subset, and applies WAP to the collection
of exemplars constructed from each subset. Through theoretical proof
and experimental validation, Hi-AP was shown to significantly decrease
the computational cost (from quadratic to quasi-linear), with negligible
increasing of distortion.

Streaming AP (StrAP) is our proposed understandable, stable
and computationally efficient data stream clustering method. The online
updating clustering model is maintained by StrAP through i) when a
data item arrives, checking its fitness against the model; ii) if fitting,
simply updating the corresponding cluster in the model, otherwise putting
it into the reservoir. Restart criteria are used to monitor the changes of
stream distribution. If changes are detected, the stream model is rebuild by
applying WAP on the current model and the data in the reservoir. StrAP

was validated on the Intrusion Detection benchmark data and was shown



to outperform the reference method DenStream in terms of clustering quality.

Based on Hi-AP and StrAP, we proposed a multi-scale online grid
monitoring system called G-StrAP. This monitoring system provides an
understandable description of the job flow running on the grid and enables the
system administrator to spot online some sources of failures. It has the online
level to provide the EGEE administrator with a real-time dashboard of the
job data flow and enable the discovery of anomalies. It has also offline level to
inspect the global temporal patterns of the data flow, and help to detect the
long-run trends in the EGEE traffic. Applying G-StrAP on 5-million job
trace from EGEE grid, through the monitoring outputs, it was shown that G-

StrAP discovers device problems (e.g., clogging of LogMonitor) with good
clustering quality (clustering accuracy > 85% and purity > 90%).
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Chapter 1

Introduction

Computers are changing our lives. Beyond their historical domains of appli-
cation (e.g., cryptography and numerical computing), they have been tackling
many problems issued from Artificial Intelligence, ranging from perception
(pattern recognition and computer vision) to reasoning (decision making,
machine learning and data mining), all the more so since the inception of
Internet.

1.1 Mining data streams

The presented work pertains to the field of Machine Learning (ML), defined
as the study of computer algorithms that improve automatically through
experience [Mitchell, 1997]. Specifically ML aims at acquiring experience
from data. The sister domain of Data Mining (DM) likewise aims at
extracting patterns from data [Han and Kamber, 2001]; while both domains
have many core technologies and criteria in common, they mostly differ as
DM is deeply related to the database technologies [Han and Kamber, 2001;
Zhou, 2007].

The presented contributions are concerned with ML and DM for
streaming data. A data stream is a real-time, continuous, ordered (implicitly
by arrival time or explicitly by timestamp) sequence of items arriving at a
very high speed [Golab and Özsu, 2003]. Data streaming appeared about
one decade ago, motivated by key large-scale applications such as telecom-
munications, network traffic data management or sensor network monitoring
to name a few [Gama and Gaber, 2007] The data streaming literature is
developing at a rapid pace, and workshops on Data Streaming are regu-
larly held along major international conferences in Data Mining or Machine

1



1. INTRODUCTION

Learning, e.g., ICDM [ICDMW, 2007], ECML/PKDD [ECMLW, 2006, 2007].

Data streaming involves two main issues [Aggarwal, 2007]. The first one
is processing the fast incoming data; because of its amount and pace, there
is no way to store the data and analyze it offline. From its inception data
streaming faces large scale issues and new algorithms to achieve e.g., cluster-
ing, classification, frequent pattern mining, are required.

The second issue is to deal with the changes in the underlying data distri-
bution, due to the evolution of the phenomenon under study (the traffic, the
users, the modes of usage, and so forth, can evolve). The proposed approach
aims at solving both issues, by maintaining a model of the data coupled with
a change detection test: as long as no change in the underlying data distribu-
tion is detected, the model is seamlessly updated; when the change detection
test is triggered, the model is rebuilt from the current one and the stored
outliers.

1.2 Application field: Autonomic Computing

The motivating application for the presented work is Autonomic Computing
(AC). The emergence of AC since the early 2000s (see the IBM manifesto
for Autonomic Computing http://www.research.ibm.com/autonomic/) is
explained from the increasing complexity of computational systems, call-
ing for new and scalable approaches to system management. Specifically,
AC aims at providing large computational systems with self-modeling, self-
configuring, self-healing and self-optimizing facilities [Kephart and Chess,
2003], remotely inspired from the biologic immune systems. In the long term,
large computational systems are expected to manage themselves, like human
beings have their breathing and heart-beating adapted to the environment
and inner state without thinking of it.

Autonomic Computing is acknowledged a key topic for the economy of
computational systems, in terms of both power consumption and resource
allocation [Tesauro et al., 2006], and human labor and maintenance support
[Rish et al., 2005]. Advances toward Autonomic Computing are presented
from both research and industry perspectives every year at the International
Conference on Autonomic Computing (ICAC). Machine Learning and Data
Mining have been and still are considered as core enabling technologies for
AC [Rish et al., 2005; Palatin et al., 2006], supporting the analysis of sys-
tem logs, the diagnosis of fault/intrusion, and ultimately the optimization of
resource allocation.

This manuscript more specifically focuses on autonomic grid computing.

2



1.2. APPLICATION FIELD: AUTONOMIC COMPUTING

Grids are complex computational systems relying on distributed comput-
ing/storage elements and based on a mutuality paradigm, enabling users to
share the distributed resources all over the world. We have had access to
the EGEE grid (Enabling Grid for E-SciencE1), one of the largest multi-
disciplinary grid infrastructures in the world, developed in the European
Community Infrastructure Framework. EGEE has been built to address
e-Science computational needs (in e.g., high energy physics, life sciences,
computational chemistry, financial simulation). Computational experiments
in e-Science require high CPU, large memory and huge storage capacities.
EGEE currently involves 250 sites, 68,000 CPUs and 20 Petabytes (20
million Gigabytes) of storage distributed over more than 50 countries. These
resources are integrated within the gLite middleware [Laure et al., 2006],
and EGEE currently supports up to 300,000 jobs per day on a 24×7 basis.

With the increasing number of resources involved and the more
sophisticated services provided (new trend towards Cloud Computing
[Vaquero et al., 2009]), the management of such complex systems requires
more and more skilled system administrators. The goal of Autonomic grid
computing is to bring the AC self-management abilities to grid computing.
One difficulty is that the complex interactions between the grid middle-
ware and the actual computational queries can hardly be modeled using
first-principle based approaches, at least with regard to the desired level of
precision. Therefore, an ML-based approach was investigated, exploiting
the gLite reports on the lifecycle of the jobs and on the behavior of the
middleware components. Actually, gLite involves extensive monitoring
facilities, generating a wealth of trace data; these traces include every detail
about the internal processing of the jobs and functioning of the grid. How
to turn these traces in manageable, understandable and valuable summaries
or models is acknowledged to be a key operational issue [Jones, 2008].

Specifically, the first step toward Autonomic Grids is to
model the grid running status. The presented approach will tackle this
primary step, modelling the large-scale streaming data describing how
computational queries are handled by the system. Not only will the model
characterize the distribution of jobs launched on the grid; it will also reveal
anomalies and support the fault diagnosis; among the perspectives opened
by this approach is the self-healing facilities at the core of Autonomic
Computing.

1http://www.eu-egee.org/
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1. INTRODUCTION

1.3 Our contributions

As already mentioned, the presented work is concerned with the modelling of
large-scale data within a data streaming framework, using statistical Machine
Learning methods. The main contributions can be summarized as follows:

1. The presented approach is based on unsupervised learning, and data
clustering [Han and Kamber, 2001]. A recent clustering algorithm,
Affinity Propagation (AP) is a message passing algorithm proposed
by Frey and Dueck [Frey and Dueck, 2007a]. This algorithm was se-
lected for its good properties of stability and of representativity (each
data cluster being represented by an actual item). The price to pay for
these properties is AP quadratic computational complexity, severely
hindering its usage on large scale datasets. A first extension of AP
is weighted AP(WAP), taking into account weighted and duplicated
items in a transparent way: while WAP yields the same result as AP
on the whole dataset, it does so with a quadratic complexity in the
number of distinct items [Zhang et al., 2008].

2. A second extension is Hierarchical AP (Hi-AP), combining AP and
WAP along a Divide-and-Conquer scheme; this extension approximates
the AP result with quasi-linear complexity and the quality of the ap-
proximation is analytically studied [Zhang et al., 2008, 2009a]. For-
mally, Hi-AP partitions the dataset, runs (W)AP on each subset, re-
places the dataset with the collection of exemplars constructed from
each subset and iterates the Divide-and-Conquer procedure. This ex-
tension preserves the good properties of AP within a scalable algorithm.

3. A third extension concerns data streams and more specifically, build-
ing a clustering model of non-stationary data. The proposed stream
clustering method based on AP, called StrAP, combines AP with
a change detection test based on the Page-Hinkley (PH) [Page, 1954;
Hinkley, 1971] test. Each arriving item x is compared to the current
model M, which is updated if x is “sufficiently” close to M. Other-
wise, x is considered to be an outlier and put into a reservoir. The
PH test, considering the ratio of outliers, achieves the detection of dis-
tribution change. Upon the test triggering, model M is rebuilt from
the current model and the reservoir. StrAP experimental validation,
comparatively to DenStream [Cao et al., 2006] and a baseline StrAP

variant relying on K-centers, demonstrate the merits of the approach
in terms of both supervised and unsupervised criteria [Zhang et al.,
2008, 2009a].

4



1.3. OUR CONTRIBUTIONS

4. Last but not least, the presented approach was demonstrated on a real-
world application. A grid monitoring system called G-StrAP was
designed to process the large scale computational queries submitted
to and processed by, EGEE. G-StrAP is a multi-scale process. On
the micro-scale, StrAP processes online the streaming job queries and
provides the EGEE system administrator with a real-time dashboard
of the job data flow. On the macro-scale, G-StrAP processes the
stream a posteriori using the StrAP model and summarizes the long-
term trends in the EGEE traffic [Zhang et al., 2009b].

The thesis manuscript is organized as follows. Chapter 2 reviews the
state of the art related to clustering and data streaming, focusing on the
scalability issue. Chapter 3 presents our contribution about large-scale data
clustering, WAP and Hi-AP; some experimental validation on benchmark
datasets from the clustering literature is reported and discussed. Chapter 4
introduces the StrAP algorithm designed for data stream clustering, and the
grid monitoring system called G-StrAP, aiming at modelling the stream-
ing EGEE computational queries. Chapter 5 finally describes the validation
results of StrAP on artificial data and benchmark data, and the automonic
application of G-StrAP on EGEE streaming jobs. Some conclusions and
perspectives for further research are presented in Chapter 6.

5
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Chapter 2

State of the art

This chapter reviews and discusses the state of the art related to clustering
and data streaming, putting the stress on the scalability of the algorithms
and how they deal with non-stationary data.

2.1 Data Clustering

Data Clustering, one major task in Unsupervised Learning or Exploratory
Learning, aims at grouping the data points into clusters so that points within
a cluster have high similarity with each other, while being dissimilar to points
in other clusters [Han and Kamber, 2001]. Fig. 2.1 depicts the clustering
of 2D points into 3 clusters. Each cluster can be represented by its center of
mass, or average point (legend ∗), or an actual point referred to as medoid
or exemplar (legend o).
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Figure 2.1: A clustering in IR2: to each cluster is associated its center of mass
(∗) and its exemplar (◦)
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2. STATE OF THE ART

2.1.1 Clustering for Exploratory Data Analysis

While clustering also applies to supervised datasets (when each point is la-
belled after its class according to some oracle), it is more often used for
exploring the structure of the dataset in an unsupervised way − provided
that some similarity or distance between points be available.

1. Group discovery. By grouping similar points or items into clusters,
clustering provides some understanding of the data distribution, and
defines a preliminary stage for a discriminant analysis, after the “divide
to conquer” strategy.

2. Structure identification. A particular type of clustering approach,
hierarchical clustering provides a clustering tree (as opposed to the
partition in Fig 2.1). The clustering tree, aka dendrogram, depicts the
structure of the data distribution with different granularities; it is used
in particular in the domain of biology to depict the structure of evolved
organisms or genes [Eisen et al., 1998].

3. Data compression. One functionality of clustering is to provide a
summary of the dataset, representing each cluster from its most rep-
resentative element, either an artifact (center of mass) or an actual
point (exemplar). The cluster is also qualified by its size (number of
elements), the radius (averaged distance between the elements and the
center), and possibly its variance. Clustering thus allows to compress N
samples into K representatives, plus two or three parameters attached
to each representative.

4. Dimensionality reduction or feature selection. When the num-
ber of features is much larger than the number of items in the data
set, dimensionality reduction or feature selection is required as a pre-
liminary step for most machine learning algorithm. One unsupervised
approach to dimensionality reduction is based on clustering the fea-
tures and retaining a single (average or exemplar) feature per cluster
[Butterworth et al., 2005; Roth and Lange, 2003].

5. Outlier detection. Many applications involve anomaly detec-
tion, e.g., intrusion detection [Jones and Sielken, 2000], fraud detec-
tion [Bolton and Hand, 2002], fault detection [Feather et al., 1993].
Anomaly detection can be achieved by means of outlier detection, where
outliers are either points which are very far from their cluster center,
or form a cluster with small size and large radius.

8



2.1. DATA CLUSTERING

6. Data classification. Last but not least, clustering is sometimes used
for discriminant learning, as an alternative to 1-nearest neighbor clas-
sification, by associating one point to the majority class in its cluster.

2.1.2 Formal Background and Clustering Criterion

Let X = {x1, . . .xN} define a set of points or items, and let d(xi,xj) denote
the distance or dissimilarity between items xi and xj. Let a clustering on X
be noted C = {C1, . . . , CK}. The quality of C is most often assessed from its
distortion, defined as:

J(C) =

K∑

i=1

∑

x∈Ci

d2(x,Ci) (2.1)

where the distance between x and cluster C is most often set to the distance

between x and the center of mass µi =
1

nC

∑

x∈C

x of cluster C. nC denotes

the size (number of items) in C.

The above criterion thus can be interpreted as the information loss in-
curred by representing X by the set of centers associated to C. It must
be noted that the distortion of clusterings with different numbers of cluster
cannot be compared: the distortion naturally decreases with the increasing
number of clusters and the trivial solution associates one cluster to each point
in X .

How to set the number K of clusters is among the most difficult clustering
issues, which will be discussed further in section 2.1.5. For a given K, finding
the optimal clustering in the sense of minimizing equation (2.1) defines a
combinatorial optimization problem. In practice, most algorithms proceed
by greedy optimization, starting from a random partition and moving points
from one cluster to another in order to decrease the distortion, until reaching
a local optimum. Clearly, the local optimum depends on the initialization
of this greedy optimization process. For this reason, one most often uses
multi-restarts greedy optimization, considering several independent runs and
retaining the best solution after equation (2.1). Despite these limitations,
iterative optimization is widely used because of its low computational cost;
standard algorithms falling in this category are k-means and k-median, which
will be discussed in section 2.1.4.

Clustering algorithms critically depend on the underlying distance or dis-
similarity function (see below) and on the way the distance of a point to a

9



2. STATE OF THE ART

cluster is computed. When d(x, C) is set to d(x, µC), spherical-shaped clus-
ters are favored. When d(x, C) is instead set to minx′∈Cd(x, x′) this favors
instead noodle-shaped clusters, as shown in Fig. 2.2. Comparing with Fig.
2.1, the same data points are clustered into 3 noodle-shaped clusters in Fig.
2.2.
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Figure 2.2: A clustering in IR2 with different definition of distance function

2.1.3 Distance and Similarity measures

As abovementioned, clustering depends on the distance defined on the do-
main space. Although distance learning currently is among the hottest topics
in Machine Learning [Weinberger et al., 2005], it is beyond the scope of our
research and will not be discussed further.

Distance on numerical data x,y ∈ IRm is most often based on L2, L1 or
Lp norm:

L2 norm is the standard Euclidean distance ((
m∑

i=1

|xi − yi|2)1/2), L1 norm is

also referred to as city distance (

m∑

i=1

|xi − yi|), and Lp or Minkowski distance

depends on 0 < p < 1 parameter ( (

m∑

i=1

|xi − yi|p)1/p).

Cosine similarity is often used to measure the angle between vectors x,y.

It is computed as
x · y
‖x‖‖y‖ .

Distance on categorical (nominal) data most often relies on
the Hamming distance (number of attributes taking different values)

10



2.1. DATA CLUSTERING

[Han and Kamber, 2001]; another possibility is based on edit distances
[Chapman, 2006].

In some applications, e.g. in medical domains, value 1 is more rare and
conveys more information than 0. In such case, the Hamming distance is
divided by the number of attributes taking value 1 for either x or y, forming
the so-called Jaccard coefficient [Han and Kamber, 2001].

More generally, the distance encapsulates much prior knowledge on the
applicative domain, and must be defined or learned in cooperation with the
domain experts [Han and Kamber, 2001]. A good practice (although not
mandatory) is usually to normalize the attributes beforehand, to prevent
certain features from dominating distance calculations because of their range
[Pyle, 1999].

Data normalization most usually relies on either the min and max values
reached for an attribute, or on its mean and variance. These must be mea-
sured on a training set and saved for further use. Min-max normalization
linearly maps the attribute domain on [0, 1]:

v′ =
v − vmin

vmax − vmin

where vmin and vmax are the min and max value attribute v reached. Gaus-
sian normalization transforms the attribute value into a variable with mean
0 and variance one:

v′ =
v − v̄

σv

where v̄ and σv are mean and stand deviation of v.

In both cases, it is possible that normalization hides the information of
the attribute because of the concentration of its distribution on the min, max
or average value. In such cases, it is advisable to consider the logarithm of
the attribute (with convenient offset).

2.1.4 Main Categories of Clustering Algorithms

The literature offers a large variety of clustering algorithms; the choice
of a particular algorithm must reflect the nature of the data and every
prior knowledge available. With no pretension to exhaustivity, this sub-
section will introduce the main five categories of clustering algorithms after
[Han and Kamber, 2001].
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2.1.4.1 Partitioning methods

Partitioning methods divide the given data into K disjoint clusters after the
iterative optimization process presented in section 2.1.2. The prototypical
partitioning clustering algorithm is the k-means algorithm, parameterized
from the desired number K of clusters:

1. randomly choose K points x1, . . . xK from X , and set Ci = {xi};

2. iteratively, associate each x in X to cluster Ci minimizing d(x, Ci);

3. replace the initial collection of K points with the center of mass µi of
clusters C1, . . . CK ;

4. go to step 2 and repeat until the partition of X is stable.

Clearly, the above procedure greedily minimizes the clustering distortion
although no guarantees of reaching a global minimum can be provided. A
better solution (albeit still not optimal) is obtained by running the algorithm
with different initializations and returning the best solution.

Another partitioning algorithm, k-median, is used instead of k-means
when no center of mass can be computed for a center (e.g. when data points
are structured entities, curves or molecules). k-median is formulated as that
of determining k centers (actual points) such that the sum of distances of each
point to the nearest center is minimized. k-median also defines a combina-
torial optimization algorithm; no optimal solution can be obtained in poly-
nomial time. An algorithm with some quasi-optimality guarantees, Affinity
Propagation [Frey and Dueck, 2007a] will be presented in Chapter 3.

The quality of k-means or k-median solutions is measured from their
distortion.

2.1.4.2 Hierarchical methods

Hierarchical clustering methods proceed by building a cluster tree structure,
aka dendrogram (Fig. 2.3).

Depending on the tree construction strategy, one distinguishes agglom-
erative hierarchical clustering (AHC) and divisive hierarchical clus-
tering (DHC).

AHC turns each data point x in X into a cluster. Starting from the N
initial clusters. AHC goes through the following steps:

1. For each pair (Ci,Cj) (i 6= j) compute the inter-cluster distance
d(Ci, Cj)

12
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Figure 2.3: Agglomerative and Divisive Hierarchical Clustering

2. find out the two clusters with minimal inter-cluster distance and merge
them;

3. go to step 1, and repeat until the number of clusters is one, or the
termination criterion is satisfied.

As exemplified on Fig. 2.3, the 6 initial clusters ({a}, {b}, {c}, {d}, {e}, {f})
become 4 by merging {b} and {c}, and {d} and {e}; next, clusters {d e}
and {f} are merged; then {b c} and {d e f} are merged. And the last two
clusters are finally merged.

AHC thus most simply proceeds by determining the most similar clus-
ters and merging them. Several inter-cluster distances are defined, inducing
diverse AHC structures:

• Single linkage clustering: minimum distance
d(Ci, Cj) = min{d(xi,xj) | ∀ xi ∈ Ci, ∀ xj ∈ Cj}

• Complete linkage clustering: maximum distance
d(Ci, Cj) = max{d(xi,xj) | ∀ xi ∈ Ci, ∀ xj ∈ Cj}

• Mean linkage clustering: mean distance

d(Ci, Cj) = d(µi, µj), where µi =
1

|Ci|
∑

xi∈Ci

xi and µj =
1

|Cj|
∑

xj∈Cj

xj.

• Average linkage clustering: average distance

d(Ci, Cj) =
1

|Ci| × |Cj|
∑

xi∈Ci
xj∈Cj

d(xi,xj)

13
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• Average group linkage: group average distance (assume that Ci and
Cj are merged)

d(Ci, Cj) =
1

(|Ci|+ |Cj|)× (|Ci|+ |Cj| − 1)

∑

xi∈Ci∪Cj

xj∈Ci∪Cj

d(xi,xj)

Contrasting with AHC, Divisive Hierarchical Clustering starts with a sin-
gle cluster gathering the whole data set. In each iteration, one cluster is split
into two clusters until reaching the elementary partition where each point
forms a single cluster, or the termination criterion is satisfied. The DHC cri-
terion most often is the maximal diameter or the maximal distance between
two closest neighbors in a cluster. Application-wise, AHC are much more
popular than DHC, seemingly because the DHC criterion is less natural and
more computationally expensive.

The dendrogram obtained by hierarchical clustering methods shows the
structure of the data distribution, illustrating the relationship between items.
Every level of dendrogram gives one possible partition of the dataset, enabling
one to select the appropriate number of clusters a posterior (instead of, a
priori like for the k-means and k-median algorithms). How to select the
number of clusters and compare different clusterings will be discussed in
section 2.1.5.

Hierarchical clustering algorithms, alike partitioning algorithms, follow a
greedy process: the decision of merging two clusters or splitting one cluster
is never reconsidered in further steps. Another limitation of AHC comes
from its computational complexity (O(N3) in the worst-case for computing
pairwise similarity and iterations).

Several hybrid algorithms inspired from AHC have been proposed to ad-
dress the above limitations. BIRCH (Balanced Iterative Reducing and Clus-
tering using Hierarchies) [Zhang et al., 1996], primarily aims at scalable HC.
During a preliminary phase, the entire database is scanned and summarized
in a CF-tree. CF-tree is a data structure to compactly store data points in
clusters. It has two parameters: B - branching factor, and T - threshold
for the diameter or radius of the leaf nodes. Each non-leaf node contains at
most B CF entries of its child. Each leaf node contains at most L entries.
The tree size is a function of T . The larger the T is, the smaller the tree will
be. Finally, a centroid-based hierarchical algorithm is used to cluster the leaf
nodes of the CF-tree. We will discuss in more detail about BIRCH in section
2.2.2.

CURE (Clustering Using REpresentatives) [Guha et al., 1998] is another
HC where each cluster is represented from a fixed number of points (as op-
posed to a single one, as in BIRCH). These representatives are generated by
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firstly selecting the well-scattered points in the cluster1, and secondly mov-
ing them to the centroid of the cluster by a shrinking factor 2. AHC then
proceeds as usual, but the computation cost is reduced since the inter-cluster
distance is computed from only the representative points of each cluster.

Since CURE uses several representatives for a cluster, it can yield non-
spherical clusters. The shrinking step also increases the robustness of the
algorithm w.r.t. outliers. CURE scalability can last be enforced by combining
uniform sampling and partitioning (more about scalability in section 2.2).

ROCK (RObust Clustering using linKs) is an AHC approach designed for
categorical and boolean data [Guha et al., 1999]. Prefiguring spectral clus-
tering (section 2.1.4.6), ROCK measures the similarity of two points/clusters
from their links, that is, the number of common neighbors they have, where
two points are neighbors iff their similarity is above a user-supplied threshold.

CHAMELEON instead uses a dynamic model to measure the similarity
of two clusters [Karypis et al., 1999]. It proceeds by firstly defining the k-
nearest neighbor graph (drawing an edge between each point and the one of
its k-nearest neighbors) as the first step in Fig. 2.4. Then (the second step
in Fig. 2.4) the initial sub-clusters are found by using a graph partitioning
algorithm to partition the knn graph into a large number of partitions such
that the edge-cut, i.e., the sum of the weight of edges that straddle partitions,
is minimized. Finally, the sub-clusters are merged according to agglomerative
hierarchical clustering algorithm.

As shown in Fig. 2.4, CHAMELEON merges clusters by taking into ac-
count both their inter-connectivity (as in ROCK) and their closeness (as in
CURE). From the empirical results, it has been shown that CHAMELEON
performs better than CURE and DBSCAN (a density-based clustering
method, see next subsection) with regards to the discovery of arbitrarily
shaped clusters. In counterpart, its computational cost still is quadratic in
the number of data points.

2.1.4.3 Density-based methods

Density-based clustering methods put the stress on discovering arbitrarily
shaped clusters. It relies on the so-called clustering assumption [Arkin, 1996],
assuming that dense regions are clusters, and clusters are separated by regions

1These are meant to capture the shape and extension of the cluster. The first repre-
sentative one is the point farthest from the cluster mean; subsequently, the next selected
point is the one farthest from the previously chosen scattered point. The process stops
when the desired number of representatives are chosen.

2 On the one hand, the shrinkage helps get rid of surface abnormalities. On the other
hand, it reduces the impact of outliers which can cause the wrong clusters to be merged.
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Figure 2.4: CHAMELEON framework [Karypis et al., 1999]

with low density.

DBSCAN (Density-Based Spatial Clustering of Application with Noise),
a very popular density-based clustering method [Arkin, 1996], defines
a cluster as a maximal set of density-connected points, measured w.r.t
density-reachability. Let us define Bǫ(x) the ǫ-neighborhood of point
x (ball of radius ǫ). Point x is called a core point if Bǫ(x) contains more
than Minpts points. All ǫ neighborhoods Bǫ(x

′), where x′ is a core point in
Bǫ(x), are said density-reachable for x; all such neighborhoods are thus
density-connected (Fig. 2.5 (a)).

DBSCAN starts by building the list of core points, and transitively
clustering them together after the density-reachable relation. If x is not
a core point, it is marked as noise. The transitive growth of the clusters
yields clusters with arbitrary shapes (Fig. 2.5 (b)).

The computational complexity of DBSCAN is O(N2), where N is the
number of points; the complexity can be decreased to O(NlogN) by using
spatial indices (the cost of a neighborhood query being in O(logN)). The
main DBSCAN limitation is its sensitivity w.r.t. the user-defined parameters,
ǫ and Minpts, which are difficult to determine, especially for data of varying
density.

The OPTICS (Ordering Points To Identify the Clustering Structure)
[Ankerst et al., 1999] algorithm has been proposed to address the above
limitation. As above mentioned, DBSCAN ǫ-neighborhoods (potential core
points) are searched iteratively w.r.t. the core points, merging all density-
connected points. OPTICS instead records their reachability-distance
to the closest core points and order them accordingly: the (i + 1)-th point
is the point with smallest reachability-distance to the i-th one. This
ordering ensures that close points do become neighbors.

By plotting the ordering of points (x-axis) and their reachability-
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(a) (b)

Figure 2.5: DBSCAN [Arkin, 1996]. (a) point p and q are density-connected;
(b) arbitrary-shaped clusters

distance (y-axis), a special kind of dendrogram appears (Fig. 2.6). The
hierarchical structure of clusters follows by setting the generating distance
as the threshold of reachability-distance, supporting the discovery of clusters
with different sizes, densities and shapes.

OPTICS has same computational complexity as DBSCAN.

2.1.4.4 Grid-based methods

Grid-based clustering methods use a multi-resolution grid data structure.
The data space is divided into cells (Fig. 2.7), supporting a multi-resolution
grid structure for representing and summarizing the data. The clustering
operations are performed on the grid data structure.

As depicted on Fig. 2.7, the domain of each attribute is segmented; a cell
is formed from a conjunction of such segments on the diverse attributes. To
each cell is attached the number of data points falling in the cell. Therefore,
grid-based clustering methods are fast, with linear complexity on the number
of data points, but exponential complexity on the number of attributes and
the granularity of their segmentation.

STING (STatistical INformation Grid) is a grid based method designed
for mining spatial data [Wang et al., 1997]. Spatial data, storing any
information attached to a geographic location, is exploited to inspect
all relations between geographic features. STING can efficiently process
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Figure 2.6: OPTICS: cluster ordering with reachability-distance
[Ankerst et al., 1999]

20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

attribute 1

at
tr

ib
ut

e 
2

(a)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

attribute 1

at
tr

ib
ut

e 
2

(b)

Figure 2.7: Grid-based clustering: imposing grids on data space
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“region oriented” queries, related to the set of regions satisfying a number
of conditions including area and density. Spatial areas are hierarchically
divided into rectangular cells; to each cell is attached a number of sufficient
statistics (count, maximum, minimum,mean,standard deviation) reflecting
the set of data points falling in the cell. The process relies on a single scan
of the dataset, with complexity O(N). After the hierarchical grid structure
has been generated, each query is answered with complexity O(G), where G
is the total number of finest-grained grid cells and G << N in the general
case.

The two limitations of STING are related to the size and nature of the
grid structure. On the one hand, the clustering quality depends on the grid
granularity: too fine, and the computational cost exponentially increases; too
coarse, the query answering quality is poor. On the other hand, STING can
only represent axis-parallel clusters.

WaveCluster is another grid-based clustering method aimed at find-
ing arbitrarily-shaped densely populated regions in the feature space
[Sheikholeslami et al., 1998]. The key idea of WaveCluster is to apply
wavelet transform3 on the feature space to find the dense regions, that is the
clusters.

WaveCluster proceeds as follows:

• quantize feature space to form a grid structure and assign points to the
grid units Mj .

• apply discrete wavelet transform on each unit Mj to get new feature
space units Tk.

• find connected components (dense regions) in the transformed feature
space at different levels.
Each connected component (a set of units Tk) is considered as a cluster.

• assign labels to the units, showing a unit Tk belongs to a cluster cn.

• make the lookup table mapping Tk to Mj.

• map each object in Mj to the clusters to which the corresponding Tk

belongs.

3 Wavelet transform is a signal processing technique that decomposes a signal into
different frequency ranges. The boundaries and edges of the clusters (resp. the clusters)
correspond to the high (resp. low) frequency parts of the feature signal.
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The advantages of WaveCluster method are manifold. It is able to
discover arbitrarily-shaped clusters, without requiring the number of clusters
a priori; it is not sensitive to outliers and ordering of input data; it is compu-
tationally efficient (complexity O(N)). Finally, it provides a multi-resolution
clustering. In counterpart, WaveCluster is ill-suited to high-dimensional
data since wavelet transform is applied on each dimension of the feature
space.

CLIQUE (CLustering In QUEst) [Agrawal et al., 1998] is a subspace clus-
tering method, aimed at efficiently clustering high dimensional data. It is a
hybrid method combining grid-based and density-based clustering. CLIQUE
first proceeds by segmenting each attribute domain into a given number of
intervals, and considering the k-dimensional units formed by the conjunction
of such segments for k different attributes (with k < d, d being the total
number of attributes). Dense units are defined are those containing at least
a given percentage of the dataset (after a user-supplied threshold), and a
cluster is a maximal set of connected dense units in k-dimensions.

The exploration of k-subspaces is pruned after the monotonicity of the
density criterion: if a k-dimensional unit is dense, then its projections in
(k − 1)-dimensional space are also dense. This monotonicity property is the
key factor behind CLIQUE algorithmic efficiency, akin the Frequent Item Set
search algorithms.

Finally, clusters are defined by connecting dense units in all subspaces of
interest; an optimal DNF expression is obtained by minimizing the number
of regions covering the cluster, e.g. ((30 < age < 50) ∧ (4 < salary <
8)) ∨ ((40 < age < 60) ∧ (2 < salary < 6)).

CLIQUE can find the clusters embedded in subspaces of high dimensional
data without prior knowledge about potential interesting subspaces, although
the accuracy of the result might suffer from the initial segmentation of the
attribute domains.

2.1.4.5 Model-based methods

Model-based clustering assumes that the data were generated by a mixture
of probability distributions. Each component of the mixture corresponds to
a cluster; additional criteria are used to automatically determine the number
of clusters [Fraley and Raftery, 1998]. This approach thus does not rely on
the distance between points; rather, it uses parametric models and the likeli-
hood of data points conditionally to these models, to determine the optimal
clustering.
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Naive-Bayes model with a hidden root node represents a mixture of
multinomial distributions, assuming that all data points are independent
conditionally to the root node. The parameters of the model are learned by
Expectation-Maximization (EM), a greedy optimization algorithm though
with excellent empirical performance [Meila and Heckerman, 2001].

The Naive-Bayes clustering model is closely related to supervised Naive-
Bayes. Let (X1, X2, ..., Xd) denote the set of discrete attributes describing
the dataset, let class denote the underlying class variable (the cluster index,
in an unsupervised setting) and K the number of class modalities, the NB
distribution is given by:

P (x) =
K∑

k=1

λk

d∏

i=1

P (Xi = x|class = k) (2.2)

where λk = P (class = k), and
∑K

k=1 λk = 1.

Let ri denote the number of possible values for variable Xi; the distribu-
tion of Xi is a multinomial distribution with parameters N and p, where n
is the number of observation of variable X and p = (p1, ...pj , ..., pri

) is the
vector of probabilities of Xi values. The probability for variable Xi to take
value j conditionally to class k is described as :

P (Xi = j|class = k) = θ
(k)
ij ;

ri∑

j=1

θ
(k)
ij = 1 for k = 1, ..., K (2.3)

The parameters of the NB model are {λk} and {θk
ij}.

Given the dataset X , the clustering problem consists of finding the
model structure (i.e., the number of clusters K) and the corresponding pa-
rameters ({λk} and {θk

ij}) that best fit the data [Meila and Heckerman, 2001].

How to set the number K of clusters? Given the training data Xtr, K
is selected through maximizing the posterior probability of model structure,
P (K|Xtr).

P (K|Xtr) =
P (K)P (Xtr|K)

P (Xtr)
(2.4)

How to set the parameters of model? Likewise, the parameters are
chosen by maximizing the likelihood (ML) or the maximum posterior
probability (MAP) of the data. When using EM algorithms, one alternates
the Expectation and the Maximization step. During the Expectation step,
the posterior probability of the k-th cluster given point x, noted P (Ck|x) is
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computed from the current parameters of the models, yielding the fraction to
which x belongs to Ck. During the Maximization step, the model parameters
are re-estimated to be the MAP (or ML) parameters reflecting the current
assignments of points to clusters.

A mixture of Gaussian models (GMM) can be optimized using the same
approach [Banfield and Raftery, 1993], defining a probabilistic variant of
the k-means clustering. In an initial step, the centers of the Gaussian
components are uniformly selected in the dataset; EM is thereafter iterated
until the GMM stabilizes. During the Estimation step, the probability
for a Gaussian component to generate a given data point is computed.
During the Maximization step, the center of each Gaussian component
is computed as the weighted sum of the data points, where the point
weight is set to the probability for this point to be generated from the
current component; the Gaussian covariance matrix is computed accordingly.

Neural network is another popular clustering approach, specifically the
SOM (Self-Organizing Map) method [Kohonen, 1981] which can be viewed
as a nonlinear projection from a d-dimensional input space onto a lower-
order (typically 2-dimensional) regular grid. The SOM model can be used in
particular to visualize the dataset and explore its properties.

SOM is defined as a grid of interconnected nodes following a regular
(quadratic, hexagonal, ...) topology (Fig. 2.8). To each node is associated a
representative c usually uniformly initialized in the data space. The repre-
sentatives are iteratively updated along a competitive process: for each data
point x, the representative cx most similar to x is updated by relaxation from
x and the neighbor representatives are updated too. Clusters are defined by
grouping the most similar representatives.

When dealing with a large size grid, similar nodes are clustered (using
e.g. k-means or AHC) in order to facilitate the quantitative analysis of the
map and data [Vesanto and Alhoniemi, 2000].

2.1.4.6 Spectral clustering methods

Lastly, spectral clustering methods are based on the algebraic analysis of
the data similarity matrix. Firstly proposed by [Donath and Hoffman, 1973]
more than 30 years ago, they became popular in Machine Learning field in
the early 2000, demonstrating outstanding empirical performances compared
to e.g. k-means. For this reason they have been thoroughly studied from a
both theoretical and applicative perspective [Ding, 2004; von Luxburg, 2007;
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Figure 2.8: Self-Organizing Map

Meila and Shi, 2001; Ng et al., 2001; Shi and Malik, 2000].

Given a dataset X = {x1, ..., xn}, let the similarity graph G = (V, E)
be defined, with V = X denotes the set of vertices and the edge between
xi and xj is weighted by the similarity between both points noted wij. The
clustering of X thus is brought down to graph partitioning: find a graph
cut such that edges between different groups have a very low weight and the
edges within a group have high weight.

For the sake of computational tractability, a sparse graph is preferred
in general [von Luxburg, 2007], removing all edges with weight less than
some user-specified threshold ǫ. Another option is to consider a k-nearest
neighbor graph, only connecting vertex xi with its k nearest neighbors. A
non-parametric approach (not depending on a threshold or on a number of
neighbors) relies on the use of fully connected graphs, where xi is con-

nected to every xj with weight wij = exp(−‖xi−xj‖2

2σ2 ), thus negligible outside
of a local neighborhood (the size of which still depends on parameter σ).

Let us consider the weighted adjacency matrix W = {wij}, i, j = 1...N ,
and let the associated degree matrix D be defined as the diagonal matrix
[d1, . . . dN ] and di =

∑N
j=1 wij. The un-normalized graph Laplacian matrix

is defined as

L = D −W (2.5)

23



2. STATE OF THE ART

Two normalized graph Laplacian matrices have been defined:

Lsym = D−1/2(D −W )D−1/2 = I −D−1/2WD−1/2 (2.6)

Lrw = D−1(D −W ) = I −D−1W (2.7)

All L, Lsym and Lrw are semi-definite positive matrices, with N non-
negative real-valued eigenvalues λi; with no loss of generality, one assumes
0 = λ1 ≤ ... ≤ λN .

Spectral clustering proceeds by canceling all eigenvalues but the first d
smallest ones. Provably [von Luxburg, 2007], the multiplicity d of the null
eigenvalue in L is the number of “natural” clusters in the dataset. The eigen-
vectors associated to the first d smallest eigenvalues are used to project the
data in d dimensions. A standard k-means algorithm is thereafter used to
cluster the projected points.

Formally, spectral clustering proceeds as follows:

• Input: Similarity matrix W ∈ IRN×N , the number k of clusters

– construct the graph Laplacian matrix L (Lsym, or Lrw)

– compute the first d smallest eigenvectors of L (Lsym, or Lrw),
denoted as U ∈ IRN×d in the following

– Consider U as a dataset in IRd and apply k-means to yield clusters
C1, ..., Ck

• output:the clusters A1, ..., Ak with Ai = {j|uj ∈ Ci}

Spectral clustering can be interpreted in three different theoretical per-
spectives: Graph cut, Random walks and Perturbation. In the Graph cut
view, the data is mapped onto a (similarity) graph and the clustering prob-
lem is restated as a graph cut one: find a graph partition such that the sum
of weights on inter-group edges (resp. intra-group edges) is low (resp. high).

In a Random walk view, spectral clustering is viewed as a stochastic
process which randomly jumps from vertex to vertex in the similarity graph
[Meila and Shi, 2001]. Spectral clustering aims at a partition of the graph
such that the random walk stays long within the same cluster and seldom
jumps between clusters.

In a Perturbation theory viewpoint, the stress is put on the stability
of eigenvalues and eigenvectors when adding some small perturbation H
to the graph Laplacian [von Luxburg, 2007]. Viewing Laplacian matrices
as perturbed versions of the ideal ones, one proves that the effect of
perturbation H onto eigenvalues or eigenvectors is bounded by a constant
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times a norm of H (Frobenius norm or the two-norm). It follows that the
actual eigenvectors of Laplacian matrices are close to the ideal clustering
indicator vectors, establishing the approximate accuracy of the k-means
clustering results.

The pros of spectral clustering are as follows: it yields a convex optimiza-
tion problem (not stuck in a local minimum, insensitive to initializations)
and provides arbitrarily-shaped clusters (like intertwined spirals).

As a counterpart, it suffers from the following limitations:

1. Spectral clustering is very sensitive to the parameterization of the simi-
larity graph (ǫ in ǫ-neighborhood graph; k in k-nearest neighbor graph;
σ in fully connected graph);

2. Its scalability w.r.t. large dataset raises some difficulties; efficient meth-
ods exist to compute the first eigenvectors iff the graph is sparse;

3. The number of clusters must be specified from prior knowledge. Note
that this issue is common to most clustering algorithms. Some gen-
eral approaches to settle this issue will be discussed in next section.
In spectral clustering, a specific heuristic called “eigengap heuristics”
is defined: select d such that λ1, ..., λd are small and λd+1 is compara-
tively large. The limitation of the eigengap heuristics is that it requires
clusters to be well separated.

2.1.5 Selecting the Number of Clusters

How to select the number of clusters is among the key clustering issues,
which often calls upon prior knowledge about the application domain. The
selected number of clusters reflects the desired trade-off between the two
trivial solutions: at one extreme the whole dataset is put in a single cluster
(maximum compression); at the other extreme, each point becomes a cluster
(maximum accuracy). This section describes the main heuristics used to
select the number of clusters, without aiming at exhaustivity.

Model-based methods.

Model-based clustering proceeds by optimizing a global criterion (e.g. the
maximum likelihood of the data, section 2.1.4.5, which enables one to also
determine the optimal model size. Expectation Maximization for instance
can be applied for diverse number of clusters, and the performance of the
models obtained for diverse values of k can be compared using e.g. the
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Bayesian information criterion (BIC) [Fraley and Raftery, 1998], defined as:

BIC ≡ 2lM(x, θ̂)−mMlog(N) (2.8)

where lM(x, θ̂) is the maximized mixture log-likelihood for the model M,
and mM is the number of independent parameters θ̂ to be estimated. The
number of clusters is not considered an independent parameter for the
purposes of computing the BIC.

Silhouette value.
Another way to decide the number of clusters is using the silhouette value

of each point w.r.t its own clusters [Rousseeuw, 1987]. The silhouette value
attached to a point, ranging in [−1, 1], measures how the point fits to its
current cluster. Formally, the silhouette value si of point xi is defined as:

si =
min(bi,•)− ai

max( ai, min(bi,•) )
(2.9)

where

ai =
1

|Ct| − 1

∑

xj 6=xi,xj∈Ct

d(xj − xi)

is the average distance from xi to the other points in its cluster Ct, and

bi,k =
1

|Ck|
∑

xj∈Ck

d(xj − xi)

is the average distance from xi to the points in another cluster Ck (k 6= t).
The “well-clusteredness” of xi thus increases with si. The clustering quality
can thus be defined from the average silhouette value:

SK =
1

N

N∑

i=1

si

and it follows naturally to select the number K of clusters as the one
maximizing SK .

Optimizing an objective criterion.
More generally, one might assess a clustering solution after an objective

function Q(k) and select the optimal K value by optimizing Q. The distor-
tion used in k-means (section 2.1.2) is an example of such a function. The
difficulty is to find a normalized version of such an objective function. Typ-
ically, the distortion tends to decrease as k increases, everything else being
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equal. A first way of normalizing criterion Q, inspired from statistical test
and referred to as gap statistics [Tibshirani et al., 2001], is to compare the
Q value to the case of “uniform” data.

Gap statistics proceeds as follows. Let Q(k) denote the criterion value
for k clusters on the dataset. A “reference” dataset is generated, usually by
scrambling the initial data set (e.g. applying uniform permutations on each
attribute values independently). The reference value for k clusters is the
value noted Q0(k) obtained by applying the same clustering algorithm on
the reference dataset. The optimal number of clusters is set to the maximum
of Q(k)/Q0(k) for k ranging in a “reasonable ” interval.

Another normalization procedure simply considers a random partition of
the original dataset into k clusters. The optimal number of clusters is likely
obtained by maximizing the ratio between Q(k) and the average reference
Q′

0(k) value computed for diverse random partitions.

Clustering stability.
As argued by [Ben-David et al., 2005], the state of the art in unsuper-

vised learning and clustering is significantly less mature than the state of the
art in classification or regression, due to the lack of “ground truth”. A gen-
eral framework was studied in [von Luxburg and Ben-David, 2005], aimed
at providing some statistical guarantees about the soundness of a clustering
algorithm, notably in terms of convergence and stability. The idea underly-
ing this statistical approach is that the reliability of the clustering solution
should increase with the size of the dataset; likewise, the clustering solution
should be stable w.r.t. the empirical sample: it should not change much by
perturbing the sample in a way or another.

Stability in particular has been used for parametric and non-parametric
model selection (i.e. choosing the number of clusters and the parameters of
the model) [Ben-Hur et al., 2002; Lange et al., 2003]. The underlying idea is
that, by selecting a“wrong”number of clusters, one is bound to split or merge
“true” clusters, in a way which depends on the current sample. Therefore,
a wrong number of clusters will be detected from the clustering instability
(Fig. 2.9).

The stability argument however appears to be questionable
[Ben-David et al., 2006] in the sense that stability is a necessary but
not sufficient property; in cases where the data distribution is not symmetric
for instance, one might get a stable clustering although the number of
clusters is less than the ideal one (Fig. 2.10).

Let us describe how the stability criterion is used to select the number
of clusters. The approach still considers independent samples of the dataset,
and compares the results obtained for different numbers k of clusters. The
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Figure 2.9: Non-stable clustering results caused by wrongly setting the num-
ber of clusters

Figure 2.10: Clustering stability: a necessary but not sufficient criterion

clustering stability is assessed from the average distance among the inde-
pendent clustering solutions obtained for diverse k values; the optimal k
is again obtained by minimizing the average distance [Ben-Hur et al., 2002;
Lange et al., 2003].

The distance among two clusterings is defined in different ways depending
on whether these clusterings involve a single dataset, or two different datasets.
Let us first consider the case of two clusterings C and C ′ of the same dataset.
After Meila [Meila, 2003], let us define: N11 the number of point pairs
that are in the same cluster under both C and C ′

N00 the number of point pairs that are in different clusters under both C
and C ′

N10 the number of point pairs that are in the same cluster under both C
but not under C ′

N01 the number of point pairs that are in the same cluster under both C ′

but not under C
By definition, letting N denote the size of the dataset, it comes:

N11 + N00 + N10 + N01 = N(N − 1)/2

The main distances between two clusterings on the same dataset are the
following:
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• Rand index: (N00 + N11)/(n(n− 1))

• Jacard index: N11/(N11 + N01 + N10)

• Hamming distance (L1-distance on pairs): (N01 + N10)/(n(n− 1))

Another distance definition relies on Information Theory [Meila, 2005,
2006], based on the mutual information of C and C ′, that is:

d(C, C ′) = Entropy(C) + Entropy(C ′)−MutualInformation(C, C ′)

The entropy of clustering C is

Entropy(C) = −
K∑

k=1

nk

N
log

nk

N

where nk is the number of points belonging to cluster Ck.
The mutual information between C and C ′ is

MutualInformation(C, C ′) =

K∑

k=1

K ′∑

k′=1

nk,k′

N
log

nk,k′

N

nk

N

n′
k′

N

where nk,k′ is the number of points in Ck

⋂
C ′

k′.
Formally, [Meila, 2006] computes the distance between clusterings with

different numbers of clusters as follows:
Let clustering C be represented as n×K matrix Ĉ with

Ĉi,k =

{
1/
√

nk if the i-th example belongs to Ck

0 otherwise
(2.10)

The similarity between clusterings C and C ′ defined on the same dataset
is set to the scalar product of Ĉ and Ĉ ′:

S(Ĉ, Ĉ ′) =
‖ĈT Ĉ ′‖2Frobenius

min{K, K ′} =

∑K
i=1

∑K ′

j=1 n2
i,j

1
nin′

j

min{K, K ′} (2.11)

where ni,j is the number of points in Ci

⋂
C ′

j, and K (resp. K ′) is the
number of clusters in C (resp. C ′). The similarity of C and C ′ increases with

S(Ĉ, Ĉ ′), with C = C ′ up to a permutation for S(Ĉ, Ĉ ′) = 1.
In the case where clusterings C and C ′ are defined on different datasets,

the usual approach relies on a so-called extension operator: from a given
clustering, a partition function on the whole data space is defined. This
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partition function most often relies on nearest neighbors (assign a point to
the cluster of its nearest neighbors) or Voronoi cells4.

The partition function built from any clustering C defined on set X (re-
spectively C ′ defined on X ′) can be applied to any given dataset, for instance
X ′ (resp. X), thus enabling to compare the clustering on the same dataset,
using the previously cited methods.

Finally, denoting S a similarity measure defined on two clusterings applied
on the same set, it comes:

d(C, C ′) = S(C(X ∪X ′), C ′(X ∪X ′))

As the distance between clusterings enables one to measure the stability of
a clustering algorithm (as the average distance between clusterings defined
over different subsamples of the dataset), it comes naturally to select the
clustering parameters including the number of clusters, by maximizing the
stability criterion.

After Ben-David et al. [2006], the relevance of the stability criterion only
depends on the underlying objective of the clustering algorithm. If the ob-
jective function defines a well posed optimization problem, then the stabil-
ity criterion is appropriate; otherwise, the algorithm can provide different,
equally good solutions (related in particular to the existence of symmetries
in the underlying data distribution). In the latter case, the stability criterion
is not a well-suited tool to determine the number of clusters; as shown in
Fig. 2.10, stable solutions might not correspond to the “true” structure of
the dataset.

A theoretical analysis of clustering stability, assuming finite-support prob-
ability distributions, is conducted by Ben-David et al. [2007], proving that
the stability criterion leads to determining the optimal number of clusters
along the k-means algorithm conditionally to the fact that the dataset is
exhaustive and the global optimum of the objective function is reached.

In practice, one most often proceeds by considering different subsam-
ples of the dataset, optimizing the empirical value of the objective function,
comparing the resulting clusterings and evaluating their variance. Provided
again that the objective function defines a well-posed optimization problem,
the instability due to the sampling effects is bound to decrease as the sample
size increases: if the sample size allows one to estimate the objective function
with precision ǫ, then the empirical instability of the algorithm can be viewed
as randomly sampling a clustering in the set of ǫ-minimizers.

4Each cluster center xi is taken as Voronoi site, and the associated cell Vi includes all
points closer to xi than to xj , j 6= i.
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Further theoretical studies are needed to account for the discrepancy be-
tween the theory and the practice; the stability criterion indeed behaves much
better in practice than predicted by the theory.

2.2 Scalability of Clustering Methods

For the sake of real-world applications, the scalability of clustering algorithms
and their ability to deal with large scale datasets is a key concern; high per-
formance computers and large-size memory storage do not per se sustain
scalable and accurate clustering. This section is devoted to the algorith-
mic strategies deployed to keep the clustering computational effort beyond
reasonable limits.

2.2.1 Divide-and-Conquer strategy

Typically, advances in large-scale clustering (see e.g. Judd et al. [1998];
Takizawa and Kobayashi [2006]) proceed by distributing the dataset and
processing the subsets in parallel. Divide-and-Conquer approaches mostly
are 3-step processes (Fig. 2.11): i) partitioning or subsampling the dataset
to form different subsets; ii) clustering the subsets and defining the resulting
partitions; iii) computing a resulting partition from those built from the
subsets.

Figure 2.11: The framework of Divide-and-Conquer strategy

The Divide-and-Conquer approach is deployed in Nittel et al. [2004], us-
ing k-means as local clustering algorithm; the results of each local clustering
are processed and reconciled using weighted k-means.
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Although sampling-based and/or hierarchical k-means effectively de-
crease the computational cost, they usually yield sub-optimal solutions
due to the greedy optimization principle of k-means. From a theoretical
perspective, the loss of performance due to Divide-and-Conquer must be
studied; a goal is to provide upper bounds on the expectation of the loss
and some preliminary steps along this line will be presented in section 3.4.
From a practical perspective, the key points are how to enforce a uniform
sampling in step 1, and reconcile the local clusterings in step 2.

Hierarchical clustering methods also suffer the scalability problem when
merging the subclusters based on their inter-cluster distances. In CURE
[Guha et al., 1998], several representative points in one cluster are used
to represent this cluster. When deciding the merge of clusters, only the
distance based on representatives needs to be computed. Representing a
cluster by several items is a good idea, but the inner-connectivity of a cluster
would be ignored.

The reconciliation step (3rd step, merging the local clusters built from
the subsets based on their inter-cluster distances) has a crucial impact on
the clustering quality. It also has a non negligible impact on the overall
computational cost. In CURE Guha et al. [1998], a cluster is represented
by p representative items; the merge of two clusters is decided on the
basis of the distance between their representatives (thus with complexity
O(p2 × k2 × P ) if k is the average number of clusters and P the number of
data subsets), thus with better reliability (although the intra-connectivity
of a cluster is still ignored).

Another scalability-oriented heuristics deployed in CURE is to combine
random sampling and partitioning: Subsets are uniformly sampled from
the dataset, and thereafter partitioned. Each partition is then clustered by
CURE, selecting a number p of representatives from each cluster. These
clusters are thereafter clustered on the second hierarchical level to yield
the desired clusters. These heuristics thus decrease the CURE worst case
complexity from O(N2logN) to O(N).

2.2.2 BIRCH for large-scale data by using CF-tree

As mentioned in section 2.1.4, BIRCH [Zhang et al., 1996] addresses
the scalability issue by: i) scanning and summarizing the entire data in
the CF-tree; ii) using the hierarchical clustering method to cluster the
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leaf nodes of the CF-tree. The computation complexity is quasi linear
w.r.t. the data size for the dataset is scanned once when constructing CF-
tree, and the size of the leaf nodes is much smaller than the original data size.

A node of CF-tree is a triple defined as CF = (N,
−→
LS, SS), where N is

the number of points in the subcluster,
−→
LS is the linear sum of the N points

(i.e.,
∑N

i=1 xi), and SS is the squared sum of the N points (i.e.,
∑N

i=1 x2
i ).

The construction of CF-tree is a dynamical and incremental process.
Iteratively, each data item follows a downward path along the CF-tree, and
arrives in the closest leaf; if within a threshold distance of the leaf, it is
absorbed into the leaf node; otherwise, it gives rise to a new leaf (cluster) in
the CF-tree. The CF-tree is controlled from its branching factor (maximum
number of children per node) and its threshold (specifying the maximum
diameter of each cluster.

In summary, BIRCH uses a compact triple format structured along a
CF-tree to summarize the dataset along a scalable hierarchical process. The
main drawback of the approach is to fragment dense clusters because of the
leaf threshold, and to force the construction of spherical clusters.

2.2.3 Scalability of spectral clustering

By construction, since spectral clustering involves the diagonalization
of the distance matrix (or the Gram matrix in the kernel case5

[Zhang and Rudnicky, 2002]), its worst case computational complexity is
O(N3). To comply with the memory and computational requirements, a par-
allel approach has been proposed by [Song et al., 2008] using a master-slave
architecture: similarity matrices and eigenvectors are computed in parallel,
distributing the data over different computational nodes. The key issue is to
limit the communications (between master and slave nodes, and among slave
nodes) for the sake of computational cost, while the communications among
nodes is required to reach a near-optimal solution.

In summary, although parallelization does not reduce the computational
complexity (and cause an additional communication cost), it duly speeds-up
the time to solution, and decreases the pressure on the memory resources.

5For a better efficiency, the Gram matrix is computed globally and stored as blocks.
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2.2.4 Online clustering

Online clustering proceeds by considering iteratively all data items to
incrementally build the model; the dataset is thus scanned only once as in
[Nittel et al., 2004] using k-means in the Divide-and-Conquer framework by
one scan of the data (section 2.2.1). In [Bradley et al., 1998], data samples
flowing in are categorized as i) discardable (outliers); or ii) compressible
(accounted for by the current model); or iii) to be retained in the RAM
buffer. Clustering, e.g., k-means, is iteratively applied, considering the
sufficient statistics of compressed and discarded points on the one hand, and
the retained points in RAM on the other hand.

Online clustering is indeed very similar to data streaming (section 2.3);
the only difference is that online clustering assumedly considers data sam-
ples extracted from a stationary distribution, whereas data streaming has to
explicitly address the non-stationary issue.

2.3 Data Stream Mining

A data stream is a real-time, continuous, ordered (implicitly by arrival time
or explicitly by timestamp) sequence of items arriving at a very high speed
[Golab and Özsu, 2003]. In the rest of this chapter, the data stream will be
noted X = x1, ..., xt, ..., where xt denotes the data item arrived at time t
belonging to some instance space Ω; no assumption is done on the structure
of space Ω, which can be continuous, categorical, mixed or structured.

2.3.1 Background

As already mentioned, Data Streaming became a hot research topic since
the early 2000: not only does it raise challenging scientific issues, it also
appears as the only way to handle data sources such as sensor networks,
web logs, telecommunication or Web traffic [Gaber et al., 2005].

Data Streaming includes several types of tasks [Cormode, 2007]:

• Data stream query (Data Stream Management);

• Pattern finding: finding common patterns or features;
Clustering, Association rule mining, Histograms, Frequency counting,
Wavelet and Fourier Representations
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• Supervised Learning and Prediction;
Classification and discrimination, Regression, Building Decision Trees

• Change detection;

• Time series analysis of Data Streams.

Data stream query, a key part of data stream management systems
(DSMS), differs from standard database query as it mostly aims at
providing approximate answers using synopsis construction, e.g., his-
tograms, sampling, sketches [Koudas and Srivastava, 2005]. It also supports
both persistent and transient queries6 by single pass of data access, rather
than only the transient queries by arbitrary data access in traditional queries.

Supervised learning from streams, including pattern recognition and pre-
diction, basically proceeds as online learning.

The rest of the section focuses on change detection and data stream clus-
tering, which are relevant to the presented work.

2.3.2 Change detection

A key difference between data streaming and online learning, as already
mentioned, is the fact that the underlying distribution of the data is not
necessarily stationary. The non-stationary modes manifest as i) the patterns
and rules summarizing the item behavior change; or, ii) their respective fre-
quencies are modified.

Detecting such changes, through monitoring the data stream, serves
three different goals: i) Anomaly detection – trigger alerts/alarms; ii) Data
cleaning – detect errors in data feeds; iii) Data mining – indicate when to
learn a new model [Cormode, 2007].

How to detect such changes most often proceeds by comparing the
current stream window with a reference distribution. Sketch-based tech-
niques can be used in this frame to check whether the relative frequencies
of patterns are modified. Another widely used approach is non-parametric
change detection tests (CDT); the sensitivity of the test is parameterized
from a user-specified threshold, determining when a change is considered

6A transient query is a traditional one-time query which is run once to completion over
the current data sets, e.g., querying how many articles are more than 1500 characters long
in a database. A persistent query is a continuous query which is executed periodically
over the database, e.g., querying the load on the backbone link averaged over one minute
periods and notifies if the load exceeds a threshold.
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to be significant [Dasu et al., 2006; Song et al., 2007]. Let us briefly review
some approaches used for CDT.

Velocity density estimation based approach

Aggarwal [2003] proceeds by continuously estimating the data density,
and monitoring its changes.

Kernel density estimation (KDE) builds a kernel-based estimate of the
data density f(x) at any given point x, formally given as the sum of kernel
functions Kh(•) associated with each point in the data set, where parameter
h governs the smoothness of the estimate.

f(x) =
1

n

n∑

i=1

Kh(x− xi)

Velocity density estimation (VDE) estimates the density change rate at
any point x relatively to a user-defined time window. Basically V DE(x) is
positive, negative or zero depending on whether the density f(x) increases,
decreases or stay constant during the time window. The histogram of these
change rates is referred to as the temporal velocity profile. Interestingly, it
can be spatially structured (spatial velocity profiles) to provide the user with
a spatial overview of the reorganization of the underlying distribution.

Both spatial and temporal velocity profiles can be exploited to determine
the nature of the change at a given point: dissolution, coagulation and shift.
Coagulation and dissolution respectively refer to a (spatially connected) in-
crease or decrease in the temporal velocity profile. Connected coagulation
and dissolution phenomenons indicate a global data shift.

While [Aggarwal, 2003] puts the stress on dealing with high-dimensional
data stream and detecting their changes, the point of the statistical signifi-
cance thereof is not addressed.

KL-distance based approach for detecting changes

In [Dasu et al., 2006], Dasu et al. use the relative entropy, also called
the Kullback-Leibler distance, to measure the difference between two given
distributions. KL-distance draws on fundamental results in hypothesis
testing (testing whether two distributions are identical); it generalizes
traditional distance measures in statistics, featuring invariance properties
that make it ideally suited for comparing distributions. Further, it is
nonparametric and requires no assumptions on the underlying distributions.
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The approach proceeds as follows. The reference data (part of the stream
dataset) is selected and hierarchically partitioned using a kd-tree, defining r
regions and the discrete probability p over the regions. This partition is used
to compare the reference window and the current window of data stream with
discrete probability q over all regions r. The KL divergence is computed as

KL(p, q) =
∑

r

p(r)log
p(r)

q(r)
(2.12)

The significance of the above KL divergence is assessed using an empirical
estimate of the p-values based on a bootstrapping procedure: repeatedly, one
i) pools the reference data and the first sliding window data; ii) randomly
splits into two subsets; iii) measures the corresponding KL divergence. The
set of these KL divergence values enables one to determine the significance
of the actual KL divergence (equation (2.12)).

Algorithmically, the proposed approach follows an efficient 3-step process:
1) updating the region counts q(r) over the current time window; 2) com-
puting the KL divergence between q and the reference p; 3) emits an alarm
signal if the KL value reaches the user-specified significance threshold.

This approach is quite efficient because the KL divergence need not
to be recomputed, but incrementally updated from the previous value.
Many variants, e.g. using histogram or density estimation kernel methods
for KL-distance computation have been implemented [Song et al., 2007;
Sebastião and Gama, 2007].

Density test based approach for detecting changes

Song et al. [2007] propose a statistical test, called density test, to deter-
mine whether the newly observed data points S ′ are sampled from the same
underlying distribution as the baseline (aka reference) data set S. This test
statistic, strictly distribution-free under the null hypothesis, proceeds as fol-
lows:

• The baseline set S is randomly divided into a training set S1 and a test
set S2.

• Statistic δ(S, S ′) is defined as the difference between the log-likelihood
(LLH) of S ′ and S2 under the probability density function KS1 , com-
puted by a kernel density estimator (KDE) on S1.

δ = LLH(KS1 , S
′)− |S

′|
|S2|
× LLH(KS1 , S2)
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If S ′ differs from S, it is expected that S2 is more likely under distri-
bution KS1 , than S ′.

• Let ∆ be a random variable whose distribution is that of δ under the
null hypothesis. Due to the Central Limit Theorem, ∆ has a normal
limit distribution. After deriving the mean and variance of ∆ and its
p quantile, a standard null hypothesis test can be performed: the null
hypothesis is refuted (i.e. a change alarm is emitted) at significance
level p, if the actual δ value is higher than the p quantile of the limit
distribution.

2.3.3 Data stream clustering

Stream clustering, a major Data Mining subfield [Fan et al., 2004;
Muthukrishnan, 2005], raises two additional difficulties compared to tradi-
tional data clustering, due to the non-stationary assumption. On the one
hand, the algorithm must be at the same time cope with the streaming data
and detect the changes in the underlying data distribution (upon detecting
a change, the current model must be forgotten or updated). On the
other hand, the clustering parameters must be automatically determined:
typically, the number k of clusters can hardly be determined beforehand.

2.3.3.1 One-scan Divide-and-Conquer approaches

As already mentioned, one-scan Divide-and-Conquer approaches have been
used for stream clustering, relying on e.g. k-means [Nittel et al., 2004] or
k-median [Guha et al., 2003, 2000]. According to [Charikar et al., 2002], k-
median problem is to minimize the average distance from data points to
their closest cluster centers. k-center problem is to minimize the maximum
distance from data points to their closest cluster centers, which is the min-
max analogue of the k-median problem. In a general metric space, the k-
median problem is known to be NP-hard. Its approximation has been widely
studied [Charikar et al., 2002; Arya et al., 2001].

Guha et al. [2000] aims at constant-factor approximation algorithms for
the k-median problem [Charikar and Guha, 1999; Charikar et al., 2002],
that is, finding the k data points best representing the data stream. The
structure of the proposed algorithm is depicted in Fig. 2.12.

The Divide-and-Conquer strategy proceeds as follows:
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Figure 2.12: Stream Clustering: a Divide-and-Conquer for k-median
[Guha et al., 2000]

• On level-0 m points sampled from the stream are taken as subset.
Constant-factor approximation algorithm is used to cluster these m
points and define 2k median points; to each median point is associated
a weight, the number of points it represents;

• On level-1, m medians are clustered to define 2k level-2 medians.

• Iteratively, when level-i includes m medians, these are clustered to de-
fine 2k level-(i + 1) medians.

• Upon request for the global model, all intermediate medians are clus-
tered to produce k representatives.

The constant-factor approximation algorithm for k-median is employed to
reduce the space requirement (compared to standard k-median algorithms):
the dataset is scanned once, using nǫ memory (ǫ < 1) and requiring only
O(nk) time.

Babcock et al. [2003] have used exponential histogram (EH) data struc-
ture to improve Guha et al. algorithm [Guha et al., 2000]. The difference
regards the cluster merging, based on the EH data structure; an analytical
study of the approach is given.

Another approach proposed by Charikar et al. [2003] addresses the fact
that the approximation quality decreases with the number of hierarchy
levels in [Guha et al., 2000]. The algorithm has also been studied analytically.
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Yet another Divide-and-Conquer stream clustering approach proposed
by O’Callaghan et al. [2002], called STREAM, assumes that the data stream
is actually made of chunks X1, ..., Xn, where each Xi is a set of points that
fits in main memory. Indeed, any data stream can be turned in a chunked
stream by simply waiting until enough points to arrive.

The STREAM algorithm works as follows: Chunk X1 is clustered using
LSEARCH; each resulting center is weighted by the sum of the points it
represents. The centers are memorized, the second chunk is downloaded and
the process is repeated for each data chunk. LSEARCH is finally applied to
cluster all centers representing the chunks.

The clustering method LSEARCH is a simple, fast, constant-factor-
approximation of k-means; the difference is that LSEARCH uses more global
information, allowing one or two centers to be “traded” for another one, thus
avoiding to get stuck in local minima as k-means is. The price to pay is that
LSEARCH is more computationally heavy.

The above Divide-and-Conquer approaches proceed by segmenting the
stream and iteratively processing the chunks. The drawback of these ap-
proaches is that the chunk size is fixed, hindering the change detection in the
underlying data distribution. Furthermore, the number k of clusters should
ideally adapt to the distribution, as opposed to being fixed.

2.3.3.2 Online tracking and offline clustering

After [Dong et al., 2003], a core issue in Data Streaming regards the online
detection of changes in the underlying distribution. CluStream, a two-level
scheme proposed by Aggarwal et al. [2003], combines an online summariza-
tion of the data stream (first level), and the offline building of clusters from
the online summary, using k-means (second level). CluStream thus inherits
from k-means the inability to build arbitrarily-shaped clusters. This limi-
tation was addressed using density-based clustering algorithms [Cao et al.,
2006; Chen and Tu, 2007], with the additional benefit that the number k of
clusters need not be set in advance.

Another issue regards high-dimensionality data. HPStream, proposed by
Aggarwal et al. [2004], combines a dynamic cluster structure with projection-
based clustering. Projection-based clustering [Aggarwal et al., 1999] resem-
bles subspace clustering [Agrawal et al., 1998] in the sense that it produces
clusters living in different subspaces, through using diverse distance func-
tions; the difference is that one point is assigned to a single cluster.

HPStream finds subspace clusters, using subsets of the initial descriptive
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attributes, by maintaining condensed representations of the clusters over
time; the quality of the solution reportedly improves on that of full dimen-
sional data stream clustering algorithms, such as CluStream, w.r.t clustering
quality (purity) and computational efficiency (number of points proceeded
per second). Projected clustering has recently been extended to deal with
data uncertainty [Aggarwal, 2009].

DenStream upgrades density-based clustering method DbScan to the
data streaming framework, using again a two-level approach [Cao et al.,
2006]. Specifically, DenStream uses micro-clusters to build an online charac-
terization of the stream, creating a new micro-cluster iff newly arrived points
fall out of the boundary of the nearest micro-cluster (and updating the
nearest micro-cluster otherwise). The limit on the number of micro-clusters
is enforced by deleting an old cluster or merging two clusters upon the
creation of a new micro-cluster. The deletion or merge decisions are based
on the micro-cluster weight maintained online [Cao et al., 2006]; likewise,
the decision of whether a new (outlier) micro-cluster should be turned into
a regular micro-cluster depends on its weight.

Figure 2.13: Online tracking of data streams by micro-clusters [Cao et al.,
2006]

DenStream thus captures online the density distribution of the data
stream through the micro-clusters (Fig. 2.13). The final clustering results
are processed (using a DbScan variant) to deliver the cluster structures upon
the user request.

Another two-level algorithm was devised to handle textual and categorical
data streams [Aggarwal and Yu, 2006]. Likewise, the stream is summarized
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into a number of fine grained cluster droplets, which are exploited upon user’s
request to construct clusters (depending on the user specified parameters).

2.3.3.3 Decision tree learner of data streams

Decision tree learners have been adapted to deal with data streams too.
VFDT (Very Fast Decision Tree) [Domingos and Hulten, 2000] builds a
so-called Hoeffding tree, aimed at preserving the trade-off between learning
speed and predictive accuracy.

Before introducing Hoeffding trees, let us briefly recall the main features
of decision trees: each node corresponds to a test on some attribute value;
the associated branches correspond to the possible outcomes of the test;
each example thus defines a path in the tree until arriving at a leaf node,
which contains a class value. Decision tree learners such as ID3 [Quinlan,
1986], C4.5 [Quinlan, 1993] or CART [Breiman et al., 1984] proceed by
recursively selecting the best attribute (in the sense of the chosen criterion,
e.g. quantity of information or Gini criterion) to construct the current node.
The criterion value is computed from the whole dataset, which either fits in
main memory or is sequentially downloaded; the approach hardly scales up
to very large datasets.

The scalability/non-stationary issue is dealt with in VFDT as follows. A
chunk of the dataset or data stream is used to compute the criterion value
at each node. How to set the size of the chunk is determined using the
Hoeffding bound, an upper-bound on the difference between the true average
and the empirical average of a bounded real-value random variable. It is
worth noting that this upper bound does not need any assumption on the
underlying distribution. Formally, let r be a random variable ranging in
[0, R], let r̄(n) denote the empirical average of r over n independent trials and
let r̄ be the true average, it comes:

Pr(|r̄ − r̄(n)| > ǫ) < exp(−2nǫ2n

R2
)

The Hoeffding bound can thus be used to determine the number of ex-
amples needed to ensure that the criterion value is computed up to ǫ ap-
proximation. The Hoeffding tree-based VFDT [Domingos and Hulten, 2000]
therefore enables the fast building of decision trees from large datasets with
guarantees of asymptotic consistency compared to batch learning.

While VFDT assumes a stationary underlying distribution
[Domingos and Hulten, 2000], the non-stationary case is considered in
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[Hulten et al., 2001], where the CVFDT algorithm is presented. CVFDT
aims at dealing with continuously changing data streams; it grows an
alternative subtree whenever an old one becomes questionable (out-of-date),
and replaces the old with the new when the new becomes more accurate.

The Hoeffding bound is further used to support a general large-scale up-
grading of learning algorithms [Domingos and Hulten, 2001]. At each algo-
rithm step, the learning criterion is associated an upper-bound on the ap-
proximation error depending on the current number of examples. This bound
is used to minimize the number of examples used in each step, subject to a
given confidence. VFKM applies this strategy to k-means clustering: it runs
k-means on increasing size datasets, until reaching the desired confidence
level after the Hoeffding bound. The algorithm was evaluated on the real
web data streams.

2.3.3.4 Binary data streams clustering

The main merits of binary datasets are i) their efficient storage, indexa-
tion and retrieval; ii)their ability to represent categorical data and to better
resist noise comparatively to quantitative datasets; iii) the fact that no pre-
processing (normalization, centering) is needed.

Several k-means variants addressing the particular case of binary data
streams have been presented in [Ordonez, 2003], including i) maintaining
simple sufficient statistics for binary data; ii) efficient distance computation
for sparse binary vectors; iii) sparse matrix operations and a summary table
of clustering results showing frequent binary values and outliers.

k-means is speeded up [Ordonez, 2003] based on sparse distance computa-
tion and simpler sufficient statistics. Sparse distance computation proceeds
by precomputing the distances between the null transaction (zeroes on all co-
ordinates) and all cluster centers. Then the distance of each example to each
center is computed, only considering the subset of coordinates with non-zero
value.

To further compute k-means partition based on existing clustering, suf-
ficient statistics are usually used [Bradley et al., 1998; Zhang et al., 1996].
These statistics summarize each existing cluster by three matrices M , Q and
N . Respectively, M is the sum of points, Q is the sum of squared points
and N is the number of points per cluster. For clustering of binary data, the
sufficient statistics can be simpler. It was proved that the sufficient statistics
of binary clustering are only N and M .

The incremental k-means algorithm [Ordonez, 2003] reportedly outper-
forms the scalable k-means on a majority of datasets. This algorithm is a one
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pass algorithm with O(TkN) complexity, where T is the average transaction
size (non-zero coordinates in binary vectors), N is number of data items and
k is number of clusters. Cluster centers and sufficient statistics are updated
based on a data chunk (e.g., every

√
N data items) rather than after each

item. Furthermore, this algorithm initializes the clusters using global data
statistics – as opposed to, starting from a data sample.

2.3.4 Dealing with streaming time series

Let a time series be defined as an ordered set of real-valued values, noted
T = t1, ..., tm. The difference with data streams is threefold. Firstly, ti
is a real value (ti ∈ IR) whereas a stream item might be multi-dimensional.
Secondly, tis are not necessarily ordered after their arrival time or timestamp.
Thirdly, the length m of a time series is not necessarily large. A repository
of time series benchmark is maintained by Eamonn Keogh [Keogh et al.,
2006], including for instance gun-draw action tracing, projection profile of
Handwritten Word, contour outline of leaves.

A subsequence of a time series is a subset of the time series with consec-
utive positions. Using a sliding window of length w along a m-length series
T , one thus derives m− w + 1 subsequences; the p-th reads {tp, ..., tp+w−1}.

Let the w × (m − w + 1) matrix S be composed of these subsequences
(the p-th composing the p row). Time series clustering can be handled by
applying standard clustering, e.g. hierarchical clustering or k-means, on
these subsequence time series (STS). While STS clustering is widely used as a
subroutine in rule discovery, indexing, classification, prediction and anomaly
detection algorithms, Keogh et al. [2003] demonstrate empirically that most
STS algorithms proposed so far produce meaningless results; this obser-
vation relies on the fact that the result is seemingly independent of the input.

The significance of STS clustering results is assessed after the following
indicators. Given clustering C and C ′, where sets {mi} and {m′

i} respectively
include the cluster centers, let us define distance D(C, C ′) as:

D(C, C ′) =

|C|∑

i=1

min [ ‖mi −m′
j‖ ] , 1 ≤ j ≤ |C ′| (2.13)

This definition relies on some mapping σ associating the i-th cluster in C to
the cluster with nearest center in C ′, and computing the sum of distances
between mi and m′

σ(i).
The evaluation of STS meaningfulness is based on the comparison of the

clustering results of a clustering algorithm on STS of a given time series and
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of that on STS of a random walk dataset, which is unrelated to the given
time series. Let T ′ be defined by randomly reordering the initial time series;
let S ′ be the associated STS. The clusters built along i independent runs on S
and S ′ are stored in respectively sets X and Y . The within set distance(X)
is computed as the average cluster distance among the clusters built from the
original STS (as defined in equation (2.13)). The inter set distance(X, Y )
measures the average cluster distance between each set of cluster centers in
X, and cluster centers in Y . The clustering meaningfulness of X compared
to Y is defined as:

meaningfulness(X, Y ) =
within set distance(X)

inter set distance(X, Y )
(2.14)

Expectedly, meaningfulness(X, Y ) should be close to 0 since in-
dependent runs on the same data set should produce similar results
(within set distance(X) should be small) while runs on random data should
produce different ones (inter set distance(X, Y ) should be large).

To be convincing, the same measuring process was conducted on whole
clustering, which is based on the same time series, but uses the subsequences
that were randomly extracted, rather than STS extracted by a sliding
window.

Quite the contrary, [Keogh et al., 2003] shows that different clusterings
obtained from the true data series are not closer to each other, than from
clusterings built from the randomized data series. This reported result does
not depend on the clustering algorithm (k-means or hierarchical clustering).
The paper concludes on both the relevance of such significance study, and
the fact that STS-based clustering does not produce significant results in
general. An alternative proposed by [Keogh et al., 2003] is to use k-motif to
select the relevant subsequences.

Some other works aim at improving the meaningfulness of time series
clustering, as follows. In hindsight, the lack of meaningfulness should rather
be blamed on the inappropriate cluster set distance. Mardales and Goldin
[2006] present an alternative distance, comparing the distance between clus-
ter shapes as opposed to their centers, where the i-th cluster shape is defined
as the set of distances d(mi, mj) and mj varies over the centers of the
other clusters. Additional experiments show that, after the indicator based
on cluster shapes, STS clustering produces meaningful results, and that
the cluster shapes can be used to correctly identify the series that produced it.
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The use of Euclidean distance between subsequences is also questionable
after [Chen, 2005], who investigates the two types of similarity that can
exist between subsequence vectors. Using this alternative distance measure,
STS clustering reportedly provides meaningful results.

Another approach is that of Denton [2005], using kernel-density-based al-
gorithm to detect meaningful patterns in a sequence including a vast number
of random sequences. Density-based algorithms have been demonstrated to
eliminate the noise (random sequences). Extending density-based algorithms
to time series clustering raises quite a few challenging issues: i) specifying un-
interesting sequences (noise); ii) ensuring that these sequences do not affect
the clustering result.

A threshold has to be used to identify which cluster centers are considered
as noise. This threshold is defined as the maximum density of cluster centers
in the clustering performed on the first part of the random-walk time series
(e.g., first 500 points).

The proposed approach is evaluated after a generative criterion, measur-
ing how the resulting clusters can predict the underlying process generating
the time series. It is shown that this new algorithm not only outperforms
partitioning techniques (e.g. k-means) with respect to the meaningfulness
measure, but also improves upon other density-based algorithms.
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Chapter 3

The Hierarchical AP (Hi-AP):
clustering large-scale data

This chapter presents our first contribution, concerned with making the Affin-
ity Propagation clustering algorithm scalable.

Affinity Propagation (AP), designed by Frey and Dueck, was first de-
scribed in their Science paper in 2007 [Frey and Dueck, 2007a]. Among its
main features are its ability to represent clusters by actual items (as opposed
to artifacts) and to yield better and more stable results in terms of the distor-
tion criterion. As will be discussed in Chapter 5, these features are required
to deal with our motivating application, Autonomic Grids.

For the sake of self-containedness, this chapter begins with a description of
the AP algorithm. A first extension, the Weighted AP (WAP) is presented in
order to deal with weighted and in particular duplicated points. The second
extension, Hi-AP builds upon WAP to provide an approximation of AP with
quasi-linear complexity. The quality of the approximation is theoretically
studied. The chapter concludes with experimental validation of Hi-AP on
benchmark datasets.

3.1 Affinity Propagation

Let E = {x1, . . . xN} denote the dataset, where items xi belong to some
instance space X. In the rest of the chapter, we only assume the distance
d(xi, xj) to be known.

Affinity Propagation (AP), a clustering method similar to k-median (see
section 2.1.4 of chapter 2), maps each item xi on a representative item called
exemplar noted xσ(i). A cluster is made of all items mapped onto the same
exemplar.
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To each clustering σ : [1 . . . N ] 7→ [1 . . . N ] is associated its distortion
noted L(σ), defined as:

L(σ) =

N∑

i=1

d(xi, xσ(i))
2 (3.1)

It is mainstream to assess the quality of a clustering from its distortion, which
actually measures the quality of the lossy compression representing dataset
E by the multiset {xσ(i)}.

The k-median algorithm is parameterized from the number k of clusters,
and it aims at minimizing the distortion criterion; as such, it faces a combi-
natorial optimization problem, with exponential complexity in the size N of
the data set. AP instead tackles the same problem as an energy minimiza-
tion problem; it is parameterized from the cost ǫ of adding one more cluster.
Formally, AP solves the following optimization problem:

σ∗ = argmin
(
L[σ]

)
,

with

L[σ] = −
N∑

i=1

S(i, σ(i))−
N∑

µ=1

log χ(p)
µ [σ] (3.2)

Where

S(i, σ(i)) =




−d(xi, xσ(i))

2, if i 6= σ(i),

ǫ, otherwise.

Note that AP controls the number of clusters depending on parameter ǫ.
At one extreme ǫ = 0 and the optimal solution retains all items as exemplars;
at the other extreme (ǫ = −∞), the optimal solution retains a single cluster,
which is represented by the medoid of the dataset.

χ
(p)
µ [σ] is a set of constraints, expressing the penalty for xi choosing xσ(i)

as exemplar whereas xσ(i) is not its own exemplar:

χ(p)
µ [σ] =





pβ , if σ(µ) 6= µ, ∃i s.t. σ(i) = µ,

1, otherwise.

p = 0 is the constraint of the model of Frey-Dueck, which expresses that
if xi is selected as an exemplar by some items, it has to be its own exemplar.
While this constraint indeed is well suited to spheric clusters, it is not so for
ring-shaped clusters. For this reason, the soft-constraint affinity propagation
(SCAP) algorithm has been proposed by [Leone et al., 2007], introducing
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the smoothing parameter p. In SCAP, multiple exemplars are allowed to
describe the same cluster, thus uncovering the hierarchical cluster structure
in the dataset.

To summarize, the energy criterion (equation (3.2)) enforces a tradeoff
between the distortion, to be minimized, and the “regularization term” de-
fined as the cost of the model, that is ǫ × |σ| if |σ| denotes the number of
exemplars retained.

3.1.1 Algorithm

The minimization of the energy criterion is achieved by a message passing
algorithm, considering two types of messages: availability messages a(i, k)
express the accumulated evidence for xk to be selected as the best exemplar
for xi; responsibility messages r(i, k) express the fact that xk is suitable to
be the exemplar of xi.

All availability and responsibility messages a(i, k) and r(i, k) are set to 0
initially. Their values are iteratively updated1 from the following equations:

r(i, k) = S(xi, xk)−maxk′,k′ 6=k{a(i, k′) + S(xi, xk′)}
r(k, k) = S(xk, xk)−maxk′,k′ 6=k{S(xk, xk′)}
a(i, k) = min {0, r(k, k) +

∑
i′,i′ 6=i,k max{0, r(i′, k)}}

a(k, k) =
∑

i′,i′ 6=k max{0, r(i′, k)}

The stopping criterion is specified by the user, usually from a maximum
number of iterations or a maximum number of iterations without modifying
σ.

The exemplar xσ(i) associated to xi is finally defined as:

σ(i) = argmax {r(i, k) + a(i, k), k = 1 . . .N} (3.3)

Fig. 3.1, taken from [Frey and Dueck, 2007a], shows the availability and
responsibility messages exchanged among every two items, until forming 3
clusters; each cluster is associated a real point, selected as exemplar by all
other points in the cluster.

1 Numerical oscillations are avoided by using a relaxation mechanism; empirically, the
actual value is set to the half sum of the old and new values [Frey and Dueck, 2007a].
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(a)

(b)

Figure 3.1: AP message passing process. (a) availability and responsibility
messages; (b) iterations of message passing

50



3.2. WEIGHTED AFFINITY PROPAGATION

3.1.2 Pros and Cons

Comparatively to k-means and k-centers2, the main advantage of AP is the
robustness of its optimization process. Whereas k-centers and k-means ba-
sically follow a greedy optimization method (possibly with restarts) to find
the optimum of a combinatorial optimization problem, AP tackles a contin-
uous optimization problem, where all items are candidates at the beginning
and clusters are gradually identified. In particular, it does not suffer from
the initialization and provides some guarantees of quasi global optimization
[Frey and Dueck, 2007a]. In practice, AP yields a better distortion than
k-centers and thus achieves a better stability of the results.

Comparatively to Hierarchical clustering [Zhang et al., 1996] and spectral
clustering (section 2.1.4.6 in Chapter 2), AP provides a consistent cluster-
ing (similar points are in same clusters; outliers form single point clusters)
whereas the former methods recursively compare pairs of points to find par-
titions of the data and do not require all points within a cluster to be similar
to a single center.

The price to pay for this consistent behavior is twofold. On the one hand,
AP only controls implicitly the number of clusters from parameter ǫ. This
parameter is usually initialized to the median value of the similarity matrix
S; a dichotomic method is then suggested by Frey and Dueck to adjust the
value of ǫ until finding the desired number of clusters.

On the other hand, the computational complexity of AP is quadratic w.r.t.
the number N of items (up to logarithmic factors): the pairs of distances
d(xi, xj) need be computed and the message passing algorithm converges
with O(N2logN) [Frey and Dueck, 2007a].

This quadratic complexity indeed severely hinders the use of AP when
dealing with large datasets. Our goal in this chapter precisely is to alleviate
this limitation.

3.2 Weighted Affinity Propagation

The first step is to extend AP to deal with weighted items, a particular case
being that of multiply-defined items. Let E ′ = {(xi, ni), i = 1 . . . L} denote
the dataset, where (xi, ni) stands for ni copies of item xi (where copies are
possibly perturbed with some noise; the distance between any two copies is
noted εi).

2According to Frey and Dueck in [Frey and Dueck, 2007a], the k-centers method re-
ferred in the following context is a 2-step k-median algorithm proposed in [Bradley et al.,
1997], which is similar the k-means algorithm wherein the 2-norm distance is used.
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Weighted AP proceeds by modifying term S(xi, xj) as follows. Let us
define:

S ′(xi, xj) =

{
−nid

2(xi, xj) if i 6= j
ǫ + (ni − 1)× εi otherwise

Proposition 3.2.1 The combinatorial optimization problem of finding σ :
{1 . . . L} minimizing

L′[σ] = −
L∑

i=1

S ′(xi, xci
)−

L∑

µ=1

log χ(p)
µ [σ] (3.4)

is equivalent, for εi = 0, to the optimization problem defined by equation
(3.2) for L made of the union of ni copies of xi, for i = 1 . . . L.

Proof In the AP optimization problem (equation (3.2)), assume that
xi actually represents a set of ni identical copies; the penalty S(xi, xj) of
selecting xj as exemplar of xi thus is the cost of selecting xj as exemplar for
each one of these copies. Therefore S ′(xi, xj) = ni × (−d2(xi, xj)).

Likewise, let xi be unfolded as a set of ni (almost) identical copies
{xi1 , . . . , xini

}, and let us assume that one of them, say xi1 is selected as
exemplar. One thus pays the penalty ǫ, plus the sum of the dissimilarities
between xi1 and the other copies in xi, modeled as (ni − 1)εi.

While WAP handles multi-sets directly, providing the same result as AP
would provide on the unfolded dataset, albeit with a much lower empirical
complexity [Zhang et al., 2008].

3.3 Hi-AP Algorithm

As already mentioned, AP computational complexity is N2log(N). Note
that, in the case of a sparse similarity matrix, the complexity reduces to
NKlog(N) with K the average connectivity of the matrix. In any case,
building the similarity matrix is quadratic in the number N of data items,
forbidding the use of AP on large data sets.

In order to address this limitation, a Divide-and-Conquer approach in-
spired from [Guha et al., 2003] was proposed [Zhang et al., 2008]. The basic
idea is to randomly partition the data into subsets, to launch AP on each
subset to build exemplars, and to launch WAP on the dataset made of all
exemplars built from the subsets, where each exemplar is qualified by the
number of data items it represents.
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Formally, let dataset E be equally divided into b subsets noted
Ei, i = 1 . . . b. Let {ei1,, . . . eiKi

} denote the exemplars built by AP on Ei and
let nij denote the number of items in Ei represented by eij (i.e. such that
σ(xt) = eij ).

Let E ′ be defined by gathering all (eij , nij) where i ranges over all subsets
and j over all exemplars extracted from the subset. Let WAP be applied on
E ′ (Fig. 3.2).

Figure 3.2: Hi-AP: two-level Divide-and-Conquer approach

As shown in [Zhang et al., 2008], this two-level approach3 reduces the

computational complexity from Õ(N2) to Õ(N3/2), by setting b =
√

N .

Proof AP is applied
√

N times on datasets of size
√

N , thus with complexity
Õ(N

3
2 ).

Letting K denote an upper bound on the number of exemplars learned
from every subset Ei, WAP thus achieves the distributed clustering of the
exemplars extracted from all Ei with complexity Õ(N

1
2×K2). The total com-

plexity then is Õ(NK2+N
3
2 ), where term N

3
2 is dominant since

√
N > K.

In a later work, this two-level approach was generalized to a hierarchical
Divide-and-Conquer process [Zhang et al., 2009a]. The clustering of a large-
scale dataset can thus be thought of as recursive clustering tree (Fig. 3.3).
Let b denote the branching factor (number of subsets at level i− 1 involved

3It must be emphasized that this Divide-and-Conquer heuristics could be combined
with any other clustering algorithm.
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in a single subset at level i− 1), and let h denote the height of the clustering
tree.

Figure 3.3: Hi-AP: The recursive Divide-and-Conquer process

The complexity analysis of the generalized Hi-AP assumes that the num-
ber of exemplars produced in each single clustering step is a constant K (this
assumption can be enforced by tuning the penalty parameter appropriately).
Then, it can be shown that Hi-AP has a quasi-linear computational com-
plexity:

Proposition 3.3.1 Letting the branching factor b of the recursive Hi-AP be
defined as:

b =
(N
K

) 1
h+1 ,

then the overall complexity C(h) of Hi-AP is:

C(h) ∝ K
h

h+1 N
h+2
h+1 N ≫ K,

up to logarithmic corrections.

Proof M = N/bh is the size of each subset to be clustered at level h, so
that at the next upper level each individual clustering procedure amounts to
process bK = M exemplars with corresponding complexity

C(0) = K2
(N
K

) 2
h+1 .
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The total number Ncp of classification procedures involved is

Ncp =
h∑

i=0

bi =
bh+1 − 1

b− 1
,

so that the overall complexity is given by

C(h) = K2
(N
K

) 2
h+1

N
K
− 1

(
N
K

) 1
h+1 − 1

≈
N≫K

K2
(N
K

)h+2
h+1 .

It follows that C(0) = N2 and C(1) ∝ N3/2. As claimed, the complexity is
quasi linear for high h values: C(h) ∝ N for h≫ 1 .

3.4 Distortion Regret of Hi-AP

After the above result and as will be confirmed by the experiments, Hi-AP

significantly decreases the computational cost. In counterpart, it is expected
that Hi-AP incurs some loss of optimality compared to using AP on the
whole dataset. The natural optimality criterion (section 3.1, equation (3.1))
is the distortion, defined as the sum over all items, of the squared distance
between the item and its representative exemplar. The loss of optimality
might be caused by the fact that Hi-AP selects its exemplars from a smaller
subset, thus deviating from the minimal deviation.

For the sake of the analytical study, it will be assumed throughout this
section that the underlying distribution of the dataset is Gaussian, noted
N (µ, σ2), and that AP (Hi-AP) aims at selecting the exemplar best repre-
senting the dataset.

The formal notations used throughout this section are illustrated on Fig.
3.4, showing 50 data points xi in N ([0 0], [1 1]). The true center of the under-
lying distribution is µ (here at (0 0), marked as black square). The empirical
center is the average of all points, noted µ̂n (marked as a red triangle). After
the center limit theorem, the distance between µ and µ̂n decreases to 0 as n
goes to infinity.

Let us denote µ̄n = argmin
xi

(|xi− µ̂n|) the actual data item closest to the

empirical average. Assuming that all points are assigned to the same cluster,
the minimal distortion is obtained by selecting µ̄n as exemplar.

The distortion loss potentially incurred by Hi-AP is caused by selecting
another data item than the best exemplar.
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Figure 3.4: True center (black square); empirical center (red triangle) and
empirical best exemplar (red circle)

3.4.1 Distribution of |µ̄n − µ̂n|

Let us investigate the distribution of |µ̄n − µ̂n|, the distance between the
best exemplar and the empirical average. Specifically, we investigate the
distribution of ε, defined as ε = xi − µ̂n.

From the central limit theorem (CLT), µ̂n follows a normal distribution
N (µ, σ2

n
).

Lemma 3.4.1 ε is distributed as N(0, σ2 − σ2

n
), and |ε| is a half-normal

distribution.

Proof The expectation and variance of ε are computed as follows:

E(ε) = E(xi − µ̂n) = E(xi)− E(µ̂n) = µ− µ = 0

V ar(ε) = V ar(xi − µ̂n)
= V ar(xi) + V ar(µ̂n)− 2Cov(xi, µ̂n)

= σ2 + σ2

n
− 2(E(xi · µ̂n)− µ2)
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And

E(xi · µ̂n) = E(xi · 1
n

n∑
i=1

xi)

= 1
n
E(xi ·

n∑
i=1

xi)

= 1
n

[
E(x2

i ) +
n∑

i=1,i6=j

E(xi · xj)

]
xi, xj are independent

= 1
n

[
E(x2

i ) +
n∑

i=1,i6=j

E(xi)E(xj)

]

= 1
n

[E(x2
i ) + (n− 1)µ2]

One has (Chi-square distribution with 1 degree of freedom)

E(
(xi − µ)2

σ2
) = 1

Therefore
1

σ2
E(x2

i + µ2 − 2µxi) = 1

implying that E(x2
i ) = µ2 + σ2.

Furthermore, E(xi · µ̂n) = 1
n
(µ2 + σ2 + (n− 1)µ2) = µ2 + σ2

n
. Finally

V ar(ε) = σ2 + σ2

n
− 2(µ2 + σ2

n
− µ2)

= σ2 − σ2

n

showing that ε is distributed as N(0, σ2 − σ2

n
).

It follows that its absolute value |ε| is a half-normal distribution, aka
Folded Normal Distribution [Leone et al., 1961; Nelson, 1980].

Fig. 3.5 shows the pdf of Half-normal Distribution with unit variance,
compared with the pdf of standard normal distribution and that of expo-
nential distribution with λ = 1.

The distortion incurred by AP and Hi-AP is related to the extreme value
distribution of ε since by construction, |µ̄n−µ̂n| = min

xi

(|xi−µ̂n|) = min(|ε|).

Lemma 3.4.2 The distribution of min(|ε|) = |µ̄n − µ̂n| is a Weibull distri-
bution (Type III extreme value distribution), since the |ε| distribution has a
left bounded tail.
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Figure 3.5: The probability distribution function of a half-normal Distribu-
tion

3.4.2 The extreme value distribution

The extreme value distribution is the distribution of max(xi) or min(xi),
where the maximum or minimum is taken of a set of iid variables {xi} follow-
ing a so-called parent distribution [Kotz and Nadarajah, 2001; Pickands III,
1975]. In the case where the parent distribution is a normal or exponen-
tial one, the smallest extreme value distribution, aka Gumbel distribution, is
distributed as:

pdf : f(x) = 1
bn

exp(x−an

bn
)exp(−e

x−an
bn )

cdf : F (u) = 1− exp(−eu) where, u = x−an

bn

(3.5)

where an is the location parameter, corresponding to the peak of the pdf,
and bn is the scale parameter.

The Generalized Smallest Extreme Value (SEV) distribution is as follows:

pdf : f(x; an, bn, k) = 1
bn

[
1− k x−an

bn

]−1− 1
k

exp(−
[
1− k x−an

bn

]− 1
k

)

cdf : F (x; an, bn, k) = 1− exp(−
[
1− k x−an

bn

]− 1
k

)

for 1− k x−an

bn
> 0

(3.6)

where an is the location parameter, bn is the scale parameter and k is the
shape parameter.
When k → 0, it is a Gumbel distribution (Type I) (Parent distribution
with exponentially decreasing tails, e.g., normal distribution or exponential
distribution).
When k > 0, it is a Frechet distribution (Type II) (Parent distribution with
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3.4. DISTORTION REGRET OF HI-AP

polynomially decreasing tails, e.g. Student distribution).
When k < 0, it is a Weibull distribution (Type III) (Parent distribution
with bounded tail, e.g. Beta distribution or half normal distribution).

From Lemma 3.4.2, it comes that |µ̄n− µ̂n| follows a Weibull distribution.
Some Weibull pdf are shown on Fig. 3.6 for different values of k (k < 0) for
an = 0 and bn = 1.
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Figure 3.6: The pdf of Type III extreme value distribution

3.4.3 Hi-AP Distortion Loss

The analytical study of the distortion loss incurred by Hi-AP is conducted
in the simple case of a Gaussian distribution in IRd. Following the previous
notations, µ denotes the true center of the distribution, µ̂n the empirical
average of the n-sample dataset, and µ̄n the data sample which is the nearest
neighbor of the empirical average. nearest to the averaged center µ̂n.

The distortion (equation (3.1)) is rewritten as:

L(σ) =
N∑

i=1

||xi − µ̄n||2 =
N∑

i=1

||xi − µ̂n + µ̂n − µ̄n||2

=
N∑

i=1

||xi − µ̂n||2 +
N∑

i=1

||µ̂n − µ̄n||2 + 2
N∑

i=1

(xi − µ̂n) · (µ̂n − µ̄n)

= N ||µ̂n − µ̄n||2 +
N∑

i=1

||xi||2 −N ||µ̂n||2

(3.7)
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Given the dataset, the distortion thus only depends on the distance be-
tween the empirical average and the selected exemplar, the nearest neighbor
of the empirical average in the dataset (assuming AP optimality), which is a
Type III extreme value distribution (Weibull distribution) after Lemma 3.4.2.

In the simple case where points are sampled along a Gaussian distribution
centered at the origin in IRd, let r̃c denote the relative position of exemplar
µ̄n with respect to the center of mass µ̂n:

r̃c = µ̄n − µ̂n

The probability distribution of r̃c conditionally to µ̂n is cylindrical; the
cylinder axis supports the segment (0, µ̂n), where 0 is the origin of the
d-dimensional space. As a result, the probability distribution of the cluster
exemplar (µ̂n + r̃c) is the convolution of a spherical with a cylindrical
distribution.

The distortion loss incurred by Hi-AP can be assessed from the relative
entropy, or Kullback Leibler distance, between the distribution Pc of the
cluster exemplar computed by AP, and the distribution Pc(h) of the cluster
exemplar computed by Hi-AP with hierarchy-depth h:

DKL

(
Pc||Pc(h)

)
=

∫
Pc(h)(r) log

Pc(h)(r)

Pc(r)
dr (3.8)

Let us define the following notations. Subscripts sd refer to sample data,
ex to the exemplar, and cm to center of mass. Let x

�
denote the corresponding

square distances to the origin, f
�
the corresponding probability densities and

F
�

their cumulative distribution. Assuming the expectation of the square
distances of sample data to the origin

̺
def
= E(xsd) =

∫ ∞

0

xfsd(x)dx,

and

α
def
= − lim

x→0

log(Fsd(x))

x
d
2

,

exist and are finite, then the cumulative distribution of xcm of a sample of
size M satisfies

lim
M→∞

Fcm(M−1x) =
Γ
(

d
2
, 2x

d̺

)

Γ
(

d
2

) .
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3.4. DISTORTION REGRET OF HI-AP

by virtue of the central limit theorem. In the meanwhile, xfex= xex −
xcm has a universal extreme value distribution (up to re-scaling, see e.g.
de Haan and Ferreira [2006] for general methods):

lim
M→∞

Ffex(M
−2/dx) = exp

(
−α̃x

d
2

)
.

where α̃ 6= α means that the extreme value parameter is possibly affected
by the displacement of the center of mass.

To see how the clustering error propagates along with the hierarchical
process, one proceeds inductively. At hierarchical level h, M samples, spher-
ically distributed with variance ̺(h) are considered; the sample nearest to
the center of mass is selected as exemplar. Accordingly, at hierarchical level
h+1, the next sample data is distributed after the convolution of two spher-
ical distributions, the exemplar and center of mass distributions at level h.
We have the following scaling recurrence property (see appendix for details):

Proposition 3.4.3

lim
M→∞

F
(h+1)
sd (

x

M (h+1)γ
) =





Γ(d
2
, x

̺(h+1) )

Γ(d
2
)

d < 2 , γ = 1

exp
(
−α(h+1)x

d
2

)
d > 2 , γ =

2

d

exp(−β(h+1)x) d = 2 , γ = 1.

with

̺(h+1) = ̺(h), α(h+1) = α(h), β(h+1) =
β(h)

2
.

It follows that the distortion loss incurred by Hi-AP does not depend on the
hierarchy depth h except in dimension d = 2.

Fig. 3.7 shows the radial distribution of exemplars obtained with different
hierarchy-depth h and the dimension d of the dataset.

The distortion loss incurred by Hi-AP can thus be visually interpreted
by comparing the cases h = 0 (AP) with the other cases (where h stands for
the hierarchy depth of Hi-AP). The spotted differences are incurred in case
where dimension d is 2, and when level h is large (≥ 5). In the latter case
(h ≥ 5) the distortion is explained from the small size of the data sample
(106/b5) considered in each node (one must have b sufficiently large to ensure
the feasibility of the clustering by WAP at level h = 1). For dimension
d 6= 2, the distortion loss thus appears to be moderate to negligible, provided
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Figure 3.7: Radial distribution plot of exemplars obtained by clustering of
Gaussian distributions of N = 106 samples in IRd in one single cluster exem-
plar, with hierarchical level h ranging in 0,1,2,5, for diverse values of d: d = 1
(upper left), d = 2 (upper right), d = 3 (bottom left) and d = 4 (bottom
right). Fitting functions are of the form f(x) = Cxd/2−1 exp(−αxd/2).
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that the size M of the dataset handled in each node of the clustering tree is
“sufficient”, (M > 30), for the law of large numbers to hold.

With respect to dimension d, three cases are observed.

• For d > 2, the distance of the center of mass to the origin is negligible
with respect to its distance to the nearest exemplar; the distortion
behavior thus is given by the Weibull distribution which is stable by
definition (with an increased sensitivity to small sample size M as d
goes to 2).

• For d = 1, the distribution is dominated by the variance of the center
of mass, yielding the gamma law which is also stable with respect to
the hierarchical procedure.

• For d = 2, the Weibull and gamma laws do mix at the same scale; the
overall effect is that the width of the distribution increases like 2h, as
shown in Fig. 3.7 (top right).

3.5 Validation of Hi-AP

This section presents some validation of WAP and Hi-AP on well known
benchmarks of the literature [Keogh et al., 2006], compared with AP and
other hierarchical approaches based on k-centers. Other experimental results,
related to the real-world application of clustering EGEE jobs, will be reported
in section 5.1 of Chapter 5.

All reported running cost has been measured on Intel 2.66GHz Dual-Core
PC with 2 GB memory.

3.5.1 Experiments goals and settings

The goal of the experiments is to assess the benefits of the hierarchical ap-
proach, measured from the tradeoff between the computational effort and the
empirical distortion.

The benchmark datasets have been kindly provided by Eamonn Keogh
[Keogh et al., 2006]. Only the largest two datasets (Faces and Swedish leaves,
respectively including 2250 and 1125 examples) have been considered since
the focus is on the scalability of the proposed approach.

On each dataset E of size N , the experiments were conducted as follows:

• E is partitioned into
√

N subsets of equal size noted Ei.

• Hi-AP (respectively Hi-AP-simple):
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1. On Ei, the preference ǫi is set to the median of the pair similarities
in the subset. WAP (respectively AP) is launched and produces
a set of exemplars.

2. WAP (respectively AP) is launched on the union of the exemplar
set, varying preference ǫ from the minimum to the median distance
of the exemplar pairs.

• Hierarchical k-centers:

1. In parallel, k-centers is launched 120 times on each Ei, where K is
set to the average number of exemplars extracted from the Ei. The
best set of exemplars (w.r.t. distortion) is retained; let C denote
the union of these best sets of exemplars.

2. For each K, varying in the interval defined by the number of clus-
ters obtained by Hi-AP, 20 independent runs of k-centers are
launched on C, and the best set of exemplars is returned. The
number of independent runs is such that Hierarchical k-centers
and Hi-AP have same computational cost for a fair comparison.

• The two approaches are compared, reporting the distortion vs the num-
ber of clusters obtained by respectively Hierarchical k-centers, Hi-AP

and Hi-AP-simple.

3.5.2 Experimental results

The difficulty is the following. If we fix the AP parameter ǫ, then the number
of clusters in AP (Hi-AP ) is governed from ǫ which hinders the comparative
assessment of the distortion with baseline approaches, where the number of
clusters is set to the number of classes. If we vary parameter ǫ in order to
fit the number of clusters considered by the baseline approaches, we incur a
computational overhead due to the extra-runs needed to find the ǫ value.

Table 3.1 focuses on the distortion loss incurred by Hi-AP over AP, set-
ting the number of clusters to the “natural” number of classes in the data
sets. The increasing of distortion incurred by Hi-AP compared with AP is
about 3.3% in the face dataset, and 5.8% in the Swedish leaf case.

Table 3.2 focuses on the comparative results of AP compared to k-centers,
showing a significant gain in terms of distortion: 14% in the face dataset and
27% in the Swedish leaf dataset. In the hierarchical case, a significant though
smaller improvement is reported: Hi-AP improves on hierarchical k-centers
by 7% in the face dataset and 2% in the Swedish leaf dataset.

Computationally-wise, hierarchical variants improve over batch ones by at
least one order of magnitude in terms of computational cost: 3 to 128 seconds
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in the Face case and 1.4 second compared to 21 seconds in the Swedish
Leaf case4. Note that here, the distortion between hierarchical and non-
hierarchical approaches cannot be directly compared due to the difference in
the number of clusters.

Table 3.1: Experimental results: Comparative Distortion of k-centers (KC),
AP, Hierarchical k-centers (KC), Hi-AP and Hi-AP-simple. All results re-
ported for k-centers variants are the best ones obtained with same computa-
tional effort as for AP variants. N and D respectively stand for the number
of items and the number of dimensions of the dataset.

The number K of clusters is set to the number of classes.
Data K N D Non Hierarchical Hierarchical

KC AP KC Hi-AP-simple Hi-AP

Face (all) 14 2250 131 189370 183265 198658 190496 189383

Swedish Leaf 15 1125 128 20220 19079 20731 20248 20181

Table 3.2: Experimental results: Comparative Distortion of k-centers (KC),
AP, Hierarchical k-centers (KC), Hi-AP and Hi-AP-simple. N and D re-
spectively stand for the number of items and the number of dimensions of
the dataset.
KAP (KHi−AP ) is the number of clusters governed by AP (Hi-AP), for ǫ

set to the median similarity.
Data N D Non Hierarchical Hierarchical

KAP KC AP KHi−AP KC Hi-AP-simple Hi-AP

Face 2250 131 168 100420 88282 39 172359 164175 160415

(all) (128 sec) (3 sec)

Swedish 1125 128 100 12682 9965 23 21525 20992 21077
Leaf (21 sec) (1.4 sec)

3.6 Partial conclusion

The first goal of our research is to find the best representatives of a dataset,
in terms of the distortion criterion. This goal, which can be cast as a com-
binatorial optimization problem, is tackled in the literature by the k-centers
algorithm.

4k-centers is re-run multiple times such that Hierarchical k-centers and Hi-AP have
same computational cost for a fair comparison.
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This chapter has first described the Affinity Propagation clustering ap-
proach proposed by Frey and Dueck [Frey and Dueck, 2007a], featuring inter-
esting stability and optimality properties compared to k-centers. In counter-
part, AP suffers from a quadratic computational complexity (to be compared
with the linear cost of greedy k-centers algorithms, even including multiple
restarts).

The first contribution of this chapter is to show how the popular
Divide-and-Conquer strategy can be combined with AP to enforce a quasi-
linear computational complexity, taking inspiration from related works by
Judd et al. [1998]; Takizawa and Kobayashi [2006], and most specifically the
approach proposed by Nittel et al. [2004] relying on k-means.

This first contribution relies on devising a weighted extension to AP,
called WAP, and showing that WAP is equivalent to AP in the case of du-
plicated items in the dataset.

The second major contribution of the chapter is an analytical study of
the distortion loss incurred by Hi-AP compared to AP, based on studying
the extreme value distribution governing the selection of the best exemplar.
We show, in the restricted case where a single cluster is concerned, that the
distortion remains small except in the case of dimension d = 2.

Proof-of-principle on benchmark datasets confirm that the distortion re-
mains small, and the computational gain is one or several orders of magni-
tude.

Several theoretical and algorithmic perspectives are opened by the pre-
sented work. An algorithmic priority is to know how to set the penaliza-
tion parameter ǫ in order to get a desired number of clusters. An even
more ambitious goal is to aim at the “true” number of clusters in the data,
which is one root of the Theoretical Foundations of Unsupervised Learning
[Ben-David et al., 2005, 2009].

Another perspective considers the Divide and Conquer approach; the goal
would be to distribute the dataset on the various nodes − possibly with some
duplicate− in order to enable the node to focus on a given region of the search
space, along the same lines as k-means++ [Ailon et al., 2009].
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Chapter 4

Streaming AP (StrAP):
clustering data streams

In this chapter, we will introduce our contributions about the StrAP

algorithm for streaming data clustering. AP and WAP have been introduced
in Chapter 3. We start by presenting StrAP and then introduce the Grid
monitoring system G-StrAP.

4.1 StrAP Algorithm

This section describes the StrAP algorithm, extending AP to streaming
data clustering. Considering the challenges of clustering data streams, the
designed method should satisfy the following requirements:

1. providing a model, which compactly describes the data streams

2. incrementally updating the model when data flow in

3. the model is always available whenever it is required to be queried

4. the changes of data distribution should be detected so that the model
can catch the evolution.

5. it should be a real-time process

According to the requirements, our proposed StrAP algorithm works in
a framework as shown in Fig. 4.1. The StrAP involves four main steps
(Alg. 1):
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Figure 4.1: The framework of StrAP algorithm

1. The first bunch of data is used by AP to compute the first exemplars
and initialize the stream model.

2. As the stream flows in, each data item xt is compared to the exemplars
in the model. If too far from the nearest exemplar, xt is put into the
reservoir, otherwise the stream model is updated accordingly (section
4.1.1).

3. The restart criterion is triggered if the number of outliers exceeds the
reservoir size, or upon a change point detection in the data distribution
(section 4.1.2).

4. If it is triggered, the stream model is rebuilt from the current exemplars
and the reservoir, using WAP again (section 4.1.3).

In StrAP the model is available at any time. The performance of the
process is measured from the clustering purity and accuracy, and the per-
centage of outliers (section 4.1.4). Next, we introduce each part of StrAP

in details.

4.1.1 AP-based Model and Update

The model of the data stream used in StrAP is inspired from DbScan [Arkin,
1996] and DenStream [Cao et al., 2006]. It consists of 4-tuple (ei, ni, Σi, ti),
where ei ranges over the exemplars, ni is the number of points associated to
exemplar ei, Σi is the distortion of ei (sum of d(e, ei)

2, where e ranges over
all items associated to ei), and ti is the last time stamp when an item was
associated to ei.

For each new point xt, its nearest exemplar ei is computed; if d(xt, ei) is
less than some threshold ε, heuristically set to the average distance between
points and exemplars in the initial model, xt is assigned to the i-th cluster
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and the model is updated accordingly; otherwise, xt is considered to be an
outlier, and put into the reservoir.

In order to avoid the number of exemplars to grow beyond control, one
must be able to forget the exemplars that have not been visited for some
time. Accordingly, a used-specified window length ∆ is considered; when
point xt is associated to exemplar ei, the model update is thus defined as:

ni := ni ×
(

∆
∆+(t−ti)

+ 1
ni+1

)
Σi := Σi × ∆

∆+(t−ti)
+ ni

ni+1
d(xt, ei)

2 ti := t

Simple calculations show that the above update rules enforce the model
stability if exemplar ei is selected on average by ni examples during the last
∆ time steps. Assume that last time at ti exemplar ei was visited, and at
that time there were ni points associated to ei. At time t now, the current
point is associated to ei again. To enforce the stability of visiting exemplar,
we have t− ti = ∆

ni
. Then the weight nt

i at time t now should be updated on

basis of nti
i , ti and t by:

nt
i = nti

i

(
n

ti
i

n
ti
i +1

+ 1

n
ti
i +1

)
= nti

i

(
1

1+ 1

n
ti
i

+ 1

n
ti
i +1

)

= nti
i

(
1

1+
t−ti
∆

+ 1

n
ti
i +1

)
= nti

i

(
∆

∆+(t−ti)
+ 1

n
ti
i +1

)

4.1.2 Restart Criterion

A key difficulty in data stream mining is to tell an acceptable ratio of
outliers from a change in the generative process underlying the data
stream, referred to as drift. In case of drift, the stream model must
be updated. In some domains, e.g., continuous spaces, smooth updates
can be achieved by gradually moving the centers of the clusters. When
artifacts cannot be considered, the centers of the clusters must be rede-
fined. In such domains, the data streaming process thus needs a restart
criterion, in order to decide whether to launch the selection of new exemplars.

4.1.2.1 MaxR and Page-Hinkley (PH) test

Two restart criteria have been considered in StrAP. The first one is most
simply based on the number of outliers in the reservoir; when it exceeds
the reservoir size, the restart criterion is triggered. We call this criterion as
“MaxR”.
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The second criterion is based on the distribution of the data points1.
We use a statistical change point detection test, the so-called Page-Hinkley
test (PH) [Page, 1954; Hinkley, 1971], to detect the changing trend of of our
objects.

Formally, to detect the changes of streaming variable pt, the PH test is
controlled after a detection threshold λ and tolerance δ, as follows:

p̄t = 1
t

∑t
ℓ=1 pℓ mt =

∑t
ℓ=1 (pℓ − p̄ℓ + δ)

Mt = max{mℓ, ℓ = 1...t} PHt = Mt −mt

If PHt > λ, change is detected

(4.1)
We give an example for showing how PH is used to detect the changes in

Fig. 4.2. In this figure, red line pt is the changing distribution (after 300).
p̄t, mt and Mt are computed from equation (4.1), where δ is usually set to
a very small value, e.g.,10−2. The gap between Mt and mt, i.e. PHt, keeps
increasing after the change happened at 300. A threshold λ can be set to
report the detected change.
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Figure 4.2: The demonstration of change detection by PH

According to the different definitions of changing distribution pt and
threshold λ, we have several different policies to trigger the rebuilding of
the model. We show these alternatives in Fig. 4.3 as a tree structure.

The definition of pt is discussed in section 4.1.2.2 and the threshold λ
adaption is discussed in section 4.1.2.3. We will explore these different alter-
natives on experimental data sets in Chapter 5.

1 In case the number of outliers exceeds reservoir size, the new outlier replaces the
oldest one in reservoir; a counter keeping track of the removed outliers is incremented.
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Figure 4.3: The alternatives for triggering the rebuilding of the model

4.1.2.2 Definition of pt in PH test

In our work, we do not directly detect the changes of data stream xt, to
avoid increasing the computational cost and complicating the algorithm.
Instead, we detect the changes through observing the variation tendency

of outlier rate or the variation tendency of the outlier deviating

from the model. In Page-Hinkley test, pt is defined to realize the different
object for change detection.

Define pt by the outlier rate

Let us consider the sequence of points xt, pt is defined as c/(1+ot) where
ot is the fraction of non-outliers and c is 1 (resp. 2) if xt is an outlier (or
not). If a drift occurs in the data distribution, then sequence pt should display
some change. For example, when many outliers densely go to the reservoir,
pt will decrease to a smaller value and stay in the valley for a while. This
phenomena can be detected by PH. Then the restart criterion is triggered to
rebuild the model.

If the outliers occur irregularly, like noise, pt will oscillate up and down.
PH is tolerant to these irregularities and ignores the noise.

Define pt by the outlier deviation distance

Let us consider the sequence of outlier points xt; define the outlier devi-
ation distance ut as d(xt, xi) where xi is the nearest exemplar to xt in the
current model. The distribution of ut shows how far the outliers are away
from the current model. If ut comes densely with similar value, these outliers
could be a new pattern which should be added to the current model. If ut

irregularly comes with value in a large range, the outliers can be noise or rare
anomalies.
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Therefore, we define the weighted standard deviation by simultaneously
considering the value of ut and the time lt when outlier xt appears.

τt =

√√√√1

t

t∑

i=1

ωi(ui − ū)2

where ū = 1
t

∑t
i=1 ui is the mean of ui, and the coefficient

ωi = log(li − li−1) + 1, li and li−1 are the time when ui and ui−1

come. It is easy to know that when ωi ≡ 1 or li − li−1 = 1 (ui comes
uniformly), weighted standard deviation (std) is the normal definition of std.

When ut comes densely with similar value, τt will keep decreasing
towards 0. PH can be used to detect the changing trend of τt, by defining pt

as the weighted std τt computed in a sliding window along ut.

4.1.2.3 Online adaption of threshold λ in PH test

The λ parameter of the Page-Hinkley statistical test indirectly controls the
frequency of the restarts. On one hand, a small value of λ triggers the model
rebuild frequently and leads to taking noise or rare anomalies into the model
as new patterns. On the other hand, an higher value of λ triggers fewer
model rebuilds and causes latency on keeping track of the new patterns. In
fact, only the newest part of outliers are rebuilt in the model as we discussed
in section 4.1.2. Many outliers are discarded so that the clustering accuracy
decreases.

In our previous paper [Zhang et al., 2008], λ is fixed empirically to a
specified value beforehand. However, in real-world application, empirical
setting of λ is impractical. The perfect case of setting λ is to adapt it
according to the trend of newly-added patterns in model. If the newly-built
clusters are too loose, λ decreases to refine the following arriving data.
Otherwise, λ stays as the same or increases to a higher value. Especially
in the context of large stream clustering, λ needs to adapt along with the
process in a dynamic and fully autonomic methodology.

Adaption of λ when pt relates to outlier rate

In [Zhang et al., 2009a], we proposed considering the λ adaption prob-
lem as a sequential control task that can be handled using an exploration-
exploitation algorithm. The method consist on recording a quality measure-
ment of the clustering obtained after each rebuild of model and scoring each
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single value of λ that have been used. Then after each restart, the next
value of λ is chosen in a discrete (considering a finite set of values) and
a continuous (considering a continuous domain) setting, respectively using
ǫ-greedy optimization [Sutton and Barto, 1998] and a Gaussian Process for
regression [Villemonteix et al., 2009; Williams and Rasmussen, 1996].

More precisely, we first construct a table with two columns, which con-
tains a set of possible values of λ and the corresponding scores which measure
the quality of clustering. The table is initialized by randomly choosing values
of λ at the first several restarts.

In the adaption process of ǫ-greedy action selection, after each restart, the
next value of λ is uniformly selected from the table with a small probability ǫ
for the exploration reason. In most cases, λ is selected with the largest score
of E(F eg

λ ), where

F eg
λ = − 1

|C|

|C|∑

i=1

( 1

ni

∑

ej∈Ci

d(ej, e
∗
i )
)

(4.2)

In equation (4.2), |C| is the number of clusters, e∗i and ni respectively
the exemplar and size of the i-th cluster, d(�, �) is the distance between
two points. This classical look-up table setting has already successfully
been applied in various real world control problem [Crites and Barto, 1996;
Singh and Bertsekas, 1997; Zhang and Dietterich, 1995].

When the Gaussian Process regression is used for λ selection for the next
step, the first column of table (ever-used λ values) is used as the training
data, while the second column of table (corresponding scores of the λ) is
used as targets. 2000 random points in a given range of λ are used as test
data. λ is set to be one of the test data which has the largest predictive mean
and variance 2. The newly selected λ and its score are added to the end of
table after computation.

In the spirit of the Bayesian Information Criterion [Schwarz, 1978]. The
score of each λ (used as target) is set to:

Fλ = − 1

|C|

|C|∑

i=1

( 1

ni

∑

ej∈Ci

d(ej , e
∗
i )
)
− ϕ

d

2
log N − ηOt (4.3)

where, except the same notions in equation (4.2), d the dimension of the data
stream, N the number of data points recognized by the stream model since

2 The code of Gaussian Process regression can be found at
http://www.gaussianprocess.org/gpml/code/matlab/doc/regression.html.
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the last restart, ϕ and η are two constants to make the penalty term on the
same scale as the distortion item.

We do not use the clustering accuracy as the quality measurement, that
would not be realistic in a context of online and large scale clustering task
because the labels of the data are never known in advance. We use the
average of the average distances, which are the mean of distances between
points and their exemplars in each cluster.

Online adaption of λt when pt relates to outlier deviation
distance

In the case of defining pt by the outlier deviation distance, the change
reporting threshold λ is expected to be adapted in real-time. In other words,
this threshold λt is computed at each time step t. This is different from the
above introduced adaption strategy in which λ is only adapted at each restart
step.

From equation (4.1), we know that PHt is a non-negative variable. The
perfect case of setting threshold λ is to adapt it according to the trend
of newly-added patterns in model. When pt is set to observe the outlier
deviation distance, we adapt λt in real-time according to the changing
behavior of pt.

Proposition 4.1.1 The threshold for detecting changes by PH can be com-
puted as

λt =

{
0 if PHt = 0
f ∗ p̄t otherwise

or

λt0 =

{
0 if PHt = 0
f ∗ p̄t0 otherwise

where, f is a constant called the λ factor, which is the number of required
witnesses seeing the changes, e.g., f = 30. t0 is the moment since when
PHt0 6= 0. p̄t and p̄t0 are the moving averages computed after equation (4.1).

Proof The detection of change is triggered when PHt > λ. In order to see
how to set λ, firstly we have a look on how the non-negative PHt increases.
As defined in equation (4.1), if PHt−1, PHt 6= 0, the increasing from PHt−1

up to PHt is

PHt − PHt−1 = (Mt −mt)− (Mt−1 −mt−1)
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because PHt−1, PHt > 0, we have Mt ≡Mt−1. Then

PHt − PHt−1 = mt−1 −mt = mt−1 − (mt−1 + pt − p̄t + δ) = p̄t − pt − δ

Therefore, since PHt0 > 0 (i.e., p̄t0 > pt0 + δ), for t ≥ t0, we have

PHt =
t∑

i=t0

(p̄t − pt − δ)

From this equation, we can see that PHt is the collection of deviation of pt

from p̄t. The scenario of changes happening is the weighted std pt decreasing
towards 0. To be sure of the effective changes, not fake anomalies, evidence
should be collected in longer time. We define a λ factor, called f , to be the
number of steps when PHt keeps increasing. As pt is decreasing towards
0, δ is a very small value (10−2), and p̄t decreases slowly, after f steps,
PHt ≈ f ∗ p̄t. Therefore, the first option for setting λ is

λt = f ∗ p̄t

To avoid computing λt frequently, it can be set immediately when PHt > 0.
Then the second way for setting λ is

λt0 = f ∗ p̄t0

where t0 is the moment from when PHt0 6= 0.

In Proposition 4.1.1, λt is computed according to inner variable p̄t which
reveals the changing trend of pt. The only shortcoming is the empirically
defined constant f . Fortunately, the meaning of f is the number of waiting
steps before making the decision. It is independent and has no relationship
with any other variables, e.g., pt, xt. Therefore, we can set it to be a common
value, e.g., 30. The sensitivity analysis w.r.t. the λ factor, f , is presented in
validation section 5.2.

4.1.3 Model Rebuild

When the restart is triggered by either “MaxR”criterion or PH change detec-
tion criterion, Weighted AP is launched on E = {(ei, ni)} ∪ {(e′j , 1)}, where
(ei, ni) denotes an exemplar of the current stream model together with the
associated size ni, and e′j is an outlier in the reservoir. Penalties are defined
after section 3.2 in Chapter 3, as follows:

S(ei, ei) = σ + Σi S(e′j, e
′
j) = σ

S(ei, ej) = −ni d(ei, ej)
2 S(ei, e

′
j) = −ni d(ei, e

′
j)

2

S(e′j , ei) = −d(ei, e
′
j)

2

75



4. STREAMING AP (STRAP): CLUSTERING DATA STREAMS

After the new exemplars have been selected by WAP from E , the stream
model is defined as follows. Formally, let e̊ denote a new exemplar and let
e1, . . . em (respectively e′1, . . . , e

′
m′) be the previous exemplars (resp. reservoir

points) associated to e̊. With no difficulty, the number n of items associated
to e̊ is set to n1 + . . . + nm + m′. The associated distortion Σ is estimated as
follows. Let e be an item associated to e1. Indeed e is no longer available; but
assuming an Euclidean space, e can be modeled as a random item e1 + X~v,
where ~v is a random vector in the unit ball, and X is a scalar random variable
with normal distribution. It comes:

||̊e− e||2 = ||̊e− e1||2 + ||e1 − e||2 − 2〈̊e− e1, X~v〉
= d(̊e, e1)

2 + d(e1, e)
2 − 2X 〈̊e− e1, ~v〉

Therefore, taking the expectation, IE[d(̊e, e)2] = d(̊e, e1)
2+ 1

n1
Σ1. Accordingly,

Σ =
m∑

i=1

(
nid(̊e, ei)

2 + Σi

)
+

m′∑

i=1

d(̊e, e′i)
2

Finally, t is set to the maximal time stamp associated to ei and e′j, for ei and
e′j ranging among the exemplars and outliers associated to e̊.

Algorithm 1 StrAP Algorithm
Data stream x1, . . . xt, . . .; fit threshold ε
Init

AP(x1, . . . , xT ) → StrAP Model section 4.1.1
Reservoir = {}

for t > T do
Compute xi = nearest exemplar to xt section 4.1.1
if d(xt, xi) < ε then

Update StrAP model section 4.1.1
else

Reservoir ← xt

end if
section 4.1.2

if Restart criterion then
Rebuild StrAP model section 4.1.3
Reservoir = {}

end if
end for
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4.1.4 Evaluation Criterion

The performance of StrAP is evaluated by the clustering quality and
efficiency. In the case where the data points are labeled, the clustering
quality is assessed in the supervised way by clustering accuracy and purity.
The efficiency concerns two aspects: computational time efficiency and
learning efficiency by reducing the number of points used for maintaining
the online clustering model, i.e., the percentage of outliers.

Accuracy of Clustering

The clustering quality is commonly assessed after the accuracy of clus-
tering. A point associated to an exemplar is correctly classified (respectively,
misclassified) if its class is the same as (resp. different from) the exemplar
class. The accuracy (error rate) of clustering is the percentage of jobs which
are correctly clustered (mis-clustered).

Purity of Clustering

When the data are labeled, clustering quality can also be assessed by
the purity. Purity of Clustering is the fraction of the jobs in each cluster
belonging to the majority class of the cluster, averaged over all clusters.

Purity = 100× (

K∑

i=1

|Cd
i |
|Ci|

)/K (4.4)

where K is the number of clusters, |Ci| is the size of cluster i and |Cd
i | is the

number of majority class items in cluster i. Note that this is a pessimistic
evaluation because the weights contributed by all clusters are the same
regardless their size. The clustering purity is known to be more robust than
the clustering accuracy in case of imbalanced clusters and/or classes.

Percentage of Outliers

In StrAP, the outliers in reservoir contribute to the rebuilding of the
model and extraction of new patterns. For the computational cost reason,
we expect to use a small number of outliers. However, sufficient outliers are
needed in order to keep track of the data evolution and improve the clustering
accuracy. Therefore, at the same level of accuracy, the percentage of outliers
is expected to be as small as possible. The accuracy, the error rate and the
percentage of outliers, sum up to 100%.

77



4. STREAMING AP (STRAP): CLUSTERING DATA STREAMS

4.1.5 Parameter setting of StrAP

There are several parameters to be set when using StrAP. We give their
suggested values which were used in our experiments.

• Number of jobs for initialization of the stream model:
1000 items from the head of stream

• AP preference parameter σ:
the median value of the similarity matrix

• Fitting threshold ε (comparing each arriving item with the model):
the average distance between items and exemplars in the initial model

• Time decay window ∆:
set to 10,000 and its sensitivity analysis is discussed in the validation
section 5.2.

• PH parameters δ and λ:
δ is set to a very small value, e.g., 10−2. λ is adapted online.

We show the validation results of StrAP in section 5.2 of Chapter 5,
w.r.t the clustering quality and the parameter sensitivity.

4.2 Grid monitoring G-StrAP system

Towards the autonomic grid computing system as we introduced in Chapter
1, our first step is to model the grid running status. We build a multi-scale
online grid monitoring system called G-StrAP, which extends Hi-AP

to the non-stationary case through a 2-level approach, inspired from
[Guha et al., 2003]. StrAP is used on the first level to cluster the stream of
jobs submitted to the EGEE Grid, providing an understandable description
of the job flow and enabling the system administrator to spot online some
sources of failures.

4.2.1 Architecture

The structure of G-StrAP on streaming jobs submitted grid is shown in
Fig. 4.4. On the first level, when jobs flows in, StrAP is used to cluster
the streaming jobs submitted to the grid. On the second level, AP is used
to cluster the representative exemplars (unrepresentative exemplars being
filtered out) and thus provide “super-exemplars”.
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Figure 4.4: Framework of G-StrAP on non-stationary data

4.2.2 Monitoring Outputs

Two modules have been built to enable user views of the monitoring results.
The first module is concerned with first-level on-line monitoring. It displays:

• The rupture diagram, displays the number of PH restarts (Fig. 5.15).
This diagram indicates how fast the dynamics are changing, and the
amplitude of the variations.

• The online distribution of the jobs (Fig. 5.16).

The second module is concerned with offline analysis (post-monitor)
on the second level. It collects all exemplars from the first level over a
large period of time (the whole period was considered in the experiments),
and applies AP to the set of exemplars, thus extracting “super-exemplars”.
The super-exemplars provide a common description of the different models
elaborated along time, thus enabling the detection of long-run trends (Fig.
5.17).

The application results of G-StrAP is presented in section 5.4.

79



4. STREAMING AP (STRAP): CLUSTERING DATA STREAMS

80



Chapter 5

Validation of StrAP and Grid
monitoring system G-StrAP

In this chapter, we will firstly show the validation result of Hi-AP on the
EGEE jobs. Secondly, we present the validation results of StrAP on the
artificial data and benchmark data. Then we show how the G-StrAP system
monitors the streaming jobs in EGEE Grid.

5.1 Validation of Hi-AP on EGEE jobs

We use Hi-AP to cluster a real-world dataset describing the 237,087 jobs
submitted to the EGEE grid system. Each job is described by five attributes:

1. the duration of waiting time in a queue;

2. the duration of execution;

3. the number of jobs waiting in the queue when the current job arrived;

4. the number of jobs being executed after transiting from this queue;

5. the identifier of queue by which the job was transited.

Note that the behavior might be significantly different from one queue
to another. The expert is willing to extract representative actual jobs (as
opposed to virtual ones, e.g. executed on queue 1 with weight .3 and on
queue 2 with weight .7), which is the main applicative motivation for using
AP. The dissimilarity of two jobs xi and xj is the sum of the Euclidean
distance between the numerical description of xi and xj , plus a weight wq if
xi and xj are not executed on the same queue. Further, the EGEE dataset
involves circa 30% duplicated points (different jobs with same description).
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The real-world dataset describing the jobs submitted to the EGEE grid
is used to compare the distortion incurred by hierarchical clusterings, k-
centers, Hi-AP-simple and Hi-AP, after the same procedure as in section
3.5.1; AP cannot be used on this dataset as it does not scale up. When
using k-centers for clustering each subset, the number of clusters is set to 15
which makes sure that the total number of clusters obtained from subsets
by using k-centers is equal to that by using of WAP. 120 independent k-
centers runs are launched, and the best distortion is reported, for a fair
comparison (same computational cost and overall number of clusters). The
first phase (clustering all

√
N datasets) amounts to 10 minutes for k-centers

and Hi-AP, and 26 minutes for Hi-AP-simple due to the duplications in the
dataset). Note that the computational cost of this first phase can trivially
be decreased by parallelization.
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Figure 5.1: Distortion of Hierarchical k-centers, Hi-AP-simple and Hi-AP

on EGEE job dataset

Based on the exemplars obtained from the first level subsets, k-centers,
AP and WAP are respectively used for clustering the exemplars and gener-
ating the final clusters. In this second-level clustering step, when varying
the number K of clusters of k-centers and the preference σ of AP and WAP,
the distortions of various clustering results as defined in equation (3.1) can
be computed and reported in Fig. 5.1. Using the 3 curves of distortions,
we can compare the performance of the 3 methods on the same number of
clusters. The Fig. 5.1 shows that Hi-AP improves on both Hi-AP-simple
and k-centers; the distortion is decreased by a factor 2 compared to k-centers
and the computational cost (not shown) is decreased by a factor 3 compared
to Hi-AP.
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5.2 Validation of StrAP Algorithm

As an on-line clustering algorithm, StrAP is meant to enforce a high accu-
racy and purity. It is also required to efficiently adapt to the changing distri-
bution of a data stream. StrAP performances are assessed in terms of the
criteria discussed in section 4.1.4. The first validation in section 5.2.2 is based
on a synthetic data stream generated artificially. The second experiment in
section 5.2.3 validates StrAP on the Intrusion Detection benchmark data
set referred to as KDD Cup 1999 [KDDCup, 1999; Lee et al., 1999]. This
experiment provides a detailed analysis of the sensitivity of StrAP w.r.t.
the different restart criteria (Fig. 4.3) and parameter settings referred in
section 4.1.5. The better performance of StrAP on KDD99 data are shown
by comparing to those of DenStream [Cao et al., 2006] in terms of clustering
purity.

5.2.1 Data used

The first data set we used is an artificially generated stream, motivated by
testing the ability of StrAP handling the dynamically changing distribu-
tion. The stream generator is parameterized from the dimension D of the
data points, and the number M of target sources. Each target example
ei is uniformly selected in [0, 10]D and its probability pi(t) evolves along
time proportionally to wi × sin(ωit + ϕi), where weight wi, frequency ωi

and phase ϕi are uniformly selected respectively in [1, 100], [0, 2π], and
[−π/2, π/2]. Fig. 5.2 shows the values of the probability function along
time for M = 10 targets. These functions are all periodic functions with
different amplitudes and periods. At time step t, target ei is selected with
the maximal probability pi(t) among i = 1...M . Then the data streaming
point xi is set to ei plus a gaussian factor. This generating policy, deciding
the appearance of targets by their periodic probabilities, simulates the
dynamic changing distribution in data stream.

Adding gaussian factor (zero mean and unit variance) to the targets makes
the streaming data have the structure of mixing spheres in dimension D. Ac-
cording to the periodic probabilities, in different time periods, the streaming
data are mixed by the points having different spherical distribution. The
challenge of online clustering this data stream is how to handle the chang-
ing distribution. That is to say, the data from an unknown target can be
detected and taken into the model once they arrive.

The data stream we generated in this validation has 100,000 points, mak-
ing all of the targets have chances to be selected. The dimension D has
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Figure 5.2: The values of the function wi × sin(ωit + ϕi) along time

been set to 30 or 50, approximate values of practical application cases (e.g.,
KDD99 data in 34-dimension mentioned below). The number of targets M
has been set to 10 (a small value) or 100 (a large value). The distribution of
streaming data evolves w.r.t the appearance of the target exemplars.

The second dataset is the network connection data used in KDD Cup
1999 Intrusion Detection contest [KDDCup, 1999; Lee et al., 1999]. The
task is to build a predictive model (i.e. a classifier) capable of distinguishing
between “bad” connections, called intrusions or attacks, and “good” normal
connections. A connection is a sequence of TCP packets starting and ending
at some well defined times, flowing from a source IP address to a target
IP address under some well defined protocol. Each connection is labeled
among 23 classes, the normal class and the specific kinds of attack, such as
buffer overflow 1, ftp write2, guess passwd3, neptune4.

The KDD99 data set we used includes 494,021 network connection records
(71MB). Each record is described by 41 attributes. We treat the 494,021
connections as a stream (one connection per timestep), as did in [Cao et al.,
2006]. It is important to note that the data distribution is not stable. The
later-arriving part of data include specific attack types not in the beginning
part of data. The connections labeled by one type of attack can have different
distribution if their arrival time-steps has long intervals. This makes the task
more realistic.

After the KDD Cup 1999 contest, this data set has served as one of the
benchmark Intrusion Detection data. It was widely used to evaluate the In-

1An attacker gains access to a machine by remotely overflowing the IMAP service.
2Remote FTP user creates .rhost file in world writable anonymous FTP directory and

obtains local login.
3Try to guess password via telnet for guest account.
4SYN(synchronize) flood denial of service on one or more ports.
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trusion Detection algorithm (cited by about 800 articles). We use StrAP

on this dynamically distributed data to build the clustering model of differ-
ent types of connections. In this model, each cluster include the connections
behaving similarly and belonging to the same type. Each new arriving con-
nection is associated to one cluster, or identified as an outlier. With the help
of the class labels in the associated cluster, this online clustering process
can classify the arriving connections. It is worth noting that the clustering
model is updated online by catching the changing distribution. Out of the
41 attributes, we only use the 34 numeric ones after [Cao et al., 2006], and
normalize them such that they have same range of variation5.

5.2.2 Experimentation on Synthetic Data Stream

The synthetic data stream is generated artificially as we discussed in section
5.2.1. We use StrAP on this data stream to validate its ability of handling
the dynamically changing distribution, i.e., expressed by the appearance of
the target exemplars.

The dynamics of the synthetic data stream are depicted on Fig. 5.3. In
this data stream, the steaming points in dimension D = 30 are from M = 10
different classes. In Fig. 5.3, x-axis is the time step t, and y-axis is the
different classes from 0 to 9. The points show the classes from which the
streaming data points are generated at each time step. At the beginning
of the stream, the data points are only from class 2, 7, and 9, which are
learned in the initial clustering model. Representatives of class 0 appear
shortly after the initialization; they are first considered to be outliers (legend
∗). Using the Page-Hinkley restart criterion, the first restart indicated by a
vertical line occurs soon after. The same pattern is observed when the first
representatives of class 3, 5 and 8 appear; they are first considered to be
outliers, and they respectively trigger the second, third and fourth restarts
thereafter. After several restarts, the clustering model recognizes the points
from all classes except class 1. Therefore, no restart is happened in the rest
of streaming, but it may be triggered by the outliers (from class 1) in the
end of stream. The small number of the “true” classes makes it unnecessary
to use a windowing mechanism (section 4.1.1).

Table 5.1 displays the performances of StrAP with respect to the per-
centage of outliers, the error rate6, and the distortion, depending on the

5Attribute duration is changed from seconds into minutes; src bytes and dst bytes

are converted from byte to KB; log is used on count, srv count, dst host count,
dst host srv count.

6The classes of the points in the synthetic dataset correspond to the original targets
respectively used to generate the points.
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Figure 5.3: StrAP on the synthetic data stream

restart criterion used, and the parameters thereof. To analyze the sensitivity
of parameters, λ and “Maximum size of reservoir” are set to several empirical
values.

Table 5.1: Experimental results of StrAP on the synthetic data stream
Restart Outlier Error N. of N. of Distortion Runtime

(%) restart clusters

PH, 5 0.13 0 4 16 4,369,521
λ= 10 0.17 0 4 16 4,369,410 19 sec

20 0.62 0 4 20 4,159,085

Maximum 50 0.20 0 4 16 4,334,710
size of 100 0.41 0 4 19 4,116,768 20 sec

reservoir 300 1.34 0 4 25 3,896,671

From Table 5.1, we find that there are more number of clusters (e.g., 16)
obtained by StrAP7 than the number of target sources (e.g., M = 10). This
is because AP method usually divides the points from one class into more
than one clusters so that all the clusters have the similar radius (e.g., around 6
in this data stream). All clusters are pure including the data points from only
one type of class, shown by the error of 0. This good quality consists with the
good separation of data from different classes. Adding larger gaussian factors
to the targets of different classes will affect the underlying data structure,
i.e., making the data of one class distribute in a larger sphere in dimension

7The number of clusters in the model obtained by StrAP varies during the clustering
process. Table 5.1 shows the number of clusters in the end of stream.
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D, or even merge together with the data from different classes. The resulting
difficulty of clustering caused by the data structure is not within the scope
of our research.

Interestingly, when the restart becomes less sensitive (increasing param-
eter λ or reservoir size MaxSizeR), the outlier rate increases together with
the number of clusters, while the number of restarts remains constant. A
tentative interpretation is that, the less sensitive the restart, the more out-
liers and the more diverse the reservoir becomes; this diversity results in a
higher number of clusters, decreasing the distortion. The computational time
is circa 20 seconds for 100,000 points. Similar results are obtained for various
number of dimensions D and of classes M (D = 30 and M = 10 in Table
5.3).

5.2.3 Experimentation on Intrusion Detection Dataset

The 494,021 network connection records of KDD99 Intrusion Detection
dataset are handled as a stream (one connection per time step). StrAP

is used to build the clustering model of different types of connections,
whose distribution is dynamically evolved. The performances of StrAP

are measured in terms of accuracy, purity, outlier rate, and computational
time as we discussed in section 4.1.4. The experiment also provides the
sensitivities of results w.r.t. window size parameter ∆ (section 4.1.1) and
the different restart criteria (Fig. 4.3), reported on Fig. 5.4, Fig. 5.5, Fig.
5.6 and Table 5.2. DenStream [Cao et al., 2006] is used as a baseline to
compare with StrAP on the performance of clustering purity.

Results when pt in PH is defined by the outlier rate

Firstly, we show the experimental results when pt in PH restart criterion
is defined by the outlier rate as we discussed in section 4.1.2.2.

Fig. 5.4 (a) shows that StrAP clustered the Intrusion Detection data
stream with very high accuracy (more than 98% for ∆ > 15000). The ac-
curacy trough observed for ∆ = 20, 000 with the Page-Hinkley criterion was
investigated. The error rate when ∆ = 20, 000 is 9.7% (accuracy = 89.4%).
In fact 86% of these errors were caused by wrongly clustering the connec-
tions with label “neptune” into the cluster whose exemplar is labeled by
“portsweep”. The novel connections with label “neptune”, which should go to
reservoir, escaped because an exemplar of one cluster slightly drifted towards
the novel pattern. The rebuild of model was therefore not triggered and the
errors spread out.

Fig. 5.4 (b) shows that the PH criterion improves on the Reservoir size,
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Figure 5.4: Performance of StrAP on KDD99 dataset: comparing restart
criterion PH (λ = 20) and Reservoir size (MaxSizeR = 300), depending on
window size ∆. In PH criterion, pt is defined by the outlier rate

with a lower percentage of outliers and a smaller computational time. The
runtime is circa 7 minutes. Since the outlier rate in Fig. 5.4 (b) is less than
1%, it is worth noting that StrAP only needs 1% of the data (initial subset
plus the outliers) in order to produce an accurate model (less than 1% error
rate).

From Fig. 5.4, it seems that the performance of PH restart triggering
criterion is not so strongly stable when pt is defined by the outlier rate. It
performs well with very high accuracy, low outlier rate and low computa-
tional cost, except when ∆ = 20, 000 the error rate is higher. Next, we will
evaluate the performance when pt is defined by the outlier deviation distance.

Results when pt in PH is defined by the outlier deviation
distance

Fig. 5.5 compares the performance of StrAP on KDD99 data depending
on window size ∆, similar to Fig. 5.4. Fig. 5.5 (a) shows that StrAP

clustered the Intrusion Detection data stream with very high accuracy ( more
than 98% for ∆ > 15000). Comparing to Fig. 5.4 (a), we can say that the
two different ways of setting pt (by outlier rate and outlier deviation distance)
in PH have similar performance on clustering quality.

The clustering accuracy with the Page-Hinkley criterion is higher than
that of MaxR criterion in Fig. 5.5 (a), except when ∆ = 15, 000 and 20, 000.
The percentage of outliers of PH is 0.3% lower than that of MaxR, as shown in
Fig. 5.5 (b). Regarding the setting of λ for PH criterion, the online adapted
λt and λt0 have comparable performance on clustering accuracy. PH with λt0

has a little higher percentage of outliers as expected in Proposition 4.1.1.

Fig. 5.6 shows the influence of parameter setting in the restart criteria.
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Figure 5.6: Performance of StrAP on KDD99 dataset: comparing restart
criterion PH and Reservoir size depending on parameter setting

On each of 4 different settings on |Reservoir| (bottom x axis in Fig. 5.6),
StrAP was run 9 times with different window size of ∆ (as x axis in Fig.
5.5). The average with std of performances were computed on these 9 running
results. Similarly for PH criterion, on each of 3 different settings on λ factor
f (top x axis in Fig. 5.6), the performances of StrAP was averaged on 9
running results with different window size of ∆.

Fig. 5.6 (a) shows the averaged accuracy and Fig. 5.6 (b) shows the
averaged percentage of outliers. We can see MaxR has stable accuracy
on the |Reservoir| setting and causes more outliers with the increasing
of |Reservoir|, which can be easily understood. PH criterion has higher
accuracy when f ≥ 30 and lower percentage of outliers as expected.

Table 5.2 gives the computation cost of StrAP on various parameter
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settings8. To be concise, only the representative results are reported.
Under the value of time cost, we also give the range of number of clusters
during the stream clustering process. It easy to see that the computation
cost increases with lengthening the window ∆. Regarding to MaxR, the
large |Reservoir| we set, the more computational time it takes. This
is because larger |Reservoir| and ∆ takes more points for rebuilding
the model (4.1.3) and let the model bear more clusters. By contrast,
PH criterion has lower (10%) time cost because it triggers the restart
just at the moment when new patterns arrived and enough examples of
them were collected. It therefore avoids taking trivial clusters into the model.

Summarizing from Fig. 5.6 and Table 5.2, we see that the PH criterion
improves on the MaxR criterion, with a higher accuracy (1%), a lower
percentage of outliers (0.2%) and a smaller computational time (10%). The
runtime is circa 7 minutes for StrAP with a optimal parameter setting.
It is worth noting that StrAP only needs 1% of the data (initial subset
plus the outliers) in order to produce an accurate model (more than 97%
accuracy).

Table 5.2: Computation time of StrAP on different parameter settings (in
mins)

Restart ∆=5000 ∆=10000 ∆=20000 ∆=30000 ∆=40000
PH λ = 30 ∗ p̄t 4.7 6.5 7.8 8.6 10.0

([13 154]) ([36 184]) ([19 197]) ([57 215]) ([57 231])

MaxR =100 4.5 7.2 8.6 9.3 10.7
([18 154]) ([16 188]) ([17 228]) ([57 248]) ([57 255])

MaxR =300 5.8 8.3 10.8 10.7 11.8
([31 181]) ([20 224]) ([48 239]) ([57 244]) ([57 262])

If we consider the KDD99 data as a binary classification problem, there
are about 20% normal connections and 80% attacks. The online cluster-
ing results of StrAP have 99.18% Truth Detection rate and 1.39% False
Alarm rate. This clustering result is comparable to the classification result
using supervised method (Principal Component Analysis) with 98.8% Truth
Detection rate and 0.4% False Alarm rate [Wang et al., 2008].

8running on computer of Intel 2.66GHz Dual-Core PC with 2 GB memory by Matlab
codes
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5.2.4 Online performance and comparison with Den-

Stream

The online performance of StrAP is displayed in Fig. 5.7, reporting the
accuracy along time for ∆ = 25000 and λt = 30 ∗ p̄t in PH criterion; restarts
are indicated with stars. There are 33 restarts in all. The number of restarts
in different size of window ∆ is around from 29 to 46.
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Figure 5.7: Accuracy of StrAP on KDD99 data when ∆ = 25000 and using
PH with λt = 30 ∗ p̄t

From Fig. 5.7, we can see that the clustering accuracy during the online
process is always higher than 96.5%. The restarts often happen when the
accuracy was decreasing, e.g., around time step 0.5 ∗ 105, 1 ∗ 105 , 1.5 ∗ 105.
Especially, after the restarts, the accuracy increased, noting that the restart
was triggered by the distribution of outlier, not the accuracy. This means
that the appearance of outliers triggered the rebuilding of the model and the
adding of new patterns, which makes the model keep tracking the stream.

The online accuracy with the MaxR restart criterion has the similar
performance and the number of restarts ranges from 15 to 22 when
|Reservoir| = 300, from 32 to 56 when |Reservoir| = 100.

Fig. 5.8 shows the online performance of StrAP by measuring the
clustering purity when ∆ = 25000 and |Reservoir| = 300. After each
rebuilding of the model, the clustering purity is computed by averaging the
purity of each clustering as defined in equation (4.4). Since a very large K
will cause a very high purity, in Fig. 5.8 the number of clusters K is also
given to show that clustering purity higher than 96% is averaged from about
150 clusters.
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Figure 5.8: Clustering purity of StrAP on KDD99 data when ∆ = 25000
and |Reservoir| = 300

Fig. 5.9 presents a comparative assessment of StrAP and DenStream
[Cao et al., 2006], using the same purity measure as defined in equation
(4.4). The clustering purity of DenStream on the Intrusion Detection dataset
was evaluated during four time windows of length 1000 when some attacks
happened. For a fair comparison, the clustering purity of StrAP was
computed during the same time windows, considering the same 23 classes.
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Figure 5.9: Comparative performances of StrAP and DenStream on Intru-
sion Detection dataset

Fig. 5.9 respectively reports the results obtained for StrAP with one of
the worst settings (∆ = 10000 and |Reservoir| = 300), an average setting
(∆ = 10000 and λt0 = 30 ∗ p̄t0), and the results of DenStream found in
[Cao et al., 2006]. In the two StrAP settings, the number of clusters
obtained in the four windows respectively is (43, 33, 56, 5) for MaxR and
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(49, 32, 47, 6) for PH.

On the Intrusion dataset, StrAP thus consistently improves on Den-
Stream; as a counterpart, the computational time is higher (around 7 min-
utes as shown in Table 5.2 9 against 7 seconds for DenStream). The reason
is because StrAP carries the clustering model all the time, which makes it
possible for the users to query the results whenever they want. By contrast,
the clustering results of DenStream is only available when the user sends the
request for querying. While this “lazy” clustering and labeling behavior is
more computationally efficient, it is suggested that it is not well-suited to
e.g., monitoring applications, when the goal is to provide the user with un-
derstandable results and to identify behavioral drifts as soon as they appear.

5.3 Discussion of StrAP

The presented StrAP algorithm aims at understandable, stable and
computationally efficient data stream clustering, through the selection of
the exemplars best representing the (majority of) data points at any time
step. Meanwhile, the stream clustering model keeps tracking the evolving
distribution through change point detection.

From the validation results, we can see that StrAP makes very good
summaries of streaming data on the basis of the clustering model. The
selected exemplars in the model represent the streaming data points under
the guarantee that an exemplar and its represented points have the same
type of class (98% accuracy). Meanwhile, the data used for building and
maintaining the online clustering model is less than 1%, including the
1000 initializing data points and the outliers in reservoir. The usage of
such small number of data is due to the rebuilding of the model only if needed.

We have introduced several ways to trigger the rebuilding of the model,
as shown in Fig. 4.3. The experimental results show that they have
comparable performance regarding the clustering accuracy, but PH criterion
causes fewer outliers. We have also analyzed the sensitivity of parameter
settings, e.g., the window size ∆, the threshold of MaxR, and the PH
threshold λ. The results are quite robust when ∆ > 15000, MaxR > 200
and λ >= 30.

9 can be improved by coding in C/C++
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The validation of StrAP on the synthetic data and on the KDD99 bench-
mark data verifies the abilities of StrAP w.r.t high clustering quality, han-
dling the changing distribution and an incrementally updated model sum-
marizing the streaming data. It increases our confidence on building the
G-StrAP grid monitoring system based on the StrAP algorithm.

5.4 G-StrAP Grid Monitoring System

This section reports on the online grid monitoring system, G-StrAP. As we
discussed in section 4.2 of Chapter 4, G-StrAP is based on using StrAP

on the streaming EGEE jobs to produce online outputs and using “super”
clustering to conduct offline analysis. The goal of the experiments is twofold.
On the application side, the key question is whether G-StrAP provides the
EGEE system administrator with useful information. On the methodologi-
cal side, the performance of the G-StrAP algorithm will be assessed with
respect to clustering quality, e.g., clustering accuracy, clustering purity.

5.4.1 Related work

Before we report our results of grid monitoring, we have a discussion about
the related work. Grid Monitoring involves two main functionalities, respec-
tively acquisition and usage of the relevant information. Acquisition
includes sensors that instrument grid services or applications, and data
collection services that filter, centralize and/or distribute the sensor data
to the usage functionality. Acquisition raises challenging scalability and
implementation issues. A plethora of architectures have been proposed
and deployed. They provide a distributed information management service
supporting in principle any kind of sensors. In the EGEE framework,
deployed architectures include R-GMA [Byrom et al., 2005], Ganglia, Nagios
[Imamagic and Dobrenic, 2007], MonALISA [Cirstoiu et al., 2007], gridIce
[Donvito et al., 2005], and SCALEA-G [linh Truong and Fahringer, 2004].
They aim at job lifecycles (e.g., Job Provenance [Křenek et al., 2008] and the
gLite Logging and Bookkeeping service [Laure et al., 2006]) or service and
machine availability (e.g., SAM [Kalmady et al., 2007], Lemon [LEMON]
and GMS [Palatin et al., 2006]).

Usage, which is more specifically investigated in this work, includes con-
sumer services such as real-time presentation and interpretation. It also in-
cludes middleware services as far as feedback loops are considered, typically
in the Autonomic Computing framework. Many architectures and integra-
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tion frameworks such as the EGEE dashboard [Andreeva et al., 2008] and
Real Time Monitor [RTM] also offer advanced presentation, user interaction
and reporting facilities, although no interpretation facility is provided. Some
of them include a software infrastructure for plugging analysis and feedback
tools.

Actually, data interpretation, meant as revealing meaningful (compound)
features which go beyond elementary statistics, is much less developed in
the grid area.

Grid Monitoring mostly focuses on feeding schedulers with educated
guesses, e.g. the prediction of the upcoming workload. The well-known
Network Weather Service [Wolski, 2003] has pioneered a supervised learning-
based approach, extracting the parameters of various elementary predictors
and combining them in the spirit of boosting. [Mutz et al., 2007] likewise
predicts the estimated response time (with a given confidence interval) for
batch-scheduled parallel machines. [Dinda, 2002] categorizes load models on
shared clusters. The integration of ontologies, monitoring and grid schedul-
ing of work flows has been explored in the Askalon project [Fahringer et al.,
2005].

[Germain-Renaud and Monnier-Ragaigne, 2005] proposes more adaptive
and thus less intrusive methods for detecting misbehaving users in volunteer
computing grids. Interestingly, [Germain-Renaud and Monnier-Ragaigne,
2005] is based on sequential testing, closely related to the change detection
method used in G-StrAP.

5.4.2 The gLite Workload Management System

In the EGEE grid, the major middleware gLite [Laure et al., 2006] integrates
the sites (computing resources) through a set of middleware-level services
(the Workload Management System, the WMS). WMS accepts jobs from
users and dispatches them to computational resources based on the users’
requirements on one hand, and the characteristics (e.g., hardware, software,
localization) and state of the resources on the other hand. The WMS is
implemented as a distributed set of Resource Brokers (RB), with tens of
them currently installed. All the brokers get an approximately consistent
view of the resource availability through the grid information system. Each
broker reaches a decision of which resource should be used by a matchmaking
process between submission requests and available resources. Once a job is
dispatched, the broker only reschedules it if it failed; it does not reschedule
jobs based on the changing state of the resources.
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From a job-oriented view, once a job is submitted to the grid, it goes
through the lifecycle depicted in Fig. 5.10. It is first submitted, then waiting
for the WMS to match a resource for it. Once a resource is found, the job is
ready for transfer, then actually transferred to the resource, where its state
is scheduled, meaning that it is enqueued in the local batch system. When
selected, the job is running, until finally successfully finished (done OK ),
or failed in errors (done failed). Notably, the resource allocation is never
reconsidered after the matching step; upon failure, the job is resubmitted
and goes through the whole process one more time. Early termination
(aborts, cancels) triggered by either the user or the middleware components
can occur at any step in the job lifecycle.

Figure 5.10: Life cycle of jobs submitted to Grid

In this lifecycle, the timestamp of each event (transition in the graph, Fig.
5.10) is recorded by the Logging and Bookkeeping (L&B) service, i.e. the
gLite information system relevant to active jobs. These timestamps provide
the information of the time cost duration for different services, which are
very useful for revealing the grid service quality.

5.4.3 Job Streams

We used EGEE jobs from logs of 39 RBs of all gLite-operated jobs in the
whole EGEE grid during 5 months (from 2006-01-01 to 2006-05-31). There
are in all 5,268,564 jobs. Each job is described by 6 attributes measuring the
time cost duration for different services.
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1. Submission Time: time between job registration and transfer to WMS

2. Waiting Time: time to find a matching resource.

3. Ready for Transfer Time: time acceptation and transfer (waiting +
ready time), reported by the JobController (JC).

4. Ready for CE accept Time: the same as Ready for Transfer Time,
but reported by the LogMonitor (LM)

5. Scheduled Time: queuing delay

6. Running Time: execution time

While the third and forth attributes seem to be redundant (JC is a stan-
dalone logging service, while the LM integrates various logs, and returns them
in the L&B database), we shall see that both offer valuable information.

Besides the 6 time-cost attributes, each job is labeled by its final state,
successfully finished (good job) or failed (bad job, including about 45 error
types. The 5 million jobs include about 20 main error types (more than
1,500 occurrences). Table 5.3 gives a list of the main types of errors.

Table 5.3: Main types of errors in WMS
Job RetryCount (*) hit * is 0,1,2,3,5 etc

BrokerHelper: no compatible resources

Job proxy is expired

Aborted by user

Cannot retrieve previous match

Unable to receive data

Unavailable

Lack of Space to transfer Input

Cancel requested by WorkloadManager

Submission to condor failed

Error during proxy renewal reg

It must be emphasized that the job labels are not used in the clustering
process, for Grid experts consider that these error labels might introduce
some confusion (some error types are not related to operational aspects,
e.g. although cannot plan means that the Resource Broker was unable to
find a matching resource, the real cause might be that the user’s requests
were truly unreachable; or the Broker information is stalled and does not
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see that resources have been released). The job labels will however be used
a posteriori, as an indicator of the clustering quality.

0 50 100 150
1

2

3

4

5

6

7

8
x 10

4

days

nu
m

be
r 

of
 jo

bs
 p

er
 d

ay

 

 
Sat & Sun
Mon
Tue
Wed
Thu
Fri

Figure 5.11: Load of jobs per day

To have a view of our streaming jobs, Fig. 5.11 shows the number of jobs
per day. The load obviously decreases on Saturday and Sunday (stars in Fig.
5.11), and shows a clear increasing trend.

5.4.4 Data Pre-processing and Experimental Settings

Since the ranges of the 6 time-cost attributes differ by orders of magnitude,
they need to be normalized by centering with standard deviation 1. Nor-
malizing streaming data has a problem that not all the data are available at
beginning. We sample from the beginning part of the data to get the mean
µ and standard deviation s. The job xi is normalized to x′

i = xi−µ
s

10.

In case of failure along the lifecycle, the job does not reach the subsequent
services, and the associated durations are set to 0. Six boolean attributes
are also extracted, to indicate whether the job reached the related states (1)
or not (0). The similarity between the 12-dimensions jobs is the Euclidean
distance.

Unless otherwise specified, the parameters of our approach are set as
follows: In StrAP, 1000 jobs from the head of stream are used for initial-
ization; fitness threshold ε is set to 0.25 (the average distance between points
and exemplars in the initial model). In PH, empirically, δ is 0.01. The thresh-
old parameter λ is set to be λt = 30 ∗ p̄t as discussed in Proposition 4.1.1.
Penalty parameter σ of AP is set to the median value of similarity matrix.
The window size ∆ = 10000.

10An online adapted way of normalization should be further considered
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5.4.5 Clustering Quality

Clustering quality is evaluated to guarantee that the compact description
is correct. In other words, the exemplars can be used for representing the
corresponding clusters and the clusters are pure of only one type of jobs.

To be clear, we need to explain why the lables of jobs are not used
in the stream clustering process but why they are used for evaluation.
As we discussed in section 5.4.3, the labels of jobs might introduce some
confusion, because they do not indicate the properties of the jobs regarding
the failure reasons. Therefore, we do not use the labels in the clustering
process, by contrast we aim to discover something not claimed in the label.
However, since there is no reference interpretation, the labels could be the
approximation of the classes of jobs although they are not precise enough.
At least, the labels distinguish the good (successfully finished) jobs from the
bad (failed) jobs.

Clustering Accuracy of StrAP on 1st level of G-StrAP

The clustering accuracy (on the first level of G-StrAP) is first assessed,
which indicates the online accuracy of the job clustering with respect to the
suggested labels of jobs.

As we discussed in section 4.1.2.3 and section 4.1.2.2 of chapter 4, we
have two different ways in StrAP for defining pt and online adapting
threshold λt when PH criterion is used for change detection. Fig. 5.12 shows
the case of defining pt by the outlier deviation distance and adapting λt

according to Proposition 4.1.1. Fig. 5.13 shows the case of defining pt by
the outlier rate and adapting λ by ε-greedy or GP-based optimization.

Additionally, streaming k-centers is created as a baseline for comparing
with StrAP11. It is used because k-centers is a classic clustering method
and produces the real-point exemplars as AP did. Streaming k-centers uses
exactly the same framework of StrAP, just replacing AP with k-centers.
For a fair comparison, firstly the best results (in terms of distortion) out
of 20 independent runs of k-centers are reported. This multi-running is to
make sure that StrAP and streaming k-centers have the same computational
runtime considering that k-centers is faster than AP. Secondly, to imitate
WAP, k-centers is used with memory in which 80% of the initially selected
of points are from the known exemplars in the model and others are from
the outliers in reservoir. Regarding the number k of clusters, we set it as the
average number of clusters in StrAP model.

11DenStream is abandoned because its model is not available all the time
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In Fig. 5.12, StrAP performs 5% better than streaming k-centers in
clustering accuracy, while the outliers of StrAP is 4% less than that of
streaming k-centers. The parameter λt is set to be 30 ∗ p̄t for StrAP, and
for k-centers the number k is set as 133.
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Figure 5.12: Clustering accuracy and outlier percentage along time from 1st

level of G-StrAP, when pt relates to outlier deviation distance and λt is
online adapted

In the case shown in Fig. 5.13 when pt is defined by the outlier rate,
the PH threshold parameter λ is adjusted after each restart using discrete
or continuous optimization. In the discrete case, threshold λ ranges in
40, 50, . . .120 and a ε-greedy optimization of the empirical average distortion
is achieved (ε = 5%). In the continuous case, a Gaussian Process-based
estimate of the distortion (equation (4.3)) is built. The λ value with minimal
estimated empirical distortion is predicted.

Fig. 5.13 shows that the online accuracy of G-StrAP is consistently
over 85%. The self-adjustment of the threshold λ parameter, based on
ε-greedy or GP-based optimization, preserves the accuracy while omitting
the empirical setting of threshold λ. The accuracy of streaming k-centers
is 10% lower than StrAP. Please note that the k here is set as 83 (the
averaged number of clusters in the compared StrAP model). The different
settings of number k in Fig. 5.12 and in Fig. 5.13 lead to the different
comparing results between StrAP and streaming k-centers. The percentage
of outliers is omitted because it is similar to Fig. 5.12 (b).

Clustering Purity
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Figure 5.13: Clustering accuracy along time from 1st level of G-StrAP,
when pt is defined by the outlier rate and λ is online adapted by ε-greedy or
GP-based optimization

The second measurement of clustering quality is to assess the clustering
purity. After each rebuilding of the model, the clustering purity is computed
by averaging the purity of each cluster (equation (4.4)). Fig. 5.14 shows
the clustering purity after each rebuilding of the model on the first level.
Since a very large K will cause a very high purity, in Fig. 5.14 the number
of clusters K is also given to show that clustering purity higher than 90% is
averaged from about 200 clusters. Comparing with the minimum load per
day (circa 15,000), this K can be understood. The good clustering purity
confirms the quality of the clustering model.

The clustering purity is higher than the accuracy, although the former in-
dicator usually is a pessimistic one (since all clusters, including those related
to rare classes, have the same weight as shown in equation (4.4)). The differ-
ence in performance is explained as: in purity computation, the “correctness”
is defined by being consistent with the majority class of a cluster; while in
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Figure 5.14: Clustering purity after each Restart

accuracy computation, the “correctness” is defined by being consistent with
the exemplar’s class of a cluster. If the exemplar’s class is not the major one
in a cluster, the purity will be higher than the accuracy.

On the second level, when clustering the online-obtained exemplars into
super clusters, the clustering purity (averaged over 105 super-clusters) is
90.3%. This means that each super cluster is quite pure of one type of jobs.

5.4.6 Rupture Steps

An interesting indicator for the Grid Experts is the dynamic of the workload,
which can be assessed from the number of restarts (rebuilding of the model)
per day. Frequent rebuilds can be explained from several causes: i) the load
is huge; ii) new job patterns appear; iii) job patterns oscillate, frequently
appearing and disappearing. Fig. 5.15 shows the number of restarts per
day. This medium-scale observation of the grid system shows the mobility
of everday’s grid running status. Including this medium-scale rupture steps,
and the online level showing the instant status and the off-line level showing
global performance, our system are so-called multi-scale monitoring system.

5.4.7 Online Monitoring on the First Level

We demonstrate the online monitoring results in this section. Fig. 5.16
shows two snapshots from the monitoring outputs 12. They demonstrate the
data distribution along the clusters. More precisely, the x-axis is the index

12The monitoring outputs are in fact like movies. They change according
to the arriving jobs. The monitoring results in avi format are provided in
http://www.lri.fr/˜xlzhang/Grid monitor/.
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Figure 5.15: Number of restarts per day

of cluster. The bar height is the fraction of the total number of jobs (since
the last rebuild) belonging to this cluster. The vectors on top of the bars
are the exemplars of clusters shown as 6 duration attributes; all durations
are in seconds. To be concise, only the clusters with a fraction more than
1% are displayed.
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Figure 5.16: Snaps from the monitoring output

In Fig. 5.16 (a), we can see that, from last building of model until now,
60% of jobs are successfully finished and their time cost for each service is “[8
18 24 30 595 139]”. Other good jobs have long execution time around 19190s
and spent long time, around 9728s, on waiting in a queue. Except the jobs
that went to reservoir, the other jobs fall into two clusters with error types.
One is cluster with exemplar “[7 0 0 0 0 0]”, which means the jobs stopped
after registration. 10% jobs have this kind of error. The other is the cluster
with exemplar “[10 47 54 129 0 0]”, which means the jobs stopped before
arriving at the local computing site. About 20% jobs performed like this.
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Fig. 5.16 (b) is a snapshot 3 days later than (a). Except the exemplars
we saw in (a), there is a cluster with exemplar “[14 23 33 45792 233
87]”. About 40% of jobs are in this cluster which have unusual long
Ready for CE accept time. This reports an alarming situation. LM is
getting clogged, with a typical value of 45792s, comparing with the previous
and more normal one of some tens of seconds. The LM clogging likely also
explains Cluster 5 (exemplar “[25 26 43 45809 0 0]”), to be compared with
Cluster 4 (exemplar “[10 47 54 129 0 0]”).

About real-time quality, the system could process on average 40000 jobs
in 1 minute, running on computer of Intel 2.66GHz Dual-Core PC with
2 GB memory by C/C++ codes. This is quite fast considering the load
(maximum 80000 per day).

In summary, the Online Monitoring module thus yields a compact and
understandable summary of the job instant distribution, providing the
administrators with a detailed report on the grid activity: the snapshots
indicate the different time cost of the grid services with the proportion of
jobs behaving in these manners. The monitoring system discovers the device
problem, e.g., LM is getting clogged, without using any information of labels.
By contrast, this discovered problem is not noted in the job labels.

5.4.8 Off-line Analysis on the Second Level

During our monitoring process, the exemplars represented the running
status of Grid. Due to the time decay mechanism in StrAP, the out-of-date
exemplars would be thrown away and after a while it might re-appear. In
order to globally analyze the grid performance, all the exemplars could be
clustered by AP. These clusters of exemplars are called Super Clusters and
their exemplars are called Super Exemplars.

The super clusters obtained on the second level approximate the global
clustering results, which are impossible to reach because of the huge-size of
streaming jobs. Therefore, the grid historical status can be reproduced by
a figure showing how many jobs similar to super exemplar y happened in x
day, as shown in Fig. 5.17. According to the labels of super exemplars, Fig.
5.17 (a) and (b) respectively show the appearance of super exemplars with
failed and good labels. The color of the pixel at (x, y) means the percentage
of jobs assigned to super cluster y accounts for in all jobs of day x.

In Fig. 5.17 (a), the super exemplars are sorted by the number services
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Figure 5.17: Grid historical status reproduced by super clusters: (a) super
clusters including the failed jobs; (b) super clusters including the successful
jobs.
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reached. For example, the first row (y = 1) is the super exemplar without any
service reached, and the last row is the super exemplar stopped at the last
service. The “early stopped error” (in first row) appears frequently on days
10, 32, 78, 106 and 138. Checking the log file, we found the User Interface
(UI) from which the majority of this kind of error jobs were submitted. From
2006-01-07 to 2006-01-13, and from 2006-01-30 to 2006-02-03, a large part of
“early stopped error” jobs were submitted from UI A113. From 2006-03-16
to 2006-03-21, the UI related to majority of this error type is UI B1. From
2006-05-17 to 2006-05-19, the “early stopped error” jobs were due to UI D1
and UI A1 again.

“Cannot plan” in row 2 is an often appearing error. Row 7 is a kind of
daily error and is mixed by several different types of errors. This is because
these errors have similar behavior on service time cost.

In Fig. 5.17 (b), the super clusters in y are sorted by
Ready for CE accept Time in ascending order. It is obvious
that most frequently visited super clusters have smaller values of
Ready for CE accept Time (super cluster 1 to 30 in Fig. 5.17 (b)). Some
super clusters with extremely large value of Ready for CE accept Time
appear as light spot, e.g., at left-bottom and right-bottom of Fig. 5.17 (b).
It means that these kind of jobs intensively occurred in several days. For
example, 65-th ([3 41359 41361 41368 202 266]) and 66-th super exemplar
([4 14 21 157605 78 51]), have light spot around day 22 to 28. Checking
the log files, we find that from 2006-01-22 to 2006-01-27, the jobs submitted
by UI A1 to RB A2 have very large value of forth attribute, similar to
the 65-th and 66-th super exemplar. Another example is the right-bottom
spot, 67-th ([6 285403 302385 367385 561 469]) and 68-th ([6 266479 283658
394996 4041 122215]) super exemplar on days from day 146 to 150. They
have extremely large value not only on Ready for CE accept Time, but also
on Waiting Time and Ready for Transfer Time. Similarly, these jobs are
also related to UI A1 and RB A2.

13We do not give the real names of UI and RB due to privacy policies.
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Chapter 6

Conclusion and Perspectives

One specific feature of the presented work is to deal with application domains
where a cluster of items cannot easily be represented by an average/artifact
item, although the distance or similarity between any two items can be com-
puted. In such domains, unsupervised learning and clustering are known to
boil down to combinatorial optimization, de facto excluding their use in large
scale problems.

A way out of this tight spot was offered by message passing Affinity
Propagation in 2007, using statistical physics paradigm to yield a nearly op-
timal solution (in terms of distortion), albeit with a quadratic complexity
in the number of items [Frey and Dueck, 2007a]. The main contribution of
the thesis is to transform Affinity Propagation to meet two key requirements
of Machine Learning and Data Mining: scalability w.r.t. the dataset size;
adaptability w.r.t. non-stationary data distributions. The second contribu-
tion is to actually apply, implement and validate the approach on a large-scale
domain, the processing of the computational queries (jobs) submitted to the
EGEE grid, as a first step toward Autonomic Grids.

After summarizing the key issues touched upon this work, this section
discusses the main research avenues opened for further work.

6.1 Summary

The building block used to both reduce the computational complexity and
achieve the on-line extension of AP is Weighted AP, handling weighted
items. Presented in section 3.2, WAP enables summarizing a set of neighbor
points as a single point, in a transparent way w.r.t. the AP optimization
problem (i.e. yielding the same solution) while reducing the computational
complexity [Zhang et al., 2008].
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WAP is the main ingredient behind Hierarchical AP (Hi-AP), together
with the Divide-and-Conquer scheme borrowed from Guha et al. [2003]. The
mechanism first presented in [Zhang et al., 2008] (partition the dataset, run
AP on each subset, and use WAP on the set of exemplars learned from
every subset) was recursively extended to form a tree-structured clustering
approach (Fig. 3.3).

While Hi-AP duly reduces the AP complexity, from quadratic to quasi-
linear with respect to the size of the dataset, it does not entail significant
loss of performance, in terms of the distortion criterion, except perhaps for
2-dimensional data (section 3.4). The analytical study of the distortion along
the Divide-and-Conquer scheme (Fig. 3.7), conducted in the case of a single
Gaussian distribution, shows that the exemplars gradually extracted from
the subsets and nodes of the hierarchical tree concentrate toward the true
center of the distribution, with limited variance (except for d = 2).

Experimental results (section 3.5) support the analysis, reducing the
computational time by more than an order of magnitude at the expense of
about 5% loss of distortion on the largest two benchmark datasets in the
literature, kindly provided by Eamon Keogh [Keogh et al., 2006].

WAP is also behind the data streaming extension of AP, StrAP, together
with the Page Hinkley change point detection test (PH) [Page, 1954; Hinkley,
1971]. StrAP confronts the arriving items to the current AP model, storing
the outliers in a reservoir and monitoring the ratio of outliers using PH. Upon
triggering the PH test, the clustering model is rebuilt from the current one
and the reservoir using WAP.

The key issue here was to build the change indicator, monitored by the
PH test, in order to preserve the computational cost vs accuracy tradeoff. In
a first step, we monitored the ratio of outliers over a sliding window; in a
second step, we showed that it was doable to self-adjust the size of the sliding
window, using a Bayesian Information Criterion [Zhang et al., 2009a].

StrAP is evaluated on both an artificially generated stream and the
KDDcup99 Intrusion Detection benchmark data set, comparatively to the
state-of-the-art DenStream algorithm [Cao et al., 2006] (section 5.2.3).
While StrAP improves on DenStream with respect to clustering quality
(measured from the supervised accuracy in the Intrusion Detection dataset),
it is slower by one order of magnitude; the interpretation offered for this fact
is that StrAP provides a model of the stream at any time step − whereas
DenStream only builds the model upon request. Furthermore, DenStream
yields a continuous model (k-means-like), whereas StrAP provides a set
of exemplars. Notably, to our best knowledge, StrAP is the only data
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streaming algorithm providing a set of exemplars, opening new application
domains (e.g. molecular chemistry).

Last but not least, the proposed approach has been applied to a large-scale
real world problem, the monitoring of the computational queries submitted
to the EGEE grid. Actually, one motivation for exemplar-based modeling
was precisely grid monitoring, for an average computational query is difficult
to build, and difficult to interpret as well.

StrAP was used on a 5-million job trace, the 5-month log from 39 EGEE
Resource Brokers, and it showed the feasibility of providing the EGEE ad-
ministrator with a real-time dashboard of the job data flow [Zhang et al.,
2009b]. This online report enables the instant detection of regime drifts
(e.g., clogging of LogMonitor as shown in Fig. 5.16).

Interestingly, the exemplars selected on the fly by StrAP also make it
possible to build an offline summary, and visualize the grid dynamics over
longer periods in form of a tapestry (Fig. 5.17).

These two online and offline functionalities, embedded in the G-StrAP

system, define a multi-scale monitoring system, giving an instant view of
the stream (Fig. 5.16) and its dynamics (through the frequency of model
rebuilt), as well as a consolidated view of the stream, enabling to inspect
its long-term trends a posterior. Overall, these functionalities can be viewed
as a first step toward extracting manageable, understandable and valuable
summaries from the gLite traces [Jones, 2008].

6.2 Perspectives

The presented work opens to both algorithmic and applicative perspectives
for further work.

6.2.1 Algorithmic perspectives

A main requirement for new algorithms to make it out of research labs is to
be easily used, and ideally, parameterless.

The AP framework, and Hi-AP and StrAP as well, involves a single
self-confidence ǫ parameter, which indirectly controls the number K of clus-
ters. When aiming at a given number of clusters due to prior knowledge (e.g.
number of classes in a supervised context), AP must be launched several
times, adjusting ǫ using a bisection method [Frey and Dueck, 2007b]. Wang
et. al. have implemented an adaptive scanning of preferences and re-running
of AP to get the requested number of clusters [Wang et al., 2007], albeit with
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a high computational overhead. How to exploit the intermediate results of
the AP algorithm in order to adjust ǫ is a key perspective for further research.

In the longer term, the question is whether ǫ should rather be viewed as a
constant or a function, e.g. measuring the data density in the neighborhood
of each item. As already mentioned, the AP framework focuses on spheric
clusters. This requirement was relaxed by [Leone et al., 2007], presenting the
Soft-Constraint AP (SCAP) which relaxes the constraint that an exemplar
must to be its own exemplar. It is clear that many application domains
require arbitrarily-shaped clusters to be built; DbScan is a commonly used
method to solve such clustering problems [Arkin, 1996], using user-specified
parameters. The question is whether ideas from DbScan can be incorporated
to AP, through evolving the ǫ parameter attached to each point.

Such modifications will have a clear impact on StrAP. Typically, if a
cluster is represented by several exemplars as in CURE [Guha et al., 1998],
this indeed allows clusters to feature arbitrary shapes; but the main three
steps in StrAP need be reconsidered: i) comparing a new item to the
current model; ii) updating the model; iii) rebuilding the model.

Another direction for further research considers the representation of the
problem domain. In some application domains, the target result concerns
both the exemplar instances, and the exemplar features. The choice of the
features commands the distance, which commands the selection of the ex-
emplars, which in turn should give some feedback about the most relevant
features. The question thus becomes whether the AP algorithm can be ex-
tended to simultaneously consider items and features, along the lines of the
“Dual Clustering of Words and Documents” [Slonim and Tishby, 2000].

6.2.2 Applicative perspectives

A most natural perspective is to continue the work done in the EGEE frame-
work. It is believed that two main functionalities can be easily incorporated
to the G-StrAP system. The first one is to use online learning, to assess
the alarm level attached to a given model. Each cluster is characterized from
its frequency along time, and its criticality, supplied by the system adminis-
trator. The G-StrAP system can thus easily be extended using supervised
learning, to estimate the criticality of the clusters in the current model after
a model rebuild, and trigger an alarm.

A second functionality is to use the clusters summarizing the computa-
tional queries, as new features amenable to describe the users (viewing a user
as a set of queries). Such user profiling could be used to customize the grid
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services and offer more user-friendly interfaces.
A longer-term applicative perspective is to investigate how the AP frame-

work could be applied to social network analysis (SNA); how to model the
various SNA indicators (e.g. centrality, betweenness) as messages, thus yield-
ing the main connectors, mavens, leaders, or bridges of the network, as the
AP exemplars for these indicators. Ultimately, the question remains to deal
with several types of messages.

111



6. CONCLUSION AND PERSPECTIVES

112



Appendix A

Schematic proof of Proposition
3.4.3

For the sake of readability and to lighten the argument, the influence between
the center of mass and extreme value statistics distribution is neglected,
enabling us to use a spherical kernel instead of cylindrical kernel and making
no distinction between ex and ẽx, to write the recurrence. Between level h
and h + 1, one has:

f
(h+1)
sd (x) =

∫ ∞

0

K(h,M)(x, y)f (h,M)
ex (y)dy (A.1)
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where K(x, y) is the d-dimensional radial diffusion kernel,
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with I d
2
−1 the modified Bessel function of index d/2− 1. The selection mech-

anism of the exemplar yields at level h,
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,

and with a by part integration, (A.1) rewrites as:
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lim
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At this point the recursive hierarchical clustering is described as a closed
form equation. Proposition 3.4.3 is then based on (A.2) and on the following
scaling behaviors,
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Basic asymptotic properties Id/2−1 yield with a proper choice of γ, the non-
degenerate limits of proposition 3.4.3. In the particular case d = 2, taking
γ = 1, it comes:
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with help of the identity
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Again in the particular case d = 2, by virtue of the exponential law one
further has α(h) = 1/σ(h), finally yielding:

β(h+1) =
1

2
β(h). (A.3)
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