Chapter 3

Exceptions and Functions

The goal of this chapter is to extend the basic ML-style language of the previous chapter towards more
structured programming;:

e exception handling,

e function calls.

3.1 Programs with Exceptions

Each time one wants to add a new kind of statement in the language, the set of rules for Hoare logic
and WP calculi must be augmented. In this section, we want to support exceptions, which demands to
generalize the notion of triple itself.

3.1.1 Syntax

The exceptions are given by a set of identifiers exn. The grammar of expressions is enriched with two
new statements:

e u= raiseexn|tryewithezn =e

3.1.2 Operational Semantics

Previously, a value represented the end of an execution. With exceptions, a value represents the normal
end of an execution, while the statements raise exn represent exceptional ends.
The former small-step rules are kept the same, and we add the following new ones.

3,101, (let x = raise exn ine) ~» X, 1, raise exn

S0, (try v with exn = €/) ~ 3,11 v

Y10, (try raise exn with exn = e) ~ 3,11 e

exn # exn’

Y, 10, (try raise exn with exn/ = e) ~» X, 1, raise exn

Y, 10,e~ Y II', €
Y10, (try e with exn =€) ~» 3/ 1l (try €/ with exn = €)

31

3.1.3 Hoare Triples and WP Rules

The notation for Hoare triple must be modified to take into account exceptional post-conditions. It now
has the form {P}e{Q | exn; = R;} and its validity has the following meaning. If e is executed in a
state where P holds, then it does not block and

e if it terminates normally with some value v in some state X, then Q[result <— v] holds in ¥;

e if it terminates with some exception exn in some state 3., then there is some ¢ such that exn =
exn; and R; holds in X.

Note that this definition implies that if e terminates with some exception exn not in the set {exn; }, then
the triple is not valid.

The WP function is also modified to take the set of exceptional post-conditions as argument:
WP (e, @, exn; = R;). Note that, if an exception is not in the set {exn; }, the associated post-condition
is implicitly set to false.

WP(raise exng, Q,exn; = R;)) = Ry
WP(z :=1t,Q,exn; = R;) = Q[result + (), z « t]
WP(assert R,Q,exzn; = R;) = RAQ
WP(let z = e; iney, Q,exn; = R;) =
WP(e1, WP(eg, Q, exn; = R;)[result < x|, exzn; = R;)
WP(if t thene; else ey, Q,exn; = R;) =
if ¢t then WP(e1, Q, exn; = R;) else WP(es, Q, exn; = R;)

while ¢ invariant [
WP .
variant v,< doe

,Q, exn; = RZ-> = I AYuvy,..., v,

(I Nif cthen WP(L : e, I ANv < v@QL, exn; = R;) else Q)[w; < v;]
where wy, . . ., wy is the set of assigned variables in
expressions, v1, . . . , Vg are fresh logic variables,
and L is a fresh label.

WP((try e; with exn = e3),Q,exn; = R;) =

exn = WP(es, Q, exn; = R;)
wp (61’ @ { exn;\exn = R;

3.2 Functions, Modular Verification

Non-trivial programs are structured into sub-programs (functions, procedures, etc.) and at a higher level
into modules. Visibility rules (local variables, local procedures, etc.) allow the programmer to hide
implementation details from the callers of a sub-program.

When proving such a structured program, one naturally expects a modular proof that follows the
modular structure of the program. Thus, reasoning on a sub-program call should consider an abstract
view of the behavior of that sub-program: a specification of what it does, without telling how it does
it. The notation of Hoare triples is a good candidate for an abstraction of a given sub-program. In the
literature, it is known as the subprogram contract, a term that was first used in the context of the Eiffel
language [2].

We now add to the language the notion of functions and function calls. These functions have pa-
rameters that are seen as immutable local variables. Procedures will just be a special case of functions,
which return values will not carry any meaningful information, that is, they will be of type unit.

32

3.2.1 Syntax

The syntax of programs is given as follows. A program is a sequence of declarations. Each declaration is
either the declaration of a global variable, whose type is a reference, or the declaration of a function. A
function is declared with a possibly empty list of parameters, whose types are base types (not reference),
a return type, a contract, and a body. The contract is made of the precondition, the list of global variables
possibly modified, and the postcondition.

prog = decl®
decl = wardecl | fundecl
vardecl ::= valid : ref basetype
fundecl ::= function id((param,)*):basetype contract body e
param = id : basetype
contract = requires t writes (id,)* ensures t

The reserved label Old is allowed in the postcondition of the contract, and also the result keyword to
denote the returned value.

The syntax of expressions is augmented with function call. As with binary operators before, we
avoid issues with side effects and evaluation order in function arguments by forcing them to be values
(e.g. constants or let-binding immutable variables).

e =1d((t,)")

Example 3.2.1 The following is a program where our ISQRT example is now a procedure that takes its
argument as a parameter. It also contains a simple test procedure using a global variable.

function isqrt(x:int): int

requires x > 0

ensures result > 0 A sqr(result) < x < sqr(result + 1)
body

let ref res = 0 in

let ref sum = 1 in

while sum < x do

res :=res + 1; sum := sum + 2 x res + 1
done;
res

val res : ref int

procedure test()
requires true
writes res
ensures res = 6
body
res := 1isqrt(42)

3.2.2 Typing Rules for Functions

The definition of a function f has the following form.

33

function f(zy : 71, ..., T) 1 T
requires Pre
writes w
ensures Post
body Body

The rule expressing that such a declaration d is well-formed is

IM={z;:n|1<i<n}-T IV & Pre, Post : formula wCT I+ Body : 1
I'Fd: wf

where I' contains the declaration of global references. Notice that Post does not have access to local
variables that are declared inside the body.
The typing rule for a call to f is
Pt
DEf(ty, ... tn) 7

Notice that we allow recursive calls. We even allow mutually recursive functions.

3.2.3 Operational Semantics

In order to define the small-step semantics of a function call, we need a new pseudo-operation return
which carries the local state of the caller during the call and restores it at the end. It also checks that a
given property P holds for the returned value.

Y, 1T |= Plresult «]
Y10, (return ¢, P II") ~» X, 11, [t]s 0

The semantics of the call itself follows.

I = {xz — [[tiﬂE,H} E, I): Pre
S0 f(ty, .. ty) ~ 5,11, (Old : et € = Body in return &, Post, 1)

with ¢ a fresh identifier. Note that the Old label above is the one used in Post, but it should be assumed
to be fresh for all other purposes, that is, no label defined during the evaluation of Body will conflict
with it. This special label is provided so that the postcondition can mention the values the variables had
at the start of the function.

Basically, the execution of a function call starts by checking that the precondition holds. It then
executes the body in a fresh local state that only associates the argument variables to the passed values.
Finally, the postcondition is checked and the local state and the function result is returned.

Notice that, as in the previous chapter, we define a blocking semantics for annotations (the pre- and
the postcondition): the execution blocks if any annotation does not hold.

Example 3.2.2 Here is a toy procedure that increments the global variable res by a given amount.

val res: ref int

procedure incr(x:int)
requires true
writes res
ensures res = res@0ld + x
body
res :=res + x

34

3.2.4 Weakest Preconditions for Function Calls

A simple idea to prove a function call in Hoare logic would be to replace the call by the body of the
function. This is a bad idea, as it would mean we would reprove the safety of the body each time
the function is called. What we want to do is to prove once and for all that the body of a function
satisfies its contract, and then use only the contract when reasoning on function calls. This is a modular
approach. Moreover, it makes it possible to reason about programs that call functions which body has
been abstracted away.

The WP rule that expresses this idea is the following:

WP(f(t1,...,tn), Q) = Pre[x; < t;] AVU, (Post[x; < t;, w;j < v, w;QO0ld <+ wj] = Qw; <+ vj])

with « the set of variables written by the function body. Reminder: Argument terms ¢; are assumed not
to contain any mutable variables, so that their values for Pre and Post are equal.

3.2.5 Soundness

The soundness theorem must be stated in a slightly different way than in the previous chapter: we need
to express the idea of modularity of proofs. This is done by stating the following global hypothesis: for
each function declared as

function f(zy : 71,...,0p 7)) : T
requires Pre
writes w
ensures Post
body Body

we assume that
1. the variables assigned in Body belong to 0,

2. = Pre = WP(Body, Post)[w;Q0Id + w;].
Theorem 3.2.3 Assuming the global hypothesis above holds, then the WP rules are sound.

Proof. First of all, we have to give the weakest precondition of the return statement we introduced
to describe the operational semantics of function calls. Note that it will never be part of an actual
WP computation, since return is not part of the user language. This rule is needed for this proof of
soundness only.

WP((return t, P,II), Q) = P[result < t] A Q[result < ¢, ¢; < [¢;]u]

with /; representing local variables of).
For our WP rules to be sound, we have to prove two properties: progress and preservation by reduc-
tion.

1. If X, 11 = WP(e, Q) and e is not a value then there exists ¥/, IT', ¢’ such that 3, IT, e ~ X/ IT, ¢’.
2. f X, 11 = WP(e,Q) and X, 11, e ~ X' II', ¢’ then X/, TI' = WP(€/, Q).

In the previous chapter, progress was proved by structural induction on all the expressions of the
language (except for function call and return, which were added in this chapter). Preservation by
reduction was proved by predicate induction on the operational semantics for all the reduction rules
(except the two new rules added for function call and return). So we only have to handle these four
new cases to complete the previous proofs.

35

Progress for return. Let us assume
Y, 10 E WP((returnt, P,1I'), Q)
= Plresult < t] A Q[result < ¢, ¢; < [€;]1r]
= Plresult <]

which is exactly the hypothesis of the reduction rule for return. So this expression progresses.

Preservation by reduction for return. Let us assume
3,11 | WP((returnt, P,1I'), Q)
= Plresult < t] A Q[result < ¢, 4; < [¢;]]
= Q[result < [t]s.m, £ + [4i]w]

Since Q[result < [t[s] contains no local variables except for the ¢;, it holds in state ¥, II". Thus
Y, II' = WP([t]sm, Q). So WP is preserved for this reduction rule.

Progress for function call. Let us assume
Z,H): WP(f(tlvytn)aQ)
= Pre[z; < t;] AVT, (Postlx; < t;, wj < vj,w;Q0Ild + w;] = Qw; < vj])
= Pre[z; <+ [ti]sn]

Since Pre contains no local variables except for the x;, it holds in state X, IT', with IT" = {z; — [t;]s.m}-
This is the hypothesis of the reduction rule for function call, so the expression progresses.

Preservation by reduction for function call. Let us assume

ST WP(F(h, s 1), Q)
= Pre[x; < t;] AVU, (Postx; < t;, wj < vj, w;Q0Ild <+ w;] = Qw; + vj])

We have to prove
1 P((Old : 1let £ = Body in return &, Post,11), Q)
P((let & = Body in return &, Post, I1), Q)[w;QOld < wj]
P(Body, WP (return &, Post, 11, Q)[¢ < result])[w;Q0Id + wj]
P(Body, (Post[result <— &] A Q[result < &, 4; < [¢;]n])[€ < result])[w;Q0Id + wj]

(Body, (Post A Q[¥; + [4;]n1]))[w;Q0ld < wy]

(

W
W
W
W
W
WP (Body, Post)[w;Q0Id < w;] A WP(Body, Q[{; < [¢;]n])[w;Q0ld < wj]

P
P

m o

The last line was obtained by applying Lemma 2.3.2 about conjunctions and WP. Note that the
substitution w;@QOIld < w; does not hinder this application, as we could have chosen a global state
¥ = Z{(wj, Old) — [[wj]]g}.

The left-hand side of the conjunction is a consequence of the global hypothesis, since Pre holds in
Y., I (see progress above). The right-hand side amounts to proving that WP (Body, Q) holds in state
Y I with I = TI'{¢; — [¢;]r1}. We apply Lemma 2.3.3 about WP and monotonicity, which requires
to prove

¥ 11" = WP(Body, Post) AU, (Post = Q)wj + v,]

The left-hand side can be expressed as X, II' = WP (Body, Post)[w; < w;QOIld], since none of the
¢; occurs in it. So we have already proved that it holds.

The right-hand side can be expressed as 3, I |= VU, (Post[x; < t;,w; < v, w;Q0ld + w;| =
Q[w; < v;]), which is the hypothesis for proving the preservation.

36

3.3 Functions Throwing Exceptions

If a function may raise an exception, then this should be mentioned in its contract. A generalized contract
has the form

requires Pre

writes W
raises £, --- E,
ensures Post | Ey — Posty | --- | E,, — Posty,

It states that the exceptions Fj - - - F,, may be raised by the function, and no others. Moreover, if it
terminates normally then the formula Post holds; if it terminates in exception F; then the formula Post;
holds.

The rule for WP is extended to exceptional cases in a natural way:

WP(f(t1,...,tn),Q, Ex = Ry) = Prelz; < t;| \ VU,
(Post[z; < ti, wj + vj] = Qw; + vj]) A
N (Posty[x; < ti, wj < v;] = Ri[w;j < vj])

Example 3.3.1 The following program is a “defensive” variant of our ISQRT example. Instead of
requiring a non-negative argument, and returning a result rounded down, it raises an exception when
the argument is negative or it is not a perfect square.

exception NotSquare

function isqrt(x:int): int

requires true

raises NotSquare

ensures result > 0 N sqr(result) = x

| NotSquare — forall n:int. sqr(n) #* x

body

if x < 0 then raise NotSquare;

let ref res = 0 in

let ref sum = 1 in

while sum < x do

res :=res + 1; sum := sum + 2 * res + 1
done;
if res * res # x then raise NotSquare;
res

3.4 Recursive Functions and Termination

For recursive procedures, in a similar way as for loops, we need to add a variant to exhibit a measure
that decreases between recursive calls. We allow to add a variant clause in the contracts, of the form

variant v for <

where v is a term of some type 7 and < is a well-founded relation on values of type 7.
The formula for the weakest precondition of a recursive call is

WP(f(tl, ce tn), Q, E, = QZ) = Pre[xi — ti] A ’U[.Ti — ti] < vQ@Init A vg, -

37

where Init is a label placed at the beginning of the body of the procedure. It thus states that the expres-
sion v, instantiated with the arguments of the call, is smaller than it was at the entrance to the procedure.

The same kind of WP rule is able to handle the case of mutually recursive functions. If two functions
f(Z) and g(y) may call each other, then each of them should be given its own variant v (resp. vg) in
their contract, but with the same well-founded ordering <. Then, when f calls g(t_) the WP should
include

vyl 1] < vyQInit.

and symmetrically when g calls f
It generalizes naturally to any number of functions that can call each other recursively.

Example 3.4.1 The following is an implementation of the factorial function. For simplicity we do not
give any functional property in postcondition.

function fact(x:int): int
requires x > 0
variant x
ensures true
body
if x = 0 then 1 else fact(x-1) * x

We do not precise the ordering since we use the default one introduced in Chapter 1. The WP at the
recursive call is

(x >0)[x «+ z — 1] Azx[r + x — 1] < zQInit

which reduces to
r—1>20ANrx—-1<axAxz>0

which is valid under the premises x > 0 (the precondition) and = # 0 (the negation of the condition of

the if).

3.5 Exercises

Exercise 3.5.1 Using the incr procedure of Example 3.2.2, prove the test

procedure test()
requires res = 36
writes res
ensures res = 42
body
incr(6)

using WP.

Exercise 3.5.2 The McCarthy’s 91 function [1] is defined on non-negative integers by the recursive
equation

f91(n) = if n < 100 then f91(f91(n + 11)) else n — 10

The following is a canvas for a function that computes f91(n).

38

function f91 (n:int) : int
requires ?
variant ?
writes ?
ensures ?
body
if n < 100 then f91 (f91 (n + 11))
else n - 10

1. Fill-in the contract in order to prove the correctness of this function.

2. Would it be possible to prove the total correctness using only true as postcondition?

Bibliography

[1] Z. Manna and J. McCarthy. Properties of programs and partial function logic. In Machine Intelli-
gence, volume 5, pages 79-98, 1970.

[2] B. Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead, 1992.

39

40

