
Chapter 4

Modeling, Specification Languages, Array
Programs

This chapter presents some techniques for verifying programs with complex data structures. Typical
examples of such data structures are arrays and lists. The main ingredient is to provide extensions to the
language of expressions and formulas, under the form of an expressive specification language.

Section 4.1 presents generalities about specification languages, while other sections present an
overview of the constructs for modeling and specifying as they are available in the Why3 tool [7].
Finally, Section 4.6 is dedicated to the modeling and the proof of programs on the array data structure.

4.1 Generalities on Specification Languages

There have been a lot of variants of specification languages proposed in the past. Various classes of such
languages are characterized by the kind of logic that they are based on.

Algebraic Specifications This class of languages is characterized by the use of multi-sorted first-order
logic with equality, and usually the use of rewriting techniques [13], which permits to mix executable-
style and declarative-style specifications. Famous languages and tools of this class are Larch [17],
KIV [26], CASL (Common Algebraic Specification Language) [2], OBJ [16], Maude [10].

Set-theory based approaches Another class of languages is based on classical Set theory. These
languages are not typed, the typing properties being instead encoded by formulas on sets. Reasoning
on such languages is also typically done by rewriting techniques. A precursor of this class is the Z
notation [27]. It is used in tools like VDM [18], Atelier B [1], etc.

Higher-Order Logic Higher-Order Logic is characterized by the use of mathematical functions as
objects of the language. It is based on advanced lambda-calculi (e.g. System F). Reasoning on such
specifications is typically done using interactive environment where proofs are constructed manually us-
ing tactics/strategies. Famous tools implementing some higher-order logics are PVS [24], Isabelle [22],
HOL4 [23], Coq [5], etc.

Object-Oriented languages These are based on the idea of using the object-oriented paradigm in a
logic world. They are typically in use in a context of object-oriented-style development. The precursor
is the language Eiffel [20], which is both a programming language and a specification language, and was
designed to support the concept of design-by-contract. Other famous languages are OCL [28] (Object

41

Constraint Language) which allows to incorporate formal specifications into the UML diagrammatic
design methodology, and the Java Modeling Language [9].

Satisfiability Modulo Theories In 1980, Nelson and Oppen [21] proposed a new technique for com-
bining propositional reasoning and dedicated decision procedures for specific theories. This gave birth
to a new class of automated theorem provers called SMT solvers. A precursor of such solvers is Sim-
plify [14] which was used for program verification in the ESC/Java tool. The SMT-LIB format [25]
is not really a specification language but a common language for describing verification conditions as
they typically come from program verification. In this context, the intermediate languages for program
verification Why [15] and Boogie [3] propose small specification languages that can be supported by
SMT solvers. Nowadays, the successors of Why and Boogie, respectively Why3 [7] and Dafny [19],
propose modeling languages that can be seen as a compromise between:

• Expressivity of the language, to be able to design specifications of complex programs ;

• Support by automated provers, in particular modern SMT solvers like Alt-Ergo [6], Z3 [12],
CVC3 [4] which support quantified first-order formulas.

The following sections present an overview of the constructs of the Why3 specification language.

4.2 Defined Functions and Predicates

Direct definitions of new functions and predicates can be given under the form

function f(x1 : τ1, . . . , xn : τn) : τ = e
predicate p(x1 : τ1, . . . , xn : τn) = e

where τi, τ are not reference types.
In such definitions, no recursion is allowed, unless we are in the case of Section 4.3.3. Since expres-

sions have no side-effects, these define total functions and predicates, which are pure in the sense that
they have no side-effects.

Example 4.2.1 Here are a few examples of definitions of functions and predicates.

function sqr(x:int) : int = x * x

function min(x:real,y:real) : real = if x ≤ y then x else y

function abs(x:real) : real = if x ≥ 0.0 then x else -x

predicate in_0_1(x:real) = 0.0 ≤ x ∧ x ≤ 1.0

predicate prime(x:int) = x ≥ 2 ∧ forall y z:int. y ≥ 0 ∧ z ≥ 0 ∧ x = y*z → y=1 ∨ z=1

4.3 Constructed Types

New logic data types can be defined by standard construction of compound types. Being in a logic
language, these types must be pure in the sense of pure functional programming, that is, the values of
these types cannot be modified “in-place”.

42

4.3.1 Product Types

Types can be defined as being tuples of already defined types, for example

type intpair = (int, int)

function sumprod (n:int,m:int) : intpair = (n+m,n*m)

type vector = (real, real, real)

function diag(x:real) : vector = (x,x,x)

The construct let x=e1 in e2 is extended so as to allow introducing a tuple, as in

function sum (p:intpair) = let (x,y) = p in x+y

The other kind of product type is the record type, defined classically by a sequence of named fields.
The dot notation allows to access a given field. For example,

type vector = { x:real; y:real }

function norm(v:vector) : real = sqrt(v.x * v.x + v.y * v.y)

function rotate(v:vector,a:real) : vector =

{ x = cos(a) * v.x + sin(a) * v.y ;

y = sin(a) * v.y - sin(a) * v.x }

Again, it is important to notice that these are pure types; the components of tuples and the fields of
records are immutable. In other words, there is no way to assign a field.

4.3.2 Sum Types

We can define new sum types in a functional programming style, with the form of declaration

type t =
| C1(τ1,1, . . . , τ1,n1)
| · · ·
| Ck(τk,1, . . . , τk,nk

)

where C1, . . . , Ck are constructors.

Example 4.3.1 The type of cards in a standard 54-card game can be defined as

type suit = Spade | Heart | Diamond | Club

type value = Ace | King | Queen | Jack | Number(int)

type card = Normal(suit,value) | Joker

Associated to sum types is the definition by pattern-matching, with the form

match expression with
| C1(x1,1, . . . , x1,n1)→ expression1

| · · ·
| Ck(xk,1, . . . , xk,nk

)→ expressionk

end

where each xi,j is a variable that is bound in expressioni. For convenience, one may use extended
pattern-matching [8]: inside patterns, an argument of a constructor may itself be a pattern. One may
also use the wildcard character _. As in OCaml or Why3, we distinguish between constructors and
variables by enforcing a capital letter as the first character of a constructor.

Example 4.3.2 Here is a function that returns the score of a given card in an imaginary game.

43

function score (c:card,trump:suit): int =

match c with

| Joker → 100

| Normal(Ace,s) → if s=trump then 50 else 20

| Normal(Number(n),s) → if s=trump then 50 else n

| Normal(v,_) →
match v with

| King | Queen → 40

| Jack → 30

| _ → 0

end

end

4.3.3 Recursive Sum Types

Sum type definitions can be recursive. Recursive definitions of functions or predicates are allowed
if recursive calls are on structurally smaller arguments, which corresponds to the notion of primitive
recursion on such a sum type.

Example 4.3.3 Here is a definition of binary trees holding integers at each node, and a function giving
the sum of the elements of a tree.

type tree = Leaf | Node(tree,int,tree)

function sum (t:tree) : int =

match t with

| Leaf → 0

| Node(l,x,r) → sum(l) + x + sum(r)

end

The recursion is allowed since arguments l and r are subtrees of the input.

4.3.4 Polymorphic Types

All the constructs for type definitions above can be parameterized, i.e. the type is given one or several
type variables as parameters, as in

type vector α = (α,α,α)
type tagged α = { tag : int ; content : α }

type option α = None | Some(α)
type tree α β = Leaf(α) | Node(tree α β, β, tree α β)

4.3.5 Example of Lists

Lists, or finite sequences, are very common data structures. The type of lists can be modeled by a
polymorphic, recursive sum type as

type list α = Nil | Cons α (list α)

Classical functions on lists can be defined by primitive recursion, such as

function append(l1:list α,l2:list α) : list α =

match l1 with

| Nil → l2

44

| Cons(x,l) → Cons(x,append(l,l2))

end

function length(l:list α) : int =

match l with

| Nil → 0

| Cons(x,r) → 1 + length(r)

end

function rev(l:list α) : list α =

match l with

| Nil → Nil

| Cons(x,r) → append(rev(r),Cons(x,Nil))

end

When proving programs operating on lists, and on recursive sum types in general like binary trees
above, it is very common that some properties are needed, such as the properties

lemma append_nil: forall l:list α. append(l,Nil) = l

lemma append_assoc:

forall l1 l2 l3:list α. append(append(l1,l2),l3) = append(l1,append(l2,l3))

Such lemmas can be stated as this in the Why3 tool. They must be proved by induction, meaning that
they are out of reach to SMT solvers. In the Why3 tool, an interactive theorem prover like Coq can be
used to prove them. See Exercise 4.7.6 at end of this chapter.

4.4 Abstract Declarations, Axiomatizations

4.4.1 Axiomatic Declarations of Functions and Predicates

Instead of defining new logic functions, is it sometimes handy to model abstract functions, in the sense
that only their profile is declared, and their meaning is partially specified using axioms.

Such an abstract declarations has the form

function f(τ1, . . . , τn) : τ
predicate p(τ1, . . . , τn)

and is accompanied with axioms

axiom id : formula

Such a declaration specifies that f , resp. p, is any symbol satisfying the axioms.
All functions in the logic are assumed total, so that there is no possible “runtime error” in the spec-

ifications themselves. Axiomatizations provide a way to specify partial functions, in the sense that the
axioms do not specify their results outside their domains.

Example 4.4.1 A typical example is the division which can be axiomatized as

function div(real,real):real

axiom mul_div: forall x,y:real. y 6= 0.0 → div(x,y) * y = x

An expression like div(1.0,0.0) is a valid expression, but its value is not specified.

Example 4.4.2 The factorial function can be axiomatized as follows.

45

function fact(int):int

axiom fact0: fact(0) = 1

axiom factn: forall n:int. n ≥ 1 → fact(n) = n * fact(n-1)

The values of fact(n) for n negative are not specified.

Example 4.4.3 Taking respectively the head and the tail of a list is undefined when applied on an empty
list. These two functions cannot be defined directly by pattern-matching, but they can be axiomatized as
follows.

function head(l:list α):α
axiom head_cons: forall x:α, l:list α. head(Cons(x,l)) = x

function tail(l:list α):list α
axiom tail_cons: forall x:α, l:list α. tail(Cons(x,l)) = l

Again the values of head(Nil) and tail(Nil) are not specified.

4.4.2 A Warning about Consistency Issues

We repeat that the meaning of an axiomatization is that the abstract functions and predicates indeed
denote any function or predicate satisfying the given axioms. This does not cause any problem of
soundness but a potential problem of inconsistency: the axioms may be contradictory in the sense that
no function could satisfy all axioms at the same time.

A toy example of inconsistent axiomatization is

function f(int):int

axiom f0: f(0) = 1

axiom f1: f(0) = 2

A less toy example is

function div(real,real):real

axiom mul_div: forall x,y. div(x,y)*y = x

from which we get div(1.0,0.0)*0.0 = 1.0 which contradicts forall x:real. x*0.0 = 0.0.
Typically, in such an context, an automated theorem prover will exploit the inconsistency by prov-

ing any goal it is given, including false. In other words, special care must be taken when designing
axiomatizations, to avoid introducing inconsistencies.

4.4.3 Axiomatic Type Declarations

Not only functions but also data types can be declared abstractly, by a declaration of the form

type t

For example, one may introduce a type of colors with

type color

function blue: color

function red: color

axiom distinct: red 6= blue

Unlike sum types, such a type is open in the sense that there may exist values of this type other than the
given constants. For instance, one could introduce later on

function green: color

function rgb(r:real,g:real,b:real): color

axiom green_rgb: green = rgb(0.0,1.0,0.0)

46

4.4.4 Polymorphic Types

Abstract types may also be declared as polymorphic, with a declaration of the form

type t α1 · · ·αk

where α1 · · ·αk are type parameters
A classical example is the type of sets of elements of some type, which can axiomatized as follows.

type set α

function empty: set α

function single(α): set α

function union(set α,set α): set α
axiom union_assoc: forall x y z:set α. union(union(x,y),z) = union(x,union(y,z))

axiom union_comm: forall x y:set α. union(x,y) = union(y,x)

predicate mem(α,set α)
axiom mem_empty: forall x:α. ¬ mem(x,empty)

axiom mem_single: forall x y:α. mem(x,single(y)) ↔ x=y

axiom mem_union: forall x:α, y z:set α. mem(x,union(y,z)) ↔ mem(x,y) ∨ mem(x,z)

4.5 Inductive Predicates

Defining a predicate inductively is a notion that originally comes from the theory of automated reasoning
based on resolution. A Horn clause is a first order clause, i.e. a disjunction of literals, with at most one
positive literal. For this form of clauses, there exist efficient reasoning methods, which gave birth to the
Prolog programming language.

An inductive definition of a predicate is a kind of axiomatization where the axioms are Horn clauses.
They appear in proof environments like Coq or PVS. It has the form

inductive p(τ1, . . . , τn) =
| id1: clause1

...
| idk: clausek

where each clause has the form

forall ~x. hyp → p(e1, . . . , en)

and p occurs only positively in hyp (thus it is a Horn clause). Another point of view on such definitions
is that they define uniquely the predicate, satisfying the clauses, that is true the less often. Such a
“smallest” predicate exists, it is the smallest fix-point of the set of clauses.

A typical case when an inductive definition comes naturally is the definition of the transitive closure
of a relation.

predicate r(x:t,y:t) = ...

inductive r_star(t,t) =

| empty: forall x:t. r_star(x,x)

| single: forall x y:t. r(x,y) → r_star(x,y)

| trans: forall x y z:t. r_star(x,y) ∧ r_star(y,z) → r_star(x,z)

47

The definition should informally read as “r_star is the smallest reflexive and transitive relation that
includes r”.

4.6 Programs with Arrays

The most common data type appearing in programming languages is the type of arrays. Proving pro-
grams with arrays can be done by considering arrays as references to purely functional arrays, also called
maps. Purely functional arrays are just one particular case of a logic datatype that can be axiomatized in
first-order logic. The typical axiomatization is as follows.

type map α
function select(map α, int) : α
function store (map α, int, α) : map α
axiom select_store_eq:

forall a:map α, i:int, v:α. select(store(a,i,v),i) = v

axiom select_store_neq:

forall a:map α, i,j:int, v:α. i 6= j → select(store(a,i,v),j) = select(a,j)

Type map α denotes maps indexed by integers holding values of type α. In this axiomatization, the
indexes are unbounded; the case of bounded arrays will be addressed later. The function select allows
to access the i-th element of a map, that is, select(a,i) models the usual notation a[i]. The function
store denotes the functional update of a map, that is, store(a,i,v) denotes a new map whose values
are identical to those of a, except at index i where the value is the given v. The two axioms above
axiomatize this informal definition of store.

It should be noticed that the theory of maps as above was one of the very first “built-in” theory
considered into SMT solvers.

In a program, an array variable is seen as a reference to such a map. The standard assignment
operation of the form a[i] := e is interpreted as a := store a i e.

Remember that our IMP language does not allow references to references. Hence, with the approach
of arrays above there is no way to build an array of references. In particular, this representation of
arrays by references to maps cannot model arrays of arrays were some sharing of sub-arrays is allowed.
Sharing sub-arrays raises the so-called aliasing issues and will be discussed in a next chapter.

A toy example of a program on an array is as follows.

val a: ref (map int)

procedure test()

writes a

ensures select(a,0) = 13

body

a := store(a,0,13); (* a[0] := 13 *)

a := store(a,1,42) (* a[1] := 42 *)

48

The proof using WP proceeds as follows:

WP((a := store(a, 0, 13); a := store(a, 1, 42)), select(a, 0) = 13)
= WP(a := store(a, 0, 13),WP(a := store(a, 1, 42)), select(a, 0) = 13))
= WP(a := store(a, 0, 13), select(store(a, 1, 42), 0) = 13)
= WP(a := store(a, 0, 13), select(a, 0) = 13)

(thanks to axiom select_store_neq)
= select(store(a, 0, 13), 0) = 13
= 13 = 13

(thanks to axiom select_store_eq)

4.7 Exercises

Exercise 4.7.1 Find appropriate precondition, postcondition, loop invariant, and variant, for the fol-
lowing program, using the axiomatization of Example 4.4.2.

function fact_imp (x:int): int

requires ?

ensures ?

body

let ref y = 0 in

let ref res = 1 in

while y < x do

y := y + 1;

res := res * y

done;

res

Prove your program using WP.

Exercise 4.7.2 A procedure that permutes the contents of cells i and j in an array a is as follows.

val a: ref (map int)

procedure swap(i:int,j:int)

writes a

ensures select(a,i) = select(a@Old,j) ∧ select(a,j) = select(a@Old,i) ∧
forall k:int. k 6= i ∧ k 6= j → select(a,k) = select(a@Old,k)

body

let tmp = select(a,i) in (* tmp := a[i] *)

a := store(a,i,select(a,j)); (* a[i] := a[j] *)

a := store(a,j,tmp) (* a[j] := tmp *)

• Prove swap using WP.

• Prove the procedure

procedure test ()

requires select(a,0) = 13 ∧ select(a,1) = 42 ∧ select(a,2) = 64

ensures select(a,0) = 64 ∧ select(a,1) = 42 ∧ select(a,2) = 13

body swap(0,2)

49

Exercise 4.7.3 Incrementing an array of reals.

1. Write a program over 3 variables: an array of reals a, and two integers min and max. The program
should increment by 1 all the values of a between min and max.

2. Specify a post-condition stating that the values between indexes min and max are incremented.

3. Specify an appropriate loop invariant.

Exercise 4.7.4 The goal is to specify and prove algorithms for searching a value in an array. Such a
function is expected to fit the following canvas.

val a: ref(map real)

function search (n:int, v:real): int

requires 0 ≤ n

ensures ?

body ?

1. Propose a suitable postcondition specifying that if v occurs in array a, between indexes 0 and
n− 1, then the result is an index of such an occurrence, otherwise −1 is returned.

2. Implement and prove an algorithm of linear search, that follows the pseudo-code:

for each i from 0 to n− 1: if a[i] = v then return i

3. Specify and prove an algorithm of binary search, that assumes the array sorted in increasing
order, and follows the pseudo-code:

low := 0; high := n− 1;
while low ≤ high

let m be the middle of low and high
if a[m] = v then return m
if a[m] < v then continue search between m+ 1 and high
if a[m] > v then continue search between low and m− 1

Exercise 4.7.5 The goal is to specify and prove algorithms for sorting an array of reals in increasing
order. Such a procedure is expected to fit this canevas:

val a: ref(map real)

procedure sort(n:int)

requires 0 ≤ n

writes a

ensures ?

body ?

1. Propose a suitable postcondition specifying that at the end of execution:

• the array is in increasing order between indexes 0 and n− 1,

• the array at exit is a permutation of the array at entrance.

50

It is suggested to use an inductive definition to formalize the permutation property.

2. Implement and prove an algorithm of selection sort, that follows the pseudo-code:

for each i from 0 to n− 1:
finds the index idx of the minimal element between i and n− 1;
swap elements at indexes i and idx

The use of an auxiliary procedure is recommended.

3. Implement and prove an algorithm of insertion sort, that follows the pseudo-code:

for each i from 1 to n− 1:
insert element at index i at the right place between indexes 0 and i− 1

Exercise 4.7.6 We consider a procedure that computes the reversal of a list, in an efficient way (i.e. in
linear time in function of the size of the list).

val l:ref (list int)

procedure rev_append(r:list int)

variant ?

writes l

ensures ?

body

match r with

| Nil → skip

| Cons(x,r) →
l := Cons(x,l);

rev_append(r)

end

procedure rev(r:list int)

writes l

ensures l = rev r

body ?

1. Fill the ? with appropriate annotations or code.

2. Prove the program using WP. Which general lemmas on lists are needed?

Exercise 4.7.7 Resolution of a second degree equation.

• Write an IMP program that assumes 3 variables a, b, c of type real and stores into a variable of
type (list real) the set of solutions of the equation ax2 + bx+ c.

• Specify the expected behavior in the post-condition.

• Prove the program. You may pose lemmas to state some mathematical results.

Exercise 4.7.8 Sum of elements in a list.

51

• Using the standard datatype of polymorphic lists, define a logic function that gives the sum of
elements of a list of real numbers.

• Assuming 2 global variables l of type list real and s of type real, write a program that eventu-
ally stores in s the sum of elements of l. You may add extra local variables if needed.

• Propose a post-condition that specifies the expected behavior of the program.

• Propose appropriate loop invariants and variants to allow the proof of the program using WP.

Example 4.7.9 Considering polymorphic binary trees defined as

type tree α = Leaf | Node(tree α,α,tree α)

specify, implement, and prove a procedure returning the maximum of a tree of integers.1

Bibliography

[1] J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University Press, 1996.

[2] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses, D. Sannella, and A. Tar-
lecki. CASL: The common algebraic specification language. Theoretical Computer Science, 286
(2):153–196, 2002.

[3] M. Barnett, R. DeLine, B. Jacobs, B.-Y. E. Chang, and K. R. M. Leino. Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W.-P. de Roever, editors, Formal Methods for Components and Objects: 4th International
Symposium, volume 4111 of Lecture Notes in Computer Science, pages 364–387, 2005.

[4] C. Barrett and C. Tinelli. CVC3. In Damm and Hermanns [11], pages 298–302. URL ftp:

//ftp.cs.uiowa.edu/pub/tinelli/papers/BarTin-CAV-07.pdf.

[5] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Springer-
Verlag, 2004.

[6] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout. The Alt-Ergo
automated theorem prover, 2008. http://alt-ergo.lri.fr/.

[7] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your herd of provers. In
Boogie 2011: First International Workshop on Intermediate Verification Languages, pages 53–64,
Wrocław, Poland, August 2011. URL http://proval.lri.fr/publications/boogie11final.

pdf.

[8] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. The Why3 platform, version 0.71. LRI,
CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.71 edition, Oct. 2011. https://gforge.

inria.fr/docman/view.php/2990/7635/manual.pdf.

[9] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll. An overview of JML tools and applications. International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212–232, June 2005. URL http://dx.doi.org/10.1007/

s10009-004-0167-4.
1Problem 2 of the FoVeOOS verification competition in 2011, http://foveoos2011.cost-ic0701.org/

verification-competition

52

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and programming in rewriting logic. Theoretical Computer Science, 285(2):187–243,
Aug. 2002.

[11] W. Damm and H. Hermanns, editors. Computer Aided Verification, volume 4590 of Lecture Notes
in Computer Science, Berlin, Germany, July 2007. Springer.

[12] L. de Moura and N. Bjørner. Z3, an efficient SMT solver. In TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[13] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 243–320. North-Holland, 1990.

[14] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

[15] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive program ver-
ification. In Damm and Hermanns [11], pages 173–177. URL http://www.lri.fr/~filliatr/

ftp/publis/cav07.pdf.

[16] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Software Engineer-
ing with OBJ: Algebraic Specification in Action, chapter Introducing OBJ*. Kluwers Academic
Publishers, 2000.

[17] J. V. Guttag and J. J. Horning. Larch: languages and tools for formal specification. Springer, New
York, NY, USA, 1993. ISBN 0-387-94006-5.

[18] C. B. Jones. Systematic software development using VDM (2nd ed.). Prentice-Hall, 1990. ISBN
0-13-880733-7.

[19] K. R. M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness. In Springer,
editor, LPAR-16, volume 6355, pages 348–370, 2010.

[20] B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, March 2000. ISBN
0136291554. URL http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&

path=ASIN/0136291554.

[21] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. J. ACM, 27
(2):356–364, 1980. ISSN 0004-5411. doi:http://doi.acm.org/10.1145/322186.322198.

[22] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

[23] M. Norrish. Hol 4 kananaskis-4. http://hol.sourceforge.net/.

[24] S. Owre and N. Shankar. The formal semantics of PVS. Technical Report SRI-CSL-97-2, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, Aug. 1997.

[25] S. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of PDPAR’03,
July 2003.

[26] W. Reif, G. Schnellhorn, and K. Stenzel. Proving system correctness with KIV 3.0. In W. Mc-
Cune, editor, 14th International Conference on Automated Deduction, Lecture Notes in Computer
Science, pages 69–72, Townsville, North Queensland, Australia, july 1997. Springer.

[27] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, 1989. ISBN 0-13-983768-X.

53

[28] J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models Ready for MDA.
Addison-Wesley, 2 edition, 2003. ISBN 0321179366.

54

