Chapter 5
Aliasing

The goal of this chapter is to address the so-called aliasing phenomenon in programming and the issues
it raises when proving a program. Section 5.1 focuses on the case of call by reference. Section 5.2
considers the general case of pointer programs.

5.1 Call by Reference

In Chapter 3, values were passed to functions using parameters that are similar to immutable variables.
This is the so-called call by value semantics. The call by reference semantics sees parameters as mutable
variables instead. If such a parameter is assigned inside the body of the function, then the global variable
passed as an argument during the call is modified too.

The need to add call by reference to the language of the previous chapters is motivated by the need
of more genericity in programs. An example to illustrate this is as follows, where the goal is to define a
module implementing stacks of integers.

type stack = list int
val s:ref stack

function push(x:int):
writes s
ensures s = Cons(x,s@0ld)
body ...

function pop(): int
requires s #* Nil
writes s
ensures result = head(s@0ld) A s = tail(s@0ld)

The function push puts the given value x on top of the stack s, whereas the pop function removes the top
of the stack and returns its value.

But in the case we need to program some other function that needs two stacks, it would be a major
burden if we need to copy the functions, to make them operate on another stack. From the point of view
of proofs, it is even worse because we should prove the correctness of this copy.

In other words, if we want to provide a module for stacks that is naturally reusable, we should be
able to parameterize the functions push and pop by the stack it operates on. A syntax for that is as
follows.
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type stack = list int

function push(s:ref stack,x:int):
writes s
ensures s = Cons(x,s@01d)

function pop(s:ref stack):int)

The stack s is now a reference parameter of push and pop. A program that uses two stacks can now be
easily written, e.g.

val sl,s2: ref stack

function test(): int
ensures head(s2) = 42 A result = 13
body push(sl,13); push(s2,42); pop(sl)

5.1.1 Aliasing Problems

Let’s consider the following functions using stacks.

function test(sl,s2: ref stack) : unit
ensures { head(sl) = 42 A head(s2) = 13 }
body push(sl,42); push(s2,13)

function wrong(s: ref stack) : int
body test(s,s)

The post-condition of test is natural, but this means that when someone calls test with twice the same
reference, like function wrong above, one could be able to prove both head(s) = 42 and head(s) = 13,
which is obviously a mistake. This happens because in function test, the post-condition can be estab-
lished only under the assumption that parameters s1 and s2 denotes distinct mutable variables. This is
an implicit non-aliasing hypothesis.

Indeed, aliasing is a major issue when proving programs. Deductive Verification Methods like Hoare
logic or the Weakest Precondition Calculus implicitly require absence of aliasing.

Historically, call by reference is present in older programming languages like PASCAL (parameters
annotated with keyword VAR), Ada (parameters annotated with out or inout), Fortran, etc. For more
modern languages like C or Java, such a feature is not present since the ability to pass a pointer or an
object (i.e. internally a memory address in both cases) as argument can be used to modify mutable data,
and thus simulates call by reference. In functional languages like OCaml, mutable data are explicitly
typed using ref, hence call by reference is explicitly visible in the types of parameters.

Notice that modern versions of Ada also provide pointers and objects, however when Ada is used for
developing critical software, only the subset Spark is recommended, that allows out or inout parameters
but no pointers. The ultimate reason, as we will see in this chapter, is that call by reference is significantly
easier to handle than general pointers when one wants to prove a program.

5.1.2 Syntax

A function declaration now allows both value parameters and reference parameters. For the sake of
simplicity, we assume that reference parameters are given first, although in practice they can come in
any order. The shape of a function declaration is thus as follows.
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function f(yy :ref i, ...,y s ref m,xq o 7], .o 2y 2 7))

where the y; are the reference parameters and the x; are the parameters passed by value.

It should be noted that when calling such a function, it is not possible to pass any expression for the
effective arguments of the y;: since y; is intended to be assigned, the corresponding argument has to be
a mutable variable itself. The general shape of a call is thus

f(z1, 5 20,61, 5en)

where each z; must be a mutable variable.

5.1.3 Operational Semantics

Defining the operational semantics of call by reference is not a trivial matter. There is a kind of “in-
tuitive” semantics, that expresses what we informally expect from a call by reference, which can be
formalized by a syntactic substitution in the body:

' = {z; « [ti]sn} X,II' = Pre Body = Bodyly; < z]
S0 f(21y oy 2ho tly oy t) ~ 2,11, (Old 2 1et € = Body' in return &, Post, 1)

This rule is the same rule as for function calls in Chapter 3 (regarding the parameters passed by value)
but we replace each occurrence of reference parameters by the corresponding reference argument in the
body of the executed function.

This semantics captures the informal idea of calling by reference, but it is not used in practice when
interpreting or compiling a program, because there is no simple way to make a “copy” of the body of a
function each time it is called.

Historically, there have been several variants proposed to implement call by reference. One of the
older techniques is the semantics called copy/restore. There are reserved memory locations for the
reference parameters, the values of the effective arguments are copied there when the function is called,
and then the final values are copied back to the variables given as arguments. Such a semantics is
formalized by the following rules. In the rule for call below, the reference parameters are added into the
current state.

Y = E[yj — E(Z])] I = {:L‘Z — [[ti]]Z,H} Z,H/ ): Pre
NI f(z1, ooy 2Rty e e vy t) ~» ST (Old - 1et € = Body in return &, Post, 11)

In the rule for the dummy statement return below, the state is updated, to formalize the “restore” step.

3,11 |= Plresult < v] % = %[z; + %(y;)]
¥ 101, (return v, P, I1') ~ X/, 11, v

The important point to notice here is that it is not equivalent to the intuitive semantics above. Differ-
ences may appear in presence of aliasing, that is if two different variable names indeed denote the same
variable. An example is as follows.

val g : ref int

function f(x:ref int):unit
body x := 1; x := g+1

function test():unit
body g:=0; f(g)
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In the intuitive semantics, executing f(g) means executing the body of f where x is replaced by g, that
is

g:=1;,9g:=9g+1;

and thus g = 2 at the end. With the copy/restore semantics, executing f(g) means executing
X 1= 1; x := g + x in a state where x has value O (the current value of g), which results in a state
where g = 0 and x = 1, and the value of x is copied back to g thus g=1.

Such a difference in the two semantics comes from the aliasing between g and x when calling f(g):
g and x are different names for the same memory location.

In a context where we want to prove programs, this difference of semantics is of course an issue. On
the example above, one would naturally specify the function f as follows:

function f(x:ref int):
writes x
ensures x = g+l
body x :=1; x :=g + 1;

The postcondition can be proved valid with Hoare Logic or with Weakest Precondition calculus. How-
ever, for the test code g := 0; p(g), if we use the rules of Chapter 3 as they are we could prove both

e g=0, because the contract of f says that g is not changed by the function ;
e g=1 because the postcondition of f says that g = g@old+1.
This happens for several reasons:
e The post-condition of f is proved under an implicit assumption that x and g are not alias;

e The writes clause says that a call to f cannot modify anything but x, but it is not enough to say
that the name g is different from the name x to ensure that g and x do not denote the same variable.

This clearly shows that the rules of Hoare logic and WP cannot be used in presence of call by reference
without any precautions.
The program below illustrates another aliasing issue.

function f(x:ref int, y:ref int):
writes x y
ensures X =1 Ay =2
body x :=1; y =2

The post-condition is natural for the given code, and indeed can be proved valid if we use the rules we

know about Hoare logic and weakest preconditions. However in the following context:

val g : ref int
function test():
body f(g,9);

one could derive g = 1 A g = 2 which is inconsistent. This time, this is because two reference param-
eters are alias.
Another example is as follows.

val gl : ref int
val g2 : ref int

function f(x:ref int):
writes gl x
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ensures gl =1 A x = 2
body gl :=1; x := 2

function test():
body
f(g2); assert gl =1 A g2
f(gl); assert gl =1 A gl

2; (x 0K x)
2; (% 777 %)

The first call f(g2) is OK, but the second one f(g1l) is not, one could derive g1 = 1 A gl = 2 which
1s inconsistent.

5.1.4 Typing, Alias-Freedom Condition

To prevent the unexpected behaviors presented above, we have to make sure that no alias occur. For this
purpose we need to add a new reads clause in function contracts, analogous to the writes clause, to
specify the references that are accessed, but not assigned.

With this extended form of contract, we can prevent unexpected reference aliasing thanks to an
additional premise in the typing rule for function calls. For a function declared under the form

function f(yy : ref 71, ..., yk s ref T, @1 : T, ., Tp 1 Th) I T
writes
reads 7

The typing rule for a call to f is extended with additional premises:

Vijyi#j—zi# 2z  VijyziFw;  Vij,z #F 1y
Bz, oz, )T

In other words, the effective arguments z; must be distinct, and each effective argument z; must neither
be read nor written by f [8]

Theorem 5.1.1 (Soundness in presence of call by reference) If a program is well-typed, with the
Alias-Freedom restriction above, then

o Semantics by substitution and by copy/restore coincide
e Hoare rules of previous chapters remain correct

o WP rules of previous chapters remain correct

Indeed, the rules are almost unchanged: we must take care that for function call, appropriate substi-
tution of the reference parameters by effective arguments is done, so the WP rule for call is as follows.

WP(f(z1,.-,2k,€1,---,6n), Q) :qPre[xieei}[yj;‘(— 2] B B
AV, (Post[z; < ¢;][y; < z;][w'QHere + y][w'@QOld < w'@QHere] = Q[w' < 7])

where w' = @y; « zj]

Example 5.1.2 The following program is well-typed, and can be proved correct using WP.

type stack = list int

function push(s:ref stack,x:int):
writes s
ensures s = Cons(x,s@0ld)
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body s := Cons(x,s)

val sl1,s2: ref stack

function test():
ensures head(sl) = 13 N head(s2) = 42
body push(sl1,13); push(s2,42)

The proof is as follows:

WP (push(s1, 13); push(sa,42), head(s1) = 13 A head(s2) = 42)
= WP (push(s1, 13), WP (push(sa,42), head(s1) = 13 A\ head(s2) = 42))
= WP(push(s1,13),
Yy, (s = Cons(x, sQOId))[x < 42][s < s2][s2 + y][s2@QOIld + s3] —
(head(s1) = 13 A head(s2)42)[s2 < y])
= WP(push(s1, 13),
Vy,y = Cons(42, s3) — (head(s1) = 13 A head(y) = 42))
= WP(push(s1, 13), (head(s1) = 13 A head(Cons(42, s9)) = 42))
= WP (push(s1, 13), head(s1) = 13)
=Yy, (s = Cons(z, sQOId))[x + 13][s « s1][s1 < y][s1QOIld + s1] —
(head(s1) = 13)[s1 < y])
=Vy, (y = Cons(13,s1)) — head(y) = 13
= head(Cons(13,s1)) = 13
= true

In some sense the alias-freedom condition ensures that the second call to push does not have any
effect on the first stack s1, and thus proving head(sl) = 13 is directly a consequence of the post-
condition of push for the first call.

Example 5.1.3 The following program is correct:

push(s,13);

push(s,42);

let x = pop(s) - pop(s) in
assert x = 29

WP(let = = pop(s) — pop(s) in assert z = 29, true)

= WP(pop(s) — pop(s), WP (assert = = 29, true)[x < result])

= WP(pop(s) — pop(s), (x = 29)[z < result])

= WP(pop(s) — pop(s), result = 29)

= WP(let t; = pop(s) in let t2 = pop(s) in t; — ta, result = 29)

= WP(pop(s), WP(1let ta = pop(s) in t; — to, result = 29)[t; «+ result])

= WP (pop(s), WP (pop(s), WP(t; — ta, result = 29)[t2 «+ result])[t; «+ result])
= WP(pop(s), WP (pop(s), (t1 — ta = 29)[ta < result])[t1 < result])

= WP(pop(s), WP(pop(s),t1 — result = 29)[t; < result])

= WP (pop(s),

(s # Nil AVsg result, result = head(s) A so = tail(s) — t; — result = 29)[t; < result])
= WP (pop(s), (s # Nil AVsg ro,m0 = head(s) A sog = tail(s) — t1 —ro = 29)[t1 + result])
(renaming internal result into r to avoid capture in the next step)
= WP(pop(s), (s # Nil AVsg 19,70 = head(s) A so = tail(s) — result — ro = 29))
= s # Nil A Vs result, result = head(s) A s1 = tail(s) —
(s1 # Nil AVsg 1o, 1m0 = head(s1) A so = tail(s1) — result — ro = 29) (A)
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For the last expression (A) we must compute the WP through push(s,13); push(s,42);. We get

WP (push(s,13), WP (push(s,42), A))

= WP(push(s,13),Vsa.s9 = Cons(42,s) — Als < s2])

= Vs3, 53 = Cons(13,s) — Vsa,s9 = Cons(42,s) — Als + s2]
= Als < Cons(42, Cons(13, s))]

which gives, after evaluation of head and tail :

Cons(42, Cons(13,s)) # Nil A Vs; result, result = 42 A s; = Cons(13,s) —
(s1 # Nil AV'sg 1,70 = head(s1) A sg = tail(sy) — result — ro = 29)

= true A (Cons(13,s) # Nil AVsgro,r0 =13 AN sg=s— 42 — 19 = 29)

=true N42 —13 =29

= true

5.1.5 About Creation of References

To program modules like the one for stacks, one also needs the ability to return newly created references.
For example one would like to write

function create():ref stack
ensures result = Nil
body
let ref s = Nil in s

To ensure that no unexpected aliasing occur, typing should require that a returned reference is always
fresh, i.e. is distinct from any global mutable variable or reference parameters. For our language, this
means it should return a local mutable variable. In the Why3 programming language which is a bit more
general than ours, the control of aliasing is made using the notions of regions [11].

5.2 Pointer Programs

The goal of this section is to drop the hypothesis that we have until now, that is, references are not values
of the language, and in particular there is nothing like a reference to a reference, and there is no way to
program with data structures that can be modified in-place, such as records where fields can be assigned
directly.

There is a fundamental difference of semantics between in-place modification of a record field and
the way we modeled records in Chapter 4. The small piece of code below, in the syntax of the C
programming language, is a typical example of the kind of programs we want to deal with in this chapter.

typedef struct List { int data; list next; } x*list;

list create(int d, list n) {
list 1 = (list)malloc(sizeof(struct List));

1->data = d;
1->next = n;
return 1;

void incr_list(list p) {
while (p <> NULL) {
p->data++; p = p->next;
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}

Like call by reference, in-place assignment of fields is another source of aliasing issues. Consider this
small test program

void test() {
list 11 = create(4,NULL);

list 12 = create(7,11);

list 13 = create(12,11);
assert (13->next->data == 4);
incr_list(12);

assert (13->next->data == 5);

}

which builds the following structure:

\

4 o——» null
Pl
12| ¢

the list node /; is shared among /2 and I3, hence the call to incr_list(l2) modifies the second node of
list I3.

The goal of this chapter is to provide methods for specifying this kind of pointer programs, and
reasoning on them in a sound way, taking possible aliasing into account.

In the next sections, we extend our language with pointers to records, and formalize the operational
semantics. For the moment we do not consider allocation and deallocation. Memory allocation will be
considered in Chapter 6.

5.2.1 Syntax

We use the same language of expressions with side effects as in the previous chapters, which we enrich
with data types of pointers to records. The syntax of global declarations contains a new kind of constructs
to declare record types, with the form:

recordid = {f1: 71+ fn : Ta}
and where the grammar of types is extended accordingly:
T ::=1int | real | bool | unit | id

The record declarations can be recursive: a field f; of a record type S can itself be of type S. Construc-
tion of recursive “linked” data structures can be performed thanks to a null pointer which can be of any
record type.

The grammar of expressions of the language is extended has follows.

e == null null pointer
le— f field access
| e — f:=e field update

We consider that a memory access is safe as soon as the considered pointer is not null (as in Java
for instance).

62



Example 5.2.1 The small example given at the beginning of this section, for incrementing a linked list,
is written in our language as follows

record List = { data : int ; next: List; }

function incr_list(l:List)
body
let p = ref 1 in
while p != null do
p—data := p—data + 1;
p := p—next
done

5.2.2 Operational Semantics

To formalize the semantics of pointer programs, we first introduce a new kind of values: the memory
locations, which concretely correspond to the addresses on a computer. This kind of values is denoted
by the type loc. In other words, the pointer variables in a program are the variables whose values are of
type loc. The special expression null is one particular value of the type loc. We assume that there are
infinitely many values of type loc, in other words we assume an ideal infinite memory.

Instead of a pair (X, 1I), a program state is now a triple (#,%,II). 3 and II still map variable
identifiers to values, whereas #H maps pairs (loc, field name) to values. We consider that # is a total
map, that is, all memory locations are “allocated” (remind that allocation/deallocation is not supported).

Example 5.2.2 A program state that corresponds to the informal example with lists from the introduc-
tion of this chapter is

Im = 0

Y = {lj =locy;ly = locy;ls = locs}

H = {(loc1,data) = 4; (loca, data) = 7; (locs, data) = 12;

(locy, next) = null; (locg, next) = locy; (locs, next) = locy }
where locy, loca, locs are some values of type loc

The two additional rules we need to execute pointer programs are as follows, to respectively evaluate
field access and field update.

v Z null
H,E 0L (v = f) ~ H, 5 ILH (v, f)

v1 # null
H727H7 (Ul — f = UQ) ~ H[(Ulvf) — UZ]vzvﬂa ()

5.2.3 Component-as-Array Model

The Component-as-Array model is a method that allows to encode the programs of our language ex-
tended with pointer to records into the language without pointers we had in the previous section. This
technique allows to reuse the techniques for reasoning on programs using Hoare logic or WP, on pointer
programs. This method is originally an old idea proposed by Burstall in 1972 [6] and was resurrected
by Bornat in 2000 [5]. The idea is that we can collect all the field names declared in a given program,
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and view the heap H not as a unique map indexed by pairs (loc,field name) but as a finite collection of
maps H ; indexed by loc, one for each field name f. If the field f is declared of type 7, the map H s can
be encoded into a reference to a purely applicative map from loc to 7, in the same way that an array is
encoded by a reference to a purely applicative map from integers to 7.

The following is the common part of the component-as-array model, that can be used for any pro-
grams.

type loc
constant null : loc

function acc(field: ref (map loc «),l:loc) : «
requires 1 # null
reads field
ensures result = select(field,1)

function upd(field: ref (map loc «),l:loc,v:a):unit
requires 1 # null
writes field
ensures field = store(field@0Old,1,v)

The two functions above allow us to simulate the operational semantics, that requires pointers to be
non-null when accessing memory.

In other words, this Component-as-Array model allows to encode any given pointer program into a
program without pointer.

Example 5.2.3 Example 5.2.1 for incrementation of elements of a linked list can be encoded in our
pointer-free language as follows.

val data: ref (map loc int)
val next: ref (map loc loc)

function incr_list(l:loc)
body
let r = ref 1 in
while p != null do
upd(data,p,acc(data,p)+1);
p := acc(next,p)
done

This technique is implemented in verification tools that deal with mainstream languages like C and
Java. Caduceus [9] and the Jessie plugin [14] of Frama-C [12] can generate verification conditions for
C code annotated with ACSL [3]. Krakatoa [13] does the same for Java source code annotated with a
variant of JML. The former tools use the component-as-array method to encode C or Java source into
Why [10] or Why3 [4]. Other tools proceed in a similar way, by encoding into another intermediate
language and VC generator called Boogie [2]: Spec# [1] to verify C# programs, VCC [7] for C code,
etc.

5.2.4 Fundamental Example: In-place List Reversal

A classical example of a function modifying a linked list in-place is the list reversal. Indeed, Bornat [5]
emphasizes that any proof method which claims to support pointer program should first demonstrate
how it handles this example.
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Here is a version of the code in our language with pointers.

function reverse(l:list) : list
body
let p = ref 1 in let r = ref null in
while p # null do
let n = p—next in

p—next := r;

r:=np;

p:=n
done;

r

The same program, encoded in our pointer-free language using the Component-as-Array model is

function reverse (l:loc) : loc
body
let p = ref 1 in let r = ref null in
while p # null do
let n = acc(next,p) in
upd(next,p,r);

r:=p;
p:=n
done;

r

Our goal in the following is to show how one can specify the expected behavior of this code, and
then how we can prove it. This example will illustrate the major issue regarding the proof of pointer
programs, that is the property of disjointness, also called separation, of linked data structures.

Specifying List Reversal

We want to specify the expected behavior of the reversal in the form of a contract. The first thing to
specify in the precondition is that the input list should be well-formed, in the sense that it is terminated
by the null pointer. In fact, thanks to our hypothesis that all memory accesses are safe, there are three
possibilities for a shape of a linked list:

e the list can be null terminated, e.g.:

> 37| er—» 42| e—» 6 | e—» null

> 99

®
A

12

®
A

e the list can be cyclic, e.g.:

12| «—»99| o> 37| e —» 42| o> 6 | ®

e the list can be infinite.

The third possibility cannot be ignored since we have no hypothesis on the finiteness of memory. How-
ever, there is no way to construct such a list with a program. But the second case is clearly possible, e.g
by doing
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p— next :=p

Thus, we want to specify that our input list has the first kind of the shapes above. The property of
being terminated by null is typically a case where an inductive definition is useful. We can specify that
a location [ points to a null terminated list if and only if [ is null, or / is not null and [ — next points to
a null-terminated list.

Specifying the shape of the list is not enough. If we want to express that the list / is reversed by the
program, we need to be able to formally talk about the sequence of memory cells that occurs in the path
from [ to null. This idea leads to the definition of a predicate list_seg(p, next, pyr, q¢) meaning that p
points to a list of nodes pj, that ends at q:

next next next
P=por—=>p1 -t Pk g
where

PMmM = 00n5<p07 Cons(pl, T Cons(pk, Nll) o ))

The pure list py; is typically called the model list of p. The predicate is defined inductively by

inductive list_seg(loc,map loc loc,list loc,loc) =
| list_seg_nil: forall p:loc, next:map loc loc. list_seg(p,next,Nil,p)
| list_seg_cons: forall p g:loc, next:map loc loc, pM:list loc.
p # null A list_seg(select(next,p),next,pM,q) — list_seg(p,next,Cons(p,pM),q)

The formal specification of list reversal can thus be given as follows.

e The precondition should state that the input list / is null-terminated, which corresponds to the
formula

Alps. list_seg(l, next, i, null)

e The postcondition should state that the output is also null-terminated:
Irps. list_seg(result, next, rar, null)

but also that the model list of the result is the reverse (in the sense of pure logic lists as defined in
Section 4.3.5) of the model list of the input:

ra = rev(ly)

The formal contract for reverse cannot be written exactly like that, since the list [, is quantified in
the precondition, and thus is not visible in the post-condition. A solution is to use the so-called ghost
variables, which are extra variables in the program added for specification purposes. For our example of
list reversal, this corresponds to passing the model list as an extra parameter, as follows.

function reverse (l:loc,M:list loc) : loc =
requires list_seg(l,next,M,null)
writes next
ensures list seg(result,next,rev(1M),null)
body ...
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function reverse (l:loc, WM:list loc) : loc =
requires list_seg(l,next,M,null)
writes next
ensures list_seg(result,next,rev(lM),null)
body
let p = ref 1 in
let pM = ref WM in
let r = ref null in
let rM = ref Nil in
while (p # null) do
invariant list_seg(p,next,pM,null) A
list_seg(r,next,rM,null) A
append(rev(pM), rM) = rev(lM)
let n = acc(next,p) in
store(next,p,r);
r:=p
p:=n
rM := Cons(head(!pM),!rM);
pM := tail(!pM)
done;
r

’
’

Figure 5.1: List reversal annotated with ghost variables

In-place list reversal: loop invariant

In order to design an appropriate loop invariant, we use local ghost variables p,s, rps that represent
the model lists of p and r respectively. The proposed extended code is now as given in Figure 5.1.
The first two parts of the loop invariant state that p and r point to null terminated lists. The third part
append(rev(pM), rM) = rev(1M) formalizes the structure of the linke list and some iteration of the
loop which is illustrated by the following picture.

r
null ® ® ® > ® > o——» null

~

Proving list reversal

With the annotated code of Figure 5.1, the proof cannot be performed easily, in the sense that automated
provers will fail to prove the verification conditions generated by WP. More precisely, the loop invariant
cannot be proved preserved by loop iterations. The reason is that it is not obvious that the operation

next := store(next,p,r);

preserves the property list_seg(r,next,rM,null) expressing the list structure of r. The formula to
prove is as follows

list_seg(r,next,rM,null) A next’' = store(next,p,r) — list_seg(r,next’,rM,null)
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To prove such a preservation, we should say that the memory location that is modified, that is p—next,
does not appear anywhere in the list r. A way to express that is to say that p ¢ rM. This fact can be
made explicit by posing the following lemma.

lemma list_seg_frame:

forall nextl next2:map loc loc, p q v: loc, pM:list loc.
list_seg(p,nextl,pM,null) A next2 = store(nextl,q,v) A
- mem(q,pM) — list_seg(p,next2,pM,null)

where the predicate mem is defined as

predicate mem (x:a,l:list «) =
match 1 with
| Nil — false
| Cons(y,r) — x=y V mem(x,r)
end

Such a lemma is typically called a frame lemma, because it states what is the frame of the predicate
list_seg, that is, the part of the memory on which the predicate depends. This lemma can be proved
by induction on the length of the model list pM. Nevertheless, posing this lemma is not yet enough to
prove the preservation of 1ist_seg(r,next, rM,null): the premise — mem(q,pM) of the lemma should
be true, for the case where ¢ = p and pM is M. Hence, we should be able to prove that p does not
belong to the model list of r. To prove that, we need to strengthen the loop invariant by stating that the
model lists pM and rM are always disjoint:

invariant list_seg(p,next,pM,null) A list_seg(r,next,rM,null) A
append(rev(pM), rM) = rev(lM) A disjoint(pM, rM)

where the predicate disjoint is defined as
predicate disjoint (11:list «,12:1list «) = forall x:ax. — (mem(x,11) A mem(x,12))

With the strengthened loop invariant and the frame lemma, the proof that
list_seg(r,next,rM,null) is preserved by a loop iteration can be made automatically. How-
ever, it is not enough to prove that disjoint(pM, rM) and list_seg(p,next,pM,null) are preserved.
To prove this preservation, the frame lemma should be applied again, but in order to establish the
premise = mem(q,pM) of this lemma, in the case when ¢ is p and pM is the tail of the previous value of
pM. That is, we should prove that the head of the model list does not appear in its tail. This property
exactly corresponds to the fact that the list is not cyclic. In other words, we should make explicit another
property of the list segment predicate, which is that a model list does not contain any repetition. We
state this fact as another general lemma as follows.

lemma list_seg_no_repet:
forall next:map loc loc, p: loc, pM:list loc.
list_seg(p,next,pM,null) — no_repet(pM)

where

predicate no_repet (l:1list «) =
match 1 with
| Nil — true
| Cons(x,r) — — (mem(x,r)) A no_repet(r)
end

Thanks to this second lemma. The proof of list reversal can be done using automated provers. The
second lemma itself must be proved using induction.
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Lessons learned from the list reversal example

The proof of this example emphasizes the major role of the property of disjointness of data structures
when proving pointer programs. A lemma like the frame lemma above is needed to make explicit on
which part of the memory a predicate on pointer data structures depends on. These are the motivations
for introducing a dedicated logic called Separation Logic, detailed in the next section.

5.3 Exercises
Exercise 5.3.1 Incrementations

o Specify and prove a function which takes a reference to a list of reals as argument, and increments
by 1.0 each element of this list

o Specify and prove a function which takes a reference to an array of reals as argument, and incre-
ments by 1.0 each element of this array

Exercise 5.3.2 Below is a function that replaces the reference argument by its reverse.

function rev_append(l : ref (list a))
writes ?
ensures ?
body
let r := ref 1 in
L := Nil;
try while true do
invariant ?
variant ?
match r with
| Nil — raise Break
| Cons(x,y) — 1 := Cons(x,1l); r :=y
done;
absurd
with Break — ()

1. Fill the ? with appropriate annotations.

2. Prove the program using WP. Which general lemmas on lists are needed?

Exercise 5.3.3 The goal of this exercise is to specify and prove the function in the beginning of Sec-
tion 5.2, which increments by one each element of a null-terminated linked list of integers.

1. Using the Component-as-Array version given in Example 5.2.1, provide a contract for this func-
tion

2. Find an appropriate loop invariant and prove the program using WP
Exercise 5.3.4 The following function appends two lists and returns a pointer to the resulting list.
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function append(11:1list,12:1ist) : list
body

if Ul=null then 12 else

let p = ref 11 in

while p—next # null do
p := p—next;

done;

p—next := 12;

11

We assume that the two inputs are null-terminated lists, and are disjoint.

1. Encode this program using the Component-as-Array model.

2. Specify it.

3. Prove its partial correctness using WP, using an appropriate loop invariant.
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