Chapter 6

Separation Logic

Separation logic was introduced around year 2000 by Reynolds and O’Hearn [6]. There are indeed
several variants of this logic [1, 8]. It is implemented in several tools like Smallfoot [2] and Verifast [7],
that use specific, partially automated provers as back-ends, or Ynot [5] or CFML [3] that uses Coq to
perform the proofs.

6.1 Basics of Separation Logic

6.1.1 Syntax of Programs

We do not consider any encoding of pointers and memory heap like the Component-as-Array model of
Section 5.2.3, so we directly consider the language introduced in Section 5.2.1. But, to make the formal-
ization of memory access uniform, we remove mutable variables from that language: every mutable data
must now be of the form of a pointer to a record, and only record fields are mutable. This is indeed how
the references in OCaml or in Why3 are introduced: these are not built-in in the language but defined
using a record with one mutable field. We detail this in Section 6.2.

For declaring such records, we keep the same syntax as in previous chapter.

record id = {f1 : T1;--- fn : Tn}

We also generalize this language in order to deal with memory allocation and deallocation. The
important point is how to extend the language of formulas in specifications, which is detailed in Sec-
tion 6.1.3.

The syntax of expressions is now as follows.

e u= .. former expression constructs
(without mutable variables)

le— f field access

le—= fi=e field update

| new S allocation

| dispose e deallocation

The expression new S allocates a new record of type S, and returns a pointer to it. The expression
dispose e deallocates the pointer denoted by expression e, and returns ().

6.1.2 Operational Semantics

To support allocation and deallocation, we modify the operational semantics given in Section 5.2.2.
Instead of considering the memory heap as a total map from pairs (loc,field name) to values, we consider

73

that a heap is any partial map from (loc,field name) to values. We need to introduce a few notations: if
h, h1, ho are such partial maps:

e dom(h) denotes the domain of h, i.e. the set of pairs (loc,field name) where it is defined ;
e we write h = h; & hs to mean that h is the disjoint union of h; and ho, i.e.

— dom(hy) Ndom(hsy) = 0)

- dom(h) = dom(h;) Udom(hs)

= h(l, f) = m(, f)if (I, f) € dom(hy)
= h(l, f) = ha(l, f)if (I,) € dom(hy)

Note that in the following, the domain of partial heaps are always finite.
The operational semantics is defined by the relation

h,II,e ~ B/ 1T €
where h is a partial heap. The rules are as follows.

Field access

l, f € dom(h) h(l,f)=wv
h7]:[7 (l _>f) ~ h,]:[’U

Implicitly, this rule means that if (I, f) ¢ dom(h) then the execution cannot be done, it “blocks”.
Typically in practice this corresponds to an invalid memory access, which usually stops the program
execution with a message like “segmentation fault” or “memory fault”

Field update

(I, f) € dom(h) ' =h{(l, f) + v}
hJIL (I — f :=v) ~ W11, ()

Again, if (I, f) ¢ dom(h) then the execution blocks.

Allocation

1 ¢ dom(h) h =ha{(,f) + default(r) | f: 7€ S}
h, 11, (new S) ~ h/, 11,1

The premise I ¢ dom(h) means that [is “fresh”, i.e. it is not yet allocated in h. The other premise
expresses the initialization of the allocated fields depending on their types, i.e. default(int) = 0,
default(bool) = false, default(real) = 0.0, default(S) = null.

Notice that from this definition, the allocation never blocks, our formalization does not consider
memory overflow issues.

Deallocation

forall f of S, (I, f) € dom(h) h' = h\l
h,11, (dispose) ~ A/, 11, ()

where the notation ' = h\l means h'(I', f') = h(l', f") if I’ # [, undefined otherwise. Notice that
deallocation blocks if one attempts to deallocate a memory location that is not allocated.

74

Example 6.1.1 The small program below illustrates our operational semantics.

record List = { data : int, next: List }

Inl

let x = new List in ~~

[(lo, data) = 0, (Ip, next) = null], [x = o]

x—next := new List; ~~

[(lp, data) = 0, (lp, next) =1y, (11, data) = 0, (I1, next) = null], [x = ly)
dispose(x—rnext); ~~

[(lg, data) = 0, (lp, next) = 1], [x = lo]

X—next—data := 1

execution blocks

6.1.3 Separation Logic Formulas

A important idea in Separation Logic is that the language of terms remains unchanged, in particular the
expression e — f is not a term. The language of formulas is extended with

e special atoms specifying available memory ressources
e a special connective called separating conjunction

The new grammar for formulas is as follows.

PQ == .. former constructs
| emp empty heap
| t1 »i> to memory chunk

| P+(@Q separating conjunction
where
e {1 is a term of type .S for some record type S
e fisafield of type 7in S
e iy is aterm of type 7

These three new constructs allow to describe finite portions of the memory heap
The semantics of formulas is defined as usual by an interpretation [P]j 1 that now depends on a
partial heap h.

e Special formula emp:

[emp] . 1 valid iff dom(h) = 0

e Memory chunk: [t; ER to]lp,m iff

- [t1]a =l for some location I
- dom(h) = {(l, f)}
= h(l, f) = [to]n

e Separating conjunction: [P * Q] 1y is valid iff
there exists hy, hy such that

75

—h=h1 D ho
- [[Pﬂhl,ﬂ is valid
- [[Q]]hg,l'[is valid
The semantics of the separating conjunction explicitly requires that the two conjuncts are valid on

disjoint heaps. This means that predicates like our former predicates disjoint and no_repet are in
some sense internalized in the logic.

Example 6.1.2 Assuming two non-null locations ly and 1, the stack 11 = [x = ly| and the following
partial heaps

h1 = [(lo,next) = I4]
ho = [(lg,next) = l1, (lo, data) = 42]
hs = [(lo,next) = Iy, (I1,next) = null]

the table below gives the validity of a few formulas (Y for valid, N otherwise).

valid in ?

next
x =

1

t dat
xSy kxS 42
;

t
xS0+ 1 S nall
emp

2lz|z|<|T
zlz|1<|=2 |
= I = =

Properties of Separating Conjunction Separating conjunction satisfies the following identities
e (PxQ)*R+< Px(Qx*R)
e PxQ+< QxP
e empx P < P
e if P, () are memory-free formulas, P x Q <> P A Q

In general P not equivalent to P * P. In fact this identity is true only if P is emp or a memory-free
formula. This is a linearity aspect of the separating conjunction.

Symbolic Heaps The semantics given above has some issues regarding memory-free formulas. For
example, using the heaps of Example 6.1.2 above, even if the formula x eyt [is valid only in heap hq,

the conjunction x negt l1 * true is valid also in heap hj and hs. A variant in the semantics would be to
consider that a memory-free formula is valid only in an empty heap.

Going further, a classical fragment of separation logic is the so-called Symbolic Heaps. Only formu-
las of the form

vy, ..o v, PLx Pyx - x Py @

are considered, where ¢ is a memory-free formula and the P; are memory chunks.
In the rest of this chapter, we consider this fragment only, with the semantics that memory-free
formulas are valid only in an empty heap.

Example 6.1.3 The following function resets the field f of some structure to zero.

76

record S { f : int }

function reset_f(x:S):unit
requires dv.x ,i) v

ensures :B»i>0
body x—f := 0

Since one cannot directly use x—f as a term, an extra quantification is needed to specify that x—f is
allocated.
The following function increments the field f by one.

function incr_f(x:S) (ghost v:int):unit
requires :U»im)

ensures w»iﬂi—l—l
body x—f := x—f + 1

A ghost variable is needed to talk about the old value of x—f.
Some syntactic sugar are usually used: existentially quantified variables starting with an underscore,
and quantification made implicit.

Example 6.1.4 The same functions as in previous example, with syntactic sugar

function reset_f(x:S):unit
requires x>i>_
ensures x»i>0
body x—f := 0

function incr_f(x:S) :unit
requires x+i>_v

ensures x»i>_v+1
body x—f := x—f + 1

Notice how the ghost variable is made implicit.

6.1.4 Separation Logic Reasoning Rules

We can define rules for reasoning on programs in the similar style as Hoare rules, on triples { P}e{Q}
where P and () are symbolic heaps.
The following rules can easily be proved correct.

Field access

ol = 1l v« result = o)

Field update

(1o}l = f = v {1 < result = ()}

77

Allocation

{emp}new S{_I LN default(ry) * -+ _l I default(r,,) * result = _I}

where S is declared as {f1 : 715+ fn : Tn}

Deallocation

{l Ut vy kel I v, }dispose [{emp}

where [has type S.

Frame rule A very important rule that can be stated is the frame rule, which allows to reason locally:

{Ple{Q}
{P x R}e{Q * R}
in particular it states that whenever { P}e{Q} is proven valid, its effects are confined in the partial heaps

that are described by P and (), and consequently it remains valid in any context R which is disjoint from
P and Q.

Separation Logic and Symbolic Execution It has been noticed that reasoning with Separation Logic
rules is a kind of symbolic execution [1]. Thanks to the frame rule, a proof of a program made of a
sequence e1; - - - ; e, can be presented under the form

{Potei{Pites- - en{Pn}
where at each step ¢ we have P,_1 = Q x R, P, = ' *x R and {Q}e;{Q’} is valid for a rule above.

Example 6.1.5 Here is a simple example of Separation Logic proof in the form of symbolic execution.

{emp}

let x = new List in

{(data 0)* (_I nbe—>xtnull) * (z=_1)}
{(z data 0) x (x negt null)} (consequence)
x—data := 42 ;

data next

{(z— 42) % (x = null)} (frame)
x—next := new List ;
)

{(z 40 42) & (z nbgt_l) x (1 data 0) = (_I negt null)}
6.2 Case of References a la OCaml

The mutable variables that we had in previous chapters but we dropped in our new language, can be
simulated using a pointer to a record with one field only. For convenience it is made polymorphic.

record Ref o« = { contents : « }

function ref (x: «) : Ref «
body let r = new Ref in r—-contents := x; r

78

function (!) (r: Ref) : «
body r—contents

function (:=) (r: Ref «) (x:«) : unit
body r—contents := x

These functions can be given natural specifications in separation logic. For readability we abbreviate

tents , .
S into > ¢

function ref (x: «) : Ref «
requires emp
ensures fresult— x

function (!) (r: Ref o) : «
requires 7r+—_v
ensures r+—_vxresult=_v

function (:=) (r: Ref «) (x:«v) : unit
requires 7~ _
ensures 71>

6.3 Case of Linked Lists

Similarly as the case of Component-as-Array model, we can define linked data structures using inductive
predicates. For linked list, we can define

inductive ls(List, List) =
| Is_nil: Vz : List,ls(z, x)
| Is_cons: Vxyz : List, (x negt y) x1s(y, z) = ls(x, 2)

The important novelty is the use of a separating conjunction in the second case, which makes explicit
that the tail of the list is disjoint from its head, and thus it has no repetition.

During a Separation Logic proof, one should apply purely logic reasoning steps using general lem-
mas like

Is(z,y) < xz=yV Iz (z nﬁ)“z) xls(z,y)
From such lemmas one can derives the so-called symbolic execution rules, e.g.

next

Is(x,y)*sx £y~ (x = _2)xls(_z,y)xx #vy

In practice, systems implementing separation logic use a specific reasoning engine that applies such
rules (they do not use off-the-shelf SMT provers).

Example: in-place list reversal

We consider again the example of in-place linked list reversal. We simplicity, we do not specify that
the result list is the reverse of the input, but only that the output is a null-terminated list if the input is
such a list. This avoids the need for ghost variables. The specified program we want to prove is thus the
following (we use our “references” defined in previous section).

79

function reverse (l:List) : List =
requires 1s(1,null)
ensures ls(result,null)
body
let p = ref 1 in
let r = ref null in
while !p # null do
invariant p—_1p * 1s(_1p,null) * r—_1r * ls(_1r,null)
let n = !p—next in
I'p—next := r;
r:=1Ip;
p :=n;
done;
I'r

Notice that the loop invariant tells that lists !p and !7 are null-terminated and disjoint.
The first part of the proof is to show by symbolic execution that the loop invariant is initially true.
This is as follows.

{ls(l,null)}
let p = ref 1 in
{p—1xls(l,null)}
let r = ref null in
{p—1xIls(l,null) * r— null}
{p—=1x1s(l,null) * r— null * ls(null,null)} (symbolic execution rule)
while p # null do
invariant p—_1p * ls(_1p,null) * r—_1r * ls(_1lr,null)

The second part is to show the loop invariant is preserved by a loop iteration.

while !p # null do
invariant p—_1p * ls(_1p,null) *x r—_1r *x ls(_1lr,null)
{p—= 1, *ls(ly, null) * r— 1. x Is(l,, null) * [, # null}
{p—=1,x1, N g Is(_g, null) * r+— 1, * Is(l,, null) * 1, # null}
let n = !p—next in
{p—=1,x1, e Is(n, null) « 1, * ls(l,, null) * I, # null}
I'p—next := !r;
{p—=1,x1, N Is(n, null) « v 1, * Is(l,, null) * I, # null}
r:=Ip;
{p—=1,x1, N Is(n, null) « 1, * Is(l,, null) * I, # null}
p :=n;
{p—nxl, N % Ls(n, null) * 7=l * Is(ly, null) * 1, # null}
{p—>nxls(n,null) « r—1, * Is(lp, null)}

Finally, we prove that when we exit the loop, the post-condition is established.

while !p # null do
invariant p—_1p * ls(_1p,null) * r—_1r * ls(_1r,null)

done
{p—= 1, xs(ly, null) x r— 1. * 1s(l,, null) * I, = null}

80

{p—=null xr— 1, x1s(l,,null)}
'r
{ls(result,null)} (implicit dispose!)

6.4 Going Further on Separation Logic

The main motivation of Separation Logic is that it internalizes disjointness and frame properties. It
makes reasoning on pointer data structures much easier than a model like the Component-as-Array,
where disjointness and frame properties must be stated explicitly.

Separation Logic has several applications and extensions. An important application is to the speci-
fication of data invariants, that are properties that should remain true along the execution of a program
(such as “this list should always contain non-negative integers”, “this tree should always be balanced”).
Separation Logic provides for free that a data invariant is preserved when memory is modify outside its
frame. Separation Logic can also deals with concurrent programs [4], for example two threads executing
in parallel on disjoint part of the memory can be proved easily.

A major drawback in Separation Logic techniques nowadays is their low level of automation. There
no simple equivalent of weakest precondition calculus, and thus SMT solvers cannot be used directly,
one has to design provers that can understand the separating conjunction. Indeed, some analogue to WP
can be constructed, if one considers also a connective for separating implication, also known as magic
wand'.

6.5 Exercises

Exercise 6.5.1 Prove a complete specification of linked list reversal via Separation Logic, using appro-
priate ghost variables and an extended predicate 1s that includes the model list.

Exercise 6.5.2 Specify and prove the function of Exercise 5.3.3 which increments by one each element
of a null-terminated linked list of integers, using Separation Logic.

Exercise 6.5.3 Specify and prove the function of Exercise 5.3.4 which appends two lists, using Separa-
tion Logic.

Bibliography

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation logic. In K. Yi,
editor, APLAS, volume 3780 of Lecture Notes in Computer Science, pages 52—68. Springer, 2005.

[2] J. Berdine, C. Calcagno, and P. W. O’hearn. Smallfoot: Modular automatic assertion checking with
separation logic. In In International Symposium on Formal Methods for Components and Objects,
pages 115-137. Springer, 2005.

[3] A. Charguéraud. Characteristic formulae for the verification of imperative programs. In M. M. T.
Chakravarty, Z. Hu, and O. Danvy, editors, Proceeding of the 16th ACM SIGPLAN international
conference on Functional Programming (ICFP), pages 418-430, Tokyo, Japan, September 2011.
ACM.

[4] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic and
assume-guarantee reasoning. In R. D. Nicola, editor, ESOP, volume 4421 of Lecture Notes in
Computer Science, pages 173—188. Springer, 2007.

ISee http://www.lsv.ens-cachan.fr/~lozes/sl-lectures.php

81

[5]

[6]

[7]

[8]

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare type theory. In
J. H. Reppy and J. L. Lawall, editors, //th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2006, pages 62—73, Portland, Oregon, USA, 2006. ACM Press. ISBN 1-59593-
309-3.

J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In /17h Annual IEEE
Symposium on Logic in Computer Science. IEEE Comp. Soc. Press, 2002.

J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for java-like programs based
on dynamic frames. In Fundamental Approaches to Software Engineering (FASE’08), Budapest,
Hungary, Apr. 2008.

H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In M. Hofmann and
M. Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’07), pages 97-108, Nice, France, Jan. 2007.

82

