
Chapter 6

Separation Logic

Separation logic was introduced around year 2000 by Reynolds and O’Hearn [6]. There are indeed
several variants of this logic [1, 8]. It is implemented in several tools like Smallfoot [2] and Verifast [7],
that use specific, partially automated provers as back-ends, or Ynot [5] or CFML [3] that uses Coq to
perform the proofs.

6.1 Basics of Separation Logic

6.1.1 Syntax of Programs

We do not consider any encoding of pointers and memory heap like the Component-as-Array model of
Section 5.2.3, so we directly consider the language introduced in Section 5.2.1. But, to make the formal-
ization of memory access uniform, we remove mutable variables from that language: every mutable data
must now be of the form of a pointer to a record, and only record fields are mutable. This is indeed how
the references in OCaml or in Why3 are introduced: these are not built-in in the language but defined
using a record with one mutable field. We detail this in Section 6.2.

For declaring such records, we keep the same syntax as in previous chapter.

record id = {f1 : τ1; · · · fn : τn}

We also generalize this language in order to deal with memory allocation and deallocation. The
important point is how to extend the language of formulas in specifications, which is detailed in Sec-
tion 6.1.3.

The syntax of expressions is now as follows.

e ::= ... former expression constructs
(without mutable variables)

| e→ f field access
| e→ f := e field update
| new S allocation
| dispose e deallocation

The expression new S allocates a new record of type S, and returns a pointer to it. The expression
dispose e deallocates the pointer denoted by expression e, and returns ().

6.1.2 Operational Semantics

To support allocation and deallocation, we modify the operational semantics given in Section 5.2.2.
Instead of considering the memory heap as a total map from pairs (loc,field name) to values, we consider

73

that a heap is any partial map from (loc,field name) to values. We need to introduce a few notations: if
h, h1, h2 are such partial maps:

• dom(h) denotes the domain of h, i.e. the set of pairs (loc,field name) where it is defined ;

• we write h = h1 ⊕ h2 to mean that h is the disjoint union of h1 and h2, i.e.

– dom(h1) ∩ dom(h2) = ∅
– dom(h) = dom(h1) ∪ dom(h2)

– h(l, f) = h1(l, f) if (l, f) ∈ dom(h1)

– h(l, f) = h2(l, f) if (l, f) ∈ dom(h2)

Note that in the following, the domain of partial heaps are always finite.
The operational semantics is defined by the relation

h,Π, e h′,Π′, e′

where h is a partial heap. The rules are as follows.

Field access

l, f ∈ dom(h) h(l, f) = v

h,Π, (l→ f) h,Π, v

Implicitly, this rule means that if (l, f) /∈ dom(h) then the execution cannot be done, it “blocks”.
Typically in practice this corresponds to an invalid memory access, which usually stops the program
execution with a message like “segmentation fault” or “memory fault”

Field update

(l, f) ∈ dom(h) h′ = h{(l, f)← v}
h,Π, (l→ f := v) h′,Π, ()

Again, if (l, f) /∈ dom(h) then the execution blocks.

Allocation

l /∈ dom(h) h′ = h⊕ {(l, f)← default(τ) | f : τ ∈ S}
h,Π, (new S) h′,Π, l

The premise l /∈ dom(h) means that l is “fresh”, i.e. it is not yet allocated in h. The other premise
expresses the initialization of the allocated fields depending on their types, i.e. default(int) = 0,
default(bool) = false , default(real) = 0.0, default(S) = null.

Notice that from this definition, the allocation never blocks, our formalization does not consider
memory overflow issues.

Deallocation

for all f of S, (l, f) ∈ dom(h) h′ = h\l
h,Π, (dispose l) h′,Π, ()

where the notation h′ = h\l means h′(l′, f ′) = h(l′, f ′) if l′ 6= l, undefined otherwise. Notice that
deallocation blocks if one attempts to deallocate a memory location that is not allocated.

74

Example 6.1.1 The small program below illustrates our operational semantics.

record List = { data : int, next: List }

[], []
let x = new List in
[(l0, data) = 0, (l0, next) = null], [x = l0]
x→next := new List;
[(l0, data) = 0, (l0, next) = l1, (l1, data) = 0, (l1, next) = null], [x = l0]
dispose(x→next);
[(l0, data) = 0, (l0, next) = l1], [x = l0]
x→next→data := 1

execution blocks

6.1.3 Separation Logic Formulas

A important idea in Separation Logic is that the language of terms remains unchanged, in particular the
expression e→ f is not a term. The language of formulas is extended with

• special atoms specifying available memory ressources

• a special connective called separating conjunction

The new grammar for formulas is as follows.

P,Q ::= ... former constructs
| emp empty heap

| t1 f7→ t2 memory chunk
| P ∗Q separating conjunction

where

• t1 is a term of type S for some record type S

• f is a field of type τ in S

• t2 is a term of type τ

These three new constructs allow to describe finite portions of the memory heap
The semantics of formulas is defined as usual by an interpretation JP Kh,Π that now depends on a

partial heap h.

• Special formula emp:

JempKh,Π valid iff dom(h) = ∅

• Memory chunk: Jt1 f7→ t2Kh,Π iff

– Jt1KΠ = l for some location l

– dom(h) = {(l, f)}
– h(l, f) = Jt2KΠ

• Separating conjunction: JP ∗QKh,Π is valid iff
there exists h1, h2 such that

75

– h = h1 ⊕ h2

– JP Kh1,Π is valid

– JQKh2,Π is valid

The semantics of the separating conjunction explicitly requires that the two conjuncts are valid on
disjoint heaps. This means that predicates like our former predicates disjoint and no_repet are in
some sense internalized in the logic.

Example 6.1.2 Assuming two non-null locations l0 and l1, the stack Π = [x = l0] and the following
partial heaps

h1 = [(l0, next) = l1]

h2 = [(l0, next) = l1, (l0, data) = 42]

h3 = [(l0, next) = l1, (l1, next) = null]

the table below gives the validity of a few formulas (Y for valid, N otherwise).

valid in ? h1 h2 h3

x
next7→ l1 Y N N

x
next7→ l1 ∗ x data7→ 42 N Y N

x
next7→ l1 ∗ l1 next7→ null N N Y

emp N N N

Properties of Separating Conjunction Separating conjunction satisfies the following identities

• (P ∗Q) ∗R↔ P ∗ (Q ∗R)

• P ∗Q↔ Q ∗ P

• emp ∗ P ↔ P

• if P,Q are memory-free formulas, P ∗Q↔ P ∧Q

In general P not equivalent to P ∗ P . In fact this identity is true only if P is emp or a memory-free
formula. This is a linearity aspect of the separating conjunction.

Symbolic Heaps The semantics given above has some issues regarding memory-free formulas. For
example, using the heaps of Example 6.1.2 above, even if the formula x next7→ l1 is valid only in heap h1,
the conjunction x next7→ l1 ∗ true is valid also in heap h1 and h2. A variant in the semantics would be to
consider that a memory-free formula is valid only in an empty heap.

Going further, a classical fragment of separation logic is the so-called Symbolic Heaps. Only formu-
las of the form

∃v1, . . . , vn, P1 ∗ P2 ∗ · · · ∗ Pk ∗ φ

are considered, where φ is a memory-free formula and the Pi are memory chunks.
In the rest of this chapter, we consider this fragment only, with the semantics that memory-free

formulas are valid only in an empty heap.

Example 6.1.3 The following function resets the field f of some structure to zero.

76

record S { f : int }

function reset_f(x:S):unit

requires ∃v.x f7→ v

ensures x
f7→ 0

body x→f := 0

Since one cannot directly use x→f as a term, an extra quantification is needed to specify that x→f is
allocated.

The following function increments the field f by one.

function incr_f(x:S) (ghost v:int):unit

requires x
f7→ v

ensures x
f7→ v + 1

body x→f := x→f + 1

A ghost variable is needed to talk about the old value of x→f.

Some syntactic sugar are usually used: existentially quantified variables starting with an underscore,
and quantification made implicit.

Example 6.1.4 The same functions as in previous example, with syntactic sugar

function reset_f(x:S):unit

requires x
f7→ _

ensures x
f7→ 0

body x→f := 0

function incr_f(x:S) :unit

requires x
f7→ _v

ensures x
f7→ _v + 1

body x→f := x→f + 1

Notice how the ghost variable is made implicit.

6.1.4 Separation Logic Reasoning Rules

We can define rules for reasoning on programs in the similar style as Hoare rules, on triples {P}e{Q}
where P and Q are symbolic heaps.

The following rules can easily be proved correct.

Field access

{l f7→ v}l→ f{l f7→ v ∗ result = v}

Field update

{l f7→ v}l→ f := v′{l f7→ v′ ∗ result = ()}

77

Allocation

{emp}new S{_l f17→ default(τ1) ∗ · · · ∗ _l
fn7→ default(τn) ∗ result = _l}

where S is declared as {f1 : τ1; · · · fn : τn}

Deallocation

{l f17→ v1 ∗ · · · ∗ l fn7→ vn}dispose l{emp}

where l has type S.

Frame rule A very important rule that can be stated is the frame rule, which allows to reason locally:

{P}e{Q}
{P ∗R}e{Q ∗R}

in particular it states that whenever {P}e{Q} is proven valid, its effects are confined in the partial heaps
that are described by P andQ, and consequently it remains valid in any contextR which is disjoint from
P and Q.

Separation Logic and Symbolic Execution It has been noticed that reasoning with Separation Logic
rules is a kind of symbolic execution [1]. Thanks to the frame rule, a proof of a program made of a
sequence e1; · · · ; en can be presented under the form

{P0}e1{P1}e2 · · · en{Pn}

where at each step i we have Pi−1 = Q ∗R, Pi = Q′ ∗R and {Q}ei{Q′} is valid for a rule above.

Example 6.1.5 Here is a simple example of Separation Logic proof in the form of symbolic execution.

{emp}
let x = new List in

{(_l data7→ 0) ∗ (_l next7→ null) ∗ (x = _l)}
{(x data7→ 0) ∗ (x

next7→ null)} (consequence)
x→data := 42 ;

{(x data7→ 42) ∗ (x
next7→ null)} (frame)

x→next := new List ;

{(x data7→ 42) ∗ (x
next7→ _l) ∗ (_l data7→ 0) ∗ (_l next7→ null)}

6.2 Case of References à la OCaml

The mutable variables that we had in previous chapters but we dropped in our new language, can be
simulated using a pointer to a record with one field only. For convenience it is made polymorphic.

record Ref α = { contents : α }

function ref (x: α) : Ref α
body let r = new Ref in r→contents := x; r

78

function (!) (r: Ref α) : α
body r→contents

function (:=) (r: Ref α) (x:α) : unit

body r→contents := x

These functions can be given natural specifications in separation logic. For readability we abbreviate
r
contents7→ t into r 7→ t

function ref (x: α) : Ref α
requires emp
ensures result 7→x

function (!) (r: Ref α) : α
requires r 7→ _v
ensures r 7→ _v ∗ result = _v

function (:=) (r: Ref α) (x:α) : unit

requires r 7→ _

ensures r 7→x

6.3 Case of Linked Lists

Similarly as the case of Component-as-Array model, we can define linked data structures using inductive
predicates. For linked list, we can define

inductive ls(List, List) =
| ls_nil: ∀x : List, ls(x, x)

| ls_cons: ∀xyz : List, (x
next7→ y) ∗ ls(y, z)→ ls(x, z)

The important novelty is the use of a separating conjunction in the second case, which makes explicit
that the tail of the list is disjoint from its head, and thus it has no repetition.

During a Separation Logic proof, one should apply purely logic reasoning steps using general lem-
mas like

ls(x, y)↔ x = y ∨ ∃z, (x next7→ z) ∗ ls(z, y)

From such lemmas one can derives the so-called symbolic execution rules, e.g.

ls(x, y) ∗ x 6= y (x
next7→ _z) ∗ ls(_z, y) ∗ x 6= y

In practice, systems implementing separation logic use a specific reasoning engine that applies such
rules (they do not use off-the-shelf SMT provers).

Example: in-place list reversal

We consider again the example of in-place linked list reversal. We simplicity, we do not specify that
the result list is the reverse of the input, but only that the output is a null-terminated list if the input is
such a list. This avoids the need for ghost variables. The specified program we want to prove is thus the
following (we use our “references” defined in previous section).

79

function reverse (l:List) : List =

requires ls(l,null)

ensures ls(result,null)

body

let p = ref l in

let r = ref null in

while !p 6= null do

invariant p→_lp * ls(_lp,null) * r→_lr * ls(_lr,null)

let n = !p→next in

!p→next := r;

r := !p;

p := n;

done;

!r

Notice that the loop invariant tells that lists !p and !r are null-terminated and disjoint.
The first part of the proof is to show by symbolic execution that the loop invariant is initially true.

This is as follows.

{ls(l, null)}
let p = ref l in

{p 7→ l ∗ ls(l, null)}
let r = ref null in

{p 7→ l ∗ ls(l, null) ∗ r 7→null}
{p 7→ l ∗ ls(l, null) ∗ r 7→null ∗ ls(null, null)} (symbolic execution rule)
while p 6= null do

invariant p→_lp * ls(_lp,null) * r→_lr * ls(_lr,null)

The second part is to show the loop invariant is preserved by a loop iteration.

while !p 6= null do

invariant p→_lp * ls(_lp,null) * r→_lr * ls(_lr,null)

{p 7→ lp ∗ ls(lp, null) ∗ r 7→ lr ∗ ls(lr, null) ∗ lp 6= null}
{p 7→ lp ∗ lp next7→ _q ∗ ls(_q, null) ∗ r 7→ lr ∗ ls(lr, null) ∗ lp 6= null}
let n = !p→next in

{p 7→ lp ∗ lp next7→ n ∗ ls(n, null) ∗ r 7→ lr ∗ ls(lr, null) ∗ lp 6= null}
!p→next := !r;

{p 7→ lp ∗ lp next7→ lr ∗ ls(n, null) ∗ r 7→ lr ∗ ls(lr, null) ∗ lp 6= null}
r := !p;

{p 7→ lp ∗ lp next7→ lr ∗ ls(n, null) ∗ r 7→ lp ∗ ls(lr, null) ∗ lp 6= null}
p := n;

{p 7→n ∗ lp next7→ lr ∗ ls(n, null) ∗ r 7→ lp ∗ ls(lr, null) ∗ lp 6= null}
{p 7→n ∗ ls(n, null) ∗ r 7→ lp ∗ ls(lp, null)}

Finally, we prove that when we exit the loop, the post-condition is established.

while !p 6= null do

invariant p→_lp * ls(_lp,null) * r→_lr * ls(_lr,null)

. . .
done

{p 7→ lp ∗ ls(lp, null) ∗ r 7→ lr ∗ ls(lr, null) ∗ lp = null}

80

{p 7→null ∗ r 7→ lr ∗ ls(lr, null)}
!r

{ls(result, null)} (implicit dispose!)

6.4 Going Further on Separation Logic

The main motivation of Separation Logic is that it internalizes disjointness and frame properties. It
makes reasoning on pointer data structures much easier than a model like the Component-as-Array,
where disjointness and frame properties must be stated explicitly.

Separation Logic has several applications and extensions. An important application is to the speci-
fication of data invariants, that are properties that should remain true along the execution of a program
(such as “this list should always contain non-negative integers”, “this tree should always be balanced”).
Separation Logic provides for free that a data invariant is preserved when memory is modify outside its
frame. Separation Logic can also deals with concurrent programs [4], for example two threads executing
in parallel on disjoint part of the memory can be proved easily.

A major drawback in Separation Logic techniques nowadays is their low level of automation. There
no simple equivalent of weakest precondition calculus, and thus SMT solvers cannot be used directly,
one has to design provers that can understand the separating conjunction. Indeed, some analogue to WP
can be constructed, if one considers also a connective for separating implication, also known as magic
wand1.

6.5 Exercises

Exercise 6.5.1 Prove a complete specification of linked list reversal via Separation Logic, using appro-
priate ghost variables and an extended predicate ls that includes the model list.

Exercise 6.5.2 Specify and prove the function of Exercise 5.3.3 which increments by one each element
of a null-terminated linked list of integers, using Separation Logic.

Exercise 6.5.3 Specify and prove the function of Exercise 5.3.4 which appends two lists, using Separa-
tion Logic.

Bibliography

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation logic. In K. Yi,
editor, APLAS, volume 3780 of Lecture Notes in Computer Science, pages 52–68. Springer, 2005.

[2] J. Berdine, C. Calcagno, and P. W. O’hearn. Smallfoot: Modular automatic assertion checking with
separation logic. In In International Symposium on Formal Methods for Components and Objects,
pages 115–137. Springer, 2005.

[3] A. Charguéraud. Characteristic formulae for the verification of imperative programs. In M. M. T.
Chakravarty, Z. Hu, and O. Danvy, editors, Proceeding of the 16th ACM SIGPLAN international
conference on Functional Programming (ICFP), pages 418–430, Tokyo, Japan, September 2011.
ACM.

[4] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic and
assume-guarantee reasoning. In R. D. Nicola, editor, ESOP, volume 4421 of Lecture Notes in
Computer Science, pages 173–188. Springer, 2007.

1See http://www.lsv.ens-cachan.fr/~lozes/sl-lectures.php

81

[5] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare type theory. In
J. H. Reppy and J. L. Lawall, editors, 11th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2006, pages 62–73, Portland, Oregon, USA, 2006. ACM Press. ISBN 1-59593-
309-3.

[6] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In 17h Annual IEEE
Symposium on Logic in Computer Science. IEEE Comp. Soc. Press, 2002.

[7] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for java-like programs based
on dynamic frames. In Fundamental Approaches to Software Engineering (FASE’08), Budapest,
Hungary, Apr. 2008.

[8] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In M. Hofmann and
M. Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’07), pages 97–108, Nice, France, Jan. 2007.

82

Chapter 7

Numeric Programs

Up to this chapter, programs have manipulated numbers that were mathematically ideal: unbounded
integers and real numbers. While ideal numbers are useful in logical specifications, they usually do not
reflect the computations that happen in a program executed on a practical architecture.

7.1 Handling Machine Integers

Let us consider the set of 32-bit signed integers in 2-complement. It contains all the integers between
−231 and 231−1 and nothing else. This set is not closed under the usual arithmetic operations, e.g. 230×
2 will cause an overflow. In absence of an overflow, these operations usually return the mathematical
result. In presence of an overflow, the behavior depends on the language and the environment (compiler,
architecture, possibly operating system). For instance, the ISO/C language standard mandates that an
arithmetic operation on signed integers has no defined behavior in case of overflow.1 At worst, it might
cause the program to crash.

Let us assume that our toy language has the same semantics, or absence thereof. It means that, since
behavior is undefined, a program is safe only if no overflows occur in arithmetic computations. This
constraint can be checked using Hoare logic, assuming all the arithmetic operations that happen in the
program (but not in the specification) are replaced by call to functions with preconditions. For instance,
the following function is meant to replace the subtraction in programs.

function int32_sub(x: int, y: int): int

requires -2^31 ≤ x - y < 2^31

ensures result = x - y

All the other operators can be handled in a similar way. While sufficient for most program verifications,
these function declarations are not complete. Consider the following example that relies on these safe
operators.

Example 7.1.1 Subtracting two nonnegative 32-bit signed integers cannot cause an overflow.

function nonneg_sub(x: int, y: int): int

requires 0 ≤ x and 0 ≤ y

ensures result = x - y

body

int32_sub(x, y)

Yet neither side of the precondition −231 ≤ x − y < 231 can be proved without upper bounds on x
and y.

1For unsigned integers, the C language mandates that arithmetic operations shall return the integer that is equivalent to the
mathematical result modulo 232. The semantics has no undefined behavior in that case.

83

A solution is to introduce a new abstract type to represent 32-bit signed integers.

type int32

function of_int32(x: int32): int

function int32_sub(x: int32, y: int32): int32

requires -2^31 ≤ of_int32(x) + of_int32(y) < 2^31

ensures of_int32(result) = of_int32(x) - of_int32(y)

It now becomes possible to assert that all machine integers are bounded.

axiom bounded_int32: forall x: int32. -2^31 ≤ of_int32(x) < 2^31

This specification is complete, but it requires some additional predicates, since comparison operators
from the logic are no longer usable on int32 values. Equality is no different and should have its own
specialized predicate, unless one adds an axiom stating that of_int32 is injective.

Example 7.1.2 Example 7.1.1 continued: subtracting two nonnegative 32-bit signed integers cannot
cause an overflow.

function nonneg_sub(x: int32, y: int32): int32

requires 0 ≤ of_int32(x) and 0 ≤ of_int32(y)

ensures result = of_int32(x) - of_int32(y)

body

int32_sub(x, y)

Ideally, the logic language should provide implicit coercions from int32 to mathematical integers so
that the use of of_int32 does not litter specifications, as is the case in Example 7.1.2.

7.2 Floating-Point Computations

On modern computers, floating-point arithmetic is by far the most common way of approximating real
arithmetic and hence performing numerical computations. This comes from its inherent mathematical
simplicity (huge range and guaranteed precision) mixed with a strong desire of ensuring portability of
this arithmetic across all architectures without forsaking performance. These properties usually make
this arithmetic an obvious choice for building numerical software.

Floating-point arithmetic is described by the IEEE-754 [1] standard. Basically, a floating-point
number represents a real number m0.m1 . . .mp−1 · βe where e, called the exponent, is an integer, and
m, called the significand, is represented in radix β. Usual values for the radix are β = 2 and β = 10.

In order to handle various exceptional behaviors, a floating-point datum can also encode positive and
negative infinities, positive and negative zeros, and a special value Not-a-Number (NaN for short) which
is absorbing.

7.2.1 Definitions and Operations

Formats

Binary floating-point formats are a set of numbers encoded in a 32-, 64-, or 128-bit machine word.
These formats are named binary32, binary64, and binary128. The most significant bit is the sign bit s.
The next we bits represent the nonnegative biased exponent e′. The less significant wm bits are the
nonnegative mantissa m′. The exponent bias is chosen as 2we−1 − 1.

The interpretation of these fields depend on the value of the biased exponent e′:

84

• if e′ = 0, the datum represents the real (−1)s · 0.m′ · 2−bias+1,

• if 0 < e′ < 2we − 1, the datum represents the real (−1)s · 1.m′ · 2e′−bias ,

• if e′ = 2we − 1, the datum represents (−1)s · ∞ if m′ = 0, NaN otherwise.

Floating-point data with e′ = 0 are called subnormal numbers. Signed zeros are subnormal numbers
with m′ = 0. Other numbers are said to be normal. The precision p is defined as wm + 1. Deci-
mal floating-point formats follow similar rules, except that the most significant digit of the mantissa is
explicit and possibly zero rather than implicit and fixed by the biased exposed.

Below are some special values for the binary32 and binary64 formats.

Precision Smallest number Smallest normal number Biggest number
binary32 24 2−149 2−126 2128(1− 2−24)
binary64 53 2−1074 2−1022 21024(1− 2−53)

Lemma 7.2.1 (Representable numbers) Every real number representable by a floating-point number
can be written asm ·2e withm and e integers satisfying |m| < 2p and−bias−p+2 ≤ e ≤ bias−p+1.
Conversely, every real number that satisfies the constraints above is represented by a single floating-
point number, except for zero, which has two associated floating-point numbers.

Lemma 7.2.2 (Canonical representation) Any representable real number can be written m · 2e with
either |m| ≥ 2p−1 or e = −bias−p+ 2, in addition to the above constraints. This decomposition exists
and is unique. Normal numbers satisfy property |m| ≥ 2p−1.

Rounding

Representable real numbers are a small subset of the real numbers, of the rational numbers even. Num-
bers that cannot be represented are rounded toward a floating-point datum. There are five traditional
rounding directions: to nearest (with tie breaking to even), to nearest (with tie breaking away from
zero), downward, upward, toward zero. For binary floating-point arithmetic, the default rounding mode
is the first one.

Choosing the rounded value of a real number x can be done as follow. First, select x, the largest
number representable by m · 2e with m and e integers satisfying |m| < 2p and −bias − p + 2 ≤ e
that is smaller or equal to x. Notice that there is no upper bound on e. Similarly, select x, the smallest
representable number that is larger or equal to x. Among x and x, choose the number x̃ that satisfies
the rounding mode. For instance, when rounding toward zero, the smallest number in absolute value
is chosen. If x̃ is too large to be representable in the target format, then an exceptional behavior called
overflow occurs. Default handling of this exception is to return a floating-point infinity. In case the result
is zero, the sign is chosen depending on the rounding mode and the last arithmetic operation.

Lemma 7.2.3 (Local monotonicity) For any standard rounding mode, any real number between x and
its rounded value x̃ is rounded to x̃.

Proof. By considering all the standard rounding modes in turn.

Floating-point operations

According to the standard, a floating-point operator shall behave as if it was first computing the infinitely-
precise value and then rounding it so that it fits in the destination floating-point format, assuming no
exceptional behaviors occur. As a consequence, the result of all the operations can be described in term
of rounding. Let rnd a function from R to R that, given a real number x, returns its rounded value x̃,

85

irrespective of any possible overflow. In particular, rnd(2e) = 2e for any e ≥ −bias − p+ 2. Function
rnd depends on the target format and the rounding direction.

Let of_binary32 the function from binary32 datum to real number that returns the represented
number. The function is underspecified: the returned value for exceptional floating-point data is left
undefined.

Example 7.2.4 Assuming rnd chooses the nearest real representable as a binary32 floating-point num-
ber with no upper limit on exponent, the floating-point addition satisfies the following property. Assum-
ing the floating-point sum is a finite number,

of_binary32(binary32_add(x, y)) = rnd(x+ y).

We say that an operation underflows if its infinitely-precise result is smaller than 21−bias in absolute
value. Note that the rounded result might still be in the range of normal numbers, so this behavior is also
called underflow before rounding in case of ambiguity.

7.2.2 Usual Properties

Floating-point arithmetic does not have many of the properties sought in mathematics, e.g. associativity
of operators, but it is still a rich structure with numerous properties [9]. Below are a few immediate
properties that will be useful as a first step toward specification of numerical programs.

Lemma 7.2.5 (Idempotency) Given a rounding function rnd and a real number x, rnd(rnd(x)) =
rnd(x).

Proof. According to the definition of rounding, y = rnd(x) is either the largest representable number
smaller or equal to x or the smallest representable number larger or equal to x. As a consequence, y is a
representable number. Similarly rnd(y) returns either the largest representable number smaller or equal
to y or the smallest representable number larger or equal to y. Since y is representable, both numbers
are equal to y so rnd(y) = y, which concludes the proof.

As shown in the previous proof, there is no difference between the codomain of rnd and the set
{m · 2e | |m| < 2p ∧ e ≥ −bias − p+ 2}. So, from now on, representable will indifferently mean any
of these properties.

Lemma 7.2.6 (Monotonicity) Given a rounding function rnd and two real numbers x and y,

x ≤ y ⇒ rnd(x) ≤ rnd(y).

Proof. First, let us suppose there is a representable number z between x and y. Therefore, we have
rnd(x) ≤ x ≤ z ≤ y ≤ rnd(y), by definition, and the proof is done. Now let us suppose the opposite.
As a consequence, x = y and x = y. If rnd(x) = x, then whatever the value of rnd(y), rnd(x) ≤
rnd(y). If rnd(x) = x, then x ≤ y ≤ rnd(x), which means that rnd(y) = rnd(x) by local monotonicity
of rounding.

Lemma 7.2.7 (Successor) Letm and e two integers such thatm ·2e is the canonical representation of a
floating-point number. Then (m+ 1) · 2e is a representable number. Moreover, there is no representable
number between m · 2e and (m+ 1) · 2e, when m ≥ 0.

Proof. Since |m| < 2p, either |m + 1| < 2p or m + 1 = 2p. In the first case, the number (m + 1) · 2e
is immediately representable. In the second case, it is equal to 1 · 2e+p, which is representable since
e + p ≥ e ≥ −bias − p + 2. Any representable number between m · 2e and (m + 1) · 2e would be
written m′ · 2e′ with e′ < e and m′ > m · 2e−e′ , which is impossible given the hypotheses on m and e.

86

Lemma 7.2.8 (Round-off error without underflow) Let x a real number and x̃ = rnd(x) its rounded
value. Assuming |x| ≥ 21−bias ,

x̃ = x · (1 + ε) with |ε| ≤ 2−p

for rounding to nearest and |ε| < 2−p+1 for directed rounding.

Proof. Without loss of generality, we can suppose 0 < x. If x is representable, then x̃ = x and ε = 0
satisfies the properties. Otherwise, let m · 2e the canonical representation of x ≥ 0. There cannot
be any representable number between x and x and they are different. So, according to Lemma 7.2.7,
x = (m+ 1) · 2e. When rounding to nearest, |x̃− x| ≤ (x− x)/2 = 2e−1 = 2p−1+e · 2−p. Moreover,
by monotonicity, x is larger or equal to 21−bias , so |m| ≥ 2p−1. As a consequence, |x̃/x − 1| ≤ 2−p,
which concludes the proof for rounding to nearest. The proof is similar for directed rounding.

Lemma 7.2.9 (Round-off error in case of underflow) Let x a real number and x̃ = rnd(x) its
rounded value. Assuming |x| ≤ 21−bias ,

x̃ = x+ δ with |δ| ≤ 2−bias−p+1

for rounding to nearest and |δ| < 2−bias−p+2 for directed rounding.

Proof. The proof is similar to the previous one, except that, this time, the canonical representation of x
satisfies e = −bias − p+ 2.

Combining both lemmas leads to Demmel’s model of round-off errors [5].

Lemma 7.2.10 (Round-off error, general case) Let x a real number and x̃ = rnd(x) its rounded
value.

x̃ = x · (1 + ε) + δ with |ε| ≤ 2−p and |δ| ≤ 2−bias−p+1

for rounding to nearest, and |ε| < 2−p+1 and |δ| < 2−bias−p+2 for directed rounding. Moreover, either
ε = 0 or δ = 0.

Lemma 7.2.11 (Round-off error for addition) Let x and y two representable numbers.

rnd(x+ y) = (x+ y) · (1 + ε) with |ε| ≤ 2−p

for rounding to nearest and |ε| < 2−p+1 for directed rounding.

Proof. If |x+ y| ≥ 21−bias , this lemma is a special case of Lemma 7.2.8. Otherwise, let us consider the
representations x = mx·2ex and y = my·2ey with |mx|, |my| < 2p and ex, ey ≥ e and e = −bias−p+2.
We have x + y = m · 2e with m = mx · 2ex−e + my · 2ey−e. Note that m is an integer and |m| < 2p

since |x+ y| < 21−bias . As a consequence, x+ y is representable, so ε = 0 in that case.

7.2.3 Specifications

Specifications of floating-point arithmetic operators follow the same approach than integer ones. For
instance, the following description is suited for verifying a program that is specified not to receive
exceptional inputs nor to encounter exceptional floating-point behaviors nor to care about the sign of
zero.

87

type binary32

const max_binary32 : real = (2^24 - 1) * 2^102

function of_binary32(x: binary32): real

axiom finite_binary32: forall x: binary32. ???

function rnd...(x: real): real

axiom about_rnd...: ???

function binary32_sub(x: binary32, y: binary32): binary32

requires abs(rnd...(of_binary32(x) - of_binary32(y))) ≤ max_binary32

ensures of_binary32(result) = rnd(of_binary32(x) - of_binary32(y))

function binary32_div(x: binary32, y: binary32): binary32

requires abs(rnd...(of_binary32(x) / of_binary32(y))) ≤ max_binary32

∧ of_binary32(y) 6= 0

ensures of_binary32(result) = rnd(of_binary32(x) / of_binary32(y))

The ellipsis behind rnd reminds that there are several rounding functions. The proper one is selected
by the format and the desired rounding mode. Formats and modes could also have been specified as
additional arguments to the rounding function. This would be handy to specify a program where the
rounding mode is selected dynamically.

The question marks ??? in the axioms are meant to be replaced by statements suitable for the de-
ductive verification of a program. For instance, the characterization of finite floating-point numbers
could be taken from Lemma 7.2.1, while the properties of the rounding function could be taken from
Section 7.2.2: idempotency, monotonicity, round-off error. Some care should be taken so that these
specifications can actually be used by automated provers.

Specifications can also be devised to account for exceptional behaviors by seeing floating-point
values as disjoint sums of normal and exceptional values and taking all of the cases into account in post-
conditions [2]. Preconditions are then empty since floating-point operations are defined for all inputs.

7.3 Numerical Properties

There are two main kinds of properties one may want to prove about a numerical program. The first kind
relates to properties about values of floating-point expressions. They are similar to the ones for integer
values, e.g. stating that some value is in some domain or that some values are ordered. The other kind of
properties relates to the fact that floating-point arithmetic is used in place of real arithmetic, but is only
an approximation of it. Basically, verification of numerical programs is concerned with checking that
computed values are not too far from ideal mathematical values.

7.3.1 Absolute and Relative Errors

Given two real numbers u and v, the absolute error between u and v usually designates one of the
following expressions: u−v, v−u, or |u−v|. Assuming that u is an approximation of v, which is itself
an approximation of w, the following properties relate the absolute errors between these three values:

u− w = (u− v) + (v − w)
|u− w| ≤ |u− v| + |v − w|

This “transitivity” is especially useful when it comes to expressions involving rounding functions:

|rnd(u)− v| ≤ |rnd(u)− u|+ |u− v|

88

One part can be bounded thanks to Lemma 7.2.10 while the other one no longer involves any rounding
function at the top level.

In the case of numerical analysis in general and floating-point arithmetic in particular, the absolute
error is not the most natural way to express the quality of an approximation. Indeed, people are usually
interested in the number of digits of the result that are meaningful. For this purpose, the relative error
(or its logarithm) is a better choice. The relative error between two real numbers u and v designates
one of the following expressions: u/v − 1, v/u − 1, or their absolute values. Again, there are some
“transitivity” properties helpful for relating the errors between three values:

u

w
− 1 = εuv + εvw + εuvεvw with εuv = u

v − 1 and εvw = v
w − 1

7.3.2 Forward Error

Let us consider a mathematical function f and a program f̃ that implements a floating-point computation
that supposedly returns a value close to f .

Let us denote u the elementary bound on the relative round-off error assuming no underflow occurs.
When rounding to nearest, Lemma 7.2.8 states that u = 2−p. In order to ease the handling of round-off
errors, let us introduce some notations in the spirit of the mathematical big and small o.

Definition 7.3.1 (γn and θn) For εi such that |εi| ≤ u and assuming nu < 1, we introduce an arbitrary
symbol θn such that

n∏

i=1

(1 + εi)
±1 = 1 + θn

Let γn = nu
1−nu . We have |θn| ≤ γn.

Example 7.3.2 (Horner scheme) The following function implements Horner’s scheme for computing a
floating-point approximation of a polynomial evaluation

∑n
i=0 aix

i.

function Horner(a:map int binary32, n:int, x:binary32)

body

let y := ref (binary32_cst 0.) in

let i := ref n in

while i ≥ 0 do

y := binary32_add(binary32_mul(y, x), a[i]);

i := i - 1;

done;

y

Assuming there are no exceptional behaviors, one can prove that the result computed by the function
of Example 7.3.2 is

f̃(x) = rnd(. . . rnd(rnd(rnd(anx) + an−1)x) . . .+ a0)

Assuming there are no underflows during multiplications, this can be rewritten as

f̃(x) = (. . . (anx(1 + θ1) + an−1)(1 + θ1)x(1 + θ1) + . . .+ a0)(1 + θ1)

= anx
n(1 + θ2n) + an−1x

n−1(1 + θ2n−1) + . . .+ a0(1 + θ1)

89

As a consequence, the absolute round-off error is bounded by

|f̃(x)− f(x)| = |anxnθ2n + . . . a0θ1|
≤ |anxn|γ2n + . . .+ |a0|γ1

≤ γ2n

n∑

i=0

|ai| · |x|i

Note that the quotient (
∑n

i=0 |ai| · |x|i)/|f(x)| tends to infinity when x is near a root of the polynomial.
As a consequence, the relative round-off error might be unbounded in that case (and it is in practice).

7.3.3 Backward Error

The forward error expresses the accuracy of the result, but it is not the only property one can be interested
in proving about a numerical program. Another one is the backward error, though it is often encountered
as a stepping stone to obtain properties about the forward error [7].

The backward error of f̃(x) is the distance between x and the closest real number x̃ such that
f̃(x) = f(x̃), assuming it exists. In other words, rather than considering that f̃(x) is an approximated
result of f(x), backward error analysis assumes it is the exact result of f evaluated at some approximated
input x̃.

Example 7.3.3 (Backward analysis of the 2× 2-determinant) Consider the floating-point evaluation
of a determinant d̃et(a, b, c, d) = rnd(rnd(ad)− rnd(bc)) and assume the evaluation causes no under-
flow nor overflow.

d̃et(a, b, c, d) = (ad(1 + θ1)− bc(1 + θ1))(1 + θ1)

= a(1 + θ1)× d(1 + θ1)− b(1 + θ1)× c(1 + θ1)

= ãd̃− b̃c̃ with ã = a(1 + θ1) and so on

= det(ã, b̃, c̃, d̃)

So the relative backward error of d̃et for the ‖ · ‖∞ norm is bounded by γ1. In other words, computing
the approximation d̃et is no different than computing the exact det on slightly perturbed inputs.

7.4 Automatizing the Proof of Numerical Algorithms

Assuming that the specifications of a program only mention the properties described in the previous
section, that is, properties on values and bounds on errors, the approach to verifying it depends on the
structure of the program. We will first consider the case where the program matches the mathematically
ideal algorithm, that is, executing the program with an infinitely-precise arithmetic gives the expected
result and the program contains no superfluous operations.

7.4.1 Ghost Values

To ease the automated verification of numerical programs, we will now consider that floating-point
values are more than that. In addition to the value computed by a floating-point operation, they will also
carry the real number that would have been computed with an infinitely-precise arithmetic. This can be
expressed by using ghost variables, as was done in Section 5.2.4.

For instance, the 2× 2-determinant function could be written as

90

function det(a b c d: binary32, aM bM cM dM: real): (binary32, real)

body

let t1 := binary32_mul(a, d) in

let t1M := aM * dM in

let t2 := binary32_mul(b, c) in

let t2M := bM * cM in

let t3 := binary32_sub(t1, t2) in

let t3M := t1M - t2M in

(t3, t3M)

The forward error of the algorithm would then be a property about t3 - t3M or t3 / t3M - 1.

7.4.2 Abstract Interpretation

The framework of abstract interpretation provides some useful tools to automatize the verification. The
main difference with the traditional approach of abstract interpretation is that it will be used not only on
the computed values, but also on the ghost/model values and on their relations [6].

With abstract interpretation, all the ghost values are implicit and only the actual computed values
are taken into account. A floating-point variable will therefore represent a pair (computed, model). The
specifications of floating-point operations are easily extended to support such a model [3]:

function of_binary32(x: binary32): real

function model_of_binary32(x: binary32): real

function binary32_add(x: binary32, y: binary32): binary32

requires abs(rnd...(of_binary32(x) + of_binary32(y))) ≤ max_binary32

ensures of_binary32(result) = rnd(of_binary32(x) + of_binary32(y)) ∧
model_of_binary32(result) = model_of_binary32(x) + model_of_binary32(y)

Then domains can be devised to abstract the computed values, the model values, and more im-
portantly, the error between them. For instance, a simple domain could store the computed values as
intervals, the errors as a bound on their absolute value, and it could discard the model values. These
would give the following rule for addition. Given some enclosures [x, x] of x, [y, y] of y, and some error
bounds δx and δy such that |x−xM | ≤ δx and |y−yM | ≤ δy, the floating-point sum z of x and y would
satisfy:

z ∈ [rnd(x+ y), rnd(x+ y)] and δz = δx + δy + γ1 max(x+ y,−(x+ y))

Note that, if the lower, upper, and error bounds in input, are numerical values, then the rule produces
numerical values too. Similar rules can be designed for all the floating-point operations.

7.4.3 Round-off and Method Errors

Some mathematical expressions cannot be represented as formulas suitable for numerical programs. For
instance, they may depend on an infinite amount of operations, or on operations not available in the
target language/architecture, or they may simply describe a result implicitly by a (differential) equation.

In that case, the usual way to verify the correctness of an algorithm is to split the analysis of the error
in two parts: the round-off error, which is the distance between the computed valued and the infinitely-
precise value, and the method error, which is the distance between the infinitely-precision expression
and the original expression. The round-off error can be handled by the previous approach, while the
method error is pure problem of numerical analysis without any floating-point number. Both errors can
then be merged as was explained in Section 7.3.1.

91

The method error is also called the truncation error when the programs just evaluate partial sums or
products, while the ideal expressions contain infinite sums or products.

7.5 A Classification of Numerical Algorithms

For efficiency and/or accuracy reasons, some numerical algorithms are not a straightforward translation
of mathematical formulas to floating-point arithmetic. As a consequence, they do not fit the previous
framework and their correctness proof requires some human intervention. Three categories of algorithms
are presented below. They are not meant to be exhaustive, but rather to present some of the difficulties
one might encounter when verifying a numerical algorithm. Each of them is illustrated by an example.

1. The programs depend on some mathematical property that is not readily available from the code
to ensure their accuracy.

2. The programs perform a lot of extraneous computations, which, if they were performed with an
infinitely-precise arithmetic, would just be equal to zero. Yet they are not just noise and they
greatly increase the accuracy of the algorithm.

3. The programs, if they were performed with an infinitely-precise arithmetic, would just return
nonsensical results. So their correctness cannot be proved by comparing them to their infinitely-
precise counterparts.

From now on, program examples will no longer use explicit functions for floating-point arithmetic.
For the sake of readability, they will just use mathematical operators in code. Keep in mind that each of
them involves a rounding. In specifications, however, mathematical operations still denote the infinitely-
precise operators on real numbers.

7.5.1 Converging Algorithms

These programs are still a straightforward approximation of the same algorithms on real numbers, but
their correctness actually depends on some mathematical property, e.g. convergence. In particular,
studying separately the method error and the round-off error of the algorithms can make their verification
harder, if not impossible.

Example 7.5.1 (Square root computed by Newton’s iteration) The following program is supposed to
compute a rather accurate approximation of the square root of an input x between 0.5 and 2. The first
function computes a poor approximation of the inverse square root. Its code is not shown; it could be a
small polynomial interpolation or just some table lookup.

The second function, starting from the result of the first function, performs three iterations of New-
ton’s iteration in order to refine the approximation of the inverse square root until it is accurate enough.
Finally it multiplies it by x to get an approximation of

√
x.

function fp_sqrt_init(x:binary64) : binary64

requires 0.5 ≤ x ≤ 2;

ensures abs(result - 1/sqrt(x)) ≤ 2^-6 * 1/sqrt(x);

function fp_sqrt(x:binary64) : binary64

requires 0.5 ≤ x ≤ 2;

ensures abs(result - sqrt(x)) ≤ 2^-43 * sqrt(x);

body

let t := ref (fp_sqrt_init(x)) in

92

let i := ref 0 in

while i < 3 do

t := 0.5 * t * (3 - t * t * x);

i := i + 1;

done;

t * x

First of all, if one were to apply the method from the previous section, one would first bound the
round-off error between fp_sqrt and a bivariate polynomial on x and fp_sqrt_init(x), then bound the
method error between this polynomial and

√
x, and finally combine both errors to get the accuracy of

the fp_sqrt function. This approach does not work in practice: it gives a poor bound on the error unless
a lot of time is wasted on the verification.

The behavior of the above example is best understood if one notices that the following equality holds
for any u:

0.5u(3− u2x)
√
x− 1 = −(1.5 + 0.5(u

√
x− 1))× (u

√
x− 1)2 (7.1)

If we apply the previous equality to the iteratively computed values of t (noted t0, t1, and so on). We get

tn+1

√
x− 1 ' 0.5tn(3− t2nx)

√
x− 1 ' −1.5(tn

√
x− 1)2

The value tn
√
x − 1 is the relative error between tn and 1/

√
x. As can be seen from the previous

formula, this value is (almost) squared at each iteration, which means that if tn correctly approximates
the first k bits of 1/

√
x, then tn+1 will approximate almost 2k bits of 1/

√
x. Computations are per-

formed by floating-point arithmetic, so some round-off errors have to be taken into account too. Note
that the round-off error introduced at a given iteration partly vanishes during the next iteration due to the
quadratic convergence. As a consequence, one can have the intuition that starting from t0 accurate to 6
bits, t1 will be accurate to almost 12 bits, t2 to 23 bits, and t3 to 45 bits.

This property can be expressed as a loop invariant about abs(t * sqrt(x) - 1) and i, which guar-
antees the correctness of the fp_sqrt function once verified. The proof goes as follows:

1. deduce from the enclosures of |t√x− 1| (invariant) and x (precondition) the domain of t;

2. perform forward error analysis to bound the relative round-off error between the next value of t
and 0.5t(3− t2x);

3. prove Equation 7.1 and use it to bound the relative method error between 0.5t(3−t2x) and 1/
√
x;

4. combine both previous points to deduce that the invariant still holds after a loop iteration.

The fact that the round-off error vanishes at each iteration is what a separate analysis of the round-off
error and the method error would miss.

7.5.2 Compensated Algorithms

These programs perform seemingly useless operations in order to improve the accuracy of their results.

Example 7.5.2 (Accurate summation [11]) The following program takes as inputs an array x of
length n and returns in s’ an accurate sum of its elements.

1 s := x[0];

2 e := 0.;

3 for i := 1 to n - 1 do

4 y := x[i];

93

5 t := s + y;

6 u := t - y;

7 r := (s - u) + (y - (t - u));

8 s := t;

9 e := e + r;

10 done;

11 s’ := s + e;

Notice that the value of s is just the naive floating-point sum of all the values of the array x. That
means that, if s’ actually computes an accurate sum, then the value of e has to compensate most of the
round-off errors that were accumulated during the computation of s in the loop.

First, let us see what the round-off error for s is.

s = (. . . ((x0 + x1)(1 + θ1) + x2)(1 + θ1) + . . .+ xn−1)(1 + θ1)

= x0(1 + θn−1) + x1(1 + θn−1) + . . .+ xn−1(1 + θ1)

=
∑

xi(1 + θn−1)

Therefore, |s −∑i xi| ≤ γn−1
∑

i |xi|. In other words, s may be a poor approximation of
∑

i xi if
|∑i xi| is much smaller than

∑
i |xi|.

To understand how e ends up accurately representing the accumulated round-off error of s, consider
the following lemmas.

Lemma 7.5.3 (Sterbenz) Let x and y two representable numbers. If x/2 ≤ y ≤ 2x, then rnd(x−y) =
x− y.

Lemma 7.5.4 (Representable error for addition) Let x and y two representable numbers. The real
number rnd(x+ y)− (x+ y) is representable by a floating-point number.

Lemma 7.5.5 (Dekker’s error-free addition [4]) Let x and y two representable numbers. Let s =
rnd(x+ y) and e = rnd(y− rnd(s− x)) two floating-point values computed by rounding to nearest. If
|x| ≥ |y|, then s+ e = x+ y..

Proof. The sketch of the proof is as follows. First, s has the same sign as x. Without loss of generality, let
us assume they are nonnegative. We have s ≤ 2x. If s = x+ y exactly, then all the intermediate values
are representable, so e = 0 and s + e = x + y. Otherwise, the contrapositive of Lemma 7.5.3 ensures
that −y < x/2. So x/2 < x+ y, which means that s and x satisfies the hypothesis of Lemma 7.5.3. As
a consequence, rnd(s− x) = s− x. Since the round-off error of addition is representable,

e = rnd(y − rnd(s− x)) = rnd(y − (s− x)) = (x+ y)− s

Lemma 7.5.6 (Knuth’ error-free addition [8]) Let x and y two representable numbers. Assuming the
following values are computed with floating-point arithmetic rounded to nearest

s := x + y;

u := s - y;

e := (x - u) + (y - (s - u));

then s+ e = x+ y.

94

Applying the previous lemma to Example 7.5.2, one gets that the value of e at the end of the algo-
rithm is the naive floating-point sum of all the round-off errors that happened during the computation
of s in the body of the loop. In other words, if the addition at line 9 was performed with an infinitely-
precise arithmetic, then we would have s + e =

∑
i xi at the end of the loop. Due to the floating-point

operation at line 9, the error is
∣∣∣s′ −

∑
xi

∣∣∣ ≤ γ1

∣∣∣
∑

xi

∣∣∣+ γ2
n−1

∑
|xi|

Notice that, compared to the naive sum, the absolute error that depends on
∑ |xi| has been multiplied by

γn−1 and is therefore much smaller. The accuracy of this algorithm can be further improved by adding
some other floating-point operations to accurately sum e.

7.5.3 Magical Algorithms

Example 7.5.7 (Payne and Hanek’s argument reduction [10]) Consider the following function.
Given a large input x, it returns a pair (y, k) such that 0 ≤ y . π/4 and y + kπ/4 is equivalent to x
modulo 2π. In other words, it returns values suitable for computing a trigonometric function. Note that
all the intermediate computations are performed in binary64 format.

function reduce(x:binary32): (binary32, int)

requires 2^31 ≤ x < 2^32

ensures exists l:int. abs((result + k * pi/4) - (x + l * 2*pi)) ≤ 2^-25

body

let x’ := binary64_of_binary32 x in

let t := x’ * 0.02323954474... in

let k := trunc(t) in

let y := (t - k) * 0.785398163... in

(binary32_of_binary64(y), k)

The purpose of the above function is to compute x modulo π/4. So, ideally, it should strive to
approximate

y ' π

4

(
4

π
x−

⌊
4

π
x

⌋)

While one can recognize in the program above that 0.785 . . . stands for π/4, the constant 0.0232 . . . is
not 4/π at all. So why does the program even works? Moreover, how come that the program no longer
works if one replaces 0.0232 . . . by an approximation of 4/π?

Let us write 4/π as (αh + αl)2
−5 with αh an integer and 0 ≤ αl < 1. The value represented by x

can be writtenm ·28 withm an integer since x is a binary32 number larger than 231. As a consequence,

4

π
x = 8αhm+ αlx2−5

Since αhm is an integer, (π/4)8αhm = 2παhm has no impact when considered modulo 2π. Therefore,
rather than using the constant 4/π ' 1.273 . . ., one can use the constantC = 4/π−αh2−5 ' 0.0232

Why is the result y more accurate with the new constant? First, one can assume that the difference
t − k can be represented exactly, since either k is zero or Lemma 7.5.3 applies (k ≤ t < k + 1 ≤ 2k).
As a consequence,

y = (t− btc)(π/4(1 + θ1))(1 + θ1)

For the sake of simplicity, let us assume that btc = bCxc. Therefore,

y = (x(C(1 + θ1))(1 + θ1)− bCxc)(π/4(1 + θ1))(1 + θ1)

= (Cx− bCxc)π/4(1 + θ2) + xCπ/4θ2(1 + θ2)

95

The left-hand side is the ideal mathematical value with some negligible relative error. The right-hand
side, however, is far from negligible. So the smaller C is, the more accurate the argument reduction is.
For |x| < 232 and C ' 0.0232, this gives an absolute error of about 2−25.

Note that only part of the full algorithm is presented here. For each slice [2k, 2k+1) of input x, a
different constant Ck should be chosen, otherwise the absolute error will grow proportionally to x. The
storage for the constants (Ck) is hardly an issue, since they share most of their bits. Indeed, to get from
Ck to Ck+1, the most significant bit is discarded and a bit of the binary expansion of π is added as
the least significant bit. In other words, one only needs to know about one hundred bits of the binary
expansion of π and perform a bit of bit-fiddling to get all the constants. Note that Ck varies like 226−k,
so the absolute error stays around 2−25 whatever the range of x, which would not be the case if one were
to use 4/π as a constant.

7.6 Exercises

Exercise 7.6.1 Propose a way to support numeric constants of type int32 inside programs.

Exercise 7.6.2 Propose a specification for saturating arithmetic operations on signed integers.

Exercise 7.6.3 Prove that a square root computation can cause neither underflow nor overflow. Deduce
a simple specification for a floating-point square root that does not depend on a rounding function.

Exercise 7.6.4 Suggest some preconditions on x, n, and (ai)0≤i≤n, such that the evaluation of Horner’s
scheme in Example 7.3.2 does not encounter any underflow.

Exercise 7.6.5 How should the code be modified in Example 7.5.1 so that it computes the square root
accurately (for the relative error) not just on [0.5; 2] but on the whole nonnegative floating-point range.

Bibliography

[1] IEEE standard for floating-point arithmetic. Technical report, 2008.

[2] A. Ayad and C. Marché. Multi-prover verification of floating-point programs. In J. Giesl and
R. Hähnle, editors, Fifth International Joint Conference on Automated Reasoning, volume 6173 of
Lecture Notes in Artificial Intelligence, pages 127–141, Edinburgh, Scotland, July 2010. Springer.
URL http://www.lri.fr/~marche/ayad10ijcar.pdf.

[3] S. Boldo and J.-C. Filliâtre. Formal Verification of Floating-Point Programs. In 18th IEEE In-
ternational Symposium on Computer Arithmetic, pages 187–194, Montpellier, France, June 2007.
URL http://www.lri.fr/~filliatr/ftp/publis/caduceus-floats.pdf.

[4] T. J. Dekker. A floating point technique for extending the available precision. Numerische Mathe-
matik, 18(3):224–242, 1971.

[5] J. Demmel. Underflow and the reliability of numerical software. SIAM Journal on Scientific and
Statistical Computing, 5(4):887–919, 1984.

[6] E. Goubault and S. Putot. Static analysis of numerical algorithms. In K. Yi, editor, SAS, volume
4134 of LNCS, pages 18–34. Springer, 2006. ISBN 3-540-37756-5.

[7] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002. URL http://www.

ma.man.ac.uk/~higham/asna/.

96

[8] D. E. Knuth. The Art of Computer Programming, volume 2 (3rd ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc., 1997.

[9] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser, 2010.

[10] M. Payne and R. Hanek. Radian reduction for trigonometric functions. SIGNUM Newsletter, 18:
19–24, 1983.

[11] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding.
SIAM Journal on Scientific Computing, 31(1):189–224, 2008. doi:10.1137/050645671.

97

