
Introduction, Classical Hoare Logic

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

12 décembre 2012

Preliminaries

I Very first question: lectures in English or in French?

I Lectures 1,2,7,8: Claude Marché
I Lectures 3,4,5,6: Guillaume Melquiond
I On some week: practical lab, support for project
I Evaluation:

I final exam E in March 2013
I project P, using the Why3 tool (http://why3.lri.fr)
I final mark = (2E + P + max(E ,P))/4

I internships (stages)
I Warning: room change in January
I Slides and lectures notes on the web page
http://www.lri.fr/~marche/MPRI-2-36-1/

http://why3.lri.fr
http://www.lri.fr/~marche/MPRI-2-36-1/

Preliminaries

I Very first question: lectures in English or in French?
I Lectures 1,2,7,8: Claude Marché
I Lectures 3,4,5,6: Guillaume Melquiond
I On some week: practical lab, support for project
I Evaluation:

I final exam E in March 2013
I project P, using the Why3 tool (http://why3.lri.fr)
I final mark = (2E + P + max(E ,P))/4

I internships (stages)
I Warning: room change in January
I Slides and lectures notes on the web page
http://www.lri.fr/~marche/MPRI-2-36-1/

http://why3.lri.fr
http://www.lri.fr/~marche/MPRI-2-36-1/

Outline

Introduction, Short History

A Simple Programming Language

Hoare Logic

Dijkstra’s Weakest Preconditions

Exercises

General Objectives

Ultimate Goal
Verify that software is free of bugs

Famous software failures:
http://www.cs.tau.ac.il/~nachumd/horror.html

This lecture
Computer-assisted approaches for verifying that

a software conforms to a specification

http://www.cs.tau.ac.il/~nachumd/horror.html

Some general approaches to Verification

Static analysis
I model checking (automata-based models)
I abstract interpretation (domain-specific model, e.g.

numerical)
I verification: fully automatic dedicated algorithms

Deductive verification
I formal models using expressive logics
I verification = computer-assisted mathematical proof

Some general approaches to Verification

Refinement
I Formal models
I Code derived from model, correct by construction

A long time before success

Computer-assisted verification is an old idea
I Turing, 1948
I Floyd-Hoare logic, 1969

Success in practice: only from the mid-1990s
I Importance of the increase of performance of computers

A first success story:
I Paris metro line 14, using Atelier B (1998, refinement

approach)
http://www.methode-b.com/documentation_b/
ClearSy-Industrial_Use_of_B.pdf

http://www.methode-b.com/documentation_b/ClearSy-Industrial_Use_of_B.pdf
http://www.methode-b.com/documentation_b/ClearSy-Industrial_Use_of_B.pdf

Other Famous Success Stories
I Flight control software of A380: Astree verifies absence of

run-time errors (2005, abstract interpretation)
http://www.astree.ens.fr/

I Microsoft’s hypervisor: using Microsoft’s VCC and the Z3
automated prover (2008, deductive verification)
http:
//research.microsoft.com/en-us/projects/vcc/

I Certified C compiler, developed using the Coq proof
assistant (2009, correct-by-construction code generated by
a proof assistant)
http://compcert.inria.fr/

I L4.verified micro-kernel, using tools on top of Isabelle/HOL
proof assistant (2010, Haskell prototype, C code, proof
assistant)
http:
//www.ertos.nicta.com.au/research/l4.verified/

http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/vcc/
http://research.microsoft.com/en-us/projects/vcc/
http://compcert.inria.fr/
http://www.ertos.nicta.com.au/research/l4.verified/
http://www.ertos.nicta.com.au/research/l4.verified/

Outline

Introduction, Short History

A Simple Programming Language

Hoare Logic

Dijkstra’s Weakest Preconditions

Exercises

Syntax: expressions

e ::= n (integer constants)
| x (variables)
| e op e (binary operations)

op ::= + | − | ∗
| = | 6= | < | > | ≤ | ≥
| and | or

I Only one data type: unbounded integers
I Comparisons return an integer: 0 for “false”, −1 for “true”
I There is no division

Consequences:
I Expressions are always well-typed
I Expressions always evaluate without error
I Expressions do not have any side effect

Syntax: statements

s ::= skip (no effect)
| x := e (assignment)
| s; s (sequence)
| if e then s else s (conditional)
| while e do s (loop)

I Condition in if and while: 0 is “false”, non-zero is “true”
I if without else: syntactic sugar for else skip.

Consequences:
I Statements have side effects
I All programs are well-typed
I There is no possible runtime error: all programs execute

until their end or infinitely

Running Example

Three global variables n, count, and sum

count := 0; sum := 1;
while sum ≤ n do

count := count + 1; sum := sum + 2 * count + 1

Informal specification:
I at the end of execution of this program, count contains the

square root of n, rounded downward
I e.g. for n=42, the final value of count is 6.

Running Example

Three global variables n, count, and sum

count := 0; sum := 1;
while sum ≤ n do

count := count + 1; sum := sum + 2 * count + 1

Informal specification:
I at the end of execution of this program, count contains the

square root of n, rounded downward
I e.g. for n=42, the final value of count is 6.

Operational semantics

[Plotkin 1981, structural operational semantics (SOS)]

I we use a standard small-step semantics
I program state: describes content of global variables at a

given time. It is a finite map Σ associating to each variable
x its current value denoted Σ(x).

I Value of an expression e in some state Σ:
I denoted JeKΣ

I always defined, by the following recursive equations:

JnKΣ = n
JxKΣ = Σ(x)

Je1 op e2KΣ = Je1KΣ JopK Je2KΣ

I JopK natural semantic of operator op on integers (with
relational operators returning 0 for false and −1 for true).

Semantics of statements

Semantics of statements: defined by judgment

Σ, s Σ′, s′

meaning: in state Σ, executing one step of statement s leads to
the state Σ′ and the remaining statement to execute is s′.
The semantics is defined by the following rules.

Σ, x := e Σ{x ← JeKΣ}, skip

Σ, s1 Σ′, s′1
Σ, (s1; s2) Σ′, (s′1; s2)

Σ, (skip; s) Σ, s

Semantics of statements, continued

JeKΣ 6= 0
Σ, if e then s1 else s2 Σ, s1

JeKΣ = 0
Σ, if e then s1 else s2 Σ, s2

JeKΣ 6= 0
Σ, while e do s Σ, (s; while e do s)

JeKΣ = 0
Σ, while e do s Σ, skip

Execution of programs

I : a binary relation over pairs (state,statement)
I transitive closure : +

I reflexive-transitive closure : ∗

In other words:
Σ, s ∗ Σ′, s′

means that statement s, in state Σ, reaches state Σ′ with
remaining statement s′ after executing some finite number of
steps.

Running example:

{n = 42, count =?, sum =?}, ISQRT ∗

{n = 42, count = 6, sum = 49}, skip

Execution and termination

I any statement except skip can execute in any state
I the statement skip alone represents the final step of

execution of a program
I there is no possible runtime error.

Definition
Execution of statement s in state Σ terminates if there is a state
Σ′ such that Σ, s ∗ Σ′, skip

I since there are no possible runtime errors, s does not
terminate means that s diverges (i.e. executes infinitely).

Sequence lemma

Lemma (Sequence execution)
If

Σ, (s1; s2) ∗ Σ′, skip

then there exists an intermediate state Σ′′ such that

Σ, s1 ∗ Σ′′, skip
Σ′′, s2 ∗ Σ′, skip

Proof.
Induction on the number of steps of execution.

Outline

Introduction, Short History

A Simple Programming Language

Hoare Logic

Dijkstra’s Weakest Preconditions

Exercises

Propositions about programs

I To formally express properties of programs, we need a
formal specification language

I We use standard first-order logic
I syntax of formulas:

p ::= e | p ∧ p | p ∨ p | ¬p | p ⇒ p | ∀v , p | ∃v , p

I v : logical variable identifiers
I e : program expressions, augmented with logical variables

Semantics of formulas
JpKΣ :
I semantics of formula p in program state Σ

I is a logic formula where no program variables appear
anymore

I defined recursively as follows.

JeKΣ = JeKΣ 6= 0
Jp1 ∧ p2KΣ = Jp1KΣ ∧ Jp2KΣ

...

where semantics of expressions is augmented with

JvKΣ = v
JxKΣ = Σ(x)

Notations:
I Σ |= p : the formula JpKΣ is valid
I |= p : formula JpKΣ holds in all states Σ.

Hoare triples

I Hoare triple : notation {P}s{Q}
I P : formula called the precondition
I Q : formula called the postcondition

Definition (Partial correctness)
Hoare triple {P}s{Q} is said valid if:
for any states Σ,Σ′, if
I Σ, s ∗ Σ′, skip and
I Σ |= P

then Σ′ |= Q

In other words: if s is executed in a state satisfying its
precondition, then if it terminates, the resulting state satisfies its
postcondition

Examples

Examples of valid triples for partial correctness:
I {x = 1}x := x + 2{x = 3}
I {x = y}x := x + y{x = 2 ∗ y}
I {∃v , x = 4 ∗ v}x := x + 42{∃w , x = 2 ∗ w}
I {true}while 1 do skip{false}

Our running example:

{n ≥ 0}ISQRT{count∗count ≤ n∧n < (count +1)∗(count +1)}

Hoare logic

Set of inference rules producing triples

{P}skip{P}

{P[x ← e]}x := e{P}

{P}s1{Q} {Q}s2{R}
{P}s1; s2{R}

I Notation P[x ← e] : replace all occurrences of program
variable x by e in P.

Hoare Logic, continued

Consequence rule:

{P ′}s{Q′} |= P ⇒ P ′ |= Q′ ⇒ Q
{P}s{Q}

I Example: proof of

{x = 1}x := x + 2{x = 3}

Hoare Logic, continued

Rules for if and while :

{P ∧ e 6= 0}s1{Q} {P ∧ e = 0}s2{Q}
{P}if e then s1 else s2{Q}

{I ∧ e 6= 0}s{I}
{I}while e do s{I ∧ e = 0}

I I is called a loop invariant.

Soundness

Theorem (Soundness of Hoare logic)
This set of rules is correct: any derivable triple is valid.

This is proved by induction on the derivation tree of the
considered triple.
For each rule: assuming that the triples in premises are valid,
we show that the triple in conclusion is valid too.

Example: isqrt(42)

Exercise: prove of the triple

{n ≥ 0}ISQRT{count∗count ≤ n∧n < (count +1)∗(count +1)}

Warning
Finding an adequate loop invariant is a major difficulty

Example: isqrt(42)

Exercise: prove of the triple

{n ≥ 0}ISQRT{count∗count ≤ n∧n < (count +1)∗(count +1)}

Warning
Finding an adequate loop invariant is a major difficulty

Completeness
Two major difficulties for proving a program
I guess the appropriate intermediate formulas (for

sequence, for the loop invariant)
I prove the logical premises of consequence rule

Theoretical question: completeness. Are all valid triples
derivable from the rules?

Theorem (Relative Completeness of Hoare logic)
The set of rules of Hoare logic is relatively complete: if the logic
language is expressive enough, then any valid triple {P}s{Q}
can be derived using the rules.

[Cook, 1978]
“Expressive enough” is for example Peano arithmetic
(non-linear integer arithmetic)
Gives only hints on how to effectively determine suitable loop
invariants (see the theory of abstract interpretation [Cousot,
1990])

Outline

Introduction, Short History

A Simple Programming Language

Hoare Logic

Dijkstra’s Weakest Preconditions

Exercises

Annotated Programs

Goal
Add automation to the Hoare logic approach

We augment our simple language with explicit loop invariants

s ::= skip (no effect)
| x := e (assignment)
| s; s (sequence)
| if e then s else s (conditional)
| while e invariant I do s (annotated loop)

I The operational semantics is unchanged.

Weakest liberal precondition

[Dijkstra 1975]

Function WLP(s,Q) :
I s is a statement
I Q is a formula
I returns a formula

It should return the minimal precondition P that validates the
triple {P}s{Q}

Definition of WLP(s,Q)

Recursive definition:

WLP(skip,Q) = Q
WLP(x := e,Q) = Q[x ← e]
WLP(s1; s2,Q) = WLP(s1,WLP(s2,Q))

WLP(if e then s1 else s2,Q) =
(e 6= 0⇒WLP(s1,Q)) ∧ (e = 0⇒WLP(s2,Q))

Definition of WLP(s,Q), continued

WLP(while e invariant I do s,Q) =
I ∧ (invariant true initially)
∀v1, . . . , vk ,

(((e 6= 0 ∧ I)⇒WLP(s, I)) (invariant preserved)
∧((e = 0 ∧ I)⇒ Q))[wi ← vi] (invariant implies post)

where w1, . . . ,wk is the set of assigned variables in statement s
and v1, . . . , vk are fresh logic variables

Examples

WLP(x := x + y , x = 2y) ≡ x + y = 2y

WLP(while y > 0 invariant even(y) do y := y − 2,even(y)) ≡
even(y)∧
∀v , ((v > 0 ∧ even(v))⇒ even(v − 2))
∧((v ≤ 0 ∧ even(v))⇒ even(v))

Examples

WLP(x := x + y , x = 2y) ≡ x + y = 2y

WLP(while y > 0 invariant even(y) do y := y − 2,even(y)) ≡

even(y)∧
∀v , ((v > 0 ∧ even(v))⇒ even(v − 2))
∧((v ≤ 0 ∧ even(v))⇒ even(v))

Examples

WLP(x := x + y , x = 2y) ≡ x + y = 2y

WLP(while y > 0 invariant even(y) do y := y − 2,even(y)) ≡
even(y)∧
∀v , ((v > 0 ∧ even(v))⇒ even(v − 2))
∧((v ≤ 0 ∧ even(v))⇒ even(v))

Soundness

Theorem (Soundness)
For all statement s and formula Q, {WLP(s,Q)}s{Q} is valid.

Proof by induction on the structure of statement s.

Consequence
For proving that a triple {P}s{Q} is valid, it suffices to prove the
formula P ⇒WLP(s,Q).

Application

Demo with the Why3 tool (http://why3.lri.fr/)

See file imp_isqrt.mlw

(This is the tool to use for the project. version 0.80)

http://why3.lri.fr/

Minimality

Theorem (Weakest precondition property)
For any triple {P}s{Q} that is derivable, we have
|= P ⇒WLP(s,Q).

Outline

Introduction, Short History

A Simple Programming Language

Hoare Logic

Dijkstra’s Weakest Preconditions

Exercises

Exercise 1

Consider the following (inefficient) program for computing the
sum a + b.

x := a; y := b;
while y > 0 do

x := x + 1; y := y - 1

I Propose a post-condition stating that the final value of x is
the sum of the values of a and b

I Find an appropriate loop invariant
I Prove the program.

Exercise 2

The following program is one of the original examples of Floyd.

q := 0; r := x;
while r ≥ y do

r := r - y; q := q + 1

I Propose a formal precondition to express that x is
assumed non-negative, y is assumed positive, and a
formal post-condition expressing that q and r are
respectively the quotient and the remainder of the
Euclidean division of x by y .

I Find appropriate loop invariant and prove the correctness
of the program.

Exercise 3

Let’s assume given in the underlying logic the functions div2(x)
and mod2(x) which respectively return the division of x by 2 and
its remainder. The following program is supposed to compute,
in variable r , the power xn.

r := 1; p := x; e := n;
while e > 0 do

if mod2(e) 6= 0 then r := r * p;
p := p * p;
e := div2(e);

I Assuming that the power function exists in the logic,
specify appropriate pre- and post-conditions for this
program.

I Find an appropriate loop invariant, and prove the program.

Exercise 4

The Fibonacci sequence is defined recursively by fib(0) = 0,
fib(1) = 1 and fib(n + 2) = fib(n + 1) + fib(n). The following
program is supposed to compute fib in linear time, the result
being stored in y .

y := 0; x := 1; i := 0;
while i < n do

aux := y; y := x; x := x + aux; i := i + 1

I Assuming fib exists in the logic, specify appropriate pre-
and post-conditions.

I Prove the program.

Exercise (Exam 2011-2012)
In this exercise, we consider the simple language of the first
lecture of this course, where expressions do not have any side
effect.

1. Prove that the triple

{P}x := e{∃v , e[x ← v] = x ∧ P[x ← v]}

is valid with respect to the operational semantics.
2. Show that the triple above can be proved using the rules of

Hoare logic.
Let us assume that we replace the standard Hoare rule for
assignment by the rule

{P}x := e{∃v , e[x ← v] = x ∧ P[x ← v]}

3. Show that the triple {P[x ← e]}x := e{P} can be proved
with the new set of rules.

	Introduction, Short History
	A Simple Programming Language
	Hoare Logic
	Dijkstra's Weakest Preconditions
	Exercises

