
Expressions with Side-Effects
Blocking Semantics

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

19 décembre 2012

Exercise 3

Let’s assume given in the underlying logic the functions div2(x)
and mod2(x) which respectively return the division of x by 2 and
its remainder. The following program is supposed to compute,
in variable r , the power xn.

r := 1; p := x; e := n;

while e > 0 do

if mod2(e) 6= 0 then r := r * p;

p := p * p;

e := div2(e);

I Assuming that the power function exists in the logic,
specify appropriate pre- and post-conditions for this
program.

I Find an appropriate loop invariant, and prove the program.

Exercise 4

The Fibonacci sequence is defined recursively by fib(0) = 0,
fib(1) = 1 and fib(n + 2) = fib(n + 1) + fib(n). The following
program is supposed to compute fib in linear time, the result
being stored in y .

y := 0; x := 1; i := 0;

while i < n do

aux := y; y := x; x := x + aux; i := i + 1

I Assuming fib exists in the logic, specify appropriate pre-
and post-conditions.

I Prove the program.

Reminder of the last lecture

I Very simple programming language
I program = sequence of statements
I only global variables
I only the integer data type, always well typed

I Formal operational semantics
I small steps
I no run-time errors

I Hoare logic:
I Deduction rules for triples {Pre}s{Post}

I Weakest Liberal Precondition (WLP):
I if Pre⇒WLP(s,Post) then {Pre}s{Post} valid

I In lecture notes: extensions for termination
I Total correctness of triples
I Weakest (Strict) Precondition

This Lecture’s Goals

Extend the language
I more data types
I logic variables: local and immutable
I labels in specifications

Handle termination issues:
I prove properties on non-terminating programs
I prove termination when wanted

Prepare for adding later:
I run-time errors (how to prove their absence)
I local mutable variables, functions
I complex data types

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Extended Syntax: Generalities

I We want a few basic data types : int, bool, real, unit
I Former pure expressions are now called terms
I No difference between expressions and statements

anymore

last lecture now
expression term
formula formula
statement expression

Basically we consider
I A purely functional language (ML-like)
I with global mutable variables

very restricted notion of modification of program states

Base Data Types, Operators, Terms

I unit type: type unit, only one constant ()

I Booleans: type bool, constants True,False, operators and,
or, not

I integers: type int, operators +,−, ∗ (no division)
I reals: type real, operators +,−, ∗ (no division)
I Comparisons of integers or reals, returning a boolean
I “if-expression”: written if b then t1 else t2

t ::= val (values, i.e. constants)
| v (logic variables)
| x (program variables)
| t op t (binary operations)
| if t then t else t (if-expression)

Local logic variables

We extend the syntax of terms by

t ::= let v = t in t

Example: approximated cosine

let cos_x =

let y = x*x in

1.0 - 0.5 * y + 0.04166666 * y * y

in

...

Practical Notes

I Theorem provers (Alt-Ergo, CVC3, Z3) typically support
these types

I may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas
when needed (e.g. transformation of if-expressions and/or
let-expressions into equivalent formulas)

Syntax: Formulas

Unchanged w.r.t to last lecture, but also addition of local
binding:

p ::= t (boolean term)
| p ∧ p | p ∨ p | ¬p | p ⇒ p (connectives)
| ∀v : τ, p | ∃v : τ, p (quantification)
| let v = t in p (local binding)

Typing

I Types:
τ ::= int | real | bool | unit

I Typing judgment:
Γ ` t : τ

where Γ maps identifiers to types:
I either v : τ (logic variable, immutable)
I either x : ref τ (program variable, mutable)

Important
I a reference is not a value
I there is no “reference on a reference”
I no aliasing

Typing rules

Constants:

Γ ` n : int Γ ` r : real

Γ ` True : bool Γ ` False : bool

Variables:
v : τ ∈ Γ

Γ ` v : τ

x : ref τ ∈ Γ

Γ ` x : τ

Let binding:

Γ ` t1 : τ1 {v : τ1} · Γ ` t2 : τ2

Γ ` let v = t1 in t2 : τ2

I All terms have a base type (not a reference)
I In practice: Why3, as in OCaml, requires to write !x for

references

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local
(immutable) variables
I Σ: maps program variables to values (a map)
I Π: maps logic variables to values (a stack)

JvalKΣ,Π = val (values)
JxKΣ,Π = Σ(x) if x : ref τ
JvKΣ,Π = Π(v) if v : τ

Jt1 op t2KΣ,Π = Jt1KΣ,Π JopK Jt2KΣ,Π

Jlet v = t1 in t2KΣ,Π = Jt2KΣ,({v=Jt1KΣ,Π}·Π)

Warning
Semantics is now a partial function

Type Soundness Property

Our logic language satisfies the following standard property of
purely functional language

Theorem (Type soundness)
Every well-typed terms and well-typed formulas have a
semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

I Former statements are now expressions of type unit
Expressions may have Side Effects

I Statement skip is identified with ()

I The sequence is replaced by a local binding
I From now on, the condition of the if then else and the

while do in programs is a Boolean expression

Syntax

e ::= t (pure term)
| e op e (binary operation)
| x := e (assignment)
| let v = e in e (local binding)
| if e then e else e (conditional)
| while e do e (loop)

I sequence e1; e2 : syntactic sugar for

let v = e1 in e2

when e1 has type unit and v not used in e2

Toy Examples

z := if x ≥ y then x else y

let v = r in (r := v + 42; v)

while (x := x - 1; x > 0) do ()

while (let v = x in x := x - 1; v > 0) do ()

Typing Rules for Expressions
Assignment:

x : ref τ ∈ Γ Γ ` e : τ

Γ ` x := e : unit

Let binding:

Γ ` e1 : τ1 {v : τ1} · Γ ` e2 : τ2

Γ ` let v = e1 in e2 : τ2

Conditional:

Γ ` c : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if c then e1 else e2 : τ

Loop:
Γ ` c : bool Γ ` e : unit

Γ ` while c do e : unit

Operational Semantics

Novelties
I Need for context rules
I Precise the order of evaluation: left to right

I one-step execution has the form

Σ,Π,e Σ′,Π′,e′

I values do not reduce

Operational Semantics

I Assignment
Σ,Π,e Σ′,Π′,e′

Σ,Π, x := e Σ′,Π′,e′

Σ,Π, x := val Σ[x ← val],Π, ()

I Let binding

Σ,Π,e1 Σ′,Π′,e′1
Σ,Π, let v = e1 in e2 Σ′,Π′, let v = e′1 in e2

Σ,Π, let v = val in e Σ, {v = val} · Π,e

Operational Semantics, Continued

I Binary operations

Σ,Π,e1 Σ′,Π′,e′1
Σ,Π,e1 + e2 Σ′,Π′,e′1 + e2

Σ,Π,e2 Σ′,Π′,e′2
Σ,Π, val1 + e2 Σ′,Π′, val1 + e′2

val = val1 + val2
Σ,Π, val1 + val2 Σ,Π, val

Operational Semantics, Continued

I Conditional

Σ,Π, c Σ′,Π′, c′

Σ,Π, if c then e1 else e2 Σ′,Π′, if c′ then e1 else e2

Σ,Π, if True then e1 else e2 Σ,Π,e1

Σ,Π, if False then e1 else e2 Σ,Π,e2

I Loop

Σ,Π, while c do e
Σ,Π, if c then (e; while c do e) else ()

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

I An equivalent operational semantics can be defined using
let v = . . . in . . . instead, e.g.:

v1, v2 fresh
Σ,Π,e1 + e2 Σ,Π, let v1 = e1 in let v2 = e2 in v1 + v2

I Thus, only the context rule for let is needed

Type Soundness

Theorem
Every well-typed expression evaluate to a value or execute
infinitely

Classical proof:
I type is preserved by reduction
I execution of well-typed expressions that are not values can

progress

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Blocking Semantics: General Ideas

I add assertions in expressions
I failed assertions = “run-time errors”

First step: modify expression syntax with
I new expression: assertion
I adding loop invariant in loops

e ::= assert p (assertion)
| while e invariant I do e (annotated loop)

Toy Examples

z := if x ≥ y then x else y ;

assert z ≥ x ∧ z ≥ y

while (x := x - 1; x > 0)

invariant x ≥ 0 do ();

assert (x = 0)

while (let v = x in x := x - 1; v > 0)

invariant x ≥ -1 do ();

assert (x < 0)

Blocking Semantics: Modified Rules

JPKΣ,Π holds
Σ,Π, assert P Σ,Π, ()

JIKΣ,Π holds
Σ,Π, while c invariant I do e

Σ,Π, if c then (e; while c invariant I do e) else ()

Important
Execution blocks as soon as an invalid annotation is met

Soundness of a program

Definition
Execution of an expression in a given state is safe if it does not
block: either terminates on a value or runs infinitely.

Definition
A triple {P}e{Q} is valid if for any state Σ,Π satisfying P, e
executes safely in Σ,Π, and if it terminates, the final state
satisfies Q

New addition in the specification language:
I keyword result in post-conditions
I denotes the value of the expression executed

Toy Examples, Continued

{ true }

if x ≥ y then x else y

{ result ≥ x ∧ result ≥ y }

{ x ≥ 0 }

c := 0; sum := 1;

while sum ≤ x do

c := c + 1; sum := sum + 2 * c + 1

done;

c

{ result ≥ 0 ∧
result * result ≤ x < (result+1)*(result+1) }

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Weakest Preconditions Revisited

Goal:
I construct a new calculus WP(e,Q)

I expected property: in any state satisfying WP(e,Q), e is
guaranteed to execute safely

Remark:
I Stating this for Q = true is enough to ensure safety
I But need to state this for any Q to prove soundness (by

induction)

New Weakest Precondition Calculus

I Pure terms:
WP(t ,Q) = Q[result ← t]

I Let binding:

WP(let x = e1 in e2,Q) =
WP(e1,WP(e2,Q)[x ← result])

Weakest Preconditions, continued

I Assignment:

WP(x := e,Q) = WP(e,Q[result ← (); x ← result])

I Alternative:

WP(x := e,Q) = WP(let v = e in x := v ,Q)
WP(x := t ,Q) = Q[result ← (); x ← t])

WP: Exercise

WP(let v = x in (x := x + 1; v), x > result) =?

Weakest Preconditions, continued

I Conditional

WP(if e1 then e2 else e3,Q) =
WP(e1, if result then WP(e2,Q) else WP(e3,Q))

I Alternative with let: (exercise!)

Weakest Preconditions, continued

I Assertion

WP(assert P,Q) = P ∧Q
= P ∧ (P ⇒ Q)

(second version useful in practice)
I While loop

WP(while c invariant I do e,Q) =
I∧
∀~v , (I ⇒WP(c, if result then WP(e, I) else Q))[wi ← vi]

where w1, . . . ,wk is the set of assigned variables in
expressions c and e and v1, . . . , vk are fresh logic variables

General Properties of WP

Lemma (Monotonicity)
If |= P ⇒ Q then |= WP(e,P)⇒WP(e,Q)

Proof: structural induction on e
Remark: true only when quantified on all states

Lemma (Conjunction Property)
If Σ,Π |= WP(e,P) and Σ,Π |= WP(e,Q) then
Σ,Π |= WP(e,P ∧Q)

Proof: structural induction on e

Soundness of WP

Lemma (Preservation by Reduction)
If Σ,Π |= WP(e,Q) and Σ,Π,e Σ′,Π′,e′ then
Σ′,Π′ |= WP(e′,Q)

Proof: predicate induction of .

Lemma (Progress)
If Σ,Π |= WP(e,Q) and e is not a value then there exists
Σ′,Π,e′ such that Σ,Π,e Σ′,Π′,e′

Proof: structural induction of e.

Corollary (Soundness)
If Σ,Π |= WP(e,Q) then e executes safely in Σ,Π.

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Labels: Syntax and Typing

Add in syntax of terms:

t ::= x@L (labeled variable access)

Add in syntax of expressions:

e ::= L : e (labeled expressions)

Typing:
I only mutable variables can be accessed through a label
I labels must be declared before use

Implicit labels:
I Here, available in every formula
I Old, available in post-conditions

Toy Examples, Continued

{ true }

let v = r in (r := v + 42; v)

{ r = r@Old + 42 ∧ result = r@Old }

{ true }

let tmp = x in x := y; y := tmp

{ x = y@Old ∧ y = x@Old }

SUM revisited:

{ y ≥ 0 }

L:

while y > 0 do

invariant { x + y = x@L + y@L }

x := x + 1; y := y - 1

{ x = x@Old + y@Old ∧ y = 0 }

Labels: Operational Semantics
Program state
I becomes a collection of maps indexed by labels
I value of variable x at label L is denoted Σ(x ,L)

New semantics of variables in terms:

JxKΣ,Π = Σ(x ,Here)
Jx@LKΣ,Π = Σ(x ,L)

The operational semantics of expressions is modified as follows

Σ,Π, x := val Σ{(x ,Here)← val},Π, ()
Σ,Π,L : e Σ{(x ,L)← Σ(x ,Here) | x any variable},Π,e

Syntactic sugar: term t@L
I attach label L to any variable of t that does not have an

explicit label yet.
I example:(x + y@K + 2)@L + x is x@L + y@K + 2 + x@Here.

New rules for WP

New rules for computing WP:

WP(x := t ,Q) = Q[x@Here← t]
WP(L : e,Q) = WP(e,Q)[x@L← x@Here | x any variable]

Exercise:

WP(L : x := x + 42, x@Here > x@L) =?

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Termination

Goal
Prove that a program terminates (on all inputs satisfying the
precondition

With our simple language
I amounts to show that loops are never infinite

Solution: annotate loops with loop variants
I a term that decreases at each iteration
I for some well-founded ordering ≺ (i.e. there is no infinite

sequence val1 � val2 � val3 � · · ·
I A typical ordering on integers:

x ≺ y = x < y ∧ 0 ≤ y

Syntax
New syntax construct:

e ::= while e invariant I variant t ,≺ do e

Example:

{ y ≥ 0 }

L:

while y > 0 do

invariant { x + y = x@L + y@L }

variant { y }

x := x + 1; y := y - 1

{ x = x@Old + y@Old ∧ y = 0 }

Demo
See Why3 version in sum.mlw

Operational semantics

JIKΣ,Π holds
Σ,Π, while c invariant I variant t ,≺ do e

Σ,Π, if c
then (e; assert t ≺ JtKΣ,Π;

while c invariant I variant t ,≺ do e)
else ()

Alternative:

JIKΣ,Π holds
Σ,Π, while c invariant I variant t ,≺ do e

Σ,Π,L : if c
then (e; assert t ≺ t@L;

while c invariant I variant t ,≺ do e)
else ()

Weakest Precondition

No distinction liberal/strict:
I presence of loop variants tells if one wants to prove

termination or not

WP(while c invariant I variant t ,≺ do e,Q) =
I∧
∀~v , (I ⇒WP(L : c, if result then WP(e, I ∧ t ≺ t@L) else Q))

[wi ← vi]

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Example ISQRT, revisited

let old_x = x in

x := 0; sum := 1;

while sum ≤ old_x do

x := x + 1;

sum := sum + 2 * x + 1

done;

x

I Propose pre- and post-condition
I Propose suitable loop invariant and variant

Exponentiation

r := 1.0;

p := x;

while n > 0 do

if mod n 2 = 1 then r := r *. p;

p := p *. p;

n := div n 2

done;

r

I Propose pre- and post-condition
I Propose suitable loop invariant and variant
I add lemmas and assertions as hints for the proof

	A ML-like Programming Language
	Blocking Operational Semantics
	Weakest Preconditions Revisited
	Labels
	Termination, Variants
	Exercises

