Expressions with Side-Effects Blocking Semantics

Claude Marché

Cours MPRI 2-36-1 "Preuve de Programme"

19 décembre 2012

Exercise 3

Let's assume given in the underlying logic the functions div2(x) and $\bmod 2(x)$ which respectively return the division of x by 2 and its remainder. The following program is supposed to compute, in variable r, the power x^{n}.

```
\(\mathrm{r}:=1 ; \mathrm{p}:=\mathrm{x} ; \mathrm{e}:=\mathrm{n}\);
while \(\mathrm{e}>0\) do
    if \(\bmod 2(e) \neq 0\) then \(r:=r * p\);
    \(p:=p\) * \(p\);
    e := div2(e);
```

- Assuming that the power function exists in the logic, specify appropriate pre- and post-conditions for this program.
- Find an appropriate loop invariant, and prove the program.

Exercise 4

The Fibonacci sequence is defined recursively by $f i b(0)=0$, $f i b(1)=1$ and $f i b(n+2)=f i b(n+1)+f i b(n)$. The following program is supposed to compute fib in linear time, the result being stored in y.

$$
\begin{aligned}
& y ~:=0 ; x:=1 ; i \quad:=0 \\
& \text { while } i<n \text { do } \\
& \quad \text { aux }:=y ; y:=x ; x:=x+\text { aux; i }:=i+1
\end{aligned}
$$

- Assuming fib exists in the logic, specify appropriate preand post-conditions.
- Prove the program.

Reminder of the last lecture

- Very simple programming language
- program = sequence of statements
- only global variables
- only the integer data type, always well typed
- Formal operational semantics
- small steps
- no run-time errors
- Hoare logic:
- Deduction rules for triples $\{$ Pre $\} s\{$ Post $\}$
- Weakest Liberal Precondition (WLP):
- if Pre $\Rightarrow \mathrm{WLP}(s$, Post $)$ then $\{$ Pre $\} s\{$ Post $\}$ valid
- In lecture notes: extensions for termination
- Total correctness of triples
- Weakest (Strict) Precondition

This Lecture's Goals

Extend the language

- more data types
- logic variables: local and immutable
- labels in specifications

Handle termination issues:

- prove properties on non-terminating programs
- prove termination when wanted

Prepare for adding later:

- run-time errors (how to prove their absence)
- local mutable variables, functions
- complex data types

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Extended Syntax: Generalities

- We want a few basic data types : int, bool, real, unit
- Former pure expressions are now called terms
- No difference between expressions and statements anymore

last lecture	now
expression	term
formula	formula
statement	expression

Basically we consider

- A purely functional language (ML-like)
- with global mutable variables
very restricted notion of modification of program states

Base Data Types, Operators, Terms

- unit type: type unit, only one constant ()
- Booleans: type bool, constants True, False, operators and, or, not
- integers: type int, operators,,$+- *$ (no division)
- reals: type real, operators,,$+- *$ (no division)
- Comparisons of integers or reals, returning a boolean
- "if-expression": written if b then t_{1} else t_{2}

Local logic variables

We extend the syntax of terms by

$$
t::=\text { let } v=t \text { in } t
$$

Example: approximated cosine

```
let cos_x =
    let }\textrm{y}=\textrm{x}*\textrm{x}\mathrm{ in
    1.0 - 0.5 * y + 0.04166666 * y * y
in
```


Practical Notes

- Theorem provers (Alt-Ergo, CVC3, Z3) typically support these types
- may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas when needed (e.g. transformation of if-expressions and/or let-expressions into equivalent formulas)

Syntax: Formulas

Unchanged w.r.t to last lecture, but also addition of local binding:

$$
\begin{array}{lll}
p:: & t & \text { (boolean term) } \\
& p \wedge p|p \vee p| \neg p \mid p \Rightarrow p & \text { (connectives) } \\
& \forall v: \tau, p \mid \exists v: \tau, p & \text { (quantification) } \\
& \text { let } v=t \text { in } p & \text { (local binding) }
\end{array}
$$

Typing

- Types:

$$
\tau::=\text { int } \mid \text { real } \mid \text { bool } \mid \text { unit }
$$

- Typing judgment:

$$
\Gamma \vdash t: \tau
$$

where 「 maps identifiers to types:

- either $v: \tau$ (logic variable, immutable)
- either x : ref τ (program variable, mutable)

Important

- a reference is not a value
- there is no "reference on a reference"
- no aliasing

Typing rules

Constants:

$$
\begin{array}{cc}
\overline{\Gamma \vdash n: \text { int }} & \overline{\Gamma \vdash r: \text { real }} \\
\overline{\Gamma \vdash \text { True : bool }} & \overline{\Gamma \vdash \text { False : bool }}
\end{array}
$$

Variables:

$$
\frac{v: \tau \in \Gamma}{\Gamma \vdash v: \tau} \quad \frac{x: \operatorname{ref} \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

Let binding:

$$
\frac{\Gamma \vdash t_{1}: \tau_{1} \quad\left\{v: \tau_{1}\right\} \cdot \Gamma \vdash t_{2}: \tau_{2}}{\Gamma \vdash \text { let } v=t_{1} \text { in } t_{2}: \tau_{2}}
$$

- All terms have a base type (not a reference)
- In practice: Why3, as in OCaml, requires to write !x for references

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local (immutable) variables

- Σ : maps program variables to values (a map)
- П: maps logic variables to values (a stack)

$$
\begin{array}{rlrl}
\llbracket v a \llbracket \rrbracket_{\Sigma, \Pi} & =v a l & & \text { (values) } \\
\llbracket x \rrbracket_{\Sigma, \Pi} & =\Sigma(x) & & \text { if } x: \text { ref } \tau \\
\llbracket v \rrbracket_{\Sigma, \Pi} & =\Pi(v) & \text { if } v: \tau \\
\llbracket t_{1} \text { op } t_{2} \rrbracket_{\Sigma, \Pi} & =\llbracket t_{1} \rrbracket_{\Sigma, \Pi} \llbracket o p \rrbracket \llbracket t_{2} \rrbracket_{\Sigma, \Pi} & & \\
\llbracket \text { let } v=t_{1} \text { in } t_{2} \rrbracket_{\Sigma, \Pi} & =\llbracket t_{2} \rrbracket_{\Sigma,\left(\left\{v=\llbracket t_{1} \rrbracket_{\Sigma, \Pi}\right\} \cdot \Pi\right)} &
\end{array}
$$

Warning

Semantics is now a partial function

Type Soundness Property

Our logic language satisfies the following standard property of purely functional language

Theorem (Type soundness)
Every well-typed terms and well-typed formulas have a semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

- Former statements are now expressions of type unit

Expressions may have Side Effects

- Statement skip is identified with ()
- The sequence is replaced by a local binding
- From now on, the condition of the if then else and the while do in programs is a Boolean expression

Syntax

- sequence $e_{1} ; e_{2}$: syntactic sugar for

$$
\text { let } v=e_{1} \text { in } e_{2}
$$

when e_{1} has type unit and v not used in e_{2}

Toy Examples

$$
\begin{aligned}
& z:=\text { if } x \geq y \text { then } x \text { else } y \\
& \text { let } v=r \text { in }(r:=v+42 ; v) \\
& \text { while }(x:=x-1 ; x>0) \text { do () } \\
& \text { while (let } v=x \text { in } x:=x-1 ; v>0) \text { do () }
\end{aligned}
$$

Typing Rules for Expressions

Assignment:

$$
\frac{x: \operatorname{ref} \tau \in \Gamma \quad \Gamma \vdash e: \tau}{\Gamma \vdash x:=e: \text { unit }}
$$

Let binding:

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad\left\{v: \tau_{1}\right\} \cdot \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash \text { let } v=e_{1} \text { in } e_{2}: \tau_{2}}
$$

Conditional:

$$
\frac{\Gamma \vdash c: \text { bool } \quad \Gamma \vdash e_{1}: \tau \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash \text { if } c \text { then } e_{1} \text { else } e_{2}: \tau}
$$

Loop:

$$
\frac{\Gamma \vdash c: \text { bool } \quad \Gamma \vdash e \text { : unit }}{\Gamma \vdash \text { while } c \text { do } e \text { : unit }}
$$

Operational Semantics

Novelties

- Need for context rules
- Precise the order of evaluation: left to right
- one-step execution has the form

$$
\Sigma, \Pi, e \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e^{\prime}
$$

- values do not reduce

Operational Semantics

- Assignment

$$
\begin{gathered}
\frac{\Sigma, \Pi, e \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e^{\prime}}{\Sigma, \Pi, x:=e \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e^{\prime}} \\
\Sigma, \Pi, x:=v a l \rightsquigarrow \Sigma[x \leftarrow v a l], \Pi,()
\end{gathered}
$$

- Let binding

$$
\frac{\Sigma, \Pi, e_{1} \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e_{1}^{\prime}}{\Sigma, \Pi, \text { let } v=e_{1} \text { in } e_{2} \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, \text { let } v=e_{1}^{\prime} \text { in } e_{2}}
$$

$$
\overline{\Sigma, \Pi, \text { let } v=v a l \text { in } e \rightsquigarrow \Sigma,\{v=v a l\} \cdot \Pi, e}
$$

Operational Semantics, Continued

- Binary operations

$$
\begin{gathered}
\frac{\Sigma, \Pi, e_{1} \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e_{1}^{\prime}}{\Sigma, \Pi, e_{1}+e_{2} \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e_{1}^{\prime}+e_{2}} \\
\frac{\Sigma, \Pi, e_{2} \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e_{2}^{\prime}}{\Sigma, \Pi, v a l_{1}+e_{2} \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, v a l_{1}+e_{2}^{\prime}} \\
\frac{v a l=v a l_{1}+v a l_{2}}{\Sigma, \Pi, v a l_{1}+v a l_{2} \rightsquigarrow \Sigma, \Pi, \text { val }}
\end{gathered}
$$

Operational Semantics, Continued

- Conditional

$$
\frac{\Sigma, \Pi, c \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, c^{\prime}}{\Sigma, \Pi, \text { if } c \text { then } e_{1} \text { else } e_{2} \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, \text { if } c^{\prime} \text { then } e_{1} \text { else } e_{2}}
$$

$$
\overline{\Sigma, ~ П, ~ i f ~ T r u e ~ t h e n ~} e_{1} \text { else } e_{2} \rightsquigarrow \Sigma, \Pi, e_{1}
$$

$$
\overline{\Sigma, \Pi, \text { if False then } e_{1} \text { else } e_{2} \rightsquigarrow \Sigma, \Pi, e_{2}}
$$

- Loop

$$
\begin{aligned}
& \Sigma, \Pi \text {, while } c \text { do } e \rightsquigarrow \\
& \quad \Sigma, \Pi \text { if } c \text { then }(e \text {; while } c \text { do } e) \text { else }()
\end{aligned}
$$

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

- An equivalent operational semantics can be defined using let $v=\ldots$ in \ldots instead, e.g.:

$$
\frac{v_{1}, v_{2} \text { fresh }}{\Sigma, \Pi, e_{1}+e_{2} \rightsquigarrow \Sigma, \Pi, \text { let } v_{1}=e_{1} \text { in let } v_{2}=e_{2} \text { in } v_{1}+v_{2}}
$$

- Thus, only the context rule for let is needed

Type Soundness

Theorem
Every well-typed expression evaluate to a value or execute infinitely

Classical proof:

- type is preserved by reduction
- execution of well-typed expressions that are not values can progress

Outline

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Blocking Semantics: General Ideas

- add assertions in expressions
- failed assertions = "run-time errors"

First step: modify expression syntax with

- new expression: assertion
- adding loop invariant in loops

```
e ::= assert p
```

(assertion)
(annotated loop)

Toy Examples

```
z := if x \geq y then x else y ;
assert z \geqx}^\textrm{z}\geq\textrm{y
```

while (x := x - 1; x > 0)
invariant $x \geq 0$ do ();
assert ($\mathrm{x}=0$)
while (let $v=x$ in x := $x-1 ; ~ v>0)$
invariant $x \geq-1$ do ();
assert ($\mathrm{x}<0$)

Blocking Semantics: Modified Rules

$$
\frac{\llbracket P \rrbracket_{\Sigma, \Pi} \text { holds }}{\Sigma, \Pi, \text { assert } P \rightsquigarrow \Sigma, \Pi,()}
$$

```
\(\llbracket!\rrbracket_{\Sigma, \Pi}\) holds
\(\Sigma\), \(\Pi\), while \(c\) invariant / do \(e \rightsquigarrow\)
\(\Sigma\), \(\Pi\), if \(\subset\) then ( \(e\); while \(C\) invariant \(/\) do \(e\) ) else ()
```


Important

Execution blocks as soon as an invalid annotation is met

Soundness of a program

Definition

Execution of an expression in a given state is safe if it does not block: either terminates on a value or runs infinitely.

Definition

A triple $\{P\} e\{Q\}$ is valid if for any state Σ, Π satisfying P, e executes safely in Σ, Π, and if it terminates, the final state satisfies Q

New addition in the specification language:

- keyword result in post-conditions
- denotes the value of the expression executed

Toy Examples, Continued

```
{ true }
if }x\geqy\mathrm{ then }x\mathrm{ else }
{ result }\geqx\wedge result \geq y 
{x\geq0}
c := 0; sum := 1;
while sum }\leqx\mathrm{ do
    c := c + 1; sum := sum + 2 * c + 1
done;
C
{ result \geq 0 ^
    result * result }\leqx<(\mathrm{ result+1)*(result+1) }
```


Outline

A ML-like Programming Language
 Blocking Operational Semantics

Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Weakest Preconditions Revisited

Goal:

- construct a new calculus WP(e, Q)
- expected property: in any state satisfying $\mathrm{WP}(e, Q)$, e is guaranteed to execute safely
Remark:
- Stating this for $Q=$ true is enough to ensure safety
- But need to state this for any Q to prove soundness (by induction)

New Weakest Precondition Calculus

- Pure terms:

$$
W P(t, Q)=Q[\text { resul } t \leftarrow t]
$$

- Let binding:

$$
\begin{aligned}
& \mathrm{WP}\left(\text { let } x=e_{1} \text { in } e_{2}, Q\right)= \\
& \quad \mathrm{WP}\left(e_{1}, \operatorname{WP}\left(e_{2}, Q\right)[x \leftarrow \text { result }]\right)
\end{aligned}
$$

Weakest Preconditions, continued

- Assignment:

$$
\mathrm{WP}(x:=e, Q)=\mathrm{WP}(e, Q[\text { result } \leftarrow() ; x \leftarrow \text { result }])
$$

- Alternative:

$$
\begin{aligned}
\mathrm{WP}(x:=e, Q) & =\mathrm{WP}(\text { let } v=e \text { in } x:=v, Q) \\
\mathrm{WP}(x:=t, Q) & =Q[\text { result } \leftarrow() ; x \leftarrow t])
\end{aligned}
$$

WP: Exercise

$$
\mathrm{WP}(\text { let } v=x \text { in }(x:=x+1 ; v), x>\text { result })=\text { ? }
$$

Weakest Preconditions, continued

- Conditional

$$
\begin{aligned}
& \mathrm{WP}\left(\text { if } e_{1} \text { then } e_{2} \text { else } e_{3}, Q\right)= \\
& \quad \operatorname{WP}\left(e_{1}, \text { if result then } \operatorname{WP}\left(e_{2}, Q\right) \text { else } \operatorname{WP}\left(e_{3}, Q\right)\right)
\end{aligned}
$$

- Alternative with let: (exercise!)

Weakest Preconditions, continued

- Assertion

$$
\begin{aligned}
\mathrm{WP}(\text { assert } P, Q) & =P \wedge Q \\
& =P \wedge(P \Rightarrow Q)
\end{aligned}
$$

(second version useful in practice)

- While loop

```
WP(while \(c\) invariant \(/\) do \(e, Q)=\)
    I^
    \(\forall \vec{v},(I \Rightarrow \mathrm{WP}(c\), if result then \(\mathrm{WP}(e, I)\) else \(Q))\left[w_{i} \leftarrow v_{i}\right]\)
```

where w_{1}, \ldots, w_{k} is the set of assigned variables in expressions c and e and v_{1}, \ldots, v_{k} are fresh logic variables

General Properties of WP

Lemma (Monotonicity)
If $\models P \Rightarrow Q$ then $\models \mathrm{WP}(e, P) \Rightarrow \mathrm{WP}(e, Q)$
Proof: structural induction on e
Remark: true only when quantified on all states
Lemma (Conjunction Property)
If $\Sigma, \Pi \vDash \mathrm{WP}(e, P)$ and $\Sigma, \Pi \models \mathrm{WP}(e, Q)$ then
$\Sigma, \Pi \vDash \mathrm{WP}(e, P \wedge Q)$
Proof: structural induction on e

Soundness of WP

> Lemma (Preservation by Reduction)
> If $\Sigma, \Pi \models \mathrm{WP}(e, Q)$ and $\Sigma, \Pi, e \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e^{\prime}$ then
> $\Sigma^{\prime}, \Pi^{\prime} \models \mathrm{WP}\left(e^{\prime}, Q\right)$

Proof: predicate induction of \rightsquigarrow.
Lemma (Progress)
If $\Sigma, \Pi \models \mathrm{WP}(e, Q)$ and e is not a value then there exists
$\Sigma^{\prime}, \Pi, e^{\prime}$ such that $\Sigma, \Pi, e \rightsquigarrow \Sigma^{\prime}, \Pi^{\prime}, e^{\prime}$
Proof: structural induction of e.
Corollary (Soundness)
If $\Sigma, \Pi \models \mathrm{WP}(e, Q)$ then e executes safely in Σ, Π.

Outline

A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited

Labels

Termination, Variants

Exercises

Labels: Syntax and Typing

Add in syntax of terms:

$$
t::=x @ L \quad \text { (labeled variable access) }
$$

Add in syntax of expressions:

$$
e::=L: e \quad \text { (labeled expressions) }
$$

Typing:

- only mutable variables can be accessed through a label
- labels must be declared before use

Implicit labels:

- Here, available in every formula
- Old, available in post-conditions

Toy Examples, Continued

\{ true \}

```
let v = r in (r := v + 42; v)
{ r = r@Old + 42 ^ result = r@Old }
```

\{ true \}
let tmp = x in $\mathrm{x}:=\mathrm{y}$; y := tmp
\{ $x=y @ 0 l d$ ^ $y=x @ O l d\}$
SUM revisited:

```
\{ \(y \geq 0\}\)
L:
while \(y>0\) do
    invariant \(\{x+y=x @ L+y @ L\)
    x := x + 1; y := y - 1
\{ \(x=x @ 0 l d+y @ O l d \wedge y=0\}\)
```


Labels: Operational Semantics

Program state

- becomes a collection of maps indexed by labels
- value of variable x at label L is denoted $\Sigma(x, L)$

New semantics of variables in terms:

$$
\begin{aligned}
\llbracket x \rrbracket_{\Sigma, \Pi} & =\Sigma(x, \text { Here }) \\
\llbracket x @ L \rrbracket_{\Sigma, \Pi} & =\Sigma(x, L)
\end{aligned}
$$

The operational semantics of expressions is modified as follows

$$
\begin{aligned}
& \Sigma, \Pi, x:=\text { val } \rightsquigarrow \\
&\Sigma, \Pi, L(x, \text { Here }) \leftarrow \text { val }\}, \Pi,() \\
& \rightsquigarrow \\
& \Sigma\{(x, L) \leftarrow \Sigma(x, \text { Here }) \mid x \text { any variable }\}, \Pi, e
\end{aligned}
$$

Syntactic sugar: term teL

- attach label L to any variable of t that does not have an explicit label yet.
- example: $(x+y @ K+2) @ L+x$ is $x @ L+y @ K+2+x @ H e r e$.

New rules for WP

New rules for computing WP:

$$
\begin{aligned}
\mathrm{WP}(x:=t, Q) & =Q[x @ \text { Here } \leftarrow t] \\
\mathrm{WP}(L: e, Q) & =\mathrm{WP}(e, Q)[x @ L \leftarrow x @ \text { Here } \mid x \text { any variable }]
\end{aligned}
$$

Exercise:

$$
\mathrm{WP}(L: x:=x+42, x @ H e r e>x @ L)=?
$$

Outline

A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited
Labels

Termination, Variants

Exercises

Termination

Goal

Prove that a program terminates (on all inputs satisfying the precondition

With our simple language

- amounts to show that loops are never infinite

Solution: annotate loops with loop variants

- a term that decreases at each iteration
- for some well-founded ordering \prec (i.e. there is no infinite sequence val $_{1} \succ \mathrm{val}_{2} \succ \mathrm{val}_{3} \succ \cdots$
- A typical ordering on integers:

$$
x \prec y \quad=\quad x<y \wedge 0 \leq y
$$

Syntax

New syntax construct:

$$
e::=\text { while } e \text { invariant } / \text { variant } t, \prec \text { do } e
$$

Example:

```
{ y \geq 0 }
L:
while y > 0 do
    invariant { x + y = x@L + y@L }
    variant { y }
    x := x + 1; y := y - 1
{ x = x@Old + y@Old ^ y = 0 }
```


Demo

See Why3 version in sum.mlw

Operational semantics

$$
\begin{gathered}
\llbracket!\rrbracket_{\Sigma, \Pi} \text { holds } \\
\hline \Sigma, \Pi, \text { while } c \text { invariant } / \text { variant } t, \prec \text { do } e \rightsquigarrow \\
\Sigma, \Pi, \text { if } c \\
\text { then }(e \text {; assert } t \prec \llbracket t \rrbracket \Sigma, \Pi ; \\
\text { while } c \text { invariant } / \text { variant } t, \prec \text { do } e) \\
\text { else }()
\end{gathered}
$$

Alternative:

$$
\begin{gathered}
\llbracket!\rrbracket \Sigma, \Pi \text { holds } \\
\hline \Sigma, \Pi, \text { while } c \text { invariant } I \text { variant } t, \prec \text { do } e \rightsquigarrow \\
\Sigma, \Pi, L: \text { if } c \\
\text { then }(e \text {; assert } t \prec t @ L ; \\
\text { while } c \text { invariant } I \text { variant } t, \prec \text { do } e) \\
\text { else }()
\end{gathered}
$$

Weakest Precondition

No distinction liberal/strict:

- presence of loop variants tells if one wants to prove termination or not

```
WP(while \(C\) invariant \(/\) variant \(t, \prec\) do \(e, Q)=\)
    I^
    \(\forall \vec{v},(I \Rightarrow \operatorname{WP}(L: c\), if result then \(\mathrm{WP}(e, I \wedge t \prec t @ L)\) else \(Q))\)
    \(\left[w_{i} \leftarrow v_{i}\right]\)
```


Outline

A ML－like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited
Labels
Termination，Variants

Exercises
$4 \square>4$ 岛 $\downarrow 4$ 三 >4 三

Example ISQRT, revisited

```
let old_x = x in
x := 0; sum := 1;
while sum \leq old_x do
    x := x + 1;
    sum := sum + 2 * x + 1
done;
X
```

- Propose pre- and post-condition
- Propose suitable loop invariant and variant

Exponentiation

```
r := 1.0;
p := x;
while n > 0 do
    if mod n 2 = 1 then r := r *. p;
    p := p *. p;
    n := div n 2
done;
r
```

- Propose pre- and post-condition
- Propose suitable loop invariant and variant
- add lemmas and assertions as hints for the proof

