Expressions with Side-Effects
Blocking Semantics

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

19 décembre 2012

Exercise 3

Let’'s assume given in the underlying logic the functions div2(x)
and mod2(x) which respectively return the division of x by 2 and
its remainder. The following program is supposed to compute,
in variable r, the power x".

r:=1;, p :=Xx; e :=n;

while e > 0 do
if mod2(e) # 0 then r :=r x p;
p =p *p;

div2(e);

» Assuming that the power function exists in the logic,
specify appropriate pre- and post-conditions for this
program.

» Find an appropriate loop invariant, and prove the program.

Exercise 4

The Fibonacci sequence is defined recursively by fib(0) = 0,
fib(1) =1 and fib(n+ 2) = fib(n+ 1) + fib(n). The following
program is supposed to compute fib in linear time, the result
being stored in y.
y :=0; x :=1; 1 :=0;
while i < n do
aux = y; y :=X; X :=X+aux; i:=1+1

» Assuming fib exists in the logic, specify appropriate pre-
and post-conditions.

» Prove the program.

Reminder of the last lecture

» Very simple programming language
» program = sequence of statements
» only global variables
» only the integer data type, always well typed

Formal operational semantics

» small steps
» Nno run-time errors

Hoare logic:

» Deduction rules for triples { Pre}s{ Post}
Weakest Liberal Precondition (WLP):

» if Pre = WLP(s, Post) then { Pre}s{Post} valid
In lecture notes: extensions for termination

» Total correctness of triples
» Weakest (Strict) Precondition

v

v

v

v

This Lecture’s Goals

Extend the language
» more data types
» logic variables: local and immutable
» labels in specifications
Handle termination issues:
» prove properties on non-terminating programs
» prove termination when wanted
Prepare for adding later:
» run-time errors (how to prove their absence)
» local mutable variables, functions
» complex data types

Outline

A ML-like Programming Language

Extended Syntax: Generalities

» We want a few basic data types : int, bool, real, unit
» Former pure expressions are now called terms

» No difference between expressions and statements
anymore

| last lecture | now |
expression | term
formula formula
statement | expression

Basically we consider
» A purely functional language (ML-like)
» with global mutable variables
very restricted notion of modification of program states

Base Data Types, Operators, Terms

» unit type: type unit, only one constant ()

» Booleans: type bool, constants True, False, operators and,
or, not

» integers: type int, operators +, —, x (no division)

» reals: type real, operators +, —, « (no division)

» Comparisons of integers or reals, returning a boolean
» “if-expression”: written if b then t; else Io

= val (values, i.e. constants)
| v (logic variables)

| X (program variables)

| topt (binary operations)

| if tthentelset (if-expression)

Local logic variables

We extend the syntax of terms by

ti:=letv=tint

Example: approximated cosine

let cos x =

let y = x*x in

1.0 - 0.5 x y + 0.04166666 * y *x y
in

Practical Notes

» Theorem provers (Alt-Ergo, CVC3, Z3) typically support
these types

» may also support if-expressions and let bindings
Alternatively, Why3 manages to transform terms and formulas

when needed (e.g. transformation of if-expressions and/or
let-expressions into equivalent formulas)

Syntax: Formulas

Unchanged w.r.t to last lecture, but also addition of local
binding:

p =t (boolean term)
| pAp|lpVvp|-p|p=p (connectives)
| VYv:irm, pl3v:T, p (quantification)
| letv=tinp (local binding)

Typing

» Types:

T = int| real|bool | unit

» Typing judgment:
Mr=t:r

where I maps identifiers to types:

» either v : 7 (logic variable, immutable)
» either x : ref 7 (program variable, mutable)

Important
» areference is not a value
» there is no “reference on a reference”
» no aliasing

Typing rules

Constants:
[+ n:int [+ r: real
[+ True : bool I+ False : bool
Variables:
v:tel X:refrel
MN-v:r MNe=x:7
Let binding:

M=t 7y {vim} - TkEb:m
lFletv==Hintb : 7

» All terms have a base type (not a reference)

» In practice: Why3, as in OCaml, requires to write !x for
references

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local
(immutable) variables

» Y: maps program variables to values (a map)
» [1: maps logic variables to values (a stack)

[vallsn = val (values)
Xlsn = X(x) if x:refr
vlsn = n(v) ifv:r
[t op]sn = [tlsn [op] [E]xn
Metv=tiinelrn = [elr(v-isznm

Warning
Semantics is now a partial function

Type Soundness Property

Our logic language satisfies the following standard property of
purely functional language
Theorem (Type soundness)

Every well-typed terms and well-typed formulas have a
semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

v

Former statements are now expressions of type unit
Expressions may have Side Effects

Statement skip is identified with ()

The sequence is replaced by a local binding

From now on, the condition of the if then else and the
while do in programs is a Boolean expression

v

v

v

Syntax

t (pure term)
eope (binary operation)
X:=e€ (assignment)
letv=-eine (local binding)

if e then e else € (conditional)
while edo € (loop)

» sequence eq; &> : syntactic sugar for

let v=e€1 in &

when e; has type unit and v not used in e,

Toy Examples

z := 1f x > y then x else y
let v=rin (r :=v + 42; v)
while (x :=x - 1; x > 0) do ()

while (let v = x in x := x - 1; v > 0) do ()

Typing Rules for Expressions

Assignment:

X:refrel [Fe:T

[+ X:=e:unit
Let binding:
M-ey:m {ving} Tke:m

lFletv=eiine:m

Conditional:
[c: bool e :7 Nl-e: 7

[-if cthenejelseep: T

Loop:

[+ ¢ : bool [+ e:unit
[+ while ¢ do e: unit

Operational Semantics

Novelties
» Need for context rules
» Precise the order of evaluation: left to right

» one-step execution has the form

Y. Me~x M e

» values do not reduce

Operational Semantics

» Assignment
Y. MNe~Y Me
Y. Mx:=e~2 1 ¢€

¥, M, x = val ~ X[x « val],n,()

» Let binding

Z, ﬂ, eq ~ Z/, FI’, eq

Y, Mletv=einex~ X I letv=E¢€ in e

Y.Mletv=valine~ X {v=val} -Me

Operational Semantics, Continued

» Binary operations

>0, eq ~ Z’,ﬂ’,eq
2. M, e+ e~ Z’,I'I’,eq + €2

Y, M, e~ ¥, 1, €
Y, M, val + e ~ ¥/, IV, val; + &,

val = valy + vab
>, N, valy + valk ~ ¥, val

Operational Semantics, Continued

» Conditional
Y. Mec~ Y M

>, [, if ¢ then ey else € ~~» X/ [if ¢’ then €4 else &>

>, M, if True then €1 else € ~~ X, T1, €4

>, M,if False then g1 else € ~~ 2, T1, €

» Loop

>, I, while c do € ~~
Y, M,if ¢ then (e;while C do €) else ()

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

» An equivalent operational semantics can be defined using
let v=...in ...instead, e.g.:

vy, Vo fresh

.M. e1+6e~ 2 Il let vy =€ inlet Vo = € in V4 + Vo

» Thus, only the context rule for let is needed

Type Soundness

Theorem

Every well-typed expression evaluate to a value or execute
infinitely

Classical proof:
» type is preserved by reduction

» execution of well-typed expressions that are not values can
progress

Outline

Blocking Operational Semantics

Blocking Semantics: General Ideas

» add assertions in expressions
» failed assertions = “run-time errors”

First step: modify expression syntax with
» new expression: assertion
» adding loop invariant in loops

e = assertp (assertion)
| while e invariant /do e (annotated loop)

Toy Examples

z := if x > y then x else y ;
assert z > x ANz >y

while (x := x - 1; x > 0)
invariant x > 0 do ();
assert (x = 0)

while (let v = x in x := x - 1; v > 0)
invariant x > -1 do ();
assert (x < 0)

Blocking Semantics: Modified Rules

[[P]]zﬂ holds
Y. M yassert P~ X, T1,()

H/]]);n holds

Y, M,while ¢ invariant / do € ~~
Y, M,if ¢ then (e;while C invariant / do €) else ()

Important
Execution blocks as soon as an invalid annotation is met

Soundness of a program

Definition
Execution of an expression in a given state is safe if it does not
block: either terminates on a value or runs infinitely.

Definition

A triple {P}e{Q} is valid if for any state X, I satisfying P, e
executes safely in X, I1, and if it terminates, the final state
satisfies Q

New addition in the specification language:
» keyword result in post-conditions
» denotes the value of the expression executed

Toy Examples, Continued

{ true }
if x > y then x else y
{ result > x A result > vy }

{x >0}
c :=0; sum := 1;
while sum < x do
C:=cCc+ 1; sum :=sum+ 2 x Cc + 1
done;
C

{ result > 0 A
result * result < x < (result+l)*(result+l) }

Outline

Weakest Preconditions Revisited

Weakest Preconditions Revisited

Goal:
» construct a new calculus WP(e, Q)

» expected property: in any state satisfying WP(e, Q), eis
guaranteed to execute safely

Remark:
» Stating this for Q = frue is enough to ensure safety

» But need to state this for any Q to prove soundness (by
induction)

New Weakest Precondition Calculus

» Pure terms:
WP(t, Q) = QJresult < t]
» Let binding:

WP(let X = €1 in €2, Q) =
WP(e1, WP(ez, Q)[x < result])

Weakest Preconditions, continued

» Assignment:

WP(x := e, Q) = WP(e, Q[result + (); x < result])

» Alternative:

WP(x := e, Q) WP(let v=einx :=v,Q)
WP(x :=t,Q) = QJresult < (); x < t])

WP: Exercise

WP(let v = x in (x := x + 1, v), x > result) =?

Weakest Preconditions, continued

» Conditional

WP(if e then e else €3, Q) =
WP(ey, if result then WP(ez, Q) else WP(e3, Q))

» Alternative with let: (exercise!)

Weakest Preconditions, continued

» Assertion

WP(assert P,Q) = PAQ
= PA(P=Q)

(second version useful in practice)
» While loop

WP(while ¢ invariant / do e, Q) =
IN
vV, (I = WP(c, if result then WP(e,]) else Q))[w; + V]

where wy, ..., wy is the set of assigned variables in
expressions c and e and vy, ..., v, are fresh logic variables

General Properties of WP

Lemma (Monotonicity)
If = P= Q then = WP(e, P) = WP(e, Q)

Proof: structural induction on e
Remark: true only when quantified on all states

Lemma (Conjunction Property)

If¥,N = WP(e, P) and ¥, = WP(e, Q) then
Y,N = WP(e,PAQ)

Proof: structural induction on e

Soundness of WP

Lemma (Preservation by Reduction)

IfY, NN =WP(e,Q)andx,M, e~ ¥ 1 € then
Y. I = WP(€,Q)

Proof: predicate induction of ~-.

Lemma (Progress)

IfX, 1 = WP(e, Q) and e is not a value then there exists
Y/ .M,e suchthatx,M, e~ ¥ 1, €&

Proof: structural induction of e.

Corollary (Soundness)
If>. 1 = WP(e, Q) then e executes safely in >, I.

Outline

Labels

Labels: Syntax and Typing

Add in syntax of terms:

t = x0OL (labeled variable access)

Add in syntax of expressions:

e == L:e (labeled expressions)

Typing:
» only mutable variables can be accessed through a label
» labels must be declared before use
Implicit labels:
» Here, available in every formula
» Old, available in post-conditions

Toy Examples, Continued

{ true }
let v =rin (r := v + 42; v)
{ r =reld + 42 A result = r@0ld }

{ true }
let tmp = x in x = y; y := tmp
{ x = ya0ld A y = x@0ld }

SUM revisited:

{y>o0}

L:

while y > 0 do
invariant { x + y = x@L + y@L }
X =x+1;, y =y -1

{ x = x@01ld + y@0ld ANy =0 }

Labels: Operational Semantics
Program state
» becomes a collection of maps indexed by labels
» value of variable x at label L is denoted >(x, L)
New semantics of variables in terms:

[xXlsn = X(x,Here)
[[X@Lﬂ):_n = Z(X,L)

The operational semantics of expressions is modified as follows

Y, M x:=val ~ X{(x,Here)« val},MN,()
YNL:e ~ X{(x,L)<« X(x,Here)| x any variable},l, e

Syntactic sugar: term QL

» attach label L to any variable of ¢ that does not have an
explicit label yet.

» example:(x + y@K 4 2)Q@L + x is x@L + y@K + 2 + xQHere.

New rules for WP

New rules for computing WP:

WP(x =1, Q) = Q[xOHere « {]
WP(L: e, Q) = WP(e, Q)[xQ@L + x@Here | x any variable]
Exercise:

WP(L : x :== x + 42, xOHere > xQL) =7

Outline

Termination, Variants

Termination

Goal

Prove that a program terminates (on all inputs satisfying the
precondition

With our simple language
» amounts to show that loops are never infinite

Solution: annotate loops with loop variants
» aterm that decreases at each iteration

» for some well-founded ordering < (i.e. there is no infinite
sequence valy = vab » valy = - -

» A typical ordering on integers:

X<y = Xx<yAn0<y

Syntax

New syntax construct:

e = while e invariant /variant f,< do e

Example:

{y=>01}

L:

while y > 0 do
invariant { x + y = x@L + y@L }
variant { y }
X =x+1;, y =y -1

{ x = x@0ld + y@0ld ANy =0 }

Demo
See Why3 version in sum.mlw

Operational semantics

[[/]]z,n holds

3, M,while ¢ invariant / variant f, < do € ~~
>, M, if ¢
then (e;assert t < [f]xn;
while € invariant [variant t,< do e)

else ()
Alternative:
[[/]]z}n holds
3, M, while ¢ invariant /[variant f{, < do € ~~
>N L:ifc

then (e;assert f < tOL;
while ¢ invariant /variant {, < do €)
else ()

Weakest Precondition

No distinction liberal/strict:

» presence of loop variants tells if one wants to prove
termination or not

WP(while € invariant /variant t,< do e, Q) =
IN
vV, (I = WP(L: c, if result then WP(e, | At < tOL) else Q))
[w; < vj]

Outline

Exercises

Example ISQRT, revisited

let old_x = x in
X :=0; sum := 1;
while sum < old_x do
X =X + 1;
sum := sum + 2 * X + 1
done;
X

» Propose pre- and post-condition
» Propose suitable loop invariant and variant

Exponentiation

r :=1.0;
p = X;
while n > 0 do
if mod n 2 = 1 then r := r x. p;

p i=p*. p;
n :=div n 2
done;

r

» Propose pre- and post-condition
» Propose suitable loop invariant and variant
» add lemmas and assertions as hints for the proof

	A ML-like Programming Language
	Blocking Operational Semantics
	Weakest Preconditions Revisited
	Labels
	Termination, Variants
	Exercises

