Exceptions, Functions

Guillaume Melquiond

Cours MPRI 2-36-1 “Preuve de Programme”

9 janvier 2012

Reminder of the Last 2 Lectures

» Simple IMP programs:

Reminder of the Last 2 Lectures

» Simple IMP programs:
» basic datatypes (e.g., bool, int),

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,

Reminder of the Last 2 Lectures

» Simple IMP programs:
» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

» Hoare logic:

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

» Hoare logic:
» deduction rules for triples { Pre}e{Post},

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

» Hoare logic:

» deduction rules for triples { Pre}e{ Post},
» notions of validity and safety (progress).

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

» Hoare logic:

» deduction rules for triples { Pre}e{ Post},
» notions of validity and safety (progress).

» Weakest precondition computation:

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

» Hoare logic:

» deduction rules for triples { Pre}e{ Post},
» notions of validity and safety (progress).

» Weakest precondition computation:
» {Pre}e{Post} valid if Pre = WP(e, Post),

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

» Hoare logic:

» deduction rules for triples { Pre}e{ Post},
» notions of validity and safety (progress).

» Weakest precondition computation:

» {Pre}e{Post} valid if Pre = WP(e, Post),
» notion of preservation by reduction.

Reminder of the Last 2 Lectures

» Simple IMP programs:

» basic datatypes (e.g., bool, int),
» global variables and let-in bindings,
» program = single expression with side effects.

» Hoare logic:

» deduction rules for triples { Pre}e{ Post},
» notions of validity and safety (progress).

» Weakest precondition computation:

» {Pre}e{Post} valid if Pre = WP(e, Post),
» notion of preservation by reduction.

» Extension: labels.

Next Extensions

» Mutable local variables.
» Exceptions.
» Functions (call by value).

Outline

Local Variables

Mutable Local Variables

We extend the syntax of expressions with
e:=letrefid=eine

Example: isqgrt revisited

val x, res : ref int
isqgrt:
res := 0;

let ref sum = 1 in
while sum < x do
res := res + 1; sum := sum + 2 x res + 1

done

Operational Semantics

Y,.Ne~y e
I no longer contains just immutable variables.

¥.M, e ~ ¥, I, ¢

Y, M let ref X =€y in e ~ let ref X =€} in &

Y. M let ref x=vin e~ XL {(x,Here) — v}, e

Operational Semantics

Y,.Ne~y e
I no longer contains just immutable variables.

Y, M e ~ X M é

Y, M let ref X =€y in e ~ let ref X =€} in &

Y, MN,let ref x=v in e~ X {(x,Here) — v}, e

X local variable
Y. M, x:=v~ X {(x,Here) — v} e

And labels too.

Mutable Local Variables: WP rules

Exercise: propose rules for WP(let ref x = ey in e, Q),
WP(x :=e,Q), and WP(L : e, Q).

Mutable Local Variables: WP rules

WP(let ref X = €1 in ey, Q) = WP(e1, WP(ez, Q)[x « result])

WP(x := e, Q) = WP(e, Q[x «+ result])

WP(L: e, Q) = WP(e, Q)[x@L «+ x, for all x@L]

Outline

Exceptions

Exceptions

We extend the syntax of expressions with

€ 1= raiseexn
| tryewithexn=e

with exn a set of exception identifiers.

Operational Semantics

Propagation of thrown exceptions:

Y. M,(let X =raiseexnine)~ X, [raise exn

Operational Semantics
Propagation of thrown exceptions:

Y. M,(let X =raiseexnine)~ X, [raise exn

Reduction of try-with:
Y, MNe~Y N ¢

Y. N, (try ewithexn=€’) ~ X[V, (try € with exn = ¢€")

Operational Semantics
Propagation of thrown exceptions:

Y. M,(let X =raiseexnine)~ X, [raise exn

Reduction of try-with:
Y, MNe~Y N ¢

Y. N, (try ewithexn=€’) ~ X[V, (try € with exn = ¢€")

Normal execution:

Y, M(try vwith exn=€)~ L, M, v

Operational Semantics
Propagation of thrown exceptions:

Y. M,(let X =raiseexnine)~ X, [raise exn

Reduction of try-with:
Y, MNe~Y N ¢

Y. N, (try ewithexn=€’) ~ X[V, (try € with exn = ¢€")
Normal execution:

Y, M (try vwithexn=€)~ X M v
Exception handling:

Y. M, (try raise exnwith exn=¢e) ~ L I, e

exn # exn’
Y, N (try raise exnwith exn’ = e) ~ X, [, raise exn

Hoare Triples

Hoare triple modified to allow exceptional post-conditions:

{P}e{Q | exn; = R;}

Hoare Triples

Hoare triple modified to allow exceptional post-conditions:
{P}e{Q | exn; = R;}

Validity: if e is executed in a state where P holds,
it does not block and

» if it terminates normally with value v in state ¥,
then QJresult < v] holds in X;

Hoare Triples

Hoare triple modified to allow exceptional post-conditions:
{P}e{Q | exn; = R;}

Validity: if e is executed in a state where P holds,
it does not block and
» if it terminates normally with value v in state ¥,
then QJresult < v] holds in X;

» if it terminates with exception exn in state ¥,
then there exists i such that exn = exn; and R; holds in X.

Hoare Triples

Hoare triple modified to allow exceptional post-conditions:
{P}e{Q | exn; = R;}
Validity: if e is executed in a state where P holds,

it does not block and

» if it terminates normally with value v in state ¥,
then QJresult < v] holds in X;

» if it terminates with exception exn in state ¥,
then there exists i such that exn = exn; and R; holds in X.

Note: if e terminates with an exception not in the set {exn;},
the triple is not valid.

WP Rules

Function WP modified to allow exceptional post-conditions too:
WP(e, Q, exn; = R;)

Implictly, Rx = False for any exny ¢ {exn;}.

WP Rules

Function WP modified to allow exceptional post-conditions too:
WP(e, Q, exn; = R))

Implictly, Rx = False for any exny ¢ {exn;}.

Extension of WP for simple expressions:

WP(x :=t, Q, exn; = R;) = Q[result < (), x « {]

WP(assert R,Q,exn; = R)=RANQ

WP Rules

Extension of WP for composite expressions:

WP(let x = €1 in €, Q,exn; = R;) =
WP(e1, WP(ez, Q, exn; = Rj)[result < x|, exn; = R;)

WP(if t then ey else €,Q,exn; = R;) =
if t then WP(ey, Q, exn; = R;)
else WP(ez, Q, exn; = R))
WP (Whlle. ¢invariant | ,Q,exni= R | = IAVXq, ..., Xk,
variant V,< do e
(INif cthen WP(L: e, IAVv < VvOL, exn; = R;)
else Q)[w; + X
where wy, ..., Wk is the set of assigned variables in
expressions and xi, ..., Xk are fresh logic variables.

WP Rules

Exercise: propose rules for WP(raise exn, Q, exn; = R;) and
WP(try e; with exn = eo, Q, exn; = R;).

WP Rules

WP(raise exng, Q, exn; = R;) = R
WP((try e; with exn = ep), Q,exn; = R;) =

exn = WP(eo, Q, exn; = R;)
WP (61’ Q { exn;\exn = R

Outline

Functions

Functions
Program structure:
prog =
decl ::=
vardecl

decl*
vardecl | fundecl
val id : ref basetype

Functions
Program structure:

prog = decl*
decl ::= vardecl | fundecl
vardecl = valid : ref basetype
fundecl ::= function id((param,)*):basetype
contract body e
param = id : basetype

contract := requires t writes (id,)* ensures t

Functions
Program structure:

prog = decl*
decl ::= vardecl | fundecl
vardecl = valid : ref basetype
fundecl ::= function id((param,)*):basetype
contract body e
param = id : basetype
contract := requires t writes (id,)* ensures t

Function definition:
» Contract:
» pre-condition,
» post-condition (label O/d available),
» assigned variables: clause writes .

» Body: expression.

Example: isqrt

function isqgrt (x:int): int
requires x > 0
ensures result > 0 A
sqgr (result) < x < sqgr (result + 1)

body
let ref res = 0 in
let ref sum = 1 in
while sum < x do
res := res + 1;
sum := sum + 2 x res + 1
done;

res

Example using Old label

val res: ref int

procedure incr (x:int)
requires true
writes res
ensures res = res@0ld + x
body
res := res + X

Typing

Definition d of function f:

function f(xy = 74, ..., Xy 7)) i T
requires Pre
writes w
ensures Post
body Body

Typing

Definition d of function f:

function f(xy = 74, ..., Xy 7)) i T
requires Pre
writes w
ensures Post
body Body

Well-formed definitions:

F’:{x,-:T,-Hgign}-F wcCr

I+ Pre, Post : formula I+ Body : T

Wy C w for each call g y € w for each assign y
MN-d: wf

where I contains the global declarations.

Typing

Definition d of function f:

function f(xy = 74, ..., Xy 7)) i T
requires Pre
writes w
ensures Post
body Body

Well-typed function calls:

I
r'ff(t17...7tn):7_

Note: t; are immutable expressions.

Operational Semantics

function f(xq :7,.... X 70) T
requires Pre
writes w
ensures Post
body Body

n = {X,' — HtiHZ,ﬂ} Z, rn’ ‘: Pre
Y N f(ty,..., th) ~ X, 1, (0ld: frame I, Body, Post)

)

Operational Semantics of Function Call

frame is a dummy operation that keeps track
of the local variables of the callee:

Y.N,e~ M0, ¢e

Y. N (frame I, e,P) ~ X/ 1" (frame IV, €, P)
It also checks that the post-condition holds at the end:

Y, N’ = Plresult + v]
Y. M, (frame M, v, P) ~ L I, v

WP Rule of Function Call

function f(xq : 74,...,Xn:7T0) : T
requires Pre
writes w
ensures Post
body Body

WP(f(ty,...,tn), Q) = Pre[xj < t] A
YV, (Post{x; < ti, w; < v;, w;Q0ld + wj] = Q[w; + V]])

Example: isqrt(42)

Exercise: prove that {frue}isqrt(42){result = 6} holds.

function isqgrt (x:int): int

requires x > 0

ensures result > 0 A

sgr (result) < x < sqgr(result + 1)

body

let ref res = 0 in

let ref sum = 1 in

while sum < x do

res := res + 1;
sum := sum + 2 * res + 1
done;

res

Example: Incrementation

Exercise: Prove that {res = 6}incr(36){res = 42} holds.

val res: ref int

procedure incr (x:int)
requires true
writes res
ensures res = res@0ld + x

Soundness of WP

Assuming that for each function defined as

function f(xq :7,.... X 7p) 0 T
requires Pre
writes w
ensures Post
body Body

we have
» variables assigned in Body belong to w,
» = Pre = WP(Body, Post)[w;Q0Old < w;] holds,

then for any formulas P and Q and any expression e,
{P}e{Q} is avalid triple if = P = WP(e, Q).

Soundness Proof

To prove soundness of WP rules:
1. fX,MEWP(e,Q)and X, M, e~ X' 1 ¢,
then ', " = WP(¢, Q).
By structural induction on e.

Soundness Proof

To prove soundness of WP rules:
1. fX,MEWP(e,Q)and X, M, e~ X' 1 ¢,
then ', " = WP(¢, Q).
By structural induction on e.

2. If X, 1N = WP(e, Q) and e is not a value,
then there exists Y/, ', € such that X, M, e ~ ¥/, 1, €.
By predicate induction on ~.

Soundness Proof

To prove soundness of WP rules:
1. fX,MEWP(e,Q)and X, M, e~ X' 1 ¢,
then ', " = WP(¢, Q).
By structural induction on e.

2. If X, 1N = WP(e, Q) and e is not a value,
then there exists Y/, ', € such that X, M, e ~ ¥/, 1, €.
By predicate induction on ~.

Monotony lemma:
Given an expression e and its assigned variables w,
if £, M =V, (P= Q)[w + v,
then X, = WP(e, P) = WP(e, Q).

Functions Raising Exceptions

A generalized contract has the form

function f(xq - 74,...,Xn:7T0) T
requires Pre
raises Eq - - - Ex
writes w
ensures Post | Ey — Posty | --- | Ex — Posty

In the WP, the implication Post|...] = Q must be replaced by a
conjunction of implications:

(Post]...] = Q) A \(Postj...] = R;)

Example: Exact Square Root

exception NotSquare

function isqrt (x:int): int

requires true

raises NotSquare

ensures result > 0 A sgr(result) = x

| NotSquare — forall n:int. sqgr(n)

body

if x < 0 then raise NotSquare;

let ref res = 0 in

let ref sum = 1 in

while sum < x do

res := res + 1;

sum + 2 x res + 1

sum

done;
if res x res # x then raise NotSquare;

res

#* x

Recursive Functions: Termination

If a function is recursive, termination of call can be proved,
provided that the function is annotated with a variant.

function f(xq : 79,.... Xp 7)1 T
requires Pre
variant var for <
writes w
ensures Post
body Body

WP for function call:

WP(f(ty,...,t), Q) = Pre[x; < t;] A var[x; < t;] < var@lInit A
VY, (Postx; < ti][w; < y;][w;Q0Id +— wj] = Q[w; + yj])

with /nit a label assumed to be present at the start of Body.

Example: Division

Exercise: find adequate specifications.

function div(x:int,y:int): int
requires 7
variant °?
writes 7
ensures °?

Example: McCarthy’s 91 Function

f91(n) = if n < 100 then f91(f91(n+ 11)) else n— 10

Exercise: find adequate specifications.

function £91 (n:int): int
requires °?
variant °?
writes ?
ensures °?
body
if n < 100 then £f91(f91(n + 11)) else n — 10

	Local Variables
	Exceptions
	Functions

