Modeling, Specification Languages, Array Programs

Guillaume Melquiond

MPRI 2-36-1 "Preuve de Programme"

January 16th, 2012

Reminder of Previous Lectures

- ML-like programs:

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- expressions with side effects,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- expressions with side effects,
- exceptions,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- expressions with side effects,
- exceptions,
- recursive functions.

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- expressions with side effects,
- exceptions,
- recursive functions.
- Program verification:

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- expressions with side effects,
- exceptions,
- recursive functions.
- Program verification:
- Hoare logic: safety, validity, termination,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- expressions with side effects,
- exceptions,
- recursive functions.
- Program verification:
- Hoare logic: safety, validity, termination,
- weakest precondition computations,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- expressions with side effects,
- exceptions,
- recursive functions.
- Program verification:
- Hoare logic: safety, validity, termination,
- weakest precondition computations,
- modular verification: function contract.

Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product Types

Sum Types

Inductive Predicates

About Specification Languages

Specification languages:

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL

About Specification Languages

Specification languages:

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL
- ...

Case of Why3, ACSL, Dafny: trade-off between

- expressiveness of specifications,
- support by automated provers.

Why3 Logic Language

- First-order logic, with type polymorphism à la ML
- Built-in arithmetic (integers and reals)
- Definitions à la ML
- Functions, predicates
- Structured types, pattern-matching
- Axiomatizations
- Inductive predicates

Logic Symbols

Functions defined as
function $f\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right): \tau=e$
Predicate defined as
predicate $p\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right)=e$
where τ_{i}, τ are not reference types.

- No recursion allowed
- No side effects
- Define total functions and predicates

Logic Symbols: Examples

function sqr(x:int) $=x$ * x
predicate prime(x:int) =
$x \geq 2 \wedge$
forall $y z: i n t . y \geq 0 \wedge z \geq 0 \wedge x=y * z \rightarrow$

$$
y=1 \vee z=1
$$

Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product Types

Sum Types

Inductive Predicates

Axiomatic Definitions

Function and predicate declarations of the form
function $f\left(\tau, \ldots, \tau_{n}\right): \tau$
predicate $p\left(\tau, \ldots, \tau_{n}\right)$
together with axioms
axiom id : formula
specify that f (resp. p) is any symbol satisfying the axioms.

Axiomatic Definitions

Example: division

```
function div(real,real):real
axiom mul_div: forall x,y. y}\not=0
    div}(x,y)*y=
```


Axiomatic Definitions

Example: division

```
function div(real,real):real
axiom mul_div: forall x,y. y 
    div(x,y)*y = x
```

Example: factorial

```
function fact(int):int
axiom fact0: fact(0) = 1
axiom factn: forall n:int. n \geq 1 
    fact(n) = n * fact(n-1)
```


Axiomatic Definitions

- Functions/predicates are typically underspecified. \Rightarrow model partial functions in a logic of total functions.

Axiomatic Definitions

- Functions/predicates are typically underspecified. \Rightarrow model partial functions in a logic of total functions.
- About soundness: axioms may introduce inconsistencies.

Axiomatic Definitions: Example of Factorial

Exercise: Find appropriate precondition, postcondition, loop invariant, and variant, for this program:

```
function fact_imp (x:int): int
    requires ?
    ensures ?
body
    let ref }Y=0\mathrm{ in
    let ref res = 1 in
    while y < X do
        Y := Y + 1;
        res := res * y
    done;
    res
```


Axiomatic Type Definitions

Type declarations of the form

$$
\text { type } \tau
$$

Example: colors

```
type color
function blue: color
function red: color
axiom distinct: red f= blue
```


Axiomatic Type Definitions

Type declarations of the form

$$
\text { type } \tau
$$

Example: colors

```
type color
function blue: color
function red: color
axiom distinct: red }\not=\mathrm{ blue
```

Polymorphic types:

$$
\text { type } \tau \alpha_{1} \cdots \alpha_{k}
$$

where $\alpha_{1} \cdots \alpha_{k}$ are type parameters.

Example: Sets

```
type set }
function empty: set \alpha
function single (\alpha): set }
function union(set }\alpha,\mathrm{ set }\alpha\mathrm{ ): set }
axiom union_assoc: forall x y z:set }\alpha\mathrm{ .
    union(union(x,y),z) = union(x,union(y,z))
axiom union_comm: forall x y:set }\alpha\mathrm{ .
    union(x,y) = union(y,x)
predicate mem( }\alpha,\mathrm{ set }\alpha
axiom mem_empty: forall x:\alpha. \neg mem(x,empty)
axiom mem_single: forall x y: }\alpha\mathrm{ .
    mem(x,single(y)) \leftrightarrow x=y
axiom mem_union: forall x:\alpha, y z:set }\alpha\mathrm{ .
    mem(x,union(y,z)) \leftrightarrow mem(x,y) V mem(x,z)
```


Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product Types

Sum Types

Inductive Predicates

Arrays as References on Pure Maps

Axiomatization of maps from int to some type α :

```
type map \alpha
function select(map \alpha,int): \alpha
function store (map \alpha,int,\alpha): map \alpha
axiom select_store_eq:
    forall a:map \alpha, i:int, v:\alpha.
    select(store(a,i,v),i) = v
axiom select_store_neq:
    forall a:map }\alpha, i j:int, v:\alpha
    i}\not=j->\operatorname{select}(\operatorname{store}(a,i,v),j)=\operatorname{select}(a,j
```

- Unbounded indexes.
- select (a, i) models the usual notation a [i].
- store denotes the functional update of a map.

Arrays as Reference on Maps

- Array variable: variable of type ref (map α).
- In a program, the standard assignment operation

$$
a[i]:=e
$$

is interpreted as
a := store(a,i,e)

Simple Example

```
val a: ref (map int)
procedure test()
    writes a
    ensures select(a,0) = 13
body
    a := store (a,0,13); }\quad(*\mathrm{ a [0] :=13 *)
```

Exercise: prove this program.

Example: Swap

Permute the contents of cells i and j in an array a:

```
val a: ref (map int)
procedure swap(i:int,j:int)
    writes a
    ensures select(a,i) = select(a@old,j) ^
    select(a,j) = select(a@Old,i) ^
    forall k:int. k f i ^ k f j >
    select (a,k) = select(a@Old,k)
body
```

```
let tmp = select(a,i) in
```

let tmp = select(a,i) in
(* tmp :=a[i]*)
(* tmp :=a[i]*)
a := store(a,i,select (a,j)); (* a[i]:=a[j]*)
a := store(a,i,select (a,j)); (* a[i]:=a[j]*)
a := store(a,j,tmp)
a := store(a,j,tmp)
(* a[j]:=tmp *)

```
    (* a[j]:=tmp *)
```


Exercises on Arrays

- Prove Swap using WP.
- Prove the procedure

```
procedure test()
    requires
    select (a,0)=13^\operatorname{select (a,1) = 42 ^}\\mp@code{N}=1,
    select (a,2)=64
    ensures
```



```
    select (a,2) = 13
body swap (0, 2)
```

- Specify, implement, and prove a procedure that increments by 1 all cells, between given indexes i and j, of an array of reals.

Exercise: Search Algorithms

```
val a: ref (map real)
function search (n:int, v:real): int
    requires 0 \leq n
    ensures ?
body ?
```

1. Formalize postcondition: if v occurs in a, between 0 and $n-1$, then result is an index where v occurs, otherwise result is set to -1
2. Implement and prove linear search:
for each i from 0 to $n-1$: if $a[i]=v$ then return i

Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product Types

Sum Types

Inductive Predicates

Product Types

- Tuples types are built-in: type pair $=$ (int, int)
- Record types can be defined: type point $=\{x:$ real; $y: r e a l\}$
- Fields are immutable.
- We allow let with pattern, e.g.
let $(a, b)=$ some pair in ...
let $\{x=a ; y=b\}=$ some point in
- Dot notation for records fields, e.g. point.x + point.y

Product Types: Example

A possible approach to formalizing bounded arrays is
type array $\alpha=$ \{ length:int; contents:map α \}
Drawback of this approach: needs to specify that length does not change all along computations

Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product Types

Sum Types

Inductive Predicates

Sum Types

- Sum types à la ML:
type t =
$C_{1} \tau_{1,1} \cdots \tau_{1, n_{1}}$

$$
C_{k} \tau_{k, 1} \cdots \tau_{k, n_{k}}
$$

Sum Types

- Sum types à la ML:
type t =
$C_{1} \tau_{1,1} \cdots \tau_{1, n_{1}}$
$C_{k} \tau_{k, 1} \cdots \tau_{k, n_{k}}$
- Pattern-matching with match e with
$C_{1}\left(p_{1}, \cdots, p_{n_{1}}\right) \rightarrow e_{1}$

$$
\begin{aligned}
& C_{k}\left(p_{1}, \cdots, p_{n_{k}}\right) \rightarrow e_{k} \\
& \text { end }
\end{aligned}
$$

Sum Types

- Sum types à la ML:
type t =
$C_{1} \tau_{1,1} \cdots \tau_{1, n_{1}}$
$C_{k} \tau_{k, 1} \cdots \tau_{k, n_{k}}$
- Pattern-matching with match e with
$C_{1}\left(p_{1}, \cdots, p_{n_{1}}\right) \rightarrow e_{1}$
$\mid C_{k}\left(p_{1}, \cdots, p_{n_{k}}\right) \rightarrow e_{k}$ end
- Extended pattern-matching.

Recursive Sum Types

- Sum types can be recursive.
- Recursive definitions of functions or predicates allowed if recursive calls are on structurally smaller arguments.

Sum Types: Example of Lists

```
type list \alpha = Nil | Cons \alpha (list \alpha)
function append(l1:list \alpha,l2:list \alpha): list }\alpha
    match l1 with
    | Nil }-> l
    | Cons(x,l) -> Cons(x, append(l,l2))
    end
function length(l:list \alpha): int =
    match l with
    | Nil }->
    | Cons(x,r) -> 1 + length r
    end
function rev(l:list \alpha): list \alpha =
    match l with
    | Nil }->\mathrm{ Nil
    Cons(x,r) -> append(rev(r), Cons(x,Nil))
    end
```


"In-place" List Reversal

Exercise: fill the holes below.

```
val l: ref (list int)
procedure rev_append(r:list int)
    variant ?
    writes l
    ensures ?
body
    match r with
    | Nil -> skip
    | Cons(x,r) -> l := Cons(x,l); rev_append(r)
    end
procedure rev(r:list int)
    writes l
    ensures l = rev r
body ?
```


Binary Trees

type tree $\alpha=$ Leaf \mid Node (tree α) α (tree α)
Exercise: specify, implement, and prove a procedure returning the maximum of a tree of integers.
(problem 2 of the FoVeOOS verification competition in 2011,
http://foveoos2011.cost-ic0701.org/
verification-competition)

Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product Types

Sum Types

Inductive Predicates

Inductive Predicates

- Definition à la Prolog, also in Coq, PVS, etc.
- An inductive definition of a predicate has the form inductive $p\left(\tau_{1}, \ldots, \tau_{n}\right)$:
| id ${ }_{1}$: clause ${ }_{1}$
| id ${ }_{k}$: clause ${ }_{k}$
where clauses have the form
forall \vec{x}. hyp $\Rightarrow p\left(e_{1}, \ldots, e_{n}\right)$
and p occurs only positively in hyp (Horn clause).
- Always one smallest fix-point:
predicate satisfying the clauses that is true the less often.

Inductive Predicates: Example

Classical example: transitive closure.

```
predicate r(x:t,y:t) = ...
inductive r_star(t,t) =
    | empty: forall x:t. r_star(x,x)
    | single: forall x y:t. r(x,y) -> r_star(x,y)
    | trans: forall x y z:t.
    r_star (x,y) ^ r_star(y,z) -> r_star (x,z)
```


Exercise: Selection Sort

```
val a: ref(map real)
procedure sort(n:int):
    requires 0 \leq n
    writes a
    ensures ?
body ?
```

1. Formalize postconditions:

- array in increasing order between 0 and $n-1$,
- array at exit is a permutation of the array at entrance.

2. Implement and prove selection sort algorithm:
for each i from 0 to $n-1$:
find index $i d x$ of the min element between i and $n-1$
swap elements at indexes i and $i d x$

Extra Exercises

- Binary Search:
low $=0$; high $=n-1$;
while low \leq high:
let m be the middle of low and high
if $a[m]=v$ then return m
if $a[m]<v$ then continue search between m and high
if $a[m]>v$ then continue search between low and m

Extra Exercises

- Binary Search:
low $=0$; high $=n-1$;
while low \leq high:
let m be the middle of low and high
if $a[m]=v$ then return m
if $a[m]<v$ then continue search between m and high
if $a[m]>v$ then continue search between low and m
- Insertion Sort:
for each i from 1 to $n-1$:
insert element at index i at the right place between indexes 0 and $i-1$

