
Numeric Programs

Guillaume Melquiond

MPRI 2-36-1 “Preuve de Programme”

January 23rd, 2013

Reminder of Previous Lectures

I ML-like programs:

I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:

I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,

I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:

I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,

I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:

I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,

I arrays,
I algebraic datatypes.

I Program specification and verification:

I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,

I algebraic datatypes.
I Program specification and verification:

I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:

I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:

I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:
I Hoare logic: safety, validity, termination,

I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:
I Hoare logic: safety, validity, termination,
I weakest precondition computations,

I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:
I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,

I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:
I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,

I logic functions and predicates,
I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:
I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,

I recursive and inductive definitions.

Reminder of Previous Lectures

I ML-like programs:
I mutable variables,
I recursive functions,
I basic types: integers, reals,
I arrays,
I algebraic datatypes.

I Program specification and verification:
I Hoare logic: safety, validity, termination,
I weakest precondition computations,
I modular verification: function contract,
I abstract types and axioms,
I logic functions and predicates,
I recursive and inductive definitions.

Computers and Number Representations

I 32-bit signed integers in two-complement:

I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:

I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,

I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:

I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,

I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:

I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,

I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:

I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:

I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:

I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:
I 2× 2× · · · × 2→ +∞,

I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:
I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,

I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:
I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,

I 0÷ 0→ NaN.

Computers and Number Representations

I 32-bit signed integers in two-complement:
I 1 + 1→ 2,
I 2147483647 + 1→ −2147483648,
I 1000002 → 1410065408,
I −2147483648 mod − 1→ boom (floating-point exn?!).

I IEEE-754 binary64 floating-point numbers:
I 2× 2× · · · × 2→ +∞,
I 1÷ 0→ +∞,
I 1÷−0→ −∞,
I 0÷ 0→ NaN.

Some Numerical Failures

I 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

I 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

I 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

I 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

I 2007, Excel displays 77.1× 850 as 100000.

Some Numerical Failures

I 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

I 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

I 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

I 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

I 2007, Excel displays 77.1× 850 as 100000.

Some Numerical Failures

I 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

I 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

I 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

I 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

I 2007, Excel displays 77.1× 850 as 100000.

Some Numerical Failures

I 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

I 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

I 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

I 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

I 2007, Excel displays 77.1× 850 as 100000.

Some Numerical Failures

I 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

I 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

I 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

I 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

I 2007, Excel displays 77.1× 850 as 100000.

Some Numerical Failures

I 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

I 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

I 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

I 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

I 2007, Excel displays 77.1× 850 as 100000.

Some Numerical Failures

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.
Time is tracked by fixed-point arith.: 0.1 ' 209715 · 2−24.
Cumulated skew after 24h: −0.08s, distance: 160m.
System was supposed to be rebooted periodically.

I 2007, Excel displays 77.1× 850 as 100000.

Bug in binary/decimal conversion.
Failing inputs: 12 FP numbers.
Probability to uncover them by random testing: 10−18.

Some Numerical Failures

I 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.
Time is tracked by fixed-point arith.: 0.1 ' 209715 · 2−24.
Cumulated skew after 24h: −0.08s, distance: 160m.
System was supposed to be rebooted periodically.

I 2007, Excel displays 77.1× 850 as 100000.

Bug in binary/decimal conversion.
Failing inputs: 12 FP numbers.
Probability to uncover them by random testing: 10−18.

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Binary Search
Exercise: Find appropriate precondition, postcondition, loop
invariant, and variant, for this program:

function binary_search(a:map int, n v:int): int
body

try
let ref l = 0 in
let ref u = n - 1 in
while l ≤ u do
let m = div (l + u) 2 in
if a[m] < v then

l := m + 1
else if a[m] > v then

u := m - 1
else

raise (Break m)
done;
raise Not_found

with Break i → i

Target Type: int32

I 32-bit signed integers in two-complement representation:
integers between −231 and 231 − 1.

I If the mathematical result of an operation fits in that range,
that is the computed result.

I Otherwise, an overflow occurs.
Behavior depends on language and environment:
modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Target Type: int32

I 32-bit signed integers in two-complement representation:
integers between −231 and 231 − 1.

I If the mathematical result of an operation fits in that range,
that is the computed result.

I Otherwise, an overflow occurs.
Behavior depends on language and environment:
modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Target Type: int32

I 32-bit signed integers in two-complement representation:
integers between −231 and 231 − 1.

I If the mathematical result of an operation fits in that range,
that is the computed result.

I Otherwise, an overflow occurs.
Behavior depends on language and environment:
modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Target Type: int32

I 32-bit signed integers in two-complement representation:
integers between −231 and 231 − 1.

I If the mathematical result of an operation fits in that range,
that is the computed result.

I Otherwise, an overflow occurs.
Behavior depends on language and environment:
modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Safety Checking

Idea: replace all arithmetic operations by abstract functions
with preconditions. x − y becomes int32_sub(x , y).

function int32_sub(x: int, y: int): int
requires -2^31 ≤ x - y < 2^31
ensures result = x - y

Safety Checking, Try 2

Idea: replace
I type int with an abstract type coercible to it,
I all operations by abstract functions with preconditions,

and add an axiom about the range of int32.

type int32
function of_int32(x: int32): int
axiom bounded_int32:

forall x: int32. -2^31 ≤ of_int32(x) < 2^31

function int32_sub(x: int32, y: int32): int32
requires -2^31 ≤ of_int32(x) + of_int32(y) < 2^31
ensures of_int32(result) = of_int32(x) - of_int32(y)

Exercises

1. How to handle int32 constants in programs?

2. How to specify saturating arithmetic?

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Floating-Point Arithmetic

I Limited range⇒ exceptional behaviors.
I Limited precision⇒ inaccurate results.

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + wm = 32, or 64, or 128.
Bias: 2we−1 − 1. Precision: p = wm + 1.

A floating-point datum
sign s biased exponent e′ (we bits) mantissa m (wm bits)

represents
I if 0 < e′ < 2we − 1, the real (−1)s · 1.m′ · 2e′−bias, normal
I if e′ = 0,

I ±0 if m′ = 0, zeros
I the real (−1)s · 0.m′ · 2−bias+1 otherwise, subnormal

I if e′ = 2we − 1,
I (−1)s · ∞ if m′ = 0, infinity
I Not-a-Number otherwise. NaN

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + wm = 32, or 64, or 128.
Bias: 2we−1 − 1. Precision: p = wm + 1.

A floating-point datum
sign s biased exponent e′ (we bits) mantissa m (wm bits)

represents

I if 0 < e′ < 2we − 1, the real (−1)s · 1.m′ · 2e′−bias, normal
I if e′ = 0,

I ±0 if m′ = 0, zeros
I the real (−1)s · 0.m′ · 2−bias+1 otherwise, subnormal

I if e′ = 2we − 1,
I (−1)s · ∞ if m′ = 0, infinity
I Not-a-Number otherwise. NaN

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + wm = 32, or 64, or 128.
Bias: 2we−1 − 1. Precision: p = wm + 1.

A floating-point datum
sign s biased exponent e′ (we bits) mantissa m (wm bits)

represents
I if 0 < e′ < 2we − 1, the real (−1)s · 1.m′ · 2e′−bias, normal

I if e′ = 0,
I ±0 if m′ = 0, zeros
I the real (−1)s · 0.m′ · 2−bias+1 otherwise, subnormal

I if e′ = 2we − 1,
I (−1)s · ∞ if m′ = 0, infinity
I Not-a-Number otherwise. NaN

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + wm = 32, or 64, or 128.
Bias: 2we−1 − 1. Precision: p = wm + 1.

A floating-point datum
sign s biased exponent e′ (we bits) mantissa m (wm bits)

represents
I if 0 < e′ < 2we − 1, the real (−1)s · 1.m′ · 2e′−bias, normal
I if e′ = 0,

I ±0 if m′ = 0, zeros
I the real (−1)s · 0.m′ · 2−bias+1 otherwise, subnormal

I if e′ = 2we − 1,
I (−1)s · ∞ if m′ = 0, infinity
I Not-a-Number otherwise. NaN

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + wm = 32, or 64, or 128.
Bias: 2we−1 − 1. Precision: p = wm + 1.

A floating-point datum
sign s biased exponent e′ (we bits) mantissa m (wm bits)

represents
I if 0 < e′ < 2we − 1, the real (−1)s · 1.m′ · 2e′−bias, normal
I if e′ = 0,

I ±0 if m′ = 0, zeros
I the real (−1)s · 0.m′ · 2−bias+1 otherwise, subnormal

I if e′ = 2we − 1,
I (−1)s · ∞ if m′ = 0, infinity
I Not-a-Number otherwise. NaN

Floating-Point Data

1 11000110 10010011110000111000000
s e f
↓ ↓ ↓

(−1)s × 2e−B × 1.f

(−1)1 × 2198−127 × 1.100100111100001110000002

−254 × 206727 ≈ −3.7× 1021

Semantics for the Finite Case

A floating-point operator shall behave as if it was
first computing the infinitely-precise value
and then rounding it so that it fits in the destination
floating-point format.

Rounding of a real number x :

x
x̃

x x

2e 2e−p

Overflows are not considered when defining rounding:
exponents are supposed to have no upper bound!

Semantics for the Finite Case

A floating-point operator shall behave as if it was
first computing the infinitely-precise value
and then rounding it so that it fits in the destination
floating-point format.

Rounding of a real number x :

x
x̃

x x

2e 2e−p

Overflows are not considered when defining rounding:
exponents are supposed to have no upper bound!

Partial Specification

Same as with integers, we specify FP operations
so that no overflow occurs.

type bin32
function of_bin32(x: bin32): real
axiom finite_bin32: forall x: bin32. ???

function rnd...(x: real): real
axiom about_rnd...: ???

function bin32_sub(x: bin32, y: bin32): bin32
requires abs(rnd...(of_bin32(x) - of_bin32(y))) ≤ ...
ensures of_bin32(result) =

rnd(of_bin32(x) - of_bin32(y))

Simplifications

Floating-point numbers as a subset F of real numbers:
I neither infinities nor NaNs,

I no signed zeros,
I no upper bound.

F = {m · 2e ∈ R; |m| < 2p ∧ e ≥ emin}

Canonical representation:
I either 2p−1 ≤ |m| < 2p and e ≥ emin, normal
I or |m| < 2p−1 and e = emin. subnormal

Simplifications

Floating-point numbers as a subset F of real numbers:
I neither infinities nor NaNs,
I no signed zeros,

I no upper bound.

F = {m · 2e ∈ R; |m| < 2p ∧ e ≥ emin}

Canonical representation:
I either 2p−1 ≤ |m| < 2p and e ≥ emin, normal
I or |m| < 2p−1 and e = emin. subnormal

Simplifications

Floating-point numbers as a subset F of real numbers:
I neither infinities nor NaNs,
I no signed zeros,
I no upper bound.

F = {m · 2e ∈ R; |m| < 2p ∧ e ≥ emin}

Canonical representation:
I either 2p−1 ≤ |m| < 2p and e ≥ emin, normal
I or |m| < 2p−1 and e = emin. subnormal

Simplifications

Floating-point numbers as a subset F of real numbers:
I neither infinities nor NaNs,
I no signed zeros,
I no upper bound.

F = {m · 2e ∈ R; |m| < 2p ∧ e ≥ emin}

Canonical representation:
I either 2p−1 ≤ |m| < 2p and e ≥ emin, normal
I or |m| < 2p−1 and e = emin. subnormal

Simplifications

Floating-point numbers as a subset F of real numbers:
I neither infinities nor NaNs,
I no signed zeros,
I no upper bound.

F = {m · 2e ∈ R; |m| < 2p ∧ e ≥ emin}

Canonical representation:
I either 2p−1 ≤ |m| < 2p and e ≥ emin, normal
I or |m| < 2p−1 and e = emin. subnormal

Usual Properties: Representation and Successors

Given a representable number x = mx · 2ex ≥ 0,
1. y = (mx + 1) · 2ex ∈ F,
2. mx · 2ex canonic⇒6 ∃z ∈ F, x < z < y .

Proof:
1. Hyp: 0 ≤ mx < 2p et ex ≥ emin.

If |mx + 1| < 2p, then y = (mx + 1) · 2ex ∈ F.
Otherwise mx + 1 = 2p, so y = 1 · 2ex+p ∈ F.

2. Hyp: 2p−1 ≤ mx < 2p or ex = emin.
If mx · 2ex < mz · 2ez < (mx + 1) · 2ex ,
then ez > ex and mz > 2ex−ezmx ≥ 2mx .

Usual Properties: Representation and Successors

Given a representable number x = mx · 2ex ≥ 0,
1. y = (mx + 1) · 2ex ∈ F,
2. mx · 2ex canonic⇒6 ∃z ∈ F, x < z < y .

Proof:
1. Hyp: 0 ≤ mx < 2p et ex ≥ emin.

If |mx + 1| < 2p, then y = (mx + 1) · 2ex ∈ F.
Otherwise mx + 1 = 2p, so y = 1 · 2ex+p ∈ F.

2. Hyp: 2p−1 ≤ mx < 2p or ex = emin.
If mx · 2ex < mz · 2ez < (mx + 1) · 2ex ,
then ez > ex and mz > 2ex−ezmx ≥ 2mx .

Usual Properties: Representation and Successors

Given a representable number x = mx · 2ex ≥ 0,
1. y = (mx + 1) · 2ex ∈ F,
2. mx · 2ex canonic⇒6 ∃z ∈ F, x < z < y .

Proof:
1. Hyp: 0 ≤ mx < 2p et ex ≥ emin.

If |mx + 1| < 2p, then y = (mx + 1) · 2ex ∈ F.
Otherwise mx + 1 = 2p, so y = 1 · 2ex+p ∈ F.

2. Hyp: 2p−1 ≤ mx < 2p or ex = emin.
If mx · 2ex < mz · 2ez < (mx + 1) · 2ex ,
then ez > ex and mz > 2ex−ezmx ≥ 2mx .

Usual Properties: Rounding Modes

Faithful rounding:
I

`
(x) = max{y ∈ F | y ≤ x},

I
a
(x) = min{y ∈ F | y ≥ x},

I either rnd(x) =
`
(x) or rnd(x) =

a
(x).

Idempotency:
∀x ∈ F, rnd(x) = x

Local monotonicity:

∀x , y ∈ R, y ∈ [rnd(x), x]⇒ rnd(y) = rnd(x)

Usual Properties: Rounding Modes

Faithful rounding:
I

`
(x) = max{y ∈ F | y ≤ x},

I
a
(x) = min{y ∈ F | y ≥ x},

I either rnd(x) =
`
(x) or rnd(x) =

a
(x).

Idempotency:
∀x ∈ F, rnd(x) = x

Local monotonicity:

∀x , y ∈ R, y ∈ [rnd(x), x]⇒ rnd(y) = rnd(x)

Usual Properties: Rounding Modes

Faithful rounding:
I

`
(x) = max{y ∈ F | y ≤ x},

I
a
(x) = min{y ∈ F | y ≥ x},

I either rnd(x) =
`
(x) or rnd(x) =

a
(x).

Idempotency:
∀x ∈ F, rnd(x) = x

Local monotonicity:

∀x , y ∈ R, y ∈ [rnd(x), x]⇒ rnd(y) = rnd(x)

Usual Properties: Monotonicity

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Proof:
I If

`
(x) <

`
(y),

1. x <
`
(y) by definition of

`
(x),

2. rnd(x) ≤
a
(x) ≤

`
(y) ≤ �(y).

I If
`
(x) ≥

`
(y),

1.
`
(x) =

`
(y) by definition of

`
(y),

2.
a
(x) =

a
(y) by idempotency or successor,

3. if rnd(y) =
a
(y), then rnd(x) ≤ rnd(y),

4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Proof:
I If

`
(x) <

`
(y),

1. x <
`
(y) by definition of

`
(x),

2. rnd(x) ≤
a
(x) ≤

`
(y) ≤ �(y).

I If
`
(x) ≥

`
(y),

1.
`
(x) =

`
(y) by definition of

`
(y),

2.
a
(x) =

a
(y) by idempotency or successor,

3. if rnd(y) =
a
(y), then rnd(x) ≤ rnd(y),

4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Proof:
I If

`
(x) <

`
(y),

1. x <
`
(y) by definition of

`
(x),

2. rnd(x) ≤
a
(x) ≤

`
(y) ≤ �(y).

I If
`
(x) ≥

`
(y),

1.
`
(x) =

`
(y) by definition of

`
(y),

2.
a
(x) =

a
(y) by idempotency or successor,

3. if rnd(y) =
a
(y), then rnd(x) ≤ rnd(y),

4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Proof:
I If

`
(x) <

`
(y),

1. x <
`
(y) by definition of

`
(x),

2. rnd(x) ≤
a
(x) ≤

`
(y) ≤ �(y).

I If
`
(x) ≥

`
(y),

1.
`
(x) =

`
(y) by definition of

`
(y),

2.
a
(x) =

a
(y) by idempotency or successor,

3. if rnd(y) =
a
(y), then rnd(x) ≤ rnd(y),

4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Proof:
I If

`
(x) <

`
(y),

1. x <
`
(y) by definition of

`
(x),

2. rnd(x) ≤
a
(x) ≤

`
(y) ≤ �(y).

I If
`
(x) ≥

`
(y),

1.
`
(x) =

`
(y) by definition of

`
(y),

2.
a
(x) =

a
(y) by idempotency or successor,

3. if rnd(y) =
a
(y), then rnd(x) ≤ rnd(y),

4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Proof:
I If

`
(x) <

`
(y),

1. x <
`
(y) by definition of

`
(x),

2. rnd(x) ≤
a
(x) ≤

`
(y) ≤ �(y).

I If
`
(x) ≥

`
(y),

1.
`
(x) =

`
(y) by definition of

`
(y),

2.
a
(x) =

a
(y) by idempotency or successor,

3. if rnd(y) =
a
(y), then rnd(x) ≤ rnd(y),

4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Proof:
I If

`
(x) <

`
(y),

1. x <
`
(y) by definition of

`
(x),

2. rnd(x) ≤
a
(x) ≤

`
(y) ≤ �(y).

I If
`
(x) ≥

`
(y),

1.
`
(x) =

`
(y) by definition of

`
(y),

2.
a
(x) =

a
(y) by idempotency or successor,

3. if rnd(y) =
a
(y), then rnd(x) ≤ rnd(y),

4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

Monotonicity:

∀x , y ∈ R, x ≤ y ⇒ rnd(x) ≤ rnd(y)

Ordering with respect to representable numbers:

∀x ∈ F, ∀y ∈ R, x ≤ y ⇒ x ≤ rnd(y)

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p and |δ| ≤ 2emin−1

Moreover, δ = 0 or ε = 0.

Proof:
1. Hyp: 0 < x 6∈ F.`

(x) = m · 2e and
a
(x) = (m + 1) · 2e+1.

2. |rnd(x)− x | ≤ (
a
(x)−

`
(x))/2 = 2e−1.

I If
`
(x) is subnormal, e = emin.

ε = 0 and δ = rnd(x)− x so |δ| ≤ 2emin−1.
I If

`
(x) is normal, 2p−1 ≤ m.

δ = 0 and ε = (rnd(x)− x)/x so
|ε| ≤ 2e−1/(2p−1 · 2e) = 2−p.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p and |δ| ≤ 2emin−1

Moreover, δ = 0 or ε = 0.

Proof:
1. Hyp: 0 < x 6∈ F.`

(x) = m · 2e and
a
(x) = (m + 1) · 2e+1.

2. |rnd(x)− x | ≤ (
a
(x)−

`
(x))/2 = 2e−1.

I If
`
(x) is subnormal, e = emin.

ε = 0 and δ = rnd(x)− x so |δ| ≤ 2emin−1.
I If

`
(x) is normal, 2p−1 ≤ m.

δ = 0 and ε = (rnd(x)− x)/x so
|ε| ≤ 2e−1/(2p−1 · 2e) = 2−p.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p and |δ| ≤ 2emin−1

Moreover, δ = 0 or ε = 0.

Proof:
1. Hyp: 0 < x 6∈ F.`

(x) = m · 2e and
a
(x) = (m + 1) · 2e+1.

2. |rnd(x)− x | ≤ (
a
(x)−

`
(x))/2 = 2e−1.

I If
`
(x) is subnormal, e = emin.

ε = 0 and δ = rnd(x)− x so |δ| ≤ 2emin−1.
I If

`
(x) is normal, 2p−1 ≤ m.

δ = 0 and ε = (rnd(x)− x)/x so
|ε| ≤ 2e−1/(2p−1 · 2e) = 2−p.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p and |δ| ≤ 2emin−1

Moreover, δ = 0 or ε = 0.

Proof:
1. Hyp: 0 < x 6∈ F.`

(x) = m · 2e and
a
(x) = (m + 1) · 2e+1.

2. |rnd(x)− x | ≤ (
a
(x)−

`
(x))/2 = 2e−1.

I If
`
(x) is subnormal, e = emin.

ε = 0 and δ = rnd(x)− x so |δ| ≤ 2emin−1.

I If
`
(x) is normal, 2p−1 ≤ m.

δ = 0 and ε = (rnd(x)− x)/x so
|ε| ≤ 2e−1/(2p−1 · 2e) = 2−p.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p and |δ| ≤ 2emin−1

Moreover, δ = 0 or ε = 0.

Proof:
1. Hyp: 0 < x 6∈ F.`

(x) = m · 2e and
a
(x) = (m + 1) · 2e+1.

2. |rnd(x)− x | ≤ (
a
(x)−

`
(x))/2 = 2e−1.

I If
`
(x) is subnormal, e = emin.

ε = 0 and δ = rnd(x)− x so |δ| ≤ 2emin−1.
I If

`
(x) is normal, 2p−1 ≤ m.

δ = 0 and ε = (rnd(x)− x)/x so
|ε| ≤ 2e−1/(2p−1 · 2e) = 2−p.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p and |δ| ≤ 2emin−1

Moreover, δ = 0 or ε = 0.

Directed rounding:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p+1 and |δ| ≤ 2emin

Moreover, δ = 0 or ε = 0.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p and |δ| ≤ 2emin−1

Moreover, δ = 0 or ε = 0.

Directed rounding:
For all x ∈, there are ε and δ such that

rnd(x) = x · (1 + ε) + δ and |ε| ≤ 2−p+1 and |δ| ≤ 2emin

Moreover, δ = 0 or ε = 0.

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

∀x , y ∈ F, |x + y | ≤ 2emin+p ⇒ x + y ∈ F

Proof:
1. x = mx · 2ex and y = my · 2ey .
2. m = mx · 2ex−emin + my · 2ey−emin and x + y = m · 2emin .
3. |m| ≤ 2p so x + y ∈ F.

Round-off error for addition:

∀x , y ∈ F, ∃ε, ◦ (x + y) = (x + y) · (1 + ε) and |ε| ≤ 2−p

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

∀x , y ∈ F, |x + y | ≤ 2emin+p ⇒ x + y ∈ F

Proof:
1. x = mx · 2ex and y = my · 2ey .
2. m = mx · 2ex−emin + my · 2ey−emin and x + y = m · 2emin .
3. |m| ≤ 2p so x + y ∈ F.

Round-off error for addition:

∀x , y ∈ F, ∃ε, ◦ (x + y) = (x + y) · (1 + ε) and |ε| ≤ 2−p

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

∀x , y ∈ F, |x + y | ≤ 2emin+p ⇒ x + y ∈ F

Proof:
1. x = mx · 2ex and y = my · 2ey .
2. m = mx · 2ex−emin + my · 2ey−emin and x + y = m · 2emin .
3. |m| ≤ 2p so x + y ∈ F.

Round-off error for addition:

∀x , y ∈ F, ∃ε, ◦ (x + y) = (x + y) · (1 + ε) and |ε| ≤ 2−p

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Numerical Errors

Given two real numbers u and v ,
I absolute error: u − v , |u − v |
I relative error: u/v − 1, . . .

Combining errors:
I u − w = (u − v) + (v − w)

I |u − w | ≤ |u − v |+ |v − w |
I u/w − 1 = (u/v − 1) + (v/w − 1) + (u/v − 1) · (v/w − 1)

Remark: rnd(u)− v = (rnd(u)− u) + (u − v)

Numerical Errors

Given two real numbers u and v ,
I absolute error: u − v , |u − v |
I relative error: u/v − 1, . . .

Combining errors:
I u − w = (u − v) + (v − w)

I |u − w | ≤ |u − v |+ |v − w |
I u/w − 1 = (u/v − 1) + (v/w − 1) + (u/v − 1) · (v/w − 1)

Remark: rnd(u)− v = (rnd(u)− u) + (u − v)

Numerical Errors

Given two real numbers u and v ,
I absolute error: u − v , |u − v |
I relative error: u/v − 1, . . .

Combining errors:
I u − w = (u − v) + (v − w)

I |u − w | ≤ |u − v |+ |v − w |
I u/w − 1 = (u/v − 1) + (v/w − 1) + (u/v − 1) · (v/w − 1)

Remark: rnd(u)− v = (rnd(u)− u) + (u − v)

Numerical Analysis

Notations:
I a mathematical function f (x),
I a floating-point program f̃ (x),
I the infinitely-precise evaluation f̂ (x) of f̃ (x).

Definitions:
I forward error: f̃ (x)− f (x),

I round-off error: f̃ (x)− f̂ (x)
I method error: f̂ (x)− f (x)

I backward error: x̃ − x
with x̃ closest from x such that f (x̃) = f̃ (x)

Remark: f̃ (x)− f (x) ' (x̃ − x)× ∂f
∂x .

In other words: forward err ' backward err × condition num.

Numerical Analysis

Notations:
I a mathematical function f (x),
I a floating-point program f̃ (x),
I the infinitely-precise evaluation f̂ (x) of f̃ (x).

Definitions:
I forward error: f̃ (x)− f (x),

I round-off error: f̃ (x)− f̂ (x)
I method error: f̂ (x)− f (x)

I backward error: x̃ − x
with x̃ closest from x such that f (x̃) = f̃ (x)

Remark: f̃ (x)− f (x) ' (x̃ − x)× ∂f
∂x .

In other words: forward err ' backward err × condition num.

Numerical Analysis

Notations:
I a mathematical function f (x),
I a floating-point program f̃ (x),
I the infinitely-precise evaluation f̂ (x) of f̃ (x).

Definitions:
I forward error: f̃ (x)− f (x),

I round-off error: f̃ (x)− f̂ (x)
I method error: f̂ (x)− f (x)

I backward error: x̃ − x
with x̃ closest from x such that f (x̃) = f̃ (x)

Remark: f̃ (x)− f (x) ' (x̃ − x)× ∂f
∂x .

In other words: forward err ' backward err × condition num.

Numerical Analysis

Notations:
I a mathematical function f (x),
I a floating-point program f̃ (x),
I the infinitely-precise evaluation f̂ (x) of f̃ (x).

Definitions:
I forward error: f̃ (x)− f (x),

I round-off error: f̃ (x)− f̂ (x)
I method error: f̂ (x)− f (x)

I backward error: x̃ − x
with x̃ closest from x such that f (x̃) = f̃ (x)

Remark: f̃ (x)− f (x) ' (x̃ − x)× ∂f
∂x .

In other words: forward err ' backward err × condition num.

Numerical Analysis

Evaluating
∑

i ai · x i :

function Horner
(a:map binary32, n:int, x:binary32)

body
let ref y := binary32_cst(0.) in
let ref i := n in
for i = 0 to n - 1 do

y := binary32_add(binary32_mul(y, x), a[i]);
done;
y

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Using Ghost Variables for Model Values

function det(a b c d: binary32, aM bM cM dM: real):
(binary32, real)

body
let t1 := binary32_mul(a, d) in
let t1M := aM * dM in
let t2 := binary32_mul(b, c) in
let t2M := bM * cM in
let t3 := binary32_sub(t1, t2) in
let t3M := t1M - t2M in
(t3, t3M)

Forward error: property about t3 - t3M or t3/t3M - 1.

Implicit Model Values

function of_bin32(x: binary32): real
function model_of(x: binary32): real

function binary32_add(x y: binary32): binary32
requires
abs(rnd...(of_bin32(x) + of_bin32(y))) ≤
max_binary32

ensures
of_bin32(result) =

rnd(of_bin32(x) + of_bin32(y)) ∧
model_of(result) = model_of(x) + model_of(y)

Abstract Interpretation

Domains for floating-point variables:
I for the computed value x ,
I for the infinitely-precise value x̂ ,
I for the absolute error x − x̂ ,
I . . .

Naive domains:
I [x , x] such that x ∈ [x , x],

ex: rnd(x + y) ∈ [rnd(x + y), rnd(x + y)],
I no domain for x̂ ,
I δx such that |x − x̂ | ≤ δx ,

ex: δx+y = δx + δy + 2−p max(x + y ,−(x + y))

Abstract Interpretation

Domains for floating-point variables:
I for the computed value x ,
I for the infinitely-precise value x̂ ,
I for the absolute error x − x̂ ,
I . . .

Naive domains:
I [x , x] such that x ∈ [x , x],

ex: rnd(x + y) ∈ [rnd(x + y), rnd(x + y)],
I no domain for x̂ ,
I δx such that |x − x̂ | ≤ δx ,

ex: δx+y = δx + δy + 2−p max(x + y ,−(x + y))

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Newton’s Iterated Square Root

function fp_sqrt_init(x:binary64) : binary64
requires 0.5 ≤ x ≤ 2;
ensures abs(result - 1/sqrt(x)) ≤ 2^-6 * 1/sqrt(x);

function fp_sqrt(x:binary64) : binary64
requires 0.5 ≤ x ≤ 2;
ensures abs(result - sqrt(x)) ≤ 2^-43 * sqrt(x);

body
let ref t := fp_sqrt_init(x) in
for i = 1 to 3 do
t := 0.5 * t * (3 - t * t * x);

done;
t * x

Quadratic Convergence

For all u and x :

0.5u(3− u2x)
√

x − 1 = −(1.5 + 0.5(u
√

x − 1))× (u
√

x − 1)2

Loop iterations:

tn+1
√

x − 1 ' 0.5tn(3− t2
n x)
√

x − 1 ' −1.5(tn
√

x − 1)2

Round-off error at step n vanishes at step n + 1.

Accurate Summation

Computing
∑

i xi :

s := x[0];
e := 0.;
for i = 1 to n - 1 do
y := x[i];
t := s + y;
u := t - y;
r := (s - u) + (y - (t - u));
s := t;
e := e + r;

done;
s’ := s + e;

Accurate Summation

Computing
∑

i xi :

s := x[0];
e := 0.;
for i = 1 to n - 1 do
y := x[i];
t := s + y;
u := t - y;
r := (s - u) + (y - (t - u));
s := t;
e := e + r;

done;
s’ := s + e;

Naive sum

Accurate Summation

Computing
∑

i xi :

s := x[0];
e := 0.;
for i = 1 to n - 1 do
y := x[i];
t := s + y;
u := t - y;
r := (s - u) + (y - (t - u));
s := t;
e := e + r;

done;
s’ := s + e;

Error-free addition: t + r = s + y

Error-Free Transformations

I Sterbenz: ∀x , y ∈ F , x/2 ≤ y ≤ 2x ⇒ rnd(x − y) = x − y

I error of addition: ∀x , y ∈ F , rnd(x + y)− (x + y) ∈ F

I fast twosum: ∀x , y ∈ F , |x | ≥ |y | ⇒ s + e = x + y
with s = rnd(x + y) and e = rnd(y − rnd(s − x))

I twosum: ∀x , y ∈ F , s + e = x + y
with s = rnd(x + y) and u = rnd(s − y) and
e = rnd(rnd(x − u) + rnd(y − rnd(s − u)))

Error-Free Transformations

I Sterbenz: ∀x , y ∈ F , x/2 ≤ y ≤ 2x ⇒ rnd(x − y) = x − y

I error of addition: ∀x , y ∈ F , rnd(x + y)− (x + y) ∈ F

I fast twosum: ∀x , y ∈ F , |x | ≥ |y | ⇒ s + e = x + y
with s = rnd(x + y) and e = rnd(y − rnd(s − x))

I twosum: ∀x , y ∈ F , s + e = x + y
with s = rnd(x + y) and u = rnd(s − y) and
e = rnd(rnd(x − u) + rnd(y − rnd(s − u)))

Error-Free Transformations

I Sterbenz: ∀x , y ∈ F , x/2 ≤ y ≤ 2x ⇒ rnd(x − y) = x − y

I error of addition: ∀x , y ∈ F , rnd(x + y)− (x + y) ∈ F

I fast twosum: ∀x , y ∈ F , |x | ≥ |y | ⇒ s + e = x + y
with s = rnd(x + y) and e = rnd(y − rnd(s − x))

I twosum: ∀x , y ∈ F , s + e = x + y
with s = rnd(x + y) and u = rnd(s − y) and
e = rnd(rnd(x − u) + rnd(y − rnd(s − u)))

Error-Free Transformations

I Sterbenz: ∀x , y ∈ F , x/2 ≤ y ≤ 2x ⇒ rnd(x − y) = x − y

I error of addition: ∀x , y ∈ F , rnd(x + y)− (x + y) ∈ F

I fast twosum: ∀x , y ∈ F , |x | ≥ |y | ⇒ s + e = x + y
with s = rnd(x + y) and e = rnd(y − rnd(s − x))

I twosum: ∀x , y ∈ F , s + e = x + y
with s = rnd(x + y) and u = rnd(s − y) and
e = rnd(rnd(x − u) + rnd(y − rnd(s − u)))

Payne & Hanek’s Argument Reduction

Reducing x ≥ 231 to 0 ≤ y . π/4 for circular functions:

function reduce(x:binary32): (binary32, int)
requires 2^31 ≤ x
ensures exists l:int.
abs((result + k * pi/4) - (x + l * 2*pi)) ≤ 2^-25

body
let x’ = binary64_of_binary32 x in
let t = x’ * 1.273239545... in
let k = trunc(t) in
let y = (t - k) * 0.785398163... in
(binary32_of_binary64(y), k)

Note: computations are performed with binary64.

Payne & Hanek’s Argument Reduction

Reducing x ≥ 231 to 0 ≤ y . π/4 for circular functions:

function reduce(x:binary32): (binary32, int)
requires 2^31 ≤ x
ensures exists l:int.
abs((result + k * pi/4) - (x + l * 2*pi)) ≤ 2^-25

body
let x’ = binary64_of_binary32 x in
let t = x’ * 0.02323954474... in
let k = trunc(t) in
let y = (t - k) * 0.785398163... in
(binary32_of_binary64(y), k)

Note: computations are performed with binary64.

	Handling Machine Integers
	Floating-Point Computations
	Numerical Analysis
	Automation
	Numerical Algorithms

