Numeric Programs

Guillaume Melquiond

MPRI 2-36-1 "Preuve de Programme"
January 23rd, 2013

Reminder of Previous Lectures

- ML-like programs:

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.
- Program specification and verification:

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.
- Program specification and verification:
- Hoare logic: safety, validity, termination,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.
- Program specification and verification:
- Hoare logic: safety, validity, termination,
- weakest precondition computations,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.
- Program specification and verification:
- Hoare logic: safety, validity, termination,
- weakest precondition computations,
- modular verification: function contract,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.
- Program specification and verification:
- Hoare logic: safety, validity, termination,
- weakest precondition computations,
- modular verification: function contract,
- abstract types and axioms,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.
- Program specification and verification:
- Hoare logic: safety, validity, termination,
- weakest precondition computations,
- modular verification: function contract,
- abstract types and axioms,
- logic functions and predicates,

Reminder of Previous Lectures

- ML-like programs:
- mutable variables,
- recursive functions,
- basic types: integers, reals,
- arrays,
- algebraic datatypes.
- Program specification and verification:
- Hoare logic: safety, validity, termination,
- weakest precondition computations,
- modular verification: function contract,
- abstract types and axioms,
- logic functions and predicates,
- recursive and inductive definitions.

Computers and Number Representations

- 32-bit signed integers in two-complement:

Computers and Number Representations

- 32-bit signed integers in two-complement:
$-1+1 \rightarrow 2$,

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,
- $100000^{2} \rightarrow 1410065408$,

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,
- $100000^{2} \rightarrow 1410065408$,
- -2147483648 mod $-1 \rightarrow$ boom (floating-point exn?!).

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,
- $100000^{2} \rightarrow 1410065408$,
- -2147483648 mod $-1 \rightarrow$ boom (floating-point exn?!).
- IEEE-754 binary64 floating-point numbers:

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,
- $100000^{2} \rightarrow 1410065408$,
- -2147483648 mod $-1 \rightarrow$ boom (floating-point exn?!).
- IEEE-754 binary64 floating-point numbers:
- $2 \times 2 \times \cdots \times 2 \rightarrow+\infty$,

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,
- $100000^{2} \rightarrow 1410065408$,
- -2147483648 mod $-1 \rightarrow$ boom (floating-point exn?!).
- IEEE-754 binary64 floating-point numbers:
- $2 \times 2 \times \cdots \times 2 \rightarrow+\infty$,
- $1 \div 0 \rightarrow+\infty$,

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,
- $100000^{2} \rightarrow 1410065408$,
- -2147483648 mod $-1 \rightarrow$ boom (floating-point exn?!).
- IEEE-754 binary64 floating-point numbers:
- $2 \times 2 \times \cdots \times 2 \rightarrow+\infty$,
- $1 \div 0 \rightarrow+\infty$,
- $1 \div-0 \rightarrow-\infty$,

Computers and Number Representations

- 32-bit signed integers in two-complement:
- $1+1 \rightarrow 2$,
- $2147483647+1 \rightarrow-2147483648$,
- $100000^{2} \rightarrow 1410065408$,
- -2147483648 mod $-1 \rightarrow$ boom (floating-point exn?!).
- IEEE-754 binary64 floating-point numbers:
- $2 \times 2 \times \cdots \times 2 \rightarrow+\infty$,
- $1 \div 0 \rightarrow+\infty$,
- $1 \div-0 \rightarrow-\infty$,
- $0 \div 0 \rightarrow \mathrm{NaN}$.

Some Numerical Failures

- 1983, truncation when computing an index of Vancouver Stock Exchange drops it to half its value after 6 months.

Some Numerical Failures

- 1983, truncation when computing an index of Vancouver Stock Exchange drops it to half its value after 6 months.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by $£ 100 \mathrm{M}$ for 21 months.

Some Numerical Failures

- 1983, truncation when computing an index of Vancouver Stock Exchange drops it to half its value after 6 months.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by $£ 100 \mathrm{M}$ for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

Some Numerical Failures

- 1983, truncation when computing an index of Vancouver Stock Exchange drops it to half its value after 6 months.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by $£ 100 \mathrm{M}$ for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.

Some Numerical Failures

- 1983, truncation when computing an index of Vancouver Stock Exchange drops it to half its value after 6 months.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by $£ 100 \mathrm{M}$ for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $\$ 500 \mathrm{M}$.

Some Numerical Failures

- 1983, truncation when computing an index of Vancouver Stock Exchange drops it to half its value after 6 months.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by $£ 100 \mathrm{M}$ for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is \$500M.
- 2007, Excel displays 77.1×850 as 100000 .

Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.
Time is tracked by fixed-point arith.: $0.1 \simeq 209715 \cdot 2^{-24}$.
Cumulated skew after 24h: -0.08s, distance: 160m.
System was supposed to be rebooted periodically.

Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.
Time is tracked by fixed-point arith.: $0.1 \simeq 209715 \cdot 2^{-24}$.
Cumulated skew after 24h: -0.08 s , distance: 160 m .
System was supposed to be rebooted periodically.

- 2007, Excel displays 77.1×850 as 100000 .

Bug in binary/decimal conversion.
Failing inputs: 12 FP numbers.
Probability to uncover them by random testing: 10^{-18}.

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Binary Search

Exercise: Find appropriate precondition, postcondition, loop invariant, and variant, for this program:

```
function binary_search(a:map int, n v:int): int
body
    try
    let ref l = 0 in
    let ref u = n - I in
    while l \lequ do
        let m = div (l + u) 2 in
        if a[m] < v then
            l:=m + 1
        else if a[m] > V then
            u :=m - 1
        else
            raise (Break m)
    done;
    raise Not_found
    with Break i }->\mathrm{ i
```


Target Type: int32

- 32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31}-1$.

Target Type: int32

- 32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31}-1$.
- If the mathematical result of an operation fits in that range, that is the computed result.

Target Type: int32

- 32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31}-1$.
- If the mathematical result of an operation fits in that range, that is the computed result.
- Otherwise, an overflow occurs. Behavior depends on language and environment: modulo arith, saturated arith, abrupt termination, etc.

Target Type: int32

- 32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31}-1$.
- If the mathematical result of an operation fits in that range, that is the computed result.
- Otherwise, an overflow occurs. Behavior depends on language and environment: modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Safety Checking

Idea: replace all arithmetic operations by abstract functions with preconditions. $x-y$ becomes int32_sub (x, y).

```
function int32_sub(x: int, y: int): int
    requires -2^31 \leq x - y < 2^31
    ensures result = x - y
```


Safety Checking, Try 2

Idea: replace

- type int with an abstract type coercible to it,
- all operations by abstract functions with preconditions, and add an axiom about the range of int32.

```
type int32
function of_int32(x: int32): int
axiom bounded_int32:
    forall x: int32. -2^31 \leq of_int32(x) < 2^31
function int32_sub(x: int32, y: int32): int32
    requires -2^31 \leq of_int32(x) + of_int32(y) < 2^31
    ensures of_int32(result) = of_int32(x) - of_int32(y)
```


Exercises

1. How to handle int32 constants in programs?
2. How to specify saturating arithmetic?

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Floating-Point Arithmetic

- Limited range \Rightarrow exceptional behaviors.
- Limited precision \Rightarrow inaccurate results.

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1+w_{e}+w_{m}=32$, or 64 , or 128.
Bias: $2^{w_{e}-1}-1$. Precision: $p=w_{m}+1$.

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1+w_{e}+w_{m}=32$, or 64 , or 128.
Bias: $2^{w_{e}-1}-1$. Precision: $p=w_{m}+1$.
A floating-point datum

sign s	biased exponent $e^{\prime}\left(w_{e}\right.$ bits)	mantissa m (w_{m} bits)

represents

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1+w_{e}+w_{m}=32$, or 64 , or 128.
Bias: $2^{w_{e}-1}-1$. Precision: $p=w_{m}+1$.
A floating-point datum

sign s	biased exponent $e^{\prime}\left(w_{e}\right.$ bits)	mantissa m (w_{m} bits)

represents

- if $0<e^{\prime}<2^{w_{e}}-1$, the real $(-1)^{s} \cdot \overline{1 \cdot m^{\prime}} \cdot 2^{e^{\prime}-\text { bias }}$, normal

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1+w_{e}+w_{m}=32$, or 64 , or 128.
Bias: $2^{w_{e}-1}-1$. Precision: $p=w_{m}+1$.
A floating-point datum
sign s biased exponent e^{\prime} (w_{e} bits) \quad mantissa m (w_{m} bits)
represents

- if $0<e^{\prime}<2^{w_{e}}-1$, the real $(-1)^{s} \cdot \overline{1 \cdot m^{\prime}} \cdot 2^{e^{\prime}-\text { bias }}$, normal
- if $e^{\prime}=0$,
- ± 0 if $m^{\prime}=0$,
zeros
- the real $(-1)^{s} \cdot \overline{0 . m^{\prime}} \cdot 2^{-b i a s+1}$ otherwise,

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1+w_{e}+w_{m}=32$, or 64 , or 128.
Bias: $2^{w_{e}-1}-1$. Precision: $p=w_{m}+1$.
A floating-point datum
sign s biased exponent e^{\prime} (w_{e} bits) \quad mantissa m (w_{m} bits)
represents

- if $0<e^{\prime}<2^{w_{e}}-1$, the real $(-1)^{s} \cdot \overline{1 \cdot m^{\prime}} \cdot 2^{e^{\prime}-\text { bias }}$, normal
- if $e^{\prime}=0$,
- ± 0 if $m^{\prime}=0$,
- the real $(-1)^{s} \cdot \overline{0 . m^{\prime}} \cdot 2^{-b i a s+1}$ otherwise,
- if $e^{\prime}=2^{w_{e}}-1$,
- $(-1)^{s} \cdot \infty$ if $m^{\prime}=0$,
- Not-a-Number otherwise.

Floating-Point Data

$$
\begin{array}{cccc|}
\hline 1 & & 11000110 & \\
\hline s & & 10010011110000111000000 \\
\downarrow & & \downarrow & f \\
(-1)^{s} & \times & 2^{e-B} & \times \\
& & \downarrow \\
(-1)^{1} & \times & 2^{198-127} & \times 1.10010011110000111000000_{2} \\
& & -2^{54} \times 206727 \approx-3.7 \times 10^{21}
\end{array}
$$

Semantics for the Finite Case

A floating-point operator shall behave as if it was first computing the infinitely-precise value and then rounding it so that it fits in the destination floating-point format.

Semantics for the Finite Case

A floating-point operator shall behave as if it was first computing the infinitely-precise value and then rounding it so that it fits in the destination floating-point format.

Rounding of a real number x :

Overflows are not considered when defining rounding: exponents are supposed to have no upper bound!

Partial Specification

Same as with integers, we specify FP operations so that no overflow occurs.

```
type bin32
function of_bin32(x: bin32): real
axiom finite_bin32: forall x: bin32. ???
```

function rnd...(x: real): real
axiom about_rnd...: ???
function bin32_sub(x: bin32, y: bin32) : bin32
requires abs(rnd...(of_bin32(x) - of_bin32(y))) $\leq \ldots$
ensures of_bin32(result) =
rnd (of_bin32(x) - of_bin32(y))

Simplifications

Floating-point numbers as a subset \mathbb{F} of real numbers:

- neither infinities nor NaNs,

Simplifications

Floating-point numbers as a subset \mathbb{F} of real numbers:

- neither infinities nor NaNs,
- no signed zeros,

Simplifications

Floating-point numbers as a subset \mathbb{F} of real numbers:

- neither infinities nor NaNs,
- no signed zeros,
- no upper bound.

Simplifications

Floating-point numbers as a subset \mathbb{F} of real numbers:

- neither infinities nor NaNs,
- no signed zeros,
- no upper bound.

$$
\mathbb{F}=\left\{m \cdot 2^{e} \in \mathbb{R} ;|m|<2^{p} \wedge e \geq e_{\min }\right\}
$$

Simplifications

Floating-point numbers as a subset \mathbb{F} of real numbers:

- neither infinities nor NaNs,
- no signed zeros,
- no upper bound.

$$
\mathbb{F}=\left\{m \cdot 2^{e} \in \mathbb{R} ;|m|<2^{p} \wedge e \geq e_{\min }\right\}
$$

Canonical representation:

- either $2^{p-1} \leq|m|<2^{p}$ and $e \geq e_{\text {min }}$, normal
- or $|m|<2^{p-1}$ and $e=e_{\text {min }}$.

Usual Properties: Representation and Successors

Given a representable number $x=m_{x} \cdot 2^{e_{x}} \geq 0$,

1. $y=\left(m_{x}+1\right) \cdot 2^{e_{x}} \in \mathbb{F}$,
2. $m_{x} \cdot 2^{e_{x}}$ canonic $\Rightarrow \nexists z \in \mathbb{F}, x<z<y$.

Usual Properties: Representation and Successors

Given a representable number $x=m_{x} \cdot 2^{e_{x}} \geq 0$,

1. $y=\left(m_{x}+1\right) \cdot 2^{e_{x}} \in \mathbb{F}$,
2. $m_{x} \cdot 2^{e_{x}}$ canonic $\Rightarrow \nexists z \in \mathbb{F}, x<z<y$.

Proof:

1. Hyp: $0 \leq m_{x}<2^{p}$ et $e_{x} \geq e_{\text {min }}$.

If $\left|m_{x}+1\right|<2^{p}$, then $y=\left(m_{x}+1\right) \cdot 2^{e_{x}} \in \mathbb{F}$.
Otherwise $m_{x}+1=2^{p}$, so $y=1 \cdot 2^{e_{x}+p} \in \mathbb{F}$.

Usual Properties: Representation and Successors

Given a representable number $x=m_{x} \cdot 2^{e_{x}} \geq 0$,

1. $y=\left(m_{x}+1\right) \cdot 2^{e_{x}} \in \mathbb{F}$,
2. $m_{x} \cdot 2^{e_{x}}$ canonic $\Rightarrow \nexists z \in \mathbb{F}, x<z<y$.

Proof:

1. Hyp: $0 \leq m_{x}<2^{p}$ et $e_{x} \geq e_{\text {min }}$.

If $\left|m_{x}+1\right|<2^{p}$, then $y=\left(m_{x}+1\right) \cdot 2^{e_{x}} \in \mathbb{F}$.
Otherwise $m_{x}+1=2^{p}$, so $y=1 \cdot 2^{e_{x}+p} \in \mathbb{F}$.
2. Hyp: $2^{p-1} \leq m_{x}<2^{p}$ or $e_{x}=e_{\text {min }}$.

If $m_{x} \cdot 2^{e_{x}}<m_{z} \cdot 2^{e_{z}}<\left(m_{x}+1\right) \cdot 2^{e_{x}}$, then $e_{z}>e_{x}$ and $m_{z}>2^{e_{x}-e z} m_{x} \geq 2 m_{x}$.

Usual Properties: Rounding Modes

Faithful rounding:

- $\nabla(x)=\max \{y \in \mathbb{F} \mid y \leq x\}$,
- $\Delta(x)=\min \{y \in \mathbb{F} \mid y \geq x\}$,
- either $\operatorname{rnd}(x)=\nabla(x)$ or $\operatorname{rnd}(x)=\Delta(x)$.

Usual Properties: Rounding Modes

Faithful rounding:

- $\nabla(x)=\max \{y \in \mathbb{F} \mid y \leq x\}$,
- $\Delta(x)=\min \{y \in \mathbb{F} \mid y \geq x\}$,
- either $\operatorname{rnd}(x)=\nabla(x)$ or $\operatorname{rnd}(x)=\Delta(x)$.

Idempotency:

$$
\forall x \in \mathbb{F}, \operatorname{rnd}(x)=x
$$

Usual Properties: Rounding Modes

Faithful rounding:

- $\nabla(x)=\max \{y \in \mathbb{F} \mid y \leq x\}$,
- $\Delta(x)=\min \{y \in \mathbb{F} \mid y \geq x\}$,
- either $\operatorname{rnd}(x)=\nabla(x)$ or $\operatorname{rnd}(x)=\Delta(x)$.

Idempotency:

$$
\forall x \in \mathbb{F}, \operatorname{rnd}(x)=x
$$

Local monotonicity:

$$
\forall x, y \in \mathbb{R}, y \in[\operatorname{rnd}(x), x] \Rightarrow \operatorname{rnd}(y)=\operatorname{rnd}(x)
$$

Usual Properties: Monotonicity

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Usual Properties: Monotonicity

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Proof:

- If $\nabla(x)<\nabla(y)$,

1. $x<\nabla(y)$ by definition of $\nabla(x)$,
2. $\operatorname{rnd}(x) \leq \Delta(x) \leq \nabla(y) \leq \square(y)$.

Usual Properties: Monotonicity

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Proof:

- If $\nabla(x)<\nabla(y)$,

1. $x<\nabla(y)$ by definition of $\nabla(x)$,
2. $\operatorname{rnd}(x) \leq \Delta(x) \leq \nabla(y) \leq \square(y)$.

- If $\nabla(x) \geq \nabla(y)$,

Usual Properties: Monotonicity

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Proof:

- If $\nabla(x)<\nabla(y)$,

1. $x<\nabla(y)$ by definition of $\nabla(x)$,
2. $\operatorname{rnd}(x) \leq \Delta(x) \leq \nabla(y) \leq \square(y)$.

- If $\nabla(x) \geq \nabla(y)$,

1. $\nabla(x)=\nabla(y)$ by definition of $\nabla(y)$,

Usual Properties: Monotonicity

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Proof:

- If $\nabla(x)<\nabla(y)$,

1. $x<\nabla(y)$ by definition of $\nabla(x)$,
2. $\operatorname{rnd}(x) \leq \Delta(x) \leq \nabla(y) \leq \square(y)$.

- If $\nabla(x) \geq \nabla(y)$,

1. $\nabla(x)=\nabla(y)$ by definition of $\nabla(y)$,
2. $\Delta(x)=\Delta(y)$ by idempotency or successor,

Usual Properties: Monotonicity

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Proof:

- If $\nabla(x)<\nabla(y)$,

1. $x<\nabla(y)$ by definition of $\nabla(x)$,
2. $\operatorname{rnd}(x) \leq \Delta(x) \leq \nabla(y) \leq \square(y)$.

- If $\nabla(x) \geq \nabla(y)$,

1. $\nabla(x)=\nabla(y)$ by definition of $\nabla(y)$,
2. $\Delta(x)=\Delta(y)$ by idempotency or successor,
3. if $\operatorname{rnd}(y)=\Delta(y)$, then $\operatorname{rnd}(x) \leq \operatorname{rnd}(y)$,

Usual Properties: Monotonicity

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Proof:

- If $\nabla(x)<\nabla(y)$,

1. $x<\nabla(y)$ by definition of $\nabla(x)$,
2. $\operatorname{rnd}(x) \leq \Delta(x) \leq \nabla(y) \leq \square(y)$.

- If $\nabla(x) \geq \nabla(y)$,

1. $\nabla(x)=\nabla(y)$ by definition of $\nabla(y)$,
2. $\Delta(x)=\Delta(y)$ by idempotency or successor,
3. if $\operatorname{rnd}(y)=\Delta(y)$, then $\operatorname{rnd}(x) \leq \operatorname{rnd}(y)$,
4. otherwise $\operatorname{rnd}(x)=\operatorname{rnd}(y)$ by local monotonicity.

Usual Properties: Monotonicity

Monotonicity:

$$
\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \operatorname{rnd}(x) \leq \operatorname{rnd}(y)
$$

Ordering with respect to representable numbers:

$$
\forall x \in \mathbb{F}, \forall y \in \mathbb{R}, x \leq y \Rightarrow x \leq \operatorname{rnd}(y)
$$

Usual Properties: Round-Off Errors

Rounding to nearest:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }-1}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }-1}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.
Proof:

1. Hyp: $0<x \notin \mathbb{F}$.
$\nabla(x)=m \cdot 2^{e}$ and $\Delta(x)=(m+1) \cdot 2^{e+1}$.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }-1}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.
Proof:

1. Hyp: $0<x \notin \mathbb{F}$.
$\nabla(x)=m \cdot 2^{e}$ and $\Delta(x)=(m+1) \cdot 2^{e+1}$.
2. $|\operatorname{rnd}(x)-x| \leq(\triangle(x)-\nabla(x)) / 2=2^{e-1}$.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }-1}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.
Proof:

1. Hyp: $0<x \notin \mathbb{F}$.
$\nabla(x)=m \cdot 2^{e}$ and $\Delta(x)=(m+1) \cdot 2^{e+1}$.
2. $|\operatorname{rnd}(x)-x| \leq(\triangle(x)-\nabla(x)) / 2=2^{e-1}$.

- If $\nabla(x)$ is subnormal, $e=e_{\text {min }}$.

$$
\varepsilon=0 \text { and } \delta=\operatorname{rnd}(x)-x \text { so }|\delta| \leq 2^{e_{\min }-1}
$$

Usual Properties: Round-Off Errors

Rounding to nearest:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }-1}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.

Proof:

1. Hyp: $0<x \notin \mathbb{F}$.
$\nabla(x)=m \cdot 2^{e}$ and $\Delta(x)=(m+1) \cdot 2^{e+1}$.
2. $|\operatorname{rnd}(x)-x| \leq(\triangle(x)-\nabla(x)) / 2=2^{e-1}$.

- If $\nabla(x)$ is subnormal, $e=e_{\text {min }}$.

$$
\varepsilon=0 \text { and } \delta=\operatorname{rnd}(x)-x \text { so }|\delta| \leq 2^{e_{\min }-1} .
$$

- If $\nabla(x)$ is normal, $2^{p-1} \leq m$.
$\delta=0$ and $\varepsilon=(\operatorname{rnd}(x)-x) / x$ so
$|\varepsilon| \leq 2^{e-1} /\left(2^{p-1} \cdot 2^{e}\right)=2^{-p}$.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }-1}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }-1}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.
Directed rounding:
For all $x \in$, there are ε and δ such that

$$
\operatorname{rnd}(x)=x \cdot(1+\varepsilon)+\delta \quad \text { and } \quad|\varepsilon| \leq 2^{-p+1} \quad \text { and } \quad|\delta| \leq 2^{e_{\min }}
$$

Moreover, $\delta=0$ or $\varepsilon=0$.

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

$$
\forall x, y \in \mathbb{F},|x+y| \leq 2^{e_{\min }+p} \Rightarrow x+y \in \mathbb{F}
$$

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

$$
\forall x, y \in \mathbb{F},|x+y| \leq 2^{e_{\min }+p} \Rightarrow x+y \in \mathbb{F}
$$

Proof:

1. $x=m_{x} \cdot 2^{e_{x}}$ and $y=m_{y} \cdot 2^{e_{y}}$.
2. $m=m_{x} \cdot 2^{e_{x}-e_{\text {min }}}+m_{y} \cdot 2^{e_{y}-e_{\text {min }}}$ and $x+y=m \cdot 2^{e_{\text {min }}}$.
3. $|m| \leq 2^{p}$ so $x+y \in \mathbb{F}$.

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

$$
\forall x, y \in \mathbb{F},|x+y| \leq 2^{e_{\min }+p} \Rightarrow x+y \in \mathbb{F}
$$

Proof:

1. $x=m_{x} \cdot 2^{e_{x}}$ and $y=m_{y} \cdot 2^{e_{y}}$.
2. $m=m_{x} \cdot 2^{e_{x}-e_{\text {min }}}+m_{y} \cdot 2^{e_{y}-e_{\text {min }}}$ and $x+y=m \cdot 2^{e_{\text {min }}}$.
3. $|m| \leq 2^{p}$ so $x+y \in \mathbb{F}$.

Round-off error for addition:

$$
\forall x, y \in \mathbb{F}, \exists \varepsilon, \circ(x+y)=(x+y) \cdot(1+\varepsilon) \quad \text { and } \quad|\varepsilon| \leq 2^{-p}
$$

Outline

> Handling Machine Integers

> Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Numerical Errors

Given two real numbers u and v,

- absolute error: $u-v,|u-v|$
- relative error: $u / v-1, \ldots$

Numerical Errors

Given two real numbers u and v,

- absolute error: $u-v,|u-v|$
- relative error: $u / v-1, \ldots$

Combining errors:

- $u-w=(u-v)+(v-w)$
- $|u-w| \leq|u-v|+|v-w|$
- $u / w-1=(u / v-1)+(v / w-1)+(u / v-1) \cdot(v / w-1)$

Numerical Errors

Given two real numbers u and v,

- absolute error: $u-v,|u-v|$
- relative error: $u / v-1, \ldots$

Combining errors:

- $u-w=(u-v)+(v-w)$
- $|u-w| \leq|u-v|+|v-w|$
- $u / w-1=(u / v-1)+(v / w-1)+(u / v-1) \cdot(v / w-1)$

Remark: $\operatorname{rnd}(u)-v=(\operatorname{rnd}(u)-u)+(u-v)$

Numerical Analysis

Notations:

- a mathematical function $f(x)$,
- a floating-point program $\tilde{f}(x)$,
- the infinitely-precise evaluation $\hat{f}(x)$ of $\tilde{f}(x)$.

Numerical Analysis

Notations:

- a mathematical function $f(x)$,
- a floating-point program $\tilde{f}(x)$,
- the infinitely-precise evaluation $\hat{f}(x)$ of $\tilde{f}(x)$.

Definitions:

- forward error: $\tilde{f}(x)-f(x)$,
- round-off error: $\tilde{f}(x)-\hat{f}(x)$
- method error: $\hat{f}(x)-f(x)$

Numerical Analysis

Notations:

- a mathematical function $f(x)$,
- a floating-point program $\tilde{f}(x)$,
- the infinitely-precise evaluation $\hat{f}(x)$ of $\tilde{f}(x)$.

Definitions:

- forward error: $\tilde{f}(x)-f(x)$,
- round-off error: $\tilde{f}(x)-\hat{f}(x)$
- method error: $\hat{f}(x)-f(x)$
- backward error: $\tilde{x}-x$ with \tilde{x} closest from x such that $f(\tilde{x})=\tilde{f}(x)$

Numerical Analysis

Notations:

- a mathematical function $f(x)$,
- a floating-point program $\tilde{f}(x)$,
- the infinitely-precise evaluation $\hat{f}(x)$ of $\tilde{f}(x)$.

Definitions:

- forward error: $\tilde{f}(x)-f(x)$,
- round-off error: $\tilde{f}(x)-\hat{f}(x)$
- method error: $\hat{f}(x)-f(x)$
- backward error: $\tilde{x}-x$ with \tilde{x} closest from x such that $f(\tilde{x})=\tilde{f}(x)$

Remark: $\tilde{f}(x)-f(x) \simeq(\tilde{x}-x) \times \frac{\partial f}{\partial x}$.
In other words: forward err \simeq backward err \times condition num.

Numerical Analysis

Evaluating $\sum_{i} a_{i} \cdot x^{i}$:
function Horner
(a:map binary32, $n: i n t, x: b i n a r y 32)$
body
let ref y := binary32_cst(0.) in
let ref $i=n$ in
for $i=0$ to $n-1$ do
y := binary32_add(binary32_mul(y, x), a[i]);
done;
y

Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms

Using Ghost Variables for Model Values

```
function det(a b c d: binary32, aM bM cM dM: real):
    (binary32, real)
body
    let t1 := binary32_mul(a, d) in
    let t1M := aM * dM in
    let t2 := binary32_mul(b, c) in
    let t2M := bM * CM in
    let t3 := binary32_sub(t1, t2) in
    let t3M := t1M - t2M in
    (t3, t3M)
```

Forward error: property about $t 3-t 3 M$ or $t 3 / t 3 M-1$.

Implicit Model Values

```
function of_bin32(x: binary32): real
function model_of(x: binary32): real
function binary32_add(x y: binary32): binary32
    requires
    abs(rnd...(of_bin32(x) + of_bin32(y))) \leq
        max_binary32
    ensures
```

```
of_bin32(result) =
```

of_bin32(result) =
rnd(of_bin32(x) + of_bin32(y)) ^
rnd(of_bin32(x) + of_bin32(y)) ^
model_of(result) = model_of(x) + model_of(y)

```
    model_of(result) = model_of(x) + model_of(y)
```


Abstract Interpretation

Domains for floating-point variables:

- for the computed value x,
- for the infinitely-precise value \hat{x},
- for the absolute error $x-\hat{x}$,

Abstract Interpretation

Domains for floating-point variables:

- for the computed value x,
- for the infinitely-precise value \hat{x},
- for the absolute error $x-\hat{x}$,

Naive domains:

- $[\underline{x}, \bar{x}]$ such that $x \in[\underline{x}, \bar{x}]$, ex: $\operatorname{rnd}(x+y) \in[\operatorname{rnd}(\underline{x}+\underline{y}), \operatorname{rnd}(\bar{x}+\bar{y})]$,
- no domain for \hat{x},
- δ_{x} such that $|x-\hat{x}| \leq \delta_{x}$,

$$
\mathrm{ex}: \delta_{x+y}=\delta_{x}+\delta_{y}+2^{-p} \max (\bar{x}+\bar{y},-(\underline{x}+\underline{y}))
$$

Outline

Handling Machine Integers
Floating-Point Computations
Numerical Analysis
\section*{Automation}

Numerical Algorithms

Newton's Iterated Square Root

```
function fp_sqrt_init(x:binary64) : binary64
    requires 0.5 \leq x \leq 2;
    ensures abs(result - 1/sqrt(x)) \leq 2^-6 * 1/sqrt(x);
```

function fp_sqrt(x:binary64) : binary64
requires $0.5 \leq \mathrm{x} \leq 2$;
ensures abs(result - sqrt(x)) $\leq 2^{\wedge}-43$ * sqrt(x);
body
let ref $t:=f p _s q r t _i n i t(x)$ in
for $i=1$ to 3 do
$t:=0.5$ * $t *(3-t * t * x) ;$
done;
$t * x$

Quadratic Convergence

For all u and x :

$$
0.5 u\left(3-u^{2} x\right) \sqrt{x}-1=-(1.5+0.5(u \sqrt{x}-1)) \times(u \sqrt{x}-1)^{2}
$$

Loop iterations:

$$
t_{n+1} \sqrt{x}-1 \simeq 0.5 t_{n}\left(3-t_{n}^{2} x\right) \sqrt{x}-1 \simeq-1.5\left(t_{n} \sqrt{x}-1\right)^{2}
$$

Round-off error at step n vanishes at step $n+1$.

Accurate Summation

Computing $\sum_{i} x_{i}$:

$$
\begin{aligned}
& s:=x[0] ; \\
& e:=0 . ; \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& y:=x[i] ; \\
& t:=s+y ; \\
& u:=t-y ; \\
& r:=(s-u)+(y-(t-u)) ; \\
& s:=t ; \\
& e \quad:=e+r ; \\
& \text { done; } \\
& s^{\prime}:=s+e ;
\end{aligned}
$$

Accurate Summation

Computing $\sum_{i} x_{i}$:

$$
\begin{aligned}
& s:=x[0] ; \\
& e:=0 . ; \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& y:=x[i] ; \\
& t:=s+y ; \\
& u \quad:=t-y ; \\
& r:=(s-u)+(y-(t-u)) ; \\
& s:=t ; \\
& e \quad:=e+r ; \\
& \text { done; } \\
& S^{\prime}:=s+e ;
\end{aligned}
$$

Naive sum

Accurate Summation

Computing $\sum_{i} x_{i}$:

$$
\begin{aligned}
& \text { s := x[0]; } \\
& \text { e := 0.; } \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& \text { y := x[i]; } \\
& \text { t := s + y; } \\
& \text { u := t - y; } \\
& r:=(s-u)+(y-(t-u)) ; \\
& \text { s : }=t \text {; } \\
& \text { e :=e +r; } \\
& \text { done; } \\
& s^{\prime}:=s+e ;
\end{aligned}
$$

Error-free addition: $t+r=s+y$

Error-Free Transformations

- Sterbenz: $\forall x, y \in F, x / 2 \leq y \leq 2 x \Rightarrow \operatorname{rnd}(x-y)=x-y$

Error-Free Transformations

- Sterbenz: $\forall x, y \in F, x / 2 \leq y \leq 2 x \Rightarrow \operatorname{rnd}(x-y)=x-y$
- error of addition: $\forall x, y \in F, \operatorname{rnd}(x+y)-(x+y) \in F$

Error-Free Transformations

- Sterbenz: $\forall x, y \in F, x / 2 \leq y \leq 2 x \Rightarrow \operatorname{rnd}(x-y)=x-y$
- error of addition: $\forall x, y \in F, \operatorname{rnd}(x+y)-(x+y) \in F$
- fast twosum: $\forall x, y \in F,|x| \geq|y| \Rightarrow s+e=x+y$ with $s=\operatorname{rnd}(x+y)$ and $e=\operatorname{rnd}(y-\operatorname{rnd}(s-x))$

Error-Free Transformations

- Sterbenz: $\forall x, y \in F, x / 2 \leq y \leq 2 x \Rightarrow \operatorname{rnd}(x-y)=x-y$
- error of addition: $\forall x, y \in F, \operatorname{rnd}(x+y)-(x+y) \in F$
- fast twosum: $\forall x, y \in F,|x| \geq|y| \Rightarrow s+e=x+y$ with $s=\operatorname{rnd}(x+y)$ and $e=\operatorname{rnd}(y-\operatorname{rnd}(s-x))$
- twosum: $\forall x, y \in F, s+e=x+y$ with $s=\operatorname{rnd}(x+y)$ and $u=\operatorname{rnd}(s-y)$ and $e=\operatorname{rnd}(\operatorname{rnd}(x-u)+\operatorname{rnd}(y-\operatorname{rnd}(s-u)))$

Payne \& Hanek's Argument Reduction

Reducing $x \geq 2^{31}$ to $0 \leq y \lesssim \pi / 4$ for circular functions:

```
function reduce(x:binary32): (binary32, int)
    requires 2^31 \leq x
    ensures exists l:int.
        abs((result + k * pi/4) - (x + l * 2*pi)) \leq 2^-25
body
    let }\mp@subsup{x}{}{\prime}=\mathrm{ binary64_of_binary32 x in
    let }t=\mp@subsup{x}{}{\prime}* * 1.273239545... in
    let k = trunc(t) in
    let }y=(t-k)*0.785398163... in
    (binary32_of_binary64(y), k)
```

Note: computations are performed with binary 64.

Payne \& Hanek's Argument Reduction

Reducing $x \geq 2^{31}$ to $0 \leq y \lesssim \pi / 4$ for circular functions:

```
function reduce(x:binary32): (binary32, int)
    requires 2^31 \leq x
    ensures exists l:int.
        abs((result + k * pi/4) - (x + l * 2*pi)) \leq 2^-25
body
    let }\mp@subsup{x}{}{\prime}=\mathrm{ binary64_of__binary32 x in
    let t = x' * 0.02323954474... in
    let k = trunc(t) in
    let }y=(t-k)*0.785398163... in
    (binary32_of_binary64(y), k)
```

Note: computations are performed with binary 64.

