Numeric Programs

Guillaume Melquiond
MPRI 2-36-1 “Preuve de Programme”

January 23rd, 2013

Reminder of Previous Lectures

» ML-like programs:

Reminder of Previous Lectures

» ML-like programs:
» mutable variables,

Reminder of Previous Lectures

» ML-like programs:
» mutable variables,
» recursive functions,

Reminder of Previous Lectures

» ML-like programs:
» mutable variables,
» recursive functions,
» basic types: integers, reals,

Reminder of Previous Lectures

» ML-like programs:
» mutable variables,
» recursive functions,
» basic types: integers, reals,
> arrays,

Reminder of Previous Lectures

» ML-like programs:

» mutable variables,
recursive functions,
basic types: integers, reals,
arrays,
algebraic datatypes.

vV vy vy

Reminder of Previous Lectures

» ML-like programs:

» mutable variables,
recursive functions,
basic types: integers, reals,
arrays,
algebraic datatypes.

» Program specification and verification:

v

v vy

Reminder of Previous Lectures

» ML-like programs:
» mutable variables,
recursive functions,
basic types: integers, reals,
arrays,
algebraic datatypes.
» Program specification and verification:
» Hoare logic: safety, validity, termination,

vV vy vy

Reminder of Previous Lectures

» ML-like programs:
» mutable variables,

recursive functions,

basic types: integers, reals,

arrays,

algebraic datatypes.

» Program specification and verification:
» Hoare logic: safety, validity, termination,
» weakest precondition computations,

vV vy vy

Reminder of Previous Lectures

» ML-like programs:

» mutable variables,
recursive functions,
basic types: integers, reals,
arrays,
algebraic datatypes.

» Program specification and verification:
» Hoare logic: safety, validity, termination,

» weakest precondition computations,
» modular verification: function contract,

vV vy vy

Reminder of Previous Lectures

» ML-like programs:

» mutable variables,
recursive functions,
basic types: integers, reals,
arrays,
algebraic datatypes.
» Program specification and verification:
Hoare logic: safety, validity, termination,
weakest precondition computations,
modular verification: function contract,
abstract types and axioms,

vV vy vy

v

v vy

Reminder of Previous Lectures

» ML-like programs:

» mutable variables,
recursive functions,
basic types: integers, reals,
arrays,
algebraic datatypes.

» Program specification and verification:

Hoare logic: safety, validity, termination,
weakest precondition computations,
modular verification: function contract,
abstract types and axioms,

logic functions and predicates,

vV vy vy

v

vV vy vy

Reminder of Previous Lectures

» ML-like programs:
» mutable variables,
recursive functions,
basic types: integers, reals,
arrays,
algebraic datatypes.
» Program specification and verification:
» Hoare logic: safety, validity, termination,
weakest precondition computations,
modular verification: function contract,
abstract types and axioms,
logic functions and predicates,
recursive and inductive definitions.

vV vy vy

vV vy vy VvYy

Computers and Number Representations

» 32-bit signed integers in two-complement:

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1 52,
» 2147483647 +1 — —2147483648,

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,
» 2147483647 +1 — —2147483648,
» 1000002 — 1410065408,

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,
» 2147483647 + 1 — —2147483648,
» 100000% — 1410065408,
» —2147483648 mod — 1 — boom (floating-point exn?!).

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,
» 2147483647 + 1 — —2147483648,
» 100000% — 1410065408,
» —2147483648 mod — 1 — boom (floating-point exn?!).

» |IEEE-754 binary64 floating-point numbers:

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,
» 2147483647 + 1 — —2147483648,
» 100000% — 1410065408,
» —2147483648 mod — 1 — boom (floating-point exn?!).

» |IEEE-754 binary64 floating-point numbers:
> 2X2X - X2 400,

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,
» 2147483647 + 1 — —2147483648,
» 100000% — 1410065408,
» —2147483648 mod — 1 — boom (floating-point exn?!).

» |IEEE-754 binary64 floating-point numbers:

> 2X2X X2 +00,
» 10— +oo,

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,
» 2147483647 + 1 — —2147483648,
» 100000% — 1410065408,
» —2147483648 mod — 1 — boom (floating-point exn?!).

» |IEEE-754 binary64 floating-point numbers:
> 2X2X X2 +00,
» 10— +oo,
» 1+--0— —o0,

Computers and Number Representations

» 32-bit signed integers in two-complement:
»1+1->2,
» 2147483647 + 1 — —2147483648,
» 100000% — 1410065408,
» —2147483648 mod — 1 — boom (floating-point exn?!).

» |IEEE-754 binary64 floating-point numbers:
> 2X2X X2 +00,
» 10— +o0o,
» 1+-0— —o0,
» 0+0— NaN.

Some Numerical Failures

» 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

Some Numerical Failures

» 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

» 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

Some Numerical Failures

» 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

» 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

» 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

Some Numerical Failures

» 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

» 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

» 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

» 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

Some Numerical Failures

» 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

» 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

» 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

» 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

» 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

Some Numerical Failures

» 1983, truncation when computing an index of Vancouver
Stock Exchange drops it to half its value after 6 months.

» 1987, the inflation in UK is computed with a rounding error:
pensions are off by £100M for 21 months.

» 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

» 1992, Green Party of Schleswig-Holstein seats in
Parliament for a few hours, until a rounding error is
discovered.

» 1995, Ariane 5 explodes during its maiden flight due to an
overflow: insurance cost is $500M.

» 2007, Excel displays 77.1 x 850 as 100000.

Some Numerical Failures

» 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.

Time is tracked by fixed-point arith.: 0.1 ~ 209715 . 224,
Cumulated skew after 24h: —0.08s, distance: 160m.
System was supposed to be rebooted periodically.

Some Numerical Failures

» 1991, during Gulf War 1, a Patriot system fails to intercept
a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.

Time is tracked by fixed-point arith.: 0.1 ~ 209715 . 224,
Cumulated skew after 24h: —0.08s, distance: 160m.
System was supposed to be rebooted periodically.

» 2007, Excel displays 77.1 x 850 as 100000.

Bug in binary/decimal conversion.
Failing inputs: 12 FP numbers.
Probability to uncover them by random testing: 10~ 8.

Outline

Handling Machine Integers

Binary Search

Exercise: Find appropriate precondition, postcondition, loop
invariant, and variant, for this program:

function binary_search(a:map int, n v:int): int
body
try
let ref 1 = 0 in
let ref u = n - 1 in
while 1 < u do
let m = div (1 + u) 2 in
if a[m] < v then
1l :=m
else if a
u :=m
else
raise (Break m)
done;
raise Not_found
with Break i — i

I — +

1
m] > v then
1

Target Type: int32

» 32-bit signed integers in two-complement representation:
integers between —23'" and 231 — 1.

Target Type: int32

» 32-bit signed integers in two-complement representation:
integers between —23'" and 231 — 1.

» If the mathematical result of an operation fits in that range,
that is the computed result.

Target Type: int32

» 32-bit signed integers in two-complement representation:
integers between —23'" and 231 — 1.

» If the mathematical result of an operation fits in that range,
that is the computed result.

» Otherwise, an overflow occurs.
Behavior depends on language and environment:
modulo arith, saturated arith, abrupt termination, etc.

Target Type: int32

» 32-bit signed integers in two-complement representation:
integers between —23'" and 231 — 1.

» If the mathematical result of an operation fits in that range,
that is the computed result.

» Otherwise, an overflow occurs.

Behavior depends on language and environment:
modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Safety Checking

Idea: replace all arithmetic operations by abstract functions

with preconditions. x — y becomes int32_sub(x, y).

function int32_sub(x: int, y: int): int
requires -27"31 < x -y < 2731

ensures result X -V

Safety Checking, Try 2

Idea: replace

» type int with an abstract type coercible to it,

» all operations by abstract functions with preconditions,
and add an axiom about the range of int32.

type int32
function of int32(x: int32): int
axiom bounded_int32:
forall x: int32. -2731 < of_int32(x) < 2731

function int32_sub(x: int32, y: int32): int32
requires -2731 < of_int32(x) + of_int32(y) < 2731
ensures of_int32 (result) = of_int32(x) - of_int32(y)

Exercises

1. How to handle int32 constants in programs?

2. How to specify saturating arithmetic?

Outline

Floating-Point Computations

Floating-Point Arithmetic

» Limited range = exceptional behaviors.
» Limited precision = inaccurate results.

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + w,, = 32, or 64, or 128.
Bias: 2%—1 — 1. Precision: p = wy, + 1.

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + w,, = 32, or 64, or 128.
Bias: 2%—1 — 1. Precision: p = wy, + 1.

A floating-point datum
| sign s | biased exponent €’ (we bits) | mantissa m (wy, bits) |
represents

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + w,, = 32, or 64, or 128.
Bias: 2%—1 — 1. Precision: p = wy, + 1.

A floating-point datum
| sign s | biased exponent €’ (we bits) | mantissa m (wy, bits) |
represents

» if0 < & <2% —1,thereal (—1)-1.m’ - 2¢~b@ normal

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + w,, = 32, or 64, or 128.
Bias: 2%—1 — 1. Precision: p = wy, + 1.

A floating-point datum
| sign s | biased exponent €’ (we bits) | mantissa m (wy, bits) |

represents
» if0 < & <2% —1,thereal (—1)-1.m’ - 2¢~b@ normal
» if e =0,
» +0if m =0, zeros

» the real (—1)-0.m7 - 27b@+1 otherwise, subnormal

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: 1 + we + w,, = 32, or 64, or 128.
Bias: 2%—1 — 1. Precision: p = wy, + 1.

A floating-point datum
| sign s | biased exponent €’ (we bits) | mantissa m (wy, bits) |
represents

» if0 < & <2% —1,thereal (—1)-1.m’ - 2¢~b@ normal

» if e =0,
» +0if mM =0, Zeros
» the real (—1)-0.m7 - 27b@+1 otherwise, subnormal
> if & =2%e — 1,
> (=1)°-c0if m =0, infinity

» Not-a-Number otherwise. NaN

Floating-Point Data

[10010011110000111000000

S e f
{ { i}
(-1)° = 2¢F x 1.f

(-1)' x 219127 1.10010011110000111000000,

2% 206727 ~ —3.7 x 107

Semantics for the Finite Case

A floating-point operator shall behave as if it was
first computing the infinitely-precise value

and then rounding it so that it fits in the destination
floating-point format.

Semantics for the Finite Case

A floating-point operator shall behave as if it was
first computing the infinitely-precise value

and then rounding it so that it fits in the destination
floating-point format.

Rounding of a real number x:

Overflows are not considered when defining rounding:
exponents are supposed to have no upper bound!

Partial Specification

Same as with integers, we specify FP operations
so that no overflow occurs.

type bin32
function of bin32 (x: bin32): real
axiom finite_bin32: forall x: bin32. 2?7

function rnd... (x: real): real
axiom about_rnd...: 2?7

function bin32_sub(x: bin32, y: bin32): bin32
requires abs (rnd... (0of_bin32(x) - of_bin32(y))) <
ensures of_bin32 (result) =
rnd(of_bin32(x) - of_bin32(y))

Simplifications

Floating-point numbers as a subset F of real numbers:
» neither infinities nor NaNs,

Simplifications

Floating-point numbers as a subset F of real numbers:
» neither infinities nor NaNs,
» no signed zeros,

Simplifications

Floating-point numbers as a subset F of real numbers:
» neither infinities nor NaNs,
» no signed zeros,
» no upper bound.

Simplifications

Floating-point numbers as a subset F of real numbers:
» neither infinities nor NaNs,
» no signed zeros,
» no upper bound.

F={m-2°€cR; Im <2PAe> enn}

Simplifications

Floating-point numbers as a subset F of real numbers:
» neither infinities nor NaNs,
» no signed zeros,
» no upper bound.

F={m-2° R,

m| < 2P A e > emin}

Canonical representation:
» either 2°~" < |m| < 2P and e > ey, normal
» or |m| < 2P~ and e = eyp. subnormal

Usual Properties: Representation and Successors

Given a representable number x = my - 2%« > 0,
1. y=(mx+1)-2% ¢,
2. my-2%canonic=AzeF, x<z<y.

Usual Properties: Representation and Successors

Given a representable number x = my - 2%« > 0,
1. y=(mxy+1)-2% €T,
2. my-2%canonic=AzeF, x<z<y.

Proof:
1. Hyp: 0 < my < 2P et ex > énin.
If [my +1| < 2P, theny = (my+1)-2% € F.
Otherwise my +1=2P, soy =1.2%"P c F.

Usual Properties: Representation and Successors

Given a representable number x = my - 2%« > 0,
1. y=(mxy+1)-2% €T,
2. my-2%canonic=AzeF, x<z<y.

Proof:
1. Hyp: 0 < my < 2P et ex > €nin.
If [my +1| < 2P, theny = (my+1)-2% € F.
Otherwise my +1=2P,soy =1.2%*P c I,

2. Hyp: 2°P~1 < my < 2P or ey = emin.
If my-2% < m,-2% < (my+1) 2%,
then e, > e, and m, > 2%=%m, > 2my.

Usual Properties: Rounding Modes

Faithful rounding:
» V(x)=max{y e F|y < x},
» A(x)=min{y e F |y > x},
» either rnd(x) = {/(x) or rnd(x) = A(x).

Usual Properties: Rounding Modes

Faithful rounding:
» V(x)=max{y e F|y < x},
» A(x)=min{y e F |y > x},
» either rnd(x) = {/(x) or rnd(x) = A(x).

ldempotency:
Vx € F, rnd(x) = x

Usual Properties: Rounding Modes

Faithful rounding:
» V(x)=max{y e F|y < x},
» A(x)=min{y e F |y > x},
» either rnd(x) = {/(x) or rnd(x) = A(x).

ldempotency:

Vx € F, rnd(x) = x

Local monotonicity:

Vx,y € R, y € [rnd(x), x] = rnd(y) = rnd(x)

Usual Properties: Monotonicity

Vx,y € R, x <y = rnd(x) <rnd(y)

Usual Properties: Monotonicity

Vx,y € R, x <y = rnd(x) <rnd(y)

Proof:
> IfV(x) < V()
1. x < V(y) by definition of \/(x),
2. d(x) < A(x) < V(y) <0(y).

Usual Properties: Monotonicity

Vx,y € R, x <y = rnd(x) <rnd(y)

Proof:

> FV(X) < V),
1. x < V(y) by definition of \/(x),

2. md(x) < A(x) < V() < O(y).
> EV(x) > V(y),

Usual Properties: Monotonicity

Vx,y € R, x <y = rnd(x) <rnd(y)

Proof:
> IfV(x) < V()
1. x < V(y) by definition of \/(x),
2. d(x) < A(x) < V(y) <0(y).

> 1f V(x) > V(y),
1. V(x) = V(y) by definition of (),

Usual Properties: Monotonicity

Vx,y € R, x <y =rnd(x) <rnd(y)

Proof:
> IfV(x) < V()
1. x < V(y) by definition of \/(x),
2. d(x) < A(x) < V(y) <0(y).

> IEV() = V()

1. V(x) = V(¥) by definition of \/(y),
2. A(x) = A(y) by idempotency or successor,

Usual Properties: Monotonicity

Vx,y € R, x <y =rnd(x) <rnd(y)

Proof:
> IfV(x) < V()
1. x < V(y) by definition of \/(x),
2. d(x) < A(x) < V(y) <0(y).

> IEV() = V()

1. V(x) = V(y) by definition of {/(y),
2. A(x) = A(y) by idempotency or successor,
3. ifrnd(y) = A(y), then rnd(x) < rnd(y),

Usual Properties: Monotonicity

Vx,y € R, x <y =rnd(x) <rnd(y)

Proof:

> FV(X) < V),
1. x < V(y) by definition of \/(x),
2. md(x) < A(x) < V(y) <0(y).

> IFV(x) > V(y),
1. V(x) = V(¥) by definition of \/(y),
2. A(x) = A(y) by idempotency or successor,
3. ifrnd(y) = A(y), then rnd(x) < rnd(y),
4. otherwise rnd(x) = rnd(y) by local monotonicity.

Usual Properties: Monotonicity

Monotonicity:

Vx,y € R, x <y =rnd(x) <rnd(y)

Ordering with respect to representable numbers:

VX eF, Vy eR, x <y = x <rnd(y)

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ¢, there are € and ¢ such that

rmd(x) =x-(1+e)+d and [¢|<27P and |§| < 28mn—"

Moreover, 6 =0 ore = 0.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ¢, there are € and ¢ such that

rmd(x) =x-(1+e)+d and [¢|<27P and |§| < 28mn—"
Moreover, 6 = 0 or e = 0.

Proof:

1. Hyp: 0 < x ¢ FF.
V(x)=m-2%and A(X) = (m+1) -2+,

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ¢, there are € and ¢ such that

rmd(x) =x-(1+e)+d and [¢|<27P and |§| < 28mn—"
Moreover, 6 = 0 or e = 0.

Proof:
1. Hyp: 0 < x ¢ FF.
V(x)=m-2%and A(x) = (m+1) - 281,
2. [rd(x) — x| < (A(x) = V(x))/2=2°".

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ¢, there are € and ¢ such that

md(x)=x-(1+¢e)+d and |g/<27P and |§] < 28mn~"
Moreover, 6 = 0 or e = 0.

Proof:
1. Hyp: 0 < x ¢ FF.
V(x)=m-2%and A(X) = (m+1) -2+,
2. rmd(x) — x| < (A(x) = V(x))/2=2°"".
» If \/(x) is subnormal, e = emjn.
e=0and ¢ = rnd(x) — x so |§] < 28mn—T,

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x ¢, there are € and ¢ such that

md(x)=x-(1+¢e)+d and |g/<27P and |§] < 28mn~"
Moreover, 6 = 0 or e =

Proof:

1. Hyp: 0 < x ¢ FF.
V(x)=m-2%and A(X) = (m+1) -2+,

2. |md(x) — x| < (A(x) = V(x))/2=2°".
» If V(x) is subnormal, e = enin.
e=0and ¢ = rnd(x) — x so |§] < 28mn—T,
» If V(x) is normal, 2P~ < m.
d=0ande = (rnd(x) — x)/x so
le| < 261 /(2P—1.2°) = 2-P,

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x €, there are € and ¢ such that

md(x)=x-(1+¢)+4d and |g|<27P and [§] < 26min—1

Moreover, 6 =0 ore = 0.

Usual Properties: Round-Off Errors

Rounding to nearest:
For all x €, there are € and ¢ such that

md(x)=x-(1+¢)+4d and |g|<27P and [§] < 26min—1
Moreover, 6 = 0 or e = 0.

Directed rounding:
For all x €, there are € and ¢ such that

md(x)=x-(1+e)+d and |¢f <2 Pt and |§| < 28min

Moreover, 6 =0 ore = 0.

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

VX, y €F, [x +y| <2%mntP = x yc F

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:

Vx,y €F, |x+y|<2%mtP = x+yeF

Proof:
1. x=my-2%and y = m, - 2%.
2. m=my-2% nin 4 m, . 2% %mn and x + y = m - 26min,
3. Im<2Psox+yePF.

Usual Properties: Subnormal Addition

Sums in the subnormal range are representable:
VX, y €F, [x +y| <2%mntP = x yc F

Proof:
1. x=my-2%and y = m, - 2%.
2. m=my-2% Cmn - m, .28 €mn and x + y = m - 28min,
3. Im<2Psox+yePF.

Round-off error for addition:

VX,y €F, Je, o(x+y)=(x+y)-(1+¢) and || <27

Outline

Numerical Analysis

Numerical Errors

Given two real numbers u and v,
» absolute error: u — v, |u— V|
» relative error: u/v —1, ...

Numerical Errors

Given two real numbers u and v,
» absolute error: u — v, |u— V|
» relative error: u/v —1, ...

Combining errors:
»uU—w=(U—-V)+(v—w)
> lu—w|<|u—V|+|v—w|
»u/w—1=(u/v-1)+((v/w—-1)+(u/v—-1)-(v/w—-1)

Numerical Errors

Given two real numbers u and v,
» absolute error: u — v, |u— V|
» relative error: u/v —1, ...

Combining errors:
»uU—w=(U—-V)+(v—w)
> lu—w|<|u—V|+|v—w|
»u/w—1=(u/v-1)+((v/w—-1)+(u/v—-1)-(v/w—-1)

Remark: rnd(u) — v = (rnd(u) — u) + (u — v)

Numerical Analysis

Notations:
» a mathematical function f(x),
» a floating-point program ?(x),
» the infinitely-precise evaluation (x) of f(x).

Numerical Analysis

Notations:
» a mathematical function f(x),
» a floating-point program ?(x),
» the infinitely-precise evaluation (x) of f(x).

Definitions:
» forward error: f(x) — f(x),
> round-off error: f(x) — 7(x)
» method error: f(x) — f(x)

Numerical Analysis

Notations:
» a mathematical function f(x),
» a floating-point program ?(x),
» the infinitely-precise evaluation (x) of f(x).

Definitions:
» forward error: f(x) — f(x),
> round-off error: f(x) — 7(x)
» method error: f(x) — f(x)

» backward error: X — x y
with X closest from x such that f(x) = f(x)

Numerical Analysis

Notations:
» a mathematical function f(x),
» a floating-point program ?(x),
» the infinitely-precise evaluation (x) of f(x).

Definitions:
» forward error: f(x) — f(x),
> round-off error: f(x) — 7(x)
» method error: f(x) — f(x)

» backward error: X — x y
with X closest from x such that f(x) = f(x)

Remark: f(x) — f(x) ~ (X — x) x 9L
In other words: forward err ~ backward err x condition num.

Numerical Analysis

Evaluating >, a; - x":

function Horner
(a:map binary32, n:int, x:binary32)

body
let ref y := binary32_cst(0.) in
let ref i := n in
for i = 0 ton - 1 do
y := binary32_add(binary32_mul (y,
done;

y

Outline

Automation

Using Ghost Variables for Model Values

function det(a b ¢ d: binary32,

(binary32, real)

body
let t1 := binary32_mul(a, d) in
let t1M := aM * dM in
let t2 := binary32_mul (b, c) in
let t2M := bM * cM in
let t3 := binary32_sub(tl, t2) in
let t3M := t1M - t2M in
(t3, t3M)

Forward error: property about t3 — t3Mort3/t3mM - 1.

aM bM cM dM:

real) :

Implicit Model Values

function of_bin32(x: binary32): real
function model_of (x: binary32): real
function binary32_add(x y: binary32)
requires
abs (rnd... (of_bin32 (x)
max_binary32

binary32
ensures

+ of_bin32(y))) <

of _bin32 (result) =
rnd (of_bin32(x) + of_bin32(y)) A

model_of (result) = model_of (x)

+ model_of (y)

Abstract Interpretation

Domains for floating-point variables:

v

for the computed value x,

v

for the infinitely-precise value X,

v

for the absolute error x — X,

Abstract Interpretation

Domains for floating-point variables:

v

for the computed value x,

v

for the infinitely-precise value X,

v

for the absolute error x — X,

Naive domains:
» [x,X] such that x € [x,X],
ex: rnd(x + y) € [rnd(x + y),rnd(Xx + y)],
» no domain for X,
» 0y such that |x — X| < 4y,
ex: Ox4y = 0x + 0y + 2 Pmax(x +y, —(x + y))

Outline

Numerical Algorithms

Newton’s Iterated Square Root

function fp_sqgrt_init (x:binary64) : binary64

requires 0.5 < x < 25
ensures abs (result - 1/sqrt(x)) < 2"-6 » 1/sqgrt (x);

function fp_sqgrt (x:binary64) : binary64

requires 0.5 < x < 25

ensures abs (result - sqgrt(x)) < 27-43 x sqgrt(x);
body

let ref t := fp_sqgrt_init(x) in

for i = 1 to 3 do

t := 0.5 « t » (3 —t » t * x);
done;

t x x

Quadratic Convergence

For all u and x:

0.5u(3 — t’x)vx —1 = —(1.54 0.5(uv/x — 1)) x (uv/x — 1)?

Loop iterations:
th1VX — 12~ 0.56,(3 — 2x)vVx — 1~ —1.5(t,v/x — 1)?

Round-off error at step n vanishes at step n+ 1.

Accurate Summation

Computing »; x;:

s := x[0];

e := 0.;

for i =1 ton - 1 do
y = x[1];

t :=s + vy,

u =t - y;

r := (s —u) + (y — (t
s = t;

e = e + r;

done;

s’ = s + e;

Accurate Summation

Computing »; x;:

s = x[0];

e := 0.;

for i =1 ton - 1 do
y = x[1];
t = s + y;
u =t - y;
r := (s —u) + (y — (t
s = t;
e = e + r;

done;

s’ = s + e;

Naive sum

Accurate Summation

Computing »; x;:

s := x[0];

e := 0.;

for i =1 ton - 1 do
y = x[1];
t = s + y;
u =t - y;
r := (s —u) + (y — (t
s = t;
e = e + r;

done;

s’ = s + e;

Error-free addition: t+r=s+y

Error-Free Transformations

» Sterbenz:Vx,y e F, x/2<y<2x=rmd(x—-y)=x—y

Error-Free Transformations

» Sterbenz:Vx,y e F, x/2<y<2x=rmd(x—-y)=x—y

» error of addition: Vx,y € F, rnd(x +y) — (x+y) € F

Error-Free Transformations

» Sterbenz:Vx,y e F, x/2<y<2x=rd(x—y)=x—y
» error of addition: Vx,y € F, rnd(x +y) — (x +y) € F

» fasttwosum: Vx,y € F, |x| > |y|=s+e=x+Yy
with s = rnd(x + y) and e = rnd(y — rnd(s — x))

Error-Free Transformations

» Sterbenz:Vx,y e F, x/2<y<2x=rd(x—y)=x—y
» error of addition: Vx,y € F, rnd(x +y) — (x +y) € F

» fasttwosum: Vx,y € F, |x| > |y|=s+e=x+Yy
with s = rnd(x + y) and e = rnd(y — rnd(s — x))

» twosum: Vx,y € F, s+e=x+y
with s = rnd(x + y) and u = rnd(s — y) and
e = rnd(rnd(x — u) + rnd(y — rnd(s — u)))

Payne & Hanek’s Argument Reduction

Reducing x > 23" to 0 < y < /4 for circular functions:

function reduce (x:binary32): (binary32, int)
requires 2731 < x
ensures exists l:int.

abs ((result + k % pi/4) - (x + 1 x 2xpi)) < 27-25
body
let x’ = binary64_of_binary32 x in
let t = x" % 1.273239545... in

let k = trunc(t) in
let vy (t — k) = 0.785398163... in
(binary32_of_binary64(y), k)

Note: computations are performed with binary64.

Payne & Hanek’s Argument Reduction

Reducing x > 23" to 0 < y < /4 for circular functions:

function reduce (x:binary32): (binary32, int)
requires 2731 < x
ensures exists l:int.

abs ((result + k % pi/4) - (x + 1 x 2xpi)) < 27-25
body
let x’ = binary64_of_binary32 x in
let t = x" % 0.02323954474... in

let k = trunc(t) in
let vy (t — k) = 0.785398163... in
(binary32_of_binary64(y), k)

Note: computations are performed with binary64.

	Handling Machine Integers
	Floating-Point Computations
	Numerical Analysis
	Automation
	Numerical Algorithms

