
ORSAY
No d’ordre: 9366

UNIVERSITÉ DE PARIS-SUD 11

CENTRE D’ORSAY

THÈSE
présentée

pour obtenir

le grade de docteur en sciences DE L’UNIVERSITÉ PARIS XI

PAR

Yannick MOY
−→←−

SUJET :

Preuve automatique et modulaire de la sûreté de fonctionnement
des programmes C

Automatic Modular Static Safety Checking for C Programs

soutenue le 15 janvier 2009 devant la commission d’examen

MM. Burkhart Wolff
K. Rustan M. Leino
Xavier Leroy
Michael Norrish
Claude Marché
Pierre Crégut

J’ai commencé cette thèse, après quatre années à la R&D de PolySpace, parce que je
voulais comprendre comment mieux répondre au problème d’analyse et de vérification des
programmes informatiques. Ces trois années m’ont largement satisfaites sur ce point, et
m’ont permis de connaître des personnes admirables autant du point de vue professionnel
que personnel.

Je voudrais remercier pour leur fantastique état d’esprit toutes les personnes de l’équipe
ProVal, avec une mention spéciale à Évelyne et Jean-Christophe pour leurs gâteaux déli-
cieux, et Jean-Christophe et Sylvain pour l’ambiance sonore chaleureuse.

Je remercie respectueusement mes deux directeurs de thèse, Claude et Pierre, pour
m’avoir accompagné ces trois années sur le dur chemin de la recherche, et je leur dis mon
admiration pour leur talent et leur travail.

Je veux remercier sincèrement toutes les personnes de mon jury en plus de mes di-
recteurs, Burkhart, Rustan, Xavier et Michael, qui sont tous des chercheurs que j’admire
profondément. Vos suggestions, vos remarques et vos questions m’ont permis de mieux
comprendre mon sujet et d’avancer encore un peu plus.

Je décerne la palme du meilleur soutien de thèse à Jean-Christophe, pour m’avoir motivé
tous les mercredis (enfin presque) à aller jouer au foot, en plus d’être une source inépuisable
d’énergie et d’inventivité, toujours prêt à discuter d’une idée ou d’un problème.

J’octroie la coupe du meilleur prof à François pour qui j’ai donné des TD à l’Ecole
Polytechnique, c’était un plaisir d’apporter ma présence à un travail aussi magnifiquement
présenté.

Je veux remercier tous ceux avec qui j’ai travaillé, discuté de problèmes ou partagé des
bons moments au travail durant ces trois années: Yves-Marie, Guillaume, Fayçal, Laurent
et Cuit aux Orange Labs, Benjamin, Virgile, Julien, Pascal et Patrick au CEA, Dillon à Das-
sault Aviation, David à Airbus, Charles et Xavier à EADS, Francesco et Nikolaj à Microsoft
Research, Matteo à Google, Sriram aux NEC Labs.

Je remercie tout spécialement ces amis qui sont passés ou sont encore à Orsay: Nicolas
S., Jean-François, Aurélien, Alexandre, Stéphane, Johannes, Louis. Je réserve une mention
spéciale à Florence pour sa bonne humeur contagieuse, en attendant sa soutenance !

Merci à tous mes amis, ceux qui ont pu se déplacer pour la soutenance et tous les autres,
votre soutien m’a toujours aidé.

Merci papa, maman, Pierre, Jojo et Manue, vous êtes mon public admiratif préféré.
Enfin, un million de fois merci ma femme chérie, Alexandra, rien de tout cela n’aurait

existé sans toi.

4

Contents

1 Introduction 15
1.1 Language-Based Dependability of C Programs 16

1.1.1 Problem Statement . 16
1.1.2 Technical Account . 17
1.1.3 Historical Account . 19
1.1.4 Work in Progress . 21

1.2 C Language Safety Issues . 22
1.2.1 Lack of Precise Semantics . 22
1.2.2 Lack of Language-Based Safety Mechanisms 23
1.2.3 Remediation Techniques . 27
1.2.4 Better C Initiatives . 29

1.3 Techniques and Tools . 30
1.3.1 Enumeration Techniques . 31
1.3.2 Abstraction Techniques . 32
1.3.3 Deduction Techniques . 33
1.3.4 Combination Thereof . 33

1.4 Statement of Purpose . 34
1.5 Summary of Contributions . 35
1.6 Organization of This Thesis . 36

I Integer and Memory Safety Checking 39

2 Intermediate Language Definition 41
2.1 JESSIE Rationale . 42
2.2 JESSIE Syntax and Operational Semantics 44

2.2.1 Abstract Syntax . 44
2.2.2 Typing Rules . 48
2.2.3 Execution Model . 52
2.2.4 Operational Semantics . 56

2.3 C to JESSIE Translation . 63
2.3.1 Data Translation . 65
2.3.2 Control Translation . 70

5

2.3.3 A Simple Example: Linear Search 70
2.4 JESSIE Annotation Language . 71
2.5 JESSIE to WHY Translation . 75
2.6 Other Related Work . 77
2.7 Chapter Summary . 77

3 Integer Safety Checking 79
3.1 Assertions for Integer Safety . 80

3.1.1 Integer Checks . 80
3.1.2 Integer Safety for Linear Search 80
3.1.3 Assertions from Annotations . 81

3.2 Abstract Interpretation for Integer Programs 82
3.2.1 Theory of Abstract Interpretation 82
3.2.2 Practical Abstract Domains . 84
3.2.3 Application to JESSIE Integer Programs 86
3.2.4 Illustration on Linear Search . 88

3.3 Deductive Verification for Integer Programs 89
3.3.1 Hoare Logics and Dijkstra’s Weakest Preconditions 90
3.3.2 Application to JESSIE Integer Programs 91
3.3.3 Illustration on Linear Search . 91

3.4 Other Related Work . 93
3.5 Chapter Summary . 93

4 Memory Safety Checking 95
4.1 Assertions for Memory Safety . 96

4.1.1 Memory Model Accessors . 96
4.1.2 Memory Checks . 99
4.1.3 Memory Safety for Linear Search 100

4.2 Abstract Variables . 101
4.2.1 Abstract Memory Locations . 102
4.2.2 Abstract Logic Function Applications 105
4.2.3 Overlaps Between Locations . 106
4.2.4 Application to Linear Search . 107

4.3 Abstract Interpretation for Pointer Programs 108
4.3.1 Lifting Abstract Domains . 108
4.3.2 Application to JESSIE Pointer Programs 109
4.3.3 Illustration on Linear Search . 109

4.4 Deductive Verification for Pointer Programs 112
4.4.1 Lifting Weakest Preconditions . 112
4.4.2 Application to JESSIE Pointer Programs 114
4.4.3 Illustration on Linear Search . 114

4.5 Chapter Summary . 115

6

II Inference, Separation, Unions and Casts 117

5 Alias-Free Type-Safe Programs 119
5.1 Problem Overview . 120

5.1.1 Type Safety Restriction . 120
5.1.2 Aliasing Restriction . 123
5.1.3 Without Logic Annotations . 124
5.1.4 Problem Statement . 125

5.2 Inferring Logic Annotations . 125
5.2.1 Approach by Abstraction . 126
5.2.2 Approach by Deduction . 128
5.2.3 Abstraction and Deduction Together 132

5.3 Combining Abstraction and Deduction . 133
5.3.1 Precondition Inference Algorithm 134
5.3.2 Comparing Inference Techniques 137
5.3.3 Taming Time and Space Complexity 139

5.4 Other Related Work . 141
5.5 Chapter Summary . 142

6 Type-Safe Programs with Aliasing 143
6.1 Problem Overview . 144

6.1.1 Memory Aliasing and Separation 144
6.1.2 Frame Condition Equivalent Postcondition 145
6.1.3 Aliasing Considered Harmful . 147
6.1.4 Aliasing as a Programming Discipline 148
6.1.5 Problems with Alias Analyses . 150
6.1.6 Problems with Alias Control Techniques 151
6.1.7 Problem Statement . 151

6.2 Inferring Regions: Existing Type-Based Approaches 152
6.2.1 Steensgaard’s Region Inference 152
6.2.2 Talpin’s Region Inference . 154

6.3 Refining Regions: a New Type-and-Effect Approach 156
6.3.1 Equivalence of Paths and Regions 156
6.3.2 Modular Region Inference . 156
6.3.3 Complete Region Inference for Interference-Free Programs 160
6.3.4 Refined Region Inference . 162
6.3.5 Incompleteness of Refined Region Inference 164

6.4 Other Related Work . 164
6.5 Chapter Summary . 165

7 Programs with Unions and Casts 167
7.1 Prefix Casts . 168

7.1.1 Extending JESSIE with Subtyping 168
7.1.2 Crawling the Type Hierarchy . 169

7

7.2 Moderated Unions . 171
7.2.1 Discriminated Unions in JESSIE 171
7.2.2 Byte-Level Unions in JESSIE . 175
7.2.3 Choice of Union in JESSIE . 177

7.3 Other Unions and Casts . 177
7.4 Other Related Work . 180
7.5 Chapter Summary . 181

III Experiments 183

8 Experiments on Real C Programs 185
8.1 Notes of Implementation . 186

8.1.1 Logical Model of Strings . 186
8.1.2 Preprocessing . 187
8.1.3 Filtering Results . 189

8.2 String Libraries . 189
8.2.1 MINIX 3 Standard String Library 189
8.2.2 CERT Managed String Library . 195
8.2.3 Related Works . 202

8.3 Benchmarks of Vulnerabilities . 202
8.3.1 Verisec Suite . 203
8.3.2 Zitser’s Benchmark . 206
8.3.3 Related Works . 206

8.4 Chapter Summary . 207

Conclusion 211

A Résumé en Français 217
A.1 Introduction . 218
A.2 Opérations entières et accès mémoire . 220

A.2.1 Définition d’un langage intermédiaire 220
A.2.2 Preuve de la sûreté des opérations entières 221
A.2.3 Preuve de la sûreté des accès mémoire 221

A.3 Inférence, séparation, unions et casts . 222
A.3.1 Programmes typés sans partage mémoire 222
A.3.2 Programmes typés avec partage mémoire 223
A.3.3 Programmes avec unions et casts 225

A.4 Expériences sur des programmes C réels 226
A.4.1 Bibliothèques de chaînes de caractères 226
A.4.2 Jeux de tests de vulnérabilités . 228

A.5 Conclusion . 230

Index 232

8

Bibliography 235

9

10

List of Figures

1.1 Non-Aliasing of pointers . 26
1.2 Aliasing of pointers . 26
1.3 Partial aliasing of pointers . 26
1.4 Frama-C and the Why Platform . 37

2.1 Grammar of JESSIE types . 44
2.2 Grammar of JESSIE terms . 46
2.3 Grammar of JESSIE statements . 47
2.4 Grammar of JESSIE globals . 48
2.5 Typing of JESSIE constants . 48
2.6 Typing of JESSIE base type operations . 49
2.7 Typing of JESSIE pointer operations . 49
2.8 Typing of JESSIE casts and promotions . 50
2.9 Typing of JESSIE locations . 50
2.10 Typing of JESSIE terms . 50
2.11 Typing of JESSIE instructions . 51
2.12 Typing of JESSIE statements . 51
2.13 Byte-level memory model . 53
2.14 Block memory model . 53
2.15 Incorrect byte-level block memory model 53
2.16 JESSIE byte-level block memory model 53
2.17 Evaluation of JESSIE terms - constants and operations 56
2.18 Evaluation of JESSIE terms - variables and field access 57
2.19 Evaluation of JESSIE terms - casts . 57
2.20 Semantics of JESSIE instructions . 59
2.21 Semantics of JESSIE statements - normal control 60
2.22 Semantics of JESSIE statements - exceptional control 61
2.23 Semantics of JESSIE erroneous terms . 62
2.24 Semantics of JESSIE erroneous instructions and statements 62
2.25 Grammar of CIL expressions and statements 64
2.26 Grammar of JESSIE extended types . 72
2.27 Grammar of JESSIE extended terms . 72
2.28 Grammar of JESSIE propositions . 73

11

2.29 Grammar of JESSIE extended statements 73
2.30 Grammar of JESSIE extended globals . 74

3.1 Intraprocedural abstract interpretation of instructions 86
3.2 Intraprocedural abstract interpretation of statements 87
3.3 Abstract interpretation of unannotated function linear_search 89
3.4 Abstract interpretation of annotated function linear_search 89
3.5 Generic rules of Hoare logics . 90
3.6 Generic rules of Dijkstra’s weakest preconditions 92
3.7 Generic rules of Dijkstra’s strongest postconditions 92
3.8 Weakest preconditions over instructions 92
3.9 Weakest preconditions over statements . 92

4.1 Natural accessors for the JESSIE memory model (t of type S[..], S of size 3) 97
4.2 Local accessors for the JESSIE memory model (t of type S[..], S of size 3) . 97
4.3 Grammar of JESSIE extended terms . 99
4.4 Overlapping of paths . 107
4.5 Overlapping of locations . 107
4.6 Intraprocedural abstract interpretation of instructions 110
4.7 Intraprocedural abstract interpretation of statements 111
4.8 Weakest preconditions over instructions 113
4.9 Preconditions over instructions . 114

5.1 Type-safe evaluation of JESSIE terms . 121
5.2 Type-safe semantics of JESSIE instructions 122
5.3 Component-as-array memory model . 122
5.4 Overlaping of paths for type-safe programs 122
5.5 Overlaping of paths for alias-free programs 124
5.6 Algorithm ABSINTERP . 126
5.7 Algorithm ABSGENERIC . 134
5.8 Algorithm ABSWEAK . 136

6.1 Grammar of JESSIE extended types . 144
6.2 Grammar of JESSIE extended propositions 145
6.3 Regions in a byte-level memory model . 153
6.4 Regions in a component-as-array memory model 153
6.5 Overlap of paths with regions . 153
6.6 Immutable bounds for terms . 157
6.7 Computation of effects . 158
6.8 Generation of function preconditions for separation 159
6.9 Computation of refined read/write effects 163
6.10 Generation of refined function preconditions for separation 163

7.1 Grammar of JESSIE types with inheritance 170
7.2 Grammar of JESSIE propositions for subtyping 170

12

7.3 Semantics of JESSIE constructs for subtyping 170
7.4 Prefix Cast . 170
7.5 Semantics of JESSIE hierarchical casts . 170
7.6 Grammar of JESSIE unions . 173
7.7 Function entry . 173
7.8 Function exit . 173
7.9 Semantics of JESSIE discriminated union casts 173
7.10 Semantics of JESSIE discriminated union assignment 174
7.11 Overlap of paths with unions . 174
7.12 Byte-level union . 176
7.13 Semantics of JESSIE byte-level union casts 176
7.14 Coexisting byte-level and typed memory models 176
7.15 Overlap of paths with regions only . 178

8.1 No annotation inference . 191
8.2 Abstract interpretation . 191
8.3 Quantifier elimination . 191
8.4 Weakest preconditions . 191
8.5 Total time elapsed . 191
8.6 Bounded integer model . 195
8.7 Proof results . 201
8.8 Time results . 201
8.9 Provers strength . 201
8.10 Provers weakness . 201
8.11 Proof results (105/140) . 205
8.12 Time results (105/140) . 205
8.13 Provers strength (105/140) . 205
8.14 Unproved VC (27/140) . 205
8.15 Verisec annotations . 205
8.16 Zitser annotations . 205

A.1 Superposition de chemins . 222
A.2 Algorithme ABSGENERIC . 224
A.3 Modèle d’entiers exacts . 227
A.4 Modèle d’entiers bornés . 227
A.5 OP prouvées . 229
A.6 OP prouvées une seule fois . 229
A.7 OP prouvées . 230
A.8 OP prouvées une seule fois . 230

13

14

Chapter 1

Introduction

First, consider the appalling fact that most security flaws are caused by buffer
overflow. Why is this appalling? Because there is absolutely no need for any-
one, ever, to write a program that contains buffer overflows. That we continue
to do so is a reflection our addiction to atrocious languages like C++. There
are perfectly good languages around that make it simply impossible to write
code that can cause buffer overflows. We should use them. No research is
necessary. No proofs are necessary. It’s a decidable - indeed solved - problem.

Anthony Hall

Contents
1.1 Language-Based Dependability of C Programs 16

1.1.1 Problem Statement . 16
1.1.2 Technical Account . 17
1.1.3 Historical Account . 19
1.1.4 Work in Progress . 21

1.2 C Language Safety Issues . 22
1.2.1 Lack of Precise Semantics . 22
1.2.2 Lack of Language-Based Safety Mechanisms 23
1.2.3 Remediation Techniques . 27
1.2.4 Better C Initiatives . 29

1.3 Techniques and Tools . 30
1.3.1 Enumeration Techniques . 31
1.3.2 Abstraction Techniques . 32
1.3.3 Deduction Techniques . 33
1.3.4 Combination Thereof . 33

1.4 Statement of Purpose . 34
1.5 Summary of Contributions . 35
1.6 Organization of This Thesis . 36

15

1.1 Language-Based Dependability of C Programs

1.1.1 Problem Statement

This thesis belongs to the broad domain of software dependability analyses, where one
aims at getting higher degrees of confidence in the ability of a software system to deliver an
appropriate service. Dependability is the integration of various concepts. Quoting the work
of Avižienis, Laprie and Randell [6], we specifically target four components of dependabil-
ity in this thesis:

• reliability, the continuity of correct service;

• safety, the absence of catastrophic consequences on the user(s) and the environment;

• integrity, the absence of improper system state alteration;

• security, by addressing the part that derives from integrity, the absence of unautho-
rized system state alteration.

Dependability is especially important for life-critical, mission-critical or business-
critical software systems, for which a failure to meet their dependability requirements may
lead to a human loss (military, avionics, automotive, health-care, etc.) or an economic threat
(aerospace, consumer electronics, Internet, etc.). Due to the dematerialization of many ser-
vices (banking, administration, personal information, etc.), dependability of software sys-
tems also appears to be at the cornerstone of privacy. Overall, due to (1) the ever increas-
ing relative importance of software in complex systems, a.k.a. software-dominant systems,
(2) the pervasive presence of software in many devices that therefore qualify as embedded
systems, and (3) the unavoidable connectivity of software systems in ad hoc networks or
over the Internet, dependability of software is a crucial challenge for the years to come.

Industries that develop software-dominant systems and embedded systems have started
expressing the need for verification tools, much as they expressed the need for testing and
debugging tools in the past. For a large part, this demand concerns programs written in
the C language, a programming language designed in the 1970’s for building operating
systems [109]. Since then, C has become the standard programming language for system
software, with most modern computer languages relying on a layer of C programs for their
runtime environment (e.g., PERL, PYTHON, JAVA, OCAML, etc.).

Dennis M. Ritchie, the initial author of C, once wrote that C has been characterized
(both admiringly and invidiously) as a portable assembly language. Indeed, C shares the
same advantages as assembly languages, the “native” languages of computers, which col-
lectively qualify them as low-level languages:

• simplicity: there is no abstraction between the programmer’s intent and the machine
code actually run on the machine;

• efficiency: the programmer may directly manipulate the computer’s memory.

Contrary to assembly languages, C makes it possible to write portable programs, i.e., pro-
grams that can be compiled to run correctly on many different machine architectures. Due

16

to its low-level orientation though, it remains the programmer’s responsibility to ensure
portability, by carefully crafting his programs with this goal in mind. Similarly, although
most modern programming abstractions present in high-level languages (strong typing, ob-
jects, closures, transactions, etc.) can be encoded in C, their correct use depends on each
programmer’s craftsmanship.

Although C is an old and generic language, and many powerful specialized computer
languages have been designed since then, knowledge of C still appears to be the second
most demanded skill from programmers in job offers on the Web in 2007 [64], and the first
most demanded general-purpose programming language. The continued industrial interest
for C stems from many reasons independent of its own qualities: availability of a large pool
of skilled programmers, support by a large range of libraries, tools and execution platforms
with a proven record of dependability, etc. Whatever the reasons, C is still a very live
language, with applications in many different industries, some of which critically depend
on software.

The high number of critical C programs in industry combined to the lack of language
support in C for ensuring the most basic properties explain the general interest for analy-
sis techniques and tools targeting the C language. Our goal with this thesis is to provide
automated techniques to verify the part of software dependability that depends on the use
of the C language, with a focus on memory safety, which is the crucial property that the
computer’s memory is not misused. We call it static safety checking [181] throughout this
thesis, rather than the more general term of verification, to emphasize that it is safety that
we are after. Moreover, static safety checking defines a verification goal, not the means and
techniques to reach it.

1.1.2 Technical Account

Generalities A program is a human-readable textual representation of a list of instructions
that must be executed by a machine. A program is written in a programming language
that defines the syntax (what is a valid sentence in this language) and semantics (what
a valid sentence means) of the language. A program is generally structured as a set of
functions which provide each a piece of functionality. A programmer is a skilled practitioner
who writes programs. A hacker always means an above-than-average skilled programmer,
sometimes with a negative connotation that he uses his skills to commit criminal actions.

A program is made up of code, which is the term to designate any piece of instructions,
either in textual representation (source code) or machine representation (machine code). A
program in textual representation is generally compiled into machine code by a compiler
(which is another program). A program in machine code representation is also called an
executable. The size of a program in textual representation is measured in source lines of
code (sloc).

An executable can be executed or run on a host machine. During execution, software
interacts with hardware to open files, input and output information, etc. Failing to comply
with hardware interface specifications may result in runtime errors, i.e., errors that manifest
during execution. Among runtime errors, memory errors are especially obnoxious. They
break the abstractions upon which a program’s meaning relies, leading to erratic behavior or

17

even opening the possibility that a different code is executed than the one intended, which
can be exploited by an attacker.

Errors in source code that make runtime errors possible are called vulnerabilities. At-
tackers may profit from these vulnerabilities to build exploits, i.e., pieces of software that
interact with vulnerabilities to modify software execution in a way that was not intended.

Memory errors can be classified depending on the kind of memory perverted. A code
being executed sees computer memory as divided into 5 segments:

• code segment: portion of the memory that holds the code executed. In general, it is
read-only, meaning its content cannot be altered.

• data and BSS segments: portions of the memory that contain global data defined
and accessed by the code. They do not contain control structures, but they can hold
pointers to code, hence perverting them may allow one to build exploits.

• stack: portion of the memory that holds data local to functions and control elements,
like the return address of functions. Perverting the stack is also known as “smashing
the stack”. It is the easiest memory error to exploit to gain control over a computer,
and thus the most common.

• heap: portion of the memory that holds dynamically allocated data, whose lifetime
does not end when a function returns. Like the data and BSS segments, it can hold
pointers to code, thus allowing exploits. Another kind of exploit is based on corrupt-
ing the internal data used for dynamic memory management.

Buffer Overflow Due to its low-level orientation, the C language does not protect against
runtime errors in general, and memory errors in particular. Among memory errors, the
infamous buffer overflow (a.k.a. buffer overrun) plays an crucial role, as the main door
to remote code execution. Here is a perfectly mundane C program that contains a buffer
overflow vulnerability:

1 #include <stdio.h>
2 #include <string.h>
3 int main(int argc, char **argv) {
4 char tab[100];
5 if (argc != 2) return 1;
6 strcpy(tab, argv[1]);
7 printf("%s\n", tab);
8 return 0;
9 }

This program simply expects to be called with one string of characters as argument,
and it echoes this string back, much as the command echo on most systems. It does
so by copying the argument string in its own buffer tab before it prints the content of
this buffer. The problem is that this program does not guard against the possibility that a
(malicious) user might pass in a string of more than 100 characters. Should that event occur,
the buffer tab of size 100 would be overflown, which can be exploited on some systems by
an attacker to take control. As an example, running this program on my laptop with a string

18

of 102 characters (counting the final ’\0’) raises the error *** stack smashing detected ***
and correctly aborts the program, but running it with a string of 101 characters does not.
Thus, an off-by-one buffer overflow goes undetected, potentially opening the possibility of
a take-over by an attacker, should such a program be executed on my laptop. In fact, such
attacks do occur frequently in real life.

1.1.3 Historical Account

There are countless stories of software bugs (errors) leading to catastrophic failures, but we
only report here those failures that stem from memory safety vulnerabilities in C programs,
i.e., the kind of errors this thesis targets. Most of the vulnerabilities we report occur in PCs
or servers system software, because (1) these systems are typically subject to looser require-
ments than life-critical systems, which accounts for the presence of more bugs, (2) they are
connected over the Internet, which makes worldwide attacks exploiting these bugs possible,
thus focusing the general public interest, and (3) these systems equip general public services
and devices (e.g., PCs), so that the analysis of the errors that made the attacks possible is
usually made public. There are many other reasons for this situation, from sociological ones
such as the failure of systems administrators to apply security patches in a timely manner,
to political ones that explain why some systems are attacked. The usual pattern of these
attacks is that hackers build exploits, i.e., pieces of software that take advantage of soft-
ware vulnerabilities to modify target software execution in a way that was not intended, and
spread it through the Internet from machines already under their control, a.k.a. zombies.

According to the data gathered by institutes such as CERT and SANS, memory safety
errors in C programs have continuously been one of the major sources of attacks on the
Internet since its early beginning (Morris worm, 1988) to these days (2008).

November 3, 1988 - The Morris worm infects 6,000 computers, 10% of Internet at
the time, unintentionally causing the first worldwide Denial Of Service (DOS) attack (an
attack in which computers infected fail to deliver proper service, either because they crash
or because they are overwhelmed by malicious requests or information). It was created
by student Robert T. Morris in an attempt to gauge the size of the Internet. The worm
spreads by exploiting known vulnerabilities in C programs, among which a buffer overflow
in fingerd.

December 13, 1988 - Creation of the Computer Emergency Response Team (CERT) at
Carnegie Mellon University, to address computer security concerns over the Internet. This
is a direct consequence of the Morris worm.

1989 - Creation of the SANS (SysAdmin, Audit, Network, Security) Institute as a coop-
erative research and education organization on information security, operating the Internet
Storm Center, Internet’s early warning system. This is also a direct consequence of the
Morris worm.

November, 1996 - The hacker Elias Levy, under the name Aleph One, publishes an
article in Phrack Magazine [144], in which he describes in detail the mechanisms to trigger
a buffer overflow error in a C program similar to our echoing program above. This makes it
possible for non-experts to write exploits based on buffer overflow vulnerabilities.

June 2, 2000 - The SANS Institute publishes for the first time a list of the 10 most

19

critical Internet security threats (later known as the annually updated “SANS Top 10 list”),
half of which are related to buffer overflows in C programs.

June 19, 2001 - CERT publishes note CA-2001-13 describing a buffer overflow vul-
nerability in a C program in Microsoft Indexing Services software. A worm based on this
vulnerability named Code Red starts spreading on July 13, 2001, quickly infecting more
than 300,000 machines in a few days, before it launches a DOS attack on a set of fixed IP
addresses. The estimated cost is in excess of $2.6 billion 1.

January 15, 2002 - Bill Gates, CEO of Microsoft, issues a memo to all Microsoft
employees, the Trustworthy Computing memo, which launches the first Microsoft Security
Initiative. It makes security a top priority in Microsoft products. It encourages the diffusion
of the book Writing Secure Code, which identifies buffer overflow in C programs as the
public enemy #1. This is a direct consequence of the Code Red worm.

July 24, 2002 - Microsoft issues security bulletin MS02-039 which warns against pos-
sible remote code execution in Microsoft SQL Server and Microsoft Desktop Engine, based
on a buffer overflow in a C program. As usual in these cases, it also gives a security patch
to remove this vulnerability. On January 25, 2003, a worm named SQL Slammer based on
this vulnerability starts spreading, infecting 75,000 unpatched Internet servers. Although
its only action is to replicate by sending messages to random IP addresses, the parasitic
traffic generated by the attack causes a dramatic slowdown of overall Internet traffic for an
estimated cost of $1 billion2.

January 2003 - C.A.R. Hoare, a leading scientist in computer programming logics,
publishes a position paper [91] where he urges the research community to gather around the
construction of a new kind of compiler that would guarantee correctness of programs. Fol-
lowing his impulse, many researchers have recognized the importance of software depend-
ability, and granted it the status of a Grand Challenge (GC6: dependable systems evolution)
whose goal is to federate research and industrial efforts on this subject for the 15 years to
come.

July 16, 2003 - Microsoft issues security bulletin MS03-026 which warns against pos-
sible remote code execution in Microsoft Windows, based on a buffer overflow in a C pro-
gram, and gives an appropriate patch. On August 11, 2003, a worm named Blaster based
on this vulnerability starts spreading, infecting more than 16 million unpatched computer
systems (mostly PCs). It floods server windowsupdate.com with messages to create a
DOS attack, for an estimated cost of $1.3 billion3 in cleaning and lost productivity.

April 13, 2004 - Microsoft issues security bulletin MS04-011 which warns against pos-
sible remote code execution in Microsoft Windows, based on a buffer overflow in a C pro-
gram, and gives an appropriate patch. On April 30, 2004, a worm named Sasser based on
this vulnerability starts spreading, forcing computers to restart and generating parasitic In-
ternet traffic. It infects more than 8 million unpatched computer systems (mostly PCs) for
an estimated cost of $980 million.

2005 - Researchers from Microsoft publish an article [84] in which they describe a tool
to detect buffer overflows in large legacy codebases, based on logical annotations intro-

1The cost of Cod Red, USA Today, Aug 1, 2001
2Counting the cost of Slammer, Robert Lemos, CNET news, Jan 31, 2003
3Cops take a bite, or maybe a nibble, out of cybercrime, Jon Swartz, USA Today, Sept 2, 2003

20

duced by programmers to document their intents. According to their report, using their
tool allowed them to discover and correct +3,000 buffer overflows in C programs from the
Microsoft Vista Windows release.

2004-2007 - More worms based on buffer overflows and memory safety errors in C
programs disrupt Internet traffic and industries (Witty worm, Zotob, etc.). Meanwhile, soft-
ware companies and organizations daily send security updates to prevent zero-day exploits,
in which a worm based on a known vulnerability infects unpatched software systems.

November 28, 2007 - The SANS Institute issues its annual list of Top 20 Software
Vulnerabilities, 13 of which are still related to buffer overflows or memory corruption in C
programs.

2008 - An analysis of the first 60 Ubuntu Security Notices, from the leading Linux
distribution Ubuntu, shows that 45% of vulnerabilities stem from buffer overflows.

1.1.4 Work in Progress

In 2002, the National Institute of Standards and Technology (NIST) evaluated to $59.5
billion the annual cost of software errors for the U.S. economy, which represented about
0.6 percent of its gross domestic product. Over the years, the human, economical and
societal cost of software failures has lead to a steady increase of the combined efforts of
researchers, companies and governments to create techniques and tools that help build de-
pendable software. We list here those that contribute to increase the state-of-the-art and the
state-of-practice in static safety checking of C programs.

Scientific Conferences Four annual international conferences now focus on verification
of software.

CAV - Computer Aided Verification. Since 1989, this conference is the leading interna-
tional conference on formal analysis methods for software and hardware systems.

VMCAI - Verification, Model Checking and Abstract Interpretation. Since 2000, this
conference brings together researchers to combine formal analysis methods for software
and hardware systems.

SAFECOMP - Computer Safety, Reliability and Security. Since 1979, this conference
is the leading international conference on building dependable systems.

VSTTE - Verified Software: Theories, Tools, Experiments. Initiated in 2005 as a re-
sponse to Hoare’s call, this conference inaugurates in 2008 the Verified Software Initiative,
a fifteen-year, cooperative, international project aimed at the scientific challenges of large-
scale software verification.

Online Repositories Comparison of techniques and tools has been greatly improved with
the creation of online repositories describing real errors.

MITRE CVE - Common Vulnerabilities and Exposures. Created in 1999, this is a dic-
tionary of publicly known information security vulnerabilities and exposures (exposures are
milder than vulnerabilities). Every publicly known software error gets a unique identifier
CVE-year-number (e.g., CVE-2008-3606 for a recent buffer overflow vulnerability in a C

21

program). At the time of this writing, querying “buffer overflow” in this list returns 4,410
matches for a total of 31,972 entries.

MITRE CWE - Common Weakness Enumeration. Created in 2005, this is a formal list
of software weakness types created to serve as common language for error reporting and
tool evaluation. In this list, buffer overflow errors correspond to a set of entries dominated
by CWE-118, range errors. E.g., the classic buffer overflow is classified as CWE-120, un-
bounded transfer, and put in relation with related errors, such as improper null termination
(CWE-170) or integer overflow (CWE-190).

NIST SAMATE - Software Assurance Metrics And Tool Evaluation. This project cre-
ated in 2005 offers a taxonomy of software security assurance tools, as well as the SRD,
SAMATE Reference Dataset, a list of test cases for software assurance. To this date, it lists
1,762 test cases, 1,224 of which are buffer overflows in C programs.

1.2 C Language Safety Issues

1.2.1 Lack of Precise Semantics

Initially developed by Dennis M. Ritchie at Bell Labs between 1969 and 1973, the C lan-
guage gets a first informal specification in 1978 with the publication of the book The C
Programming Language by Kernighan and Ritchie [109]. This definition of C is now re-
ferred to as K&R C. In 1989, the American National Standards Institute (ANSI) publishes
the first standard for the C language, referred to as ANSI C or C89 [45]. This standard is
adopted a year later by the International Organization for Standardization (ISO), therefore
it is also known as ISO C or C90 [97]. The current standard was adopted in 2000 by ISO
and is known as C99 [98]. Most notably, standardization lead to formally separating the C
language from low-level memory manipulations, that must be additionally specified in an
Application Binary Interface (ABI), although the separation is not so clear in practice.

C Semantic Blur Despite considerable standardization work, probably more than any
other programming language, most C compilers propose a different set of non-standard
extensions. Such extensions contribute to the coexistence of many different C dialects, the
most famous being GNU C (from GCC compiler suite) and Visual-C (from Visual Studio
compiler suite).

More subtly, the same C program written without compiler extensions and compiled
with different standard-compliant C compilers can still lead to different results when exe-
cuted. This originates in the freedom that the C standard leaves to compilers when it comes
to low-level details such as data layout, i.e., the sequence of bytes that define a data type.
Although a strictly standard-conforming C program should not depend on such low-level
decisions, many programs do in fact, which makes them vulnerable to changes of compiler
or compiler version. In practice, programmers tend to rely on ABI decisions shared by most
(if not all) compilers. This set of decisions forms a de facto unauthorized standard. E.g.,
this is the case for the algorithm deciding the layout of data structures, given values for the
size and alignment of base types. To help separate the official standard from common prac-
tice, people discussing C programs portability (mostly on the comp.lang.c newsgroup)

22

have even informally defined a hypothetical computer architecture, the DeathStation 9000
(DS9K), that behaves as erratically as possible while still conforming to the C standard.

The C standard defines 3 kinds of portability and validity issues. A non-portable or
invalid behavior may be:

• implementation-defined - Various choices may be valid. A standard-conforming com-
piler should document which choice it makes. E.g., the number of bits in a byte or
character (char) is implementation-defined.

• unspecified - Various choices may be valid. A standard-conforming compiler is free
to choose from a set of behaviors without documenting it. E.g., the order of evaluation
of function arguments in a call is unspecified.

• undefined - No valid choice exists. A standard-conforming compiler may choose
any behavior at all, from stopping the execution to proceeding with execution in an
inconsistent state. E.g., dereferencing an invalid pointer is undefined.

Typically, it is considered an error to trigger an undefined behavior or to depend on
an unspecified behavior. On the contrary, it is common to rely on specific implementation-
defined behaviors, which depend on the compiler and the execution platform. Usually, these
decisions are left as user options in tools analyzing C programs.

Due to both (1) the large number of extensions defined by compilers and (2) the large
amount of freedom left to compilers by the C standard, formally defining the semantics of
C is a challenge. Indeed, no attempt at formally defining the semantics of C has been made
by the standards committee.

Proposals of Semantics for C The first detailed formal semantics for C is due to Gure-
vitch and Huggins [82], in the framework of evolving algebras. Since then, various authors
have proposed semantics for C, but most lack a complete treatment of subtle issues like the
order of evaluation of expressions between sequence-point, and the subsequent possibility
of undefined behavior when the same location is read or written more than once.

Norrish [143] and Papaspyrou [146] both propose a complete treatment of these issues
in their respective PhD theses. Papaspyrou manually defines a denotational semantics for
C with an implementation in Haskell, while Norrish formalizes the semantics of C in the
HOL proof assistant using a structural operational semantics. Although sound, complete
and implemented, this last approach necessitates too much human work to mechanically
verify a simple BDD package program written in C originally written by Norrish.

In order to build the formally certified C compiler CompCert [23, 22, 125], Leroy et al.
have completely defined the semantics of a large subset of C called Clight inside the Coq
proof assistant. Contrary to Norrish’s work, they choose to impose a set of implementation-
defined behaviors. E.g., they impose that expressions are evaluated left-to-right.

1.2.2 Lack of Language-Based Safety Mechanisms

Strong Typing and Allocation The C language was designed to allow low-level access to
data structures, making it possible to address any individual byte of memory. Although the

23

C language provides abstractions to the programmer in the form of data abstractions (data
types) and control abstractions (call graph), its low-level orientation makes it impossible to
enforce these abstractions. This allows an attacker to execute arbitrary programs whenever
the initial C program executed does not purposely guard against abstraction violations.

Data abstractions are the easiest to violate, and allow compromising control abstractions
as well. It comes from the lack of support in the language for the two most important
programming abstractions regarding safety: (strong) typing and allocation.

Due to the lack of (strong) typing in C, one can never guarantee that accessing in the
program some data statically typed with type T effectively turns at runtime into an access to
some data of type T. The C standard [98] enumerates many such examples of possible data
types violations, the simplest of which is reading uninitialized data. Although it is deemed
as a “bad thing” by the standard, it is not enforced by the language, thus making it possible
for a program to read some random bit-pattern and interpret it as a value of type T, possibly
breaking the consistency of the execution state. This fault might be revealed right away,
e.g., if the hardware rejects some bit-patterns as invalid values of type T, or remain dormant
until it triggers a failure.

Due to the lack of support for allocation in C, it remains entirely the programmer’s
responsibility to access only valid memory, i.e., memory properly allocated and not yet
deallocated. This is where failure to take into account all possible cases, e.g., improper
inputs from an attacker, leads to vulnerable programs. In particular, there is no language
mechanism to know at runtime the size of an array (a.k.a. buffer), which is one of the reasons
for the frequency of buffer overflow errors in C programs, where a buffer is accessed beyond
its bounds.

The situation only worsens when one considers control abstractions. Usually, during
execution of a program, memory chunks for data and control are juxtaposed in computer
memory, which allows a data violation to pervert control as well. Since control defines
what steps a program is allowed to take, control violations make it possible to execute
whatever program lies in the computer memory, with every possible outcome: crash, reboot,
information stealing, remote code execution, etc.

Memory Safety Language-based safety is obtained when a computer language design
guarantees that no runtime error can possibly occur while executing a program written in
this language, provided the execution environment is conform to its specifications (thus
excluding hardware failures, electrostatic glitches and the like). If exceptions are not con-
sidered as runtime errors but as a standard error reporting mechanism, languages like JAVA

and OCAML can be defined as safe.
Memory safety is the property that (1) only properly allocated data is accessed in the

programmer’s code, which prevents control violations, and (2) allocated data is accessed
only through proper accessors, which forbids unintended modification of neighboring data.
Of course, machine code run on a computer does access bytes encoding control informa-
tion, but those machine code instructions should correspond to code added by a compiler
during the translation from source code to machine code, not to source code instructions
which should only manipulate program data. Most high-level languages guarantee memory
safety (JAVA, OCAML, etc.). Although memory safety is not sufficient to completely ensure

24

safety, i.e., absence of runtime errors, it already prevents the most dangerous forms of safety
violations. This is why we focus on memory safety in this thesis.

C provides no guarantee regarding safety or memory safety. Since the first detailed
analysis of a buffer overflow exploit by Aleph One in 1996 [144], many different ways of
exploiting a data violation, in particular buffer overflows, have been described [92] and used
in attacks. They differ in the kind of memory corrupted (stack, heap), the amount of data
corrupted (from several words to one byte, the so-called off-by-one errors), the vulnerability
that makes it possible (buffer overflow, use-after-free, etc.) and the possible benefit for the
attacker (Denial of Service, remote code execution, etc.). The range of possible exploits
makes it doubtful that any technique that does not completely enforce memory safety cap-
tures them all. This makes memory safety the #1 property of interest to ensure safety of C
programs.

Aliasing The term aliasing describes a situation in which a data location in memory can
be accessed through different symbolic names in the program. In C, aliasing originates in
the use of pointers to address memory chunks. A pointer is a data value that designates a
memory cell. A typed pointer designates a memory chunk, starting at the cell pointed-to by
the pointer and whose size is the same as the size of the type pointed-to. Pointers are said
to be aliased when the memory chunks they point to overlap, and unaliased otherwise.

Figures 1.1, 1.2 and 1.3 present all possible configurations. The underlying tape repre-
sents the computer memory, a large array of individual bytes, represented as cells on this
tape. On top of it, rectangular forms represent chunks of memory, which group together
contiguous memory bytes. In Figure 1.1, x and y are the name of pointers which point to
non-overlapping memory chunks, thus they are unaliased. In Figure 1.2, x and y are the
name of pointers which point to the same memory chunk, thus they are aliased. In general,
memory chunks pointed-to may overlap, as in Figure 1.3, in which pointers x and y are
aliased.

The problem is that there is no language mechanism in C for aliasing, which greatly
complicates in general the analysis of C programs, and in particular static safety checking
of C programs. Although the programmer is well-aware of possible aliasing in most cases,
either because it is syntactically obvious, or because aliasing is used as a programming dis-
cipline (see Section 6.1.4 for a survey), it remains implicit in the program. Without any other
information, an analysis must assume that any two pointers in the program may alias, due
to the lack of strong typing in C. The C standard [98] defines a keyword restrict that
a programmer may use to indicate absence of aliasing between parameters, but this is not
checked by the compiler, which may lead to subtle errors if the function is called in an in-
appropriate context. Indeed, the danger lies in the possibility that the programmer relies on
some locations to be unaliased for correctness, while they may be aliased in reality. There-
fore, presence of the restrict keyword is usually ignored by aliasing analyses. Despite
considerable research effort [88, 178], aliasing remains a major problem when analyzing C
programs.

25

x y

Figure 1.1: Non-Aliasing of pointers

x y

Figure 1.2: Aliasing of pointers

x y

Figure 1.3: Partial aliasing of pointers

26

1.2.3 Remediation Techniques

Various remediation or mitigation techniques attempt to limit the consequences of memory
errors, in particular buffer overflow errors, by detecting them as they occur and preferring
to gracefully abort the program and recover in some way rather than proceeding with a
possibly malicious execution. These techniques share common limitations:

• reliance on end-users - These techniques rely heavily on system administrators to set
up a special compilation or link or runtime environment. This asks for a lot of work
from many people. As already mentioned in 1.1.3, failure to apply security patches
in a timely manner is the main cause of memory errors exploitation.

• incompleteness - Except for the use of safe C compiler, these techniques cannot target
all possible memory errors, possibly leaving some space for an attacker to sneak in,
either through a return-to-libc attack where control is redirected to a resident library
function, a double free attack, etc.

• late-stage - These techniques occur too late in the development process to prevent
errors from occurring, they can only limit the damage incurred by stopping the exe-
cution.

Despite these limitations, remediation techniques are today the best way to protect against
exploitation of memory errors and buffer overflows. By preventing remote code execution,
if not the error from occurring in the first place, they effectively limit the propagation of
worms.

Executable Space Protection Often, a buffer overflow exploit places a shellcode (a piece
of assembly code) on the stack before executing it. But the stack is a part of the computer
memory that is normally used to store data, not code. By making the stack non-executable,
one can prevent exploits of this kind to execute their shellcode.

This technique appeared as early as 1961 in the Burroughs 5000, not in relation to buffer
overflows at that time. It can be supported either by hardware or software. Since 2000, it
has been adopted in many operating systems distributions to protect against buffer overflow
attacks. Although it completely protects against code injection, this technique does not
protect against other exploits based on resident code, like return-into-libc attacks.

Safe Runtime Library Many buffer overflow attacks are based on vulnerable uses of the
standard C library, more specifically functions manipulating strings (sequences of charac-
ters). By replacing the code of these libraries with code that performs additional checks to
ensure memory safety, one can protect against these specific buffer overflow exploits.

This technique was first presented in Libsafe [9] in 2000. It successfully prevents stack
overflows that redirect the flow of control, but not those that overwrite stack data, notably
pointers. Moreover, it cannot prevent overflows in functions other than the vulnerable li-
brary functions explicitly treated.

27

Address Space Layout Randomization Attacks that redirect the flow of control need
to locate the address in memory of some target code, whether a shellcode on the stack or
resident code on the host machine, e.g., library code. Address space layout randomization
makes this phase much harder by randomly distributing these addresses.

This technique was initiated in the PaX patch for the Linux kernel in 2000. To date,
it is the most effective way to prevent remote code execution, but it does not offer a total
protection.

Stack-Smashing Protection Stack-based buffer overflows are the easiest ones to exploit,
and thus the most common ones. They usually redirect control by overwriting the return
address of the current function being executed, which is stored on the stack. Two techniques
prevent such overwriting. By placing a “canary”, a group of specific bytes, just before
the return address, one can detect with a high probability whether these bytes have been
overwritten. The other technique is to place return addresses on a separate stack. Contrary
to previous ones, these techniques require that the source code of the program is available.

These techniques were pioneered by StackGuard and StackShield, two patches for the
GCC compiler suite, in 1997. Although useful, they can still be bypassed, as shown by an
article published in Phrack Magazine [29] in January 2000. In 2000, ProPolice, another
patch for GCC, proposed an enhanced stack-smashing protection. Since 2002, Microsoft
Visual C proposes the same functionality as StackGuard, when option /GS is set. It can also
be bypassed, as described in an article from Cigital researchers [150] in 2002.

Pointer Protection Even when the address in memory of some code can be located, it
must be stored as pointer data before it can be executed. Pointer protection encrypts the
value of pointers, so that it is very hard to guess the encrypted value that corresponds to a
given address.

This technique was first described by Cowan et al. in PointGuard [53] in 2003, and latter
implemented in Windows XP SP2 and Windows Server 2003 SP1. There exists various
ways to bypass this protection.

Deep Packet Inspection Before a shellcode gets executed, it must be sent to the target
executable in the form of an innocuous string. Deep packet inspection attempts to discover
the executable nature of the crafted string by looking at its content.

This technique first appeared in 2003 as a combination of the functionalities of an in-
trusion detection system and a stateful firewall. Unfortunately, it is not very effective at
preventing buffer overflow attacks, even those based on code injection, as there are many
ways to encode a shellcode into a string.

Safe C Compilers Various compilers for C programs instrument the generated machine
code so that memory errors are detected and reported right away.

Safe C [5] performs a C to C translation based on a safe pointer representation that
ensures memory safety at runtime. It inserts a runtime check before every memory ac-

28

cess through a pointer. Authors report execution time overheads from 130% to 540% and
memory footprint overheads up to 100%, on the benchmark tested.

CCured [138] statically recovers types of pointers from C source code in order to per-
form instrumentation only where needed. It relies on garbage collection for memory recla-
mation, rather than the unsafe hand-written calls to free. Authors report execution time
overheads up to 250%, on the benchmark tested.

This approach suffers from a slowdown in execution time and an increase in memory
footprint that may be unacceptable for some applications. Furthermore, it requires all li-
braries to be compiled with a safe compiler to be effective.

1.2.4 Better C Initiatives

Due to the inherent difficulties in analyzing C programs and ensuring safety of the generated
executables, many projects have tried to improve on the C language, with as few modifica-
tions as possible. All these initiatives have in common to improve on memory safety, when
not guaranteeing it.

Safe C Libraries Since many buffer overflows occur in standard library functions that
do not check bounds before writing in buffers, it is considered good practice to avoid these
functions altogether. This includes the (in)famous gets, scanf and strcpy functions.
Many alternatives have been proposed to replace these unsafe functions, e.g., strcpy_s,
strlcpy and strncpy for replacing strcpy, the function that copies strings.

Safe string libraries go beyond the standard C string library, by defining an abstract
data type to be used instead of plain strings, and safe operations on this abstract data type,
including bound checking. There exists various such libraries: The Better String Library,
the C String Library (SafeStr), Vstr, Erwin vectors of characters, CERT managed string
library, etc.

Adopting safe libraries defines in fact a domain-specific language whose basic con-
structs are those library functions coded in plain C. Still, failure to use these library func-
tions correctly can result in buffer overflows, and it is always possible that these functions
themselves contain vulnerabilities.

Safe C Subsets Most software companies impose that their developers follow a strict set
of coding guidelines in C, which allows them to reduce the likelihood of memory errors.
At the most extreme, these coding guidelines may even define a memory-safe subset of C,
by constraining the form of loops allowed, by forbidding problematic features such as casts
and unions, etc.

Such a set of coding guidelines defined by the MISRA (Motor Industry Software Reli-
ability Association) for the automotive industry is known under the name MISRA-C [133].
It strongly constrains the kind of programs that can be written, by excluding the most prob-
lematic language features in C: dynamic allocation, unions, casts between pointer types, etc.
Although widely adopted in some industries, MISRA-C has received much criticism for its
lack of a rigorous definition. A similar Pascal-like subset of C named C0 [116] is the base

29

language of project Verisoft, which aims at a completely verified software and hardware
platform. Neither MISRA-C nor C0 is a memory-safe subset of C.

Safe C Dialects Some projects have tried to completely replace C with a different but
equivalent language, that could be used instead of C for systems programming. These
approaches obviously suffer from not being applicable to legacy C programs.

Cyclone [104] is a clone of C with language mechanisms for strong typing, allocation
and aliasing. It restricts in particular pointer casts and (discriminated) unions to maintain
type-safety. BitC [160] takes the more extreme position of completely departing from the
syntax and semantics of C, to adhere instead to SML/Scheme syntax and semantics, with
access to low-level memory as in C. D [16] is a strongly typed systems programming lan-
guage whose goal is to correct bad design decisions in C and C++, while keeping the same
power and efficiency.

Annotated C Another approach exemplified by Deputy [184] consists in adding annota-
tions to the C language to express additional specifications, like the expected size of a buffer.
Then, a dedicated compiler is responsible for checking that these annotations are indeed re-
spected. The same kind of annotations is used in SAL (Standard Annotation Language) at
Microsoft, to prevent memory errors in large legacy C programs [84]. These annotation lan-
guages are presented as a set of type qualifiers or declaration specifiers to facilitate adoption
by C programmers, which also makes them too simple to handle every possible situation.
Although these annotation languages cannot in general express all the properties that are
required to completely ensure safety, they have achieved far greater levels of dependability
than was previously known.

1.3 Techniques and Tools

Many techniques and tools have been developed for analyzing C programs at the source
level, more than for any other language. We detail here those techniques and tools that target
static safety checking for existing C programs. This excludes most techniques presented so
far:

• C programs - This excludes using all variants of C presented in Section 1.2.4, with
the exception of annotated C proposals.

• existing programs - This excludes all software engineering techniques that tend to
improve code quality and understanding in order to lower the rate of errors: code
reviews, coding guidelines, defensive programming, software development method-
ologies (eXtreme programming, CMMI, etc.).

• static safety checking - This excludes all remediation techniques that detect and re-
cover from errors at runtime presented in Section 1.2.3.

The main difficulty in analyzing a program in any language is the infinite number of
possible situations to consider, a.k.a. the infinite state space. The techniques that target

30

static safety checking for existing C programs (and tools based on those) generally follow
one of three paradigms, or a combination thereof, that try to solve the infinite state space
problem in a different way:

• Enumeration techniques consider each possible situation in turn.

• Abstraction techniques build a finite abstraction of the system to analyze, that covers
all possible real situations, and analyze it instead.

• Deduction techniques transform the problem into logical formulas and apply logical
rules of reasoning to decide their truth value.

1.3.1 Enumeration Techniques

Enumeration techniques take the straightforward approach of considering every possible
situation in turn, while trying to benefit from the problem symmetries to treat more than
one situation at once. Eventually, in case this enumeration is still infinite, these techniques
provide a sense of exhaustivity by relying on some notion of coverage of the state space
(e.g., structural, functional) or by bounding the problem parameters to resort to a finite
enumeration.

Testing [107] is currently the most common and useful technique to check the safety of
industrial programs. In its simplest form, it consists in running the program on the selected
input, and checking the output generated to be the one expected. There are many branches
in testing, roughly grouped into white-box testing, in which the source code is available,
black-box testing, in which only the executable is available, and regression testing, in which
the differences between successive versions of a program are tested. In general, a program
compiled for testing may behave differently as the same program compiled for production,
as it may contain additional debugging code or instrumented code whose purpose is to apply
extra checks during test execution. Testing is non-exhaustive by nature, and relies instead
on notions of coverage.

Simulation is similar to testing, with the program being simulated by software instead
of being executed on hardware. Like testing, it is seldom exhaustive.

Model checking [42] is an exhaustive simulation, usually based on efficient data struc-
tures. Explicit model checking simply considers each possible situation, while bounded
model checking considers situations up to some predefined bounds depending on the prob-
lem. Software model checking is always based on bounded model checking techniques, not
exhaustive ones, as the state space is usually infinite. This means a program is only checked
up to some bounds in its parameter sizes. Model checking techniques, including bounded
model checking, suffer from the state-explosion problem, where the analysis time or space
requirements may be too large to be practical. Software model checking techniques first
build a boolean model of the program, where data and control are both transformed into
boolean variables, and the program itself is translated into a set of formulas over these
boolean variables describing the possible transitions between states. VeriSoft [75] is the
first software model checker for C programs.

31

Symbolic model checking applies the simulation techniques of model checking to sets
of states, usually represented using Binary Decision Diagrams (BDDs) to provide a canon-
ical representation for data and efficient operations on those. Software model checkers for
C programs based on symbolic model checking include Cadence Incisive, CBMC [40] and
F-Soft [99].

1.3.2 Abstraction Techniques

Abstraction techniques rely on the existence of suitable finite abstractions of the system to
analyze. Their main task is to find an abstraction of the program that is precise enough that
all the concrete executions it represents are safe. There is here an obvious tradeoff between
the precision of the abstraction and the cost of building it. The difficulty lies in the definition
of a Precise enough Static Analysis or PSA [127] for the safety problem at hand.

Abstract interpretation [51] is a theory of program abstractions. As such, all ab-
straction techniques can be seen as instances of abstract interpretation. Various abstract
domains have been defined, which correspond to different directions of abstractions: posi-
tivity, range, linear relations, etc. Given an abstract domain, abstract interpretation simulates
an execution of the program where variables take values in the abstract domain, thus sim-
ulating all executions at once. By a suitable choice of abstract domain and operations on
this abstract domain, this simulation eventually reaches a finite over-approximation of the
program, on which it is possible to check safety.

Abstract interpretation is the core technology in all currently available industrial pro-
gram verifiers: The Mathworks PolySpace, Astrée [21], C Global Surveyor [174], Code-
Hawk [3], Clousot [66], Penjili [96]. Since these tools conservatively report every possible
safety violation, they may suffer from a large number of false positives, i.e., possible errors
reported by the tool which do not correspond to real errors. Some avoid this pitfall by target-
ing only specific C programs, e.g., command control C programs in Astrée or flight mission
software in C Global Surveyor and Penjili. Others rely on dynamic instrumentation to catch
errors at runtime where the tool cannot prove statically that operations are safe. This is the
case for CodeHawk and Clousot. Otherwise, these tools may still be used as bug finders
rather than program verifiers, by focusing only on the most dangerous possible errors re-
ported. This is the case in practice for the leading such tool, The Mathworks PolySpace.
Bug finder Sparrow [183] even claims to perform a sound abstract interpretation before it
selects a fraction of the generated warnings to show to the user.

Static analysis designates the application of abstractions to analyze programs. This
encompasses abstract interpretation, as well as other abstraction techniques that are not for-
malized in the framework of abstract interpretation. To overcome the natural imprecisions
faced when scaling to large programs, some static analyses are built on unsound abstrac-
tions. These analyses may forget some concrete executions in order to improve scaling
and precision. In general, static analysis may be sound or not depending on the choice of
abstraction.

Most pattern-based bug finders currently available are based on static analysis, from
their publicly available descriptions: Microsoft Prefix/Prefast, Fortify SCA, Grammatech
CodeSonar, Klocwork Insight, Coverity Prevent. Although little information on their algo-

32

rithms is public, these tools seem to deliberately abstract data in a possibly unsound way
to improve scaling and precision. This unsoundness allows them to catch bugs more effi-
ciently.

1.3.3 Deduction Techniques

Deduction techniques rely on the generation of logical formulas whose validity is equivalent
to the safety of the initial program. These verification conditions (VC), a.k.a. proof obliga-
tions (PO), can be proved in a theorem prover, a tool which applies logical rules of reasoning
to decide the truth value of mathematical formulas. This can be done either automatically
inside an automatic prover, or with assistance from a user inside a proof assistant.

Deductive verification is the application of deduction to program verification. It re-
quires that the safety property is expressed as assertions in the source program. Then,
Hoare logics [89] allow one to systematically transform assertions into verification condi-
tions, at the cost of annotating the program with intermediate assertions at each program
point. Dijkstra’s calculus [59], either by weakest preconditions or strongest postconditions,
allows one to reduce the annotation burden on the user side, only requiring annotations at a
few program points: precondition at function beginning, postcondition at function end, loop
invariant at each loop beginning. Still, this approach suffers from not being completely au-
tomatic, requiring at least that annotations are inserted in the program, at worst that a user
interacts with the proving system.

A few program verification tools implement this approach for C programs, for different
logics. Frama-C [73] and VCC [43] are based on classical first-order logic. Thus, they can
rely on many existing theorem provers to discharge verification conditions. E.g., Frama-
C allows one to call many different automatic provers and proof assistants, while VCC
allows to choose between automatic prover Z3 [135] or proof assistant HOL [31]. Other
tools rely on different logics, for which they provide a dedicated automatic prover or proof
assistant, or both, e.g., first-order dynamic logic for Key-C [137] and separation logic for
SLAyer [182].

Automatic provers systematically explore the state space of logical formulas to return a
“yes/no/don’t know” answer to the satisfiability or validity of logical formulas. Automatic
provers generally handle simpler formulas than proof assistants, and do not require expert
users if used completely automatically inside other tools. Many such tools are available:
Alt-Ergo [46], CVC3 [12], Simplify [57], Yices [63], Z3 [135], etc.

Proof assistants provide a mechanical support for manually proving hard theorems, usu-
ally requiring expert users. There are many such tools available [177], of which Coq [19],
HOL [142] , Isabelle/HOL [141] and PVS [145] are well-known examples. When auto-
matic provers fail to prove a valid verification condition, proof assistants provide a way to
complete the proof.

1.3.4 Combination Thereof

Enumeration, abstraction and deduction techniques can be used in combination. It is the
main goal of the VMCAI international annual conference since 2000.

33

Predicate abstraction [78] is the best example of a powerful combination of abstraction
and deduction. It is a variant of abstract interpretation where the abstract domain used is the
domain of conjunctions over a set of predefined predicates mentioning program variables.
Operations on this logical abstract domain rely on querying an automatic theorem prover
for validity of formulas.

CEGAR [41] (Counter-Example Guided Abstraction Refinement) is a refinement of
predicate abstraction that combines all three paradigms. Given an initial set of predicates,
an abstraction of the program is built using deduction techniques. Model checking tech-
niques are used to enumerate possible abstract executions. Whenever an error is reached
in an abstract execution, either it corresponds to a real error, or it is a spurious error that
is removed by refining the predicates upon which the abstraction relies. Software model
checkers for C programs based on a CEGAR approach include SLAM [8], BLAST [20]
and MAGIC [33].

Invariant generation, i.e., the generation of valid formulas at specific program points,
can be used to improve the results of most verification techniques. Therefore, techniques
that generate such invariants, such as abstract interpretation techniques, can be used as a
first step in combination with other techniques. E.g., invariants can be used as function
preconditions, postconditions and loop invariants in deductive verification [71].

1.4 Statement of Purpose

Since recently, there is a shared diagnosis amongst software-intensive industries that, as
software systems keep growing in size, the current reliance on compliance with a qualified
process and validation by testing will not be sufficient to assess the dependability of software
systems. The recent multiplication of bug finders based on static analysis (Fortify SCA in
2004, Coverity Prevent in 2004, Microsoft Prefix/Prefast in 2005, Klocwork Insight in 2005,
Grammatech CodeSonar in 2006) is only a first step in this mind-shift.

It remains to develop techniques and tools that can guarantee safety of C programs,
which cannot be based on unsound abstractions like the aforementioned bug finders. The
current trend for industrial use is to focus on sound abstraction techniques. In 2003, the tool
Astrée [21] showed it was possible to reach completely automatic static safety checking for
C programs of 100,000+ lines of code, although for a very restricted range of C programs,
namely generated command control C programs. Other works insist that program verifica-
tion requires the use of *-sensitive analyses [83], which is not easily obtained with abstract
interpretation alone.

Techniques for program verification should make it possible to discriminate between the
same program with or without a specific error. In 2004, the benchmark of Zitser et al. [185]
showed that none of the five modern static analysis tools tested was better than a random
choice when discriminating between an unsafe program and its patched version. In 2006,
Hackett et al. presented a tool based on SAL lightweight annotations [84] that succeeded
in discriminating most Zitser’s test cases. The next step should be to get the same discrim-
inating results without the need for annotations and with sound techniques guaranteeing
safety.

34

In order to gain industrial acceptance, these sound techniques should scale to millions
of lines of code and apply to existing C programs as originally written. Then, industrial
interest may vary depending on whether the tool is:

• automatic, not needing expert users to give usable (i.e., precise) results;

• modular, not requiring all the source code of the application and its libraries;

• tunable, making it possible to improve results given user input.

Deductive verification techniques naturally comply with the last two requirements, by
being inherently modular and allowing users to finely tune the properties proved through
logical annotations. Weakest preconditions generate the most precise verification condi-
tions. Function-level modularity allows scaling easily. This thesis contributes to applying
these techniques to existing C programs in an automated way.

1.5 Summary of Contributions

This thesis presents techniques for static safety checking of industrial C programs by de-
ductive verification. These techniques are both automatic and modular: they neither require
human intervention nor the complete source code.

More precisely, we propose an answer to each of the three main problems one must face
when trying to apply deductive verification to industrial C programs [93]:

• annotation generation - Deductive verification without the ability to automatically
generate the necessary logical annotations may only be undertaken for very few
projects, due to the cost of manually adding annotations.

We present a technique to generate logical annotations based on abstract interpreta-
tion and weakest preconditions. In particular, it generates precise sufficient function
preconditions, which has not been shown before.

• modular memory separation - Fine grain memory separation is the only way to gener-
ate verification conditions that can be verified by automatic provers. This is especially
true in a context where annotations are automatically generated.

We present an alias control technique based on Talpin’s alias analysis, a context sen-
sitive variant of Steensgaard’s type-based alias analysis. It is the first instance of
an alias analysis that generates necessary function preconditions of correctness, thus
relying on deductive verification to discharge these preconditions. This technique al-
lows one to express separation properties clearly in verification conditions, in a way
that is optimal for automatic provers.

• support for unions and casts - Industrial C programs do use the low-level memory
management capabilities of the C language, most notably unions and casts of point-
ers. Failure to support these features in previous tools has been recognized as the
major barrier to adoption of these tools in an industrial context.

35

We present a mixed typed and byte-level memory model that allows one to handle
unions and casts in deductive verification, while keeping as much as possible the
benefits of the typed memory model. It relies on the modular memory separation
technique mentioned above.

These techniques have been implemented in Frama-C [73], an open-source platform for
modular analysis of C programs, and the Why Platform [69], an open-source platform for
deductive verification of programs. Figure 1.4 sketches the relations between both plat-
forms. Frama-C is built on CIL, an open-source front-end for the main C dialects, to
which it adds (1) support for logical annotations expressed in the ANSI C Specification
Language [14] (ACSL) and (2) a plugin-based framework to facilitate the integration of
various analyses. The Why Platform is a multi-language multi-prover verification tool, that
generates verification conditions for both automatic provers and proof assistants. Inside
Frama-C, the JESSIE plugin translates programs from the internal Frama-C representation
to an input representation for the Why Platform. Although Frama-C and the Why Platform
are distinct softwares, the Why Platform is also distributed inside Frama-C for an easy in-
tegration. Notice that Frama-C replaces the tool Caduceus [68] previously developed in the
Why Platform. For completeness, we also sketch the relation to Krakatoa [129], a tool of
the Why Platform for deductive verification of JAVA programs.

Figure 1.4 also sketches the flow of translation from a C program to the generated
verification conditions. The source C program may be decorated with logical annotations
in ACSL. The program and its annotations are first translated to an annotated variant of
CIL [139] (C Intermediate Language), and then to JESSIE, the intermediate language con-
sidered in all the analyses described in this thesis. In fact, the JESSIE language we present
in this thesis is not exactly the JESSIE language that serves as interface between Frama-C
and the Why Platform. The latter is not at all minimal, in order to facilitate the interfacing
and to delay common transformations after the translation to JESSIE, thus avoiding dupli-
cate work. We present instead an internal intermediate language used in the Jessie2Why
tool, which translates the JESSIE program into a WHY program. Finally, the VC generator
inside the Why Platform generates the corresponding verification conditions, which can be
discharged in a number of automatic provers and proof assistants.

Using Frama-C, we applied the techniques described in this thesis to:

• check the safety of existing string libraries: an implementation of the C standard
string library in MINIX 3, a secure open-source operating system, and CERT Man-
aged String Library, a secure string library coded in a defensive programming style;

• discriminate between unsafe and patched versions of open-source programs with vul-
nerabilities: we check such pairs of programs in both Verisec Suite and Zitser’s
benchmark.

1.6 Organization of This Thesis

This thesis is divided into three parts.

36

C+ACSL

Frama-C Core

CIL+annot

Jessie Plugin

Java +JML

Krakatoa

Jessie

Jessie2Why

Why

VC Generator

VC

Automatic Provers:
Alt-Ergo, CVC3, Simplify, Yices, Z3, etc.

Proof Assistants:
Coq, HOL, Isabelle/HOL, PVS, etc.

Frama-C

Why
The
Platform

Figure 1.4: Frama-C and the Why Platform

37

In Part I, we present the language JESSIE, the translation of C programs into JESSIE

programs, and techniques for static safety checking of JESSIE programs.
Chapter 2 presents the syntax and semantics of the intermediate language for program

verification JESSIE, as well as the translation of C programs into JESSIE programs.
Chapter 3 describes how to check automatically and modularly that annotated JESSIE

integer programs are safe and respect their annotations, using abstract interpretation and
deductive verification.

Chapter 4 describes how to check automatically and modularly that annotated JESSIE

pointer programs are safe and respect their annotations, using abstract interpretation and
deductive verification.

In Part II, we present restrictions on the kind of input JESSIE programs considered that
allow the design of improved analysis techniques. Chapters 5, 6 and 7 each presents such a
restriction and the associated analyses, in increasing order of generality.

Chapter 5 restricts our analysis to alias-free type-safe JESSIE programs. In this context,
we present a technique to generate automatically and modularly annotations, based on a
combination of abstract interpretation and deductive verification, so that programs can be
checked safe as in Chapter 4.

Chapter 6 restricts our analysis to type-safe JESSIE programs. In this context, we present
a technique to control aliasing automatically and modularly, based on a context sensitive
variant of Steensgaard’s type-based alias analysis. We also describe how to adapt the gener-
ation of annotations described in Chapter 5 to this new context, so that unannotated type-safe
JESSIE programs can be checked safe as in Chapter 4.

Chapter 7 considers the full set of JESSIE programs translated from C programs with
unions and pointer casts. We present a mixed typed and byte-level memory model that
allows us to handle unions and casts, while minimizing the impact of this untyped trans-
lation on analyses presented previously. We describe how to further adapt the generation
of annotations described in Chapter 5 to this new context, so that unannotated JESSIE

programs can be checked safe as in Chapter 4.

In Part III, we present the results of experiments on real C programs, both existing C
string libraries and benchmarks of vulnerabilities, before we finally conclude.

38

Part I

Integer and Memory Safety
Checking

39

Chapter 2

Intermediate Language Definition

Contents
2.1 JESSIE Rationale . 42
2.2 JESSIE Syntax and Operational Semantics 44

2.2.1 Abstract Syntax . 44
2.2.2 Typing Rules . 48
2.2.3 Execution Model . 52
2.2.4 Operational Semantics . 56

2.3 C to JESSIE Translation . 63
2.3.1 Data Translation . 65
2.3.2 Control Translation . 70
2.3.3 A Simple Example: Linear Search 70

2.4 JESSIE Annotation Language . 71
2.5 JESSIE to WHY Translation . 75
2.6 Other Related Work . 77
2.7 Chapter Summary . 77

In this chapter, we present the intermediate language for program verification JESSIE

and the translation of C programs into JESSIE programs.
JESSIE is a simple typed imperative language, with precisely defined semantics, which

allows for an easy exposure and understanding of analyses. Section 2.1 discusses the ratio-
nale behind JESSIE. Section 2.2 formally defines JESSIE semantics w.r.t. a byte-level block
memory model. It provides a firm ground on which to define safety for JESSIE programs.

Section 2.3 describes the translation of C programs into JESSIE programs, so that re-
sults of analyses on JESSIE programs are well understood in terms of the corresponding C
programs.

Section 2.4 presents the first-order logic annotation language included in JESSIE. It
allows specifying JESSIE programs and communicating results between analyses. ACSL
annotations for C programs are translated into JESSIE annotations for the corresponding
JESSIE programs.

41

2.1 JESSIE Rationale

As described in Section 1.2, C is a complex language, both in terms of syntax and semantics.
It makes it challenging to describe and understand any analysis directly performed at the
level of C source programs. Instead, we translate C programs into a simpler language,
JESSIE. All the analyses we describe in this thesis apply to JESSIE programs.

Intermediate Languages for C Analysis There exists many intermediate languages for
the analysis of C programs. They vary in expressiveness, level of abstraction and simplicity,
depending on the kind of analysis they were designed for. They usually borrow features
from C and assembly languages.

GENERIC [163] is an abstract syntax representation of C that takes care of parsing and
linking issues. It remains at the same level of abstraction as C source: control structures are
preferred over control-flow graph; expression trees are preferred over three-address code
expressions; typed variables are preferred over pseudo-registers or registers; stack frames
remain implicit. It is the first main intermediate language used in the GCC compiler suite.

SIMPLE [87] is an intermediate language in the McCAT compiler that facilitates alias
and dependency analyses. It is simpler than GENERIC, with expression trees translated
into three-address code expressions.

GIMPLE [163] is a clone of SIMPLE where control structures are translated into
control-flow graphs. It is the second main intermediate language used in the GCC com-
piler suite.

CIL [139] (for C Intermediate Language) sits in between GENERIC and GIMPLE:
control structures are kept and side-effects are hoisted out of expression trees by introducing
instructions. It is originally the intermediate language used in safe compiler CCured. While
GENERIC is best suited for source code syntactic analyses and GIMPLE for optimization,
CIL is ideally suited for source code semantic analyses. As such, it is the frontend of many
analyses for C programs, ranging from type-safe compilation to symbolic evaluation and
slicing.

MSIL [39, 131] (for Microsoft Intermediate Language) is a unique case of object-
oriented assembly language in human-readable form. It is closer to assembly than GIM-
PLE, with local variables being translated into stack offsets, while still maintaining types.
It is also known as CIL for Common Intermediate Language. It is indeed the first common
intermediate language to which all languages in the Common Language Infrastructure or
the .Net Framework translate, in the Visual Studio compiler suite.

Newspeak [96] is at the same level as MSIL, while maintaining some control structures
and expression trees. These design decisions notably facilitate source code analyses. It is
the intermediate language used in static analyzer Penjili.

The CompCert project [22] for building a verified compiler presents a chain of interme-
diate languages for compilation of C programs, from Clight, a large subset of C, to plain
assembly, through Cminor, which is similar to MSIL and Newspeak.

C0 [116] is a Pascal-like subset of C, similar to MISRA-C [133]. It excludes the features
of C that make full verification problematic: pointer arithmetic, unions, pointer casts. It is

42

the intermediate language used in the Verisoft project for pervasive formal verification of
computer systems.

Simpl [158] is a very generic Sequential IMperative Programming Language. It of-
fers high-level constructs like closures, pointers to procedures, dynamic method invocation,
all above an abstract state that can be instantiated differently depending on the language
analyzed. In his PhD thesis, Schirmer presents a two-fold embedding of a programming
language in HOL theorem prover through Simpl. On the one hand, Simpl statements are
deeply embedded inside HOL, which allows one to formally verify correctness of the anal-
ysis on statements. On the other hand, the abstract state is shallowly embedded inside HOL,
for an easier application to program analysis of many different languages. Simpl is used as
target language in the C0 compiler of the Verisoft project.

On a different track, BoogiePL [11] and WHY are generic intermediate languages for
deductive verification. None of them is specifically tailored for the analysis of C, although
BoogiePL is the intermediate language used in C analysis tools HAVOC [47] and VCC [43].
BoogiePL and WHY both explicitate memory as a collection of heap variables, which is
necessary for deductive verification, but cumbersome for most static analyses.

Behavioral Interface Specification Languages JESSIE is a direct successor of the in-
termediate languages used in Caduceus [68] and Krakatoa [129], which aim at deductive
verification of C and JAVA languages, in the framework of the Why Platform [69]. It inher-
its from these predecessors part of its memory model and annotation language. These two
annotation languages are themselves strongly inspired from JML [115], the JAVA Modeling
Language, whose purpose is to annotate JAVA programs with logic formulas for testing and
static analysis.

JESSIE was developed in parallel with ACSL [14], the ANSI C Specification Language,
with which it shares most of its constructs. The memory model constructs are essentially
specific to the analysis of C programs, partly inspired by the annotation language of Ca-
duceus, while most other logic constructs can already be found in JML.

Comparison with JESSIE JESSIE follows most intermediate languages for C analysis
in targeting all of C, at the exclusion of embedded assembly code, i.e., the ability to em-
bed instructions in an assembly language inside a C program. Like Newspeak and Clight,
JESSIE relies on a byte-level block memory model. Like CIL and Clight, JESSIE remains as
much as possible at the level of types, while allowing byte-level operations. As presented
in Figure 1.4, JESSIE is a target of translation from CIL, from which it inherits a collection
of implementation-defined decisions w.r.t. the target architecture and the real C compiler.
E.g., we consider by default that a byte, the lowest addressable entity, is 8 bits, which is the
case in almost all existing architectures.

JESSIE is original in at least two directions. First, the JESSIE memory model and data
types are notably simple while staying at the level of structured types, which allows more
easily to generate annotations. Secondly, JESSIE combines operational and logical features.
Its operational part consists in statements which describe the flow of control and instructions
which perform operations on data, including memory updates. Its logical part is described

43

range-def ::= range id = integer .. integer integer range def

fields ::= { (type id : integer)∗ } list of fields

struct-def ::= struct id = fields structure def

type ::= boolean | integer | real mathematical types
| unit void type
| id integer range type
| id [integer? .. integer?] pointer to structure type

Figure 2.1: Grammar of JESSIE types

through first-order logic propositions, which annotate statements and functions. Statements,
instructions and propositions are all built upon side-effect free terms. Contrary to Simpl,
JESSIE does not offer an embedding inside a theorem prover, which means that translations
to and from JESSIE must be trusted.

In the following, we illustrate analyses on JESSIE programs with their results on the
corresponding C programs annotated with ACSL.

2.2 JESSIE Syntax and Operational Semantics

In this section, we present the syntax, typing and semantics of the core operational language
in JESSIE. Section 2.4 and Chapters 4, 6 and 7 will extend this core language in order to
better support static safety checking of JESSIE programs.

2.2.1 Abstract Syntax

JESSIE is an intermediate language, meaning programmers are not expected to create
JESSIE source programs. As such, we are only interested in its abstract syntax, not its
concrete one. We present this abstract syntax in the following. E.g., we will not use sep-
arators (semicolon) between instructions or statements in a sequence. However, to make
it more intuitive and easier to follow, we present it in a concrete form, adding parentheses
whenever needed to disambiguate between concrete forms. We will also use this convenient
concrete form to show examples of C to JESSIE translations.

Types Figure 2.1 presents the abstract syntax of JESSIE types. JESSIE types are much
simpler than C types, which accounts a lot for the gain in analyzing a JESSIE program
instead of a C program. A type is either a base type or a user-defined type. Base types are
mathematical integers, booleans and real numbers plus unit (the void type). User-defined
types duplicate in JESSIE the bound restrictions of operational C types: integer ranges have
a minimal and maximal value, while pointers may be limited in the range of indices they
address, with an optional minimal and maximal index. An integer range type in JESSIE is

44

very similar to an integer type in ADA (see also [74] for a similar proposition for C, that is
part of the Secure Coding initiative by CERT).

The complex interplay of pointers, arrays and structures in C is replaced in JESSIE with
much simpler design decisions. The only type of aggregate in JESSIE is the array of struc-
tures, which can only be accessed by pointer, and the only type of pointer in JESSIE is the
pointer to an array of structures. In pointer type S[min..max], S is the name of a structure
while min and max , when present, are the indices of the bounds of the underlying array of
structures. E.g., a pointer to a single structure can be typed S[0..0] (S[0] for short) because
0 is both the minimal and maximal index at which the pointer can be accessed. Absence of
bounds, like in S[..], does not mean the underlying array is infinite, but rather that its bounds
are not specified in the pointer type. We will say a pointer has type S[min..max] to indicate
its bounds, or more simply type S when bounds do not matter.

A structure is defined as a named record of typed fields. C fields and C implicit padding
both translate to JESSIE fields. Every field is given a size in bits, similarly to what is done
for bitfields in C. The size in bits of field m is denoted bitsizeof (m), and its offset in bits
is bitoffsetof (m), which is the sum of the sizes in bits of the fields that precede it in the
structure. The size of a structure is defined as the sum of the sizes of its fields. It should be
a multiple of 8, so that a structure size can be expressed in bytes too. The size in bytes of
structure S is denoted sizeof (S). For a term x of pointer type S, sizeof (x) is the same as
sizeof (S). There is no notion of alignment in JESSIE, which is not needed for the layout of
fields in memory as padding is made explicit.

An embedded field m is a field of structure S of pointer type T[min..max] where both
minimal and maximal bounds are known. Such a field with pointer type can always be ac-
cessed safely between its bounds, which seems to raise a contradiction. Indeed, between
the program point where some pointer x of type S[..] is allocated and the program point
where x.m is set, x.m may not have a valid pointer value. In fact, such fields are implicitly
allocated when the enclosing structure is allocated, and implicitly deallocated when the en-
closing structure is deallocated. They may not be assigned to a different value, nor can they
be deallocated independently. Finally, they should also have an offset that can be expressed
in bytes, so that we can define offsetof (m) as bitoffsetof (m)/8. JESSIE embedded fields
behave like C fields of a structure or array type.

At this point, it may seem difficult to translate C complex types into such a reduced
set of types. In fact, it is possible, given the semantics of JESSIE defined in the following,
which will become clear when presenting the translation from C to JESSIE.

Terms Figure 2.2 presents the abstract syntax of JESSIE terms, to which C side-effect
free expressions translate. The usual arithmetic and comparison operators operate on math-
ematical integers and real numbers. In particular, JESSIE operators do not overflow. Hence,
JESSIE operations do not suffer from the wrap-up behavior typical of operations on machine
integers in C, when operations that overflow the integer capacity return a correct result mod-
ulo the capacity. Operations on pointers are distinguished:

• ⊕ denotes pointer arithmetic, taking as operands a pointer and an integer, and return-
ing a pointer;

45

bin-op ::= + | - | * | / integer/real arithmetic
| % integer modulo
| ≤ | ≥ | < | > integer/real comparison
| ⊕ pointer arithmetic
| 	 pointer difference
| < | = pointer comparison
| ≡ | 6≡ (dis)equality test
| ∧ | ∨ boolean operations

unary-op ::= - unary minus
| ¬ boolean negation

location ::= id variable
| (location ⊕ term) . id memory location

term ::= void
| true | false boolean constant
| null null pointer
| integer integer literal
| real real literal
| location
| unary-op term unary operation
| term bin-op term binary operation
| term ? term : term choice operation
| term . type cast

Figure 2.2: Grammar of JESSIE terms

46

instr ::= location := term assignment
| id := new id [term] allocation
| free term deallocation
| id := id ((term (, term)∗)?) function call

stat ::= instr
| stat stat sequence
| if term then stat else stat conditional
| loop stat infinite loop
| return term function return
| throw id exception raise
| try stat catch id stat exception block

Figure 2.3: Grammar of JESSIE statements

• 	 denotes pointer difference, taking as operands two pointers of the same type, and
returning an integer;

• < and = denote pointer strict comparison, taking as operands two pointers of the
same type, and returning a boolean.

Equality and disequality for a pair of booleans, integers, real numbers, identical integer
ranges or pointers are denoted respectively ≡ and 6≡ . The usual boolean operators operate
on booleans.

A location denotes either a variable or a memory location. Like a left-value (lvalue for
short) in C, it is the syntactic category of the left operand in an assignment. A variable is
either local to a function or global to the program. A memory location is always reached
through a succession of pointer arithmetic and field access. Field access expects a location
operand of pointer type and a field operand, and it denotes the field location pointed to.
Location x.m is only a convenient shorthand for (x⊕0).m that we will use in examples,
not so much in reasoning about memory locations. In location (x⊕i).m, location x should
have type pointer and term i type integer.

A cast takes a term operand and returns a term of a different type. The operand and
result terms are either both of a numerical type (integer, real number or integer range), or
both of a pointer type. In the first case, casting reinterprets the operand value. In the second
case, casting reinterprets the memory chunk pointed-to.

Finally, a term is one of: a constant, an integer or real number literal, a location, a unary,
binary or ternary (choice) operation or a cast.

Statements Figure 2.3 presents the abstract syntax of JESSIE statements. JESSIE is mostly
a structured language, with conditionals and loops, but it also relies intimately on intrapro-
cedural exceptions. E.g., raising an exception is the only way to escape a loop. There-
fore, exceptional control flow is as important as the normal one. These exceptions may not
escape a function body, which can be checked statically, hence the name intraprocedural

47

var-def ::= type id

parameters ::= (type id (, type id)∗)?

fun-def ::= type id (parameters) = var-def∗ stat

glob ::= range-def range integer
| struct-def structure
| var-def global variable
| fun-def function

Figure 2.4: Grammar of JESSIE globals

void : unit
CONST-VOID

{true, false} : boolean
CONST-BOOL

null : T [..]
CONST-NULL T any structure

integer : integer
CONST-INT

real : real
CONST-REAL

Figure 2.5: Typing of JESSIE constants

exceptions. As in CIL, we draw a distinction between instructions and statements. Instruc-
tions are basic statements that, upon performing their task, always transfer control to the
next statement in sequence. Statements are either instructions, or more complex statements
which structure the control flow. For simplicity, allocation and function call always store
their result in a temporary variable, whose scope begins at that instruction.

Globals Figure 2.4 presents the abstract syntax of JESSIE global entities, except type def-
initions (integer range and structure) already described in Figure 2.1. A global variable is
simply defined by its type and name. A function is defined by its return type, name, param-
eters, local variables and body statement. A special main function, with unit return type
and no parameters, is the entry point of the program. There are no implicit initializations of
global variables like in C.

2.2.2 Typing Rules

Typing rules restrict the kind of JESSIE programs that can be written. We present typing
rules for all terms, in the form of typing judgments t : τ , in which t is a term and τ a type.

Figure 2.5 presents the typing of JESSIE constants. According to rule CONST-NULL,
constant null can have any unbounded pointer type.

48

t : integer
−t : integer

UNOP-INT
t : boolean
¬t : boolean

UNOP-BOOL

t1 : integer t2 : integer
t1{+,−,×, /,%}t2 : integer

ARITH-INT
t1 : real t2 : real

t1{+,−,×, /}t2 : real
ARITH-REAL

t1 : integer t2 : integer
t1{≤ ,≥ , <,>}t2 : boolean

COMP-INT
t1 : real t2 : real

t1{≤ ,≥ , <,>}t2 : boolean
COMP-REAL

t1 : boolean t2 : boolean
t1{∧,∨}t2 : boolean

OPER-BOOL

Figure 2.6: Typing of JESSIE base type operations

t1 : T [..] t2 : integer
t1 ⊕ t2 : T [..]

SHIFT
t1 : T [..] t2 : T [..]
t1 	 t2 : integer

SUBPTR

t1 : T [..] t2 : T [..]
t1{<,=}t2 : boolean

COMP-PTR

Figure 2.7: Typing of JESSIE pointer operations

49

t : real
t . integer : integer

REAL-CAST
t : integer
t : real

REAL-PROMOTION

t : integer
t . E : E

RANGE-CAST
t : E E is an integer range type

t : integer
RANGE-PROMOTION

t : T [..]
t . S[min?..max ?] : S[min?..max ?]

PTR-CAST

t : T [min?..max ?]
t : T [..]

PTR-PROMOTION
t : τ

t . τ : τ
IDENT-CAST

Figure 2.8: Typing of JESSIE casts and promotions

x : Type(x)
VAR

t1 : T [..] t2 : integer m is a field of T
(t1 ⊕ t2).m : typeof (m)

FIELD

Figure 2.9: Typing of JESSIE locations

Figure 2.6 presents the typing of JESSIE operations on base types: integer, real numbers
and booleans. Figure 2.7 presents the typing of JESSIE operations on pointers. They all
expect pointer subterms to be of unbounded pointer types.

Figure 2.8 presents the typing of JESSIE allowed casts and implicit promotions.
Rules REAL-PROMOTION, RANGE-PROMOTION and PTR-PROMOTION define implicit pro-
motions of terms: a term of type integer can always be promoted to type real ; a term of
integer range type can always be promoted to type integer ; a pointer of bounded pointer
type can always be promoted to the corresponding unbounded pointer type.

Figure 2.9 presents the typing of JESSIE locations. The type for a global or local variable
is given by type environment Type. The type of a field access is given by the type of the
field. Figure 2.10 presents the typing of JESSIE remaining terms. Equality and disequality
apply to any pair of terms of the same type.

Figure 2.11 presents the typing of JESSIE instructions, and Figure 2.12 presents the

t1 : τ t2 : τ
t1 ≡ t2 : boolean

EQ
t1 : τ t2 : τ

t1 6≡ t2 : boolean
NEQ

t1 : boolean t2 : τ t3 : τ
(t1 ? t2 : t3) : τ

CHOICE

Figure 2.10: Typing of JESSIE terms

50

t : Type(x)
{x := t} well -typed

ASSIGN-VAR

l : S[..] t1 : integer m field of S t2 : typeof (m)
{(l ⊕ t1).m := t2} well -typed

ASSIGN-FIELD

x : S[..] t : integer
{x := new S[t]} well -typed

NEW
t : S[..]

{free t} well -typed
FREE

x : typeof (resultf) ti : Type(parami)

{x := f(
−→
ti)} well -typed

CALL

Figure 2.11: Typing of JESSIE instructions

{s1} well -typed {s2} well -typed
{s1 s2} well -typed

SEQ

t : boolean {s1} well -typed {s2} well -typed
{if t then s1 else s2} well -typed

IF-TRUE

{s} well -typed
{loop s} well -typed

LOOP-NORMAL

t : Type(result)
{return t} well -typed

RETURN
{throw X} well -typed

THROW

{s1} well -typed {s2} well -typed
{try s1 catch X s2} well -typed

TRY-NORMAL

Figure 2.12: Typing of JESSIE statements

51

typing of JESSIE statements.

2.2.3 Execution Model

JESSIE is meant to be an analyzable language, not an executable one. What is analyzed is
not a possible run of a JESSIE executable on a real machine, but an interpretation of the
JESSIE program in an imaginary machine, deliberately ignoring implementation issues. In
the following, we detail the model of the imaginary machine we rely on, by describing its
memory model and state model. Data fits into three categories in JESSIE:

• global data: it corresponds to the content of global variables;

• local data: it corresponds to the content of local variables and function parameters;

• heap: it corresponds to memory, i.e., dynamically allocated data.

The state model describes the result of accessing this data. The memory model describes
how memory is organized, so that valid and invalid memory accesses can be distinguished.

Memory Model In a real computer, memory is often simply described by its size N ,
meaning every byte in memory can be described by its address, an integer between 0 and
N−1. Then, a pointer is simply an address, and a block of memory is a finite set of contigu-
ous addresses. This defines a simple byte-level memory model, illustrated in Figure 2.13,
where a block of memory is typically represented as a pair (a, s) of an address and a size,
and a pointer is an address. This is roughly the memory model used in VCC [43]. The
level of abstraction provided by the C program is partly lost in this model of memory. E.g.,
it is possible to access beyond the bounds of the allocated block pointed-to, provided the
memory accessed is also allocated, which is forbidden by the C standard.

A usual abstraction of memory that avoids this problem is the block memory model,
illustrated in Figure 2.14, where memory is made up of disjoint blocks of memory, without
any reference to addresses. A block of memory is typically represented as a pair (l, s) of
a label and a size, where a label completely identifies a block. A pointer is a pair (l, i) of
a block label and an index into the block. Byte-size memory cells pointed to by pointers
(l, i) where i ∈ [0..s-1] define the part of memory that uniquely belong to the block. Most
intermediate languages and tools for analyzing C programs rely on a block memory model.
With this memory model, it is not possible to analyze common but non-standard conforming
C programs that compare pointers pointing into different memory blocks. In particular, it is
not possible to analyze any implementation of the C standard library function memmove.

Notice that using the address of a block as label in a mixed byte-level and block memory
model, as illustrated in Figure 2.15, is not a correct solution to overcome the previously
mentioned limitations, because of deallocation and reallocation of memory. Indeed, an
invalid pointer to a deallocated block (in black on the Figure) may have the same value as
a valid pointer to a newly allocated block (in white on the Figure), if these blocks happen
to start at the same address. Then, it is not possible to distinguish between a valid and
an invalid pointer. Thus, it would be possible to prove the safety of program perverse,
although it clearly accesses pointer x after its memory has been deallocated.

52

a− 1 a a+ 1 a+ s− 1

a+ i

Figure 2.13: Byte-level memory model

l1

0 1 s1 − 1

(l1, i) l2

0 1 s2 − 1

(l2, i)

Figure 2.14: Block memory model

a− 1 a a+ 1 a+ s− 1

(a, i)

a a+ 1

(a, i)

Figure 2.15: Incorrect byte-level block memory model

a1 − 1

l1

a1 a1 + 1 a1 + s1 − 1

(l1, i)

a2 − 1

l2

a2 a2 + 1 a2 + s2 − 1

(l2, i)

Figure 2.16: JESSIE byte-level block memory model

53

1 void perverse() {
2 int *x = (int*) malloc(sizeof(int));
3 free(x);
4 int *y = (int*) malloc(sizeof(int));
5 if (x == y) {
6 *x = 0;
7 }
8 }

JESSIE relies on a byte-level block memory model, illustrated in Figure 2.16, that cor-
rectly merges the byte-level and the block approaches in order to avoid previously men-
tioned limitations. A block of memory is represented as a tuple (l, a, s) of a label, an
address and a size in bytes. A label completely identifies a block, meaning that no two
blocks can share the same label, even after one block has been deallocated. Address a and
size s can be seen as functions of label l. An address only identifies an allocated block,
meaning that no two allocated blocks can share the same address, but they may share it with
deallocated blocks. More precisely, allocated blocks are completely separated, so that the
range of addresses from a to a+ s− 1 is uniquely associated to allocated block (l, a, s). A
pointer is a tuple (l, i) of a block label and a byte offset into the block. With this memory
model, it is possible to both forbid accesses beyond the allocated block pointed-to and to
allow comparison of pointers into different blocks. This is in fact just a slight modification
of the block memory model with addresses.

Finally, the JESSIE memory model is unbounded, as if the computer memory was infi-
nite. Although it could be included in the model, the finite bound on the memory size is not
needed for memory safety checking as defined in Section 1.2.2.

Memory Updates and Accesses Although memory blocks could be typed at creation
(new S[n] must return a pointer to an array of S structures of size n), casting between
pointer types may reinterpret a memory chunk in a different type. To account for the coex-
istence of different views of a same memory chunk, memory is considered to be untyped, so
that accesses to the same chunk through different pointer types write or read from the same
underlying memory block. Hence, new S[n] returns a pointer to a block of sizeof (S)×n
bytes, interpreted as an array of n elements of type S.

Pointer arithmetic allows moving a pointer forward or backward along a memory block,
but it does not allow jumping from one allocated block to a neighboring one. Indeed, reading
and writing through a pointer of type S is valid only if the individual bytes for structure S
accessed are within the bounds of the original underlying memory block.

The offset of pointer p pointing into memory block a is the difference in bytes between
the byte pointed-to by p and the beginning of memory block a. Pointer difference takes two
pointer operands of the same type S, pointing into the same memory block. It returns the
difference of their offsets, divided by sizeof (S). Notice that this difference is not necessarily
a multiple of sizeof (S), which means that p 	 q can be null without p and q being equal.
Pointer comparison < returns true if the difference of addresses is strictly negative, false
otherwise.

Finally, memory blocks can be deallocated through calls to free, after which they
should not be accessed anymore.

54

State Model A state is a snapshot of every significant piece of information at some point
during execution of a JESSIE program. In particular, it maps every piece of data to its value.
By extension, it maps every term to a value that depends on its type. Terms of mathematical
type evaluate to the corresponding mathematical values: integers, real numbers, booleans
(and void for type unit). Terms of integer range type naturally take value in integers, al-
though in a restricted range of integers defined by their type. Terms of pointer type evaluate
to tuples (l, a, i) of a memory block label, an address for the block and an integer offset,
as defined in the JESSIE memory model. In particular, null pointers evaluate to (null , 0, 0),
where null is a reserved label. Here, we describe the underlying state model which we rely
on to describe JESSIE semantics, not the actual model we use to prove JESSIE programs. A
state is essentially a tuple of mappings from variables and memory chunks to values:

• Glob maps global variables to their value. The value of global variable x is denoted
Glob(x). Assigning a value v to x results in a modified mapping denoted Glob[x 7→
v], where x has value v while all other global variables retain their value from Glob.

• Env maps local variables to their value. The value of local variable x is denoted
Env(x) while assigning value v to x results in a modified mapping Env[x 7→ v].

• Heap maps memory chunks to bit-vectors. Heap(ba, bn) denotes the bit-vector
stored in contiguous bits from bit address ba to bit address ba + bn − 1, where the
bit address of a memory byte is 8 times its address (a byte being 8 bits). Changing
the bit-vector stored between these bit addresses to bv results in a modified mapping
Heap[(ba, bn) 7→ bv]. This notation really means that all bits between ba and ba +
bn−1 are updated to the corresponding value from bv , so that further reads of any of
these bits returns the new value, whether it is through the same chunk of bits or not.

• Alloc maps memory block labels to their allocated size. A positive size means the
corresponding memory block is allocated, while a non-positive size means the mem-
ory block has been deallocated. Notice that Alloc stores all memory block labels
previously created, so that no two blocks get the same label.

We will denote the empty mapping as ε, so that the empty state is the tuple ε, ε, ε, ε.

Bitwise Representation of Types We assume the existence of a family of functions
of -bitsm indexed by structure fields, such that for a given field m, of -bitsm takes a sequence
of bits of length bitsizeof (m) and returns the value of type typeof (m) represented by this
bit-vector. Likewise, we assume there exists a family of functions to-bitsm such that for a
given field m, to-bitsm takes a value v of type typeof (m) and returns a bit-vector of length
bitsizeof (m) that encodes value v. We are not interested in their precise definition for defin-
ing the semantics of JESSIE, we only rely on their existence. For every field m, function
of -bitsm should be the left inverse of function to-bitsm, meaning they should satisfy the
equation

of -bitsm(to-bitsm(v)) ≡ v (2.1)

for every value v of type typeof (m).

55

JcK = c
CONST

JtK = v

J� tK = �v
UNOP

Jt1K = v1 Jt2K = v2
Jt1 � t2K = v1�v2

BINOP

Jt1K = true Jt2K = v

Jt1 ? t2 : t3K = v
CHOICE-TRUE

Jt1K = false Jt3K = v

Jt1 ? t2 : t3K = v
CHOICE-FALSE

JnullK = (null , 0, 0)
NULL

t1 : S[..] Jt1K = (l, a, i) Jt2K = j

Jt1 ⊕ t2K = (l, a, i+ j × sizeof (S))
SHIFT

t1 : S[..] t2 : S[..] Jt1K = (l, a, i) Jt2K = (l, a, j)
Jt1 	 t2K = (i− j)/sizeof (S)

SUBPTR

Jt1K = (l1, a1, i) Jt2K = (l2, a2, j)
Jt1 � t2K = a1 + i � a2 + j

COMPAR-PTR � ∈ {<,=,≡ , 6≡ }

Figure 2.17: Evaluation of JESSIE terms - constants and operations

As an example, let us consider the specific case of a field m of signed integral type on n
bytes in C, when the target machine integers are represented in two’s complement notation,
and highest bytes are stored at lowest addresses (i.e., it is a big-endian architecture). It
translates in JESSIE to a field m of integer range type with minimal value−2n-1 and maximal
value 2n-1− 1, of size 8×n bits. In this case, function to-bitsm can be defined as the n-bit
two’s complement representation of its argument, and of -bitsm as its inverse function. By
definition, these functions respect Formula 2.1.

2.2.4 Operational Semantics

We describe here correct executions of well-typed JESSIE programs, in the style of big-step
operational semantics [105, 106], also called natural semantics.

Terms Figures 2.17, 2.18 and 2.19 define an evaluation function J.K for JESSIE terms.
Concrete counterparts of abstract constants and operators are denoted with an overline,
e.g., operator � is the concrete counterpart of abstract operator �. Rules CONST, UNOP

and BINOP deal with base type constants and operations on base type operands, including
equality and disequality of base type operands. Rules SHIFT, SUBPTR and COMPAR-PTR

deal with operations on pointers, namely pointer arithmetic, pointer difference and pointer
comparison, which also treats pointer equality and pointer disequality. In rule COMPAR-
PTR, the concrete counterpart � of a pointer comparison is the corresponding integer com-
parison. Rules GLOB-VAR and LOC-VAR deal with (global or local) variable evaluation.

The semantics of field access depends on whether the field is embedded or not, which is
described respectively by rules EMBED-FIELD and FIELD. There is no indirection involved

56

JxK = Glob(x)
GLOB-VAR

JxK = Env(x)
LOC-VAR

Jt1K = (l, a, i) Jt2K = j m is embedded
J(t1 ⊕ t2).mK = (l, a, i+ j × sizeof (S) + offsetof (m))

EMBED-FIELD

t1 : S[..] Jt1K = (l, a, i) Jt2K = j m not embedded
0 ≤ i+ j × sizeof (S) i+ (j + 1)× sizeof (S) ≤ Alloc(l)

J(t1 ⊕ t2).mK = of -bitsm(
Heap((a+ i+ j × sizeof (S))× 8 + bitoffsetof (m), bitsizeof (m)))

FIELD

Figure 2.18: Evaluation of JESSIE terms - variables and field access

JtK = f i = truncate(f)
Jt . integerK = i

FROM-REAL
JtK = i

Jt . realK = i
TO-REAL

JtK = i

Jt . integerK = i
FROM-RANGE

JtK = i minE ≤ i ≤ maxE
Jt . EK = i

TO-RANGE

JtK = (l, a, i)
Jt . S[..]K = (l, a, i)

PTR-CAST

JtK = (l, a, i)
0 ≤ i+ min × sizeof (S)
Jt . S[min..]K = (l, a, i)

LOW-PTR-CAST

JtK = (l, a, i)
i+ (max + 1)× sizeof (S) ≤ Alloc(l)

Jt . S[..max]K = (l, a, i)
UP-PTR-CAST

JtK = (l, a, i) 0 ≤ i+ min × sizeof (S)
i+ (max + 1)× sizeof (S) ≤ Alloc(l)

Jt . S[min..max]K = (l, a, i)
BOUND-PTR-CAST

Figure 2.19: Evaluation of JESSIE terms - casts

57

when accessing an embedded field. Instead, accessing an embedded field amounts to pointer
arithmetic, returning a pointer into the same memory block as its subterm. Accessing a
regular field is only possible if the memory chunk for the complete underlying structure
completely fits in an allocated memory block. It returns the interpretation of the bit-vector
stored in field m as a value of the type of m. Notice access validity does not depend on
the type of the pointer being accessed. E.g., a pointer of type S[0..1] could be accessed at
index 2 provided the underlying memory chunk is large enough. Bounds in pointer types
are minimal requirements on the underlying memory chunk that can be used to easily prove
the validity of many memory accesses.

The semantics of casts depends on the type of cast considered. Rules FROM-REAL

and TO-REAL describe respectively casts from real to integer and the opposite way.
Casting from real to integer is interpreted as truncation and the opposite cast as an
injection. Rules FROM-RANGE and TO-RANGE describe respectively casts from integer
range to integer and the opposite way. The first one is an injection while the semantics
of the second one depends on the integer model chosen. In the bounded integer model
presented here, it is the identity, provided the value cast fits in the destination type. In the
modulo integer model, casting integer i returns minE +(i−minE) mod (maxE−minE +
1), which corresponds to the wrap-up behavior of machine integers. Pointer cast is the
identity, provided the destination type completely fits into allocated memory.

Instructions The big-step semantics for instruction s is described by judgment

{s} ` Glob1,Env1,Heap1,Alloc1 ⇒ Glob2,Env2,Heap2,Alloc2,

which can be abbreviated in
{s} ` <S>1 ⇒ <S>2,

with the meaning that executing instruction s from a state <S>1 leads to a state <S>2. In
general, only part of the state is modified, in which case we only mention the modified part
in the corresponding judgment, like in

{s} ` Env1 ⇒ Env2.

Figure 2.20 presents the semantics of JESSIE instructions. Notice that, by definition of
to-bitsm in Section 2.2.3, to-bitsm(v) is a bit-vector of size bitsizeof (m), as expected in
rule ASSIGN-FIELD. In rule NEW, the condition that all the bytes in the memory block
returned were not previously allocated is a necessary and sufficient condition for the cor-
rectness of the concrete allocation algorithm. Although we do not formalize it here, it can
be expressed as a modification of the allocation table that extends it, so that previously al-
located pointers cannot point to the newly allocated memory. There is no need to further
specify the allocation algorithm beyond this condition to define the semantics of JESSIE

programs.

Statements The big-step semantics of statement s is very similar to the one for instruc-
tions, except statements also have an outcome: Normal if the statement terminates normally,

58

JtK = v

{x := t} ` Glob⇒ Glob[x 7→ v]
ASSIGN-GLOB

JtK = v

{x := t} ` Env⇒ Env[x 7→ v]
ASSIGN-LOC

t1 : S[..] Jt1K = (l, a, i) Jt2K = v 0 ≤ i i+ sizeof (S) ≤ Alloc(l)
{t1.m := t2} ` Heap⇒
Heap[((a+ i)× 8 + bitoffsetof (m), bitsizeof (m)) 7→ to-bitsm(v)]

ASSIGN-FIELD

JtK = n 0 ≤ n l /∈ dom(Alloc)
∀ i. 0 ≤ i < n× sizeof (S)→ a+ i not allocated
{x := new S[t]} ` Env,Alloc⇒
Env[x 7→ (l, a, 0)],Alloc[l 7→ n× sizeof (S)]

NEW

JtK = (l, a, 0) 0 ≤ Alloc(l)
{free t} ` Alloc⇒ Alloc[l 7→ − 1]

FREE

{−−−−−−−−→parami := ti} ` <S>1 ⇒ Normal ,<S>2

{bodyf} ` Glob2, ε[
−−−−−−−−−−−−−−−−−−→
parami 7→ Env2(parami)],Heap2,Alloc2 ⇒

Return(v),<S>3

{x := v} ` Glob3,Env1,Heap3,Alloc3 ⇒ <S>4

{x := f(
−→
ti)} ` <S>1 ⇒ <S>4

CALL

Figure 2.20: Semantics of JESSIE instructions

59

{s1} ` <S>1 ⇒ Normal,<S>2 {s2} ` <S>2 ⇒ out ,<S>3

{s1 s2} ` <S>1 ⇒ out ,<S>3
SEQ-NORMAL

{s1} ` <S>1 ⇒ Return(v),<S>2

{s1 s2} ` <S>1 ⇒ Return(v),<S>2
SEQ-RETURN

{s1} ` <S>1 ⇒ Throw(X),<S>2

{s1 s2} ` <S>1 ⇒ Throw(X),<S>2
SEQ-THROW

JtK = true {s1} ` <S>1 ⇒ out ,<S>2

{if t then s1 else s2} ` <S>1 ⇒ out ,<S>2
IF-TRUE

JtK = false {s2} ` <S>1 ⇒ out ,<S>2

{if t then s1 else s2} ` <S>1 ⇒ out ,<S>2
IF-FALSE

{s} ` <S>1 ⇒ Normal,<S>2 {loop s} ` <S>2 ⇒ out ,<S>3

{loop s} ` <S>1 ⇒ out ,<S>3
LOOP-NORMAL

{s} ` <S>1 ⇒ Return(v),<S>2

{loop s} ` <S>1 ⇒ Return(v),<S>2
LOOP-RETURN

{s} ` <S>1 ⇒ Throw(X),<S>2

{loop s} ` <S>1 ⇒ Throw(X),<S>2
LOOP-THROW

JtK = v

{return t} ` <S>⇒ Return(v),<S>
RETURN

Figure 2.21: Semantics of JESSIE statements - normal control

60

{throw X} ` <S>⇒ Throw(X),<S>
THROW

{s1} ` <S>1 ⇒ Normal,<S>2

{try s1 catch X s2} ` <S>1 ⇒ Normal,<S>2
TRY-NORMAL

{s1} ` <S>1 ⇒ Return(v),<S>2

{try s1 catch X s2} ` <S>1 ⇒ Return(v),<S>2
TRY-RETURN

{s1} ` <S>1 ⇒ Throw(X),<S>2 {s2} ` <S>2 ⇒ out ,<S>3

{try s1 catch X s2} ` <S>1 ⇒ out ,<S>3
TRY-CATCH

{s1} ` <S>1 ⇒ Throw(X),<S>2 X 6≡ Y
{try s1 catch Y s2} ` <S>1 ⇒ Throw(X),<S>2

TRY-THROW

Figure 2.22: Semantics of JESSIE statements - exceptional control

Return(v) if the statement terminates on return, with returned value v, and Throw(X) if
the statement terminates on throw X. Thus, the judgment for statement s is

{s} ` Glob1,Env1,Heap1,Alloc1 ⇒ out ,Glob2,Env2,Heap2,Alloc2,

which can be abbreviated in

{s} ` <S>1 ⇒ out , <S>2.

Figures 2.21 and 2.22 present the semantics of JESSIE statements.

Programs The semantics of a JESSIE program is the same as the semantics of a call to its
entry function main (with no arguments), in an empty state:

{main()} ` ε, ε, ε, ε⇒ out ,Glob,Env,Heap,Alloc.

Erroneous Executions So far, we have only presented the semantics of correct executions
of JESSIE programs, both terminating and diverging ones. Erroneous executions can be
characterized as those that eventually block when following these semantic rules, because
no semantic rule applies anymore. Then, it is possible to complete the set of rules for correct
executions with rules for erroneous executions.

The big-step semantic rule for evaluating erroneous term t is described by a judgment
of the form

JtK = err

Examples of such rules are given in Figure 2.23.

61

Jt1K = v1 Jt2K = 0
Jt1/t2K = err

DIV-ERR

t1 : S[..] t2 : S[..] Jt1K = (l1, a, i) Jt2K = (l2, a, j) l1 6≡ l2
Jt1 	 t2K = err

SUBPTR-ERR

t : S[..] JtK = (l, a, i) Alloc(l) < i+ sizeof (S) m not embedded
Jt.mK = err

FIELD-ERR

Figure 2.23: Semantics of JESSIE erroneous terms

JtK = err
{x := t} ` <S>⇒ err

ASSIGN-GLOB-ERR

t1 : S[..] Jt1K = (l, a, i) Alloc(l) < i+ sizeof (S)
{t1.m := t2} ` <S>⇒ err

ASSIGN-FIELD-ERR

{s1} ` <S>⇒ err
{s1 s2} ` <S>⇒ err

SEQ-ERR

Figure 2.24: Semantics of JESSIE erroneous instructions and statements

62

The big-step semantic rule for erroneous instruction or statement s is similarly described
by a judgment of the form

{s} ` Glob,Env,Heap,Alloc⇒ err

Examples of such rules are given in Figure 2.24. Some rules like rule ASSIGN-FIELD-
ERR complete the corresponding correct execution rule with cases that lead to an error,
while others like rules ASSIGN-GLOB-ERR and SEQ-ERR simply propagate the erroneous
outcome.

Statements that neither have a normal or an erroneous outcome are said to diverge [169].
This clearly distinguishes programs that go wrong from programs that diverge.

2.3 C to JESSIE Translation

From C to JESSIE Through CIL As presented in Figure 1.4 describing the Frama-C
platform, we first translate C programs into CIL [139]. This translation decides on a set of
implementation-defined behaviors that usually depend on the host architecture, such as the
size of types, and the C compiler, such as the order of evaluation of expressions. By default,
the order of evaluation of binary expressions and function arguments is fixed left-to-right,
but this default can be overwritten through options. There is no warning that different orders
of evaluation might change the value of an expression, or that such an evaluation is even
undefined according to C standard (due to various reads and writes of the same location
bewteen two sequence points). Overall, the translation from C to CIL fixes a particular
Application Binary Interface. CIL is a simplified abstract syntax of the C program. Most
notably, it isolates all side-effects into instructions, thus making expressions side-effect free.
As a consequence, it also obviates the need to consider shortcut evaluation of C logical
operators && and ||. Since CIL is at the same level of abstraction as C, one can consider
CIL as a proper subset of C, and C to CIL translation as a semantics-preserving rewriting
in C. Figure 2.25 presents in a concrete form the abstract syntax of CIL expressions and
statements used as intermediate language in Frama-C. In the following, we present our
translation of this subset of C into JESSIE. We present all examples in the context of an
i386 architecture, which is the default architecture target of CIL and Frama-C.

The translation from the restricted subset of C defined by CIL to JESSIE is straightfor-
ward. It is in a large part similar to the translation from C to the normalized C used as the
Caduceus intermediate language [2, 93]. Correctness of the overall translation from C to
JESSIE can be stated in Claim 1.

Claim 1 Given a C program and a set of implementation-defined decisions implemented in
a C compiler CC and a host architecture H, the translation of this program into a JESSIE

program has the same semantics, as defined in Section 2.2.4, as the C executable obtained
with compiler CC and executed on architecture H. In particular, the C program is safe iff
the corresponding JESSIE program is safe.

The proof of this claim, which depends on both translations from C to CIL and from
CIL to JESSIE, is certainly not straightforward. First, it requires that CIL tool and the C

63

bin-op ::= + | - integer/real/pointer arith.
| * | / | % integer/real arithmetic
| % integer modulo
| « | » | & | | bitwise operations
| ≤ | ≥ | < | > integer/real/pointer compar.
| ≡ | 6≡ (dis)equality test
| ∧ | ∨ logical operations

unary-op ::= - | ~ | ¬ arith./bit./log. negation

contant ::= string printed constant

location ::= id variable
| (location ⊕ term) . id memory location

lval ::= lhost offset∗ lvalue

lhost ::= id variable
| * exp dereference

offset ::= . id field access
| [exp] array index access

exp ::= constant constant
| lval lvalue
| & lval address-of operation
| unary-op exp unary operation
| exp bin-op exp binary operation
| (typ) exp cast

instr ::= lval = exp assignment
| (lval =)? exp ((exp (, exp)∗)) call

switch-lab ::= case exp case label
| default default label

stmt ::= switch-lab∗ stmtkind statement

stmtkind ::= instr instruction
| return exp? return
| goto stmt goto
| if exp then block else block conditional
| switch exp block switch
| loop block infinite loop
| block sequence

block ::= stmt∗ sequence

Figure 2.25: Grammar of CIL expressions and statements

64

compiler make the same decisions regarding implementation-defined behaviors. Secondly,
it depends on our ability to formally describe both source and target languages. While this
could be done (with much work) for CIL and JESSIE, there is no known way to describe the
formal semantics of the textual representation of a program. Only proving the correctness
of the translation from CIL to JESSIE would be as hard as proving compiler correctness [23,
22, 125], which is beyond the scope of this thesis. Nonetheless, we admit the correctness of
Claim 1, the same way one trusts a compiler without a proof of its correctness.

For the sake of clarity, we split the presentation into data translation and control trans-
lation, although they are not separated in reality. No preliminary analysis is needed for this
translation, except for a little syntactic global information computed by CIL (e.g., knowing
whether the address of a variable is taken).

C Constructs Not Supported The translation from C to JESSIE presented in the fol-
lowing does not deal with a few constructs of C, most notably floating-point numbers and
function pointers.

C real floating types (float, double, long double) currently translate to the
JESSIE real type, and operations on floating-point numbers translate to the corresponding
operations on real numbers, encoded as uninterpreted functions. Thus, we avoid encoding
the complex semantics of machine floating-point arithmetic in JESSIE [76]. Programs
relying on floating-point computations for safety can be proved in a proof assistant with a
different encoding of floating-point numbers [24].

float f real f

f = 0.5; f := 0.5

f + 0.5 f + 0.5

C function pointers cause difficult problems [159] that are beyond the scope of this
thesis. We do not support these currently.

2.3.1 Data Translation

Variables Global (resp. local) variables in C translate to global (resp. local) variables in
JESSIE. Function parameters translate to function parameters, which are just special local
variables. Variable initializations translate to assignments in JESSIE, with global variable
initializations packed together in a global initialization function which is called at the be-
ginning of the main function.

Type Definitions Implicit definitions for C integer types (char, short, int, long,
long long), in their signed and unsigned versions, translate to definitions of integer
range types in JESSIE. The exact range for each type is architecture dependent. In the
bounded integer model, the definition of an enumeration translates to the definition of
an integer range type between its minimal enumerator value and its maximal enumerator
value. In the modulo integer model, an enumeration translates to its underlying type,
which is less precise, to avoid an incorrect modulo semantics in JESSIE on the range of

65

enumerator values while it is performed on the full range of the underlying type in C.
Overall, each (implicit or explicit) definition of an arithmetic type σ ranging from value
min to value max in C translates into the definition of an integer range type σ′ in JESSIE:

σ range σ′ = min..max

E.g.,

unsigned char range uint8 = 0..255

short range int16 = −32768..32767
_Bool range uint1 = 0..1

enum E { a=3, b }; range E = 3..4

The definition of a C structure type Σ translates to the definition of a JESSIE structure
type Σ′. Each C field mi translates to a JESSIE field m′i, with its type τ translated into τ ′.
The architecture-dependent bit-size of every field is also made explicit. Finally, padding
is made explicit with unnamed fields of type unit , whose bit-size is computed as the
difference between the bit-offset of the following field (or the complete structure bit-size
for the last field) and the first free bit-offset following the current field. This default type
for padding does not prevent underlying bits from taking wathever value. It just shows that
this value is unimportant to retrieve the structure fields values.

struct Σ { τ i mi ; } ;

struct Σ′ = {
τ ′i m

′
i : bitsizeof (mi)

unit _ : bitoffsetof (mi+1)
−bitoffsetof (mi)−bitsizeof (mi)

}
E.g.,

struct S {
int i: 3;
char j;

};

struct S = {
int3 i: 3 unit _: 5
int8 j: 8 unit _: 16

}

The definition of a C union type Σ translates to the definition of a set of JESSIE

structure types. The union type itself translates to a JESSIE structure type Σ′ with a unique
unnamed field of type unit . Each field mi translates to a JESSIE field in its own structure
type Σ′i, with a padding field added as necessary.

union Σ { τ i mi ; } ;

struct Σ′ = {unit _ : bitsizeof (Σ)}
struct Σ′i = {

τ ′i m
′
i : bitsizeof (mi)

unit _ : bitsizeof (Σ)− bitsizeof (mi)
}

E.g.,

66

union U {
int i: 3;
char j;

};

struct U = { unit _: 32 }
struct Ui = { int3 i: 3 unit _: 29 }
struct Uj = { int8 j: 8 unit _: 24 }

Types Type aliases in C (introduced by typedef) are replaced by their underlying type.
Type qualifiers (const, volatile, restrict) are ignored.

Based on the translation of type definitions, the type τ of a variable or a field in C trans-
lates into a JESSIE type τ ′. Each arithmetic type σ in C translates into the corresponding
integer range type σ′ in JESSIE. Pointers and aggregate types in C translate to pointer types
in JESSIE.

A variable of type struct Σ in C gets type Σ′[0] in JESSIE, i.e., a pointer whose validity
is guaranteed by typing. Similarly, a variable of type struct Σ[n] in C gets type Σ′[0 . . n−1]
in JESSIE, i.e., a pointer that can be safely dereferenced between indices 0 and n− 1.

Likewise, a field of type structure or array of structures translates into an embedded
pointer field in JESSIE, i.e., a pointer field whose bounds are known by typing, and which
do not represent an additional level of dereference w.r.t. to its parent structure.

Pointers to scalar types (arithmetic types + pointer types) and arrays of scalar types
translate to JESSIE pointers. The underlying scalar type is encapsulated in a JESSIE structure
type. Pointers translate to unbounded JESSIE pointers, while arrays translate to pointers with
statically known bounds.

The following rules summarize the translation of types. Notice that τ is an arbitrary C
type, which translates to τ ′ in JESSIE according to the same rules.

σ σ′

struct Σ Σ′[0]
union Σ Σ′[0]

τ*
Σ′[. .] where Σ′ is defined as
struct Σ′ = {τ ′ m′ : bitsizeof (τ)}

struct Σ* Σ′[. .]
union Σ* Σ′[. .]

τ [n]
Σ′[0 . . n− 1] where Σ′ is defined as
struct Σ′ = {τ ′ m′ : bitsizeof (τ)}

struct Σ[n] Σ′[0 . . n− 1]
union Σ[n] Σ′[0 . . n− 1]

E.g.,

struct S S[0]

struct S* S[..]

union U U[0]

union U* U[..]

struct S {
struct T t;
struct T[2] a;

};

struct S = {
T[0] t: 32
T[0..1] a: 64

}

67

int * Int32[..]

int [10] Int32[0..9]

where Int32 is a JESSIE structure defined as

struct Int32 = { int32 int32m: 32 }

Address-of There is no address-of operator in JESSIE, which means that JESSIE pointers
can only point to memory, or equivalently that global and local data cannot be accessed
through pointer.

Consequently, variables whose address is taken must be typed differently from variables
whose address is not taken, so that the JESSIE variable corresponds to the address of the
C variable. If the variable has an aggregate type in C, type translation already gives it
type pointer in JESSIE. Otherwise, its JESSIE type is changed to add a level of indirection,
much as what is done in HAVOC. We do not consider that all global variables may have
their address taken, even if analyzing only part of a program. Rather, we consider that the
program part analyzed already takes the address of those global variables that have their
address taken.

int x Int32[0] x

&x x

x x.int32m

Likewise, fields whose address is taken are typed differently from fields whose address
is not taken, so that the JESSIE field corresponds to the address of the C field. If the field has
an aggregate type in C, type translation already gives it type pointer in JESSIE. Otherwise,
its JESSIE type is changed to add a level of indirection. Such fields become embedded
fields in JESSIE, so that the indirection remains at a syntactic level, not a semantic one.

struct S { int i; }; struct S = { Int32[0] i: 32 }

&x.i x.i

x.i x.i.int32m

Constants Integer, enumeration and character constants in C translate to integer
constants in JESSIE, so that assigning such a constant to a C variable generates an
additional cast from integer to the appropriate integer range type in JESSIE. The NULL
constant in C (in its various forms 0, (void*)0) translates to the null constant in JESSIE.

i = 5; i := 5 . int32
p = NULL; p := null

Operations Usual arithmetic and comparison operations in C translate in a straightfor-
ward way to the corresponding JESSIE operations. Although they are not mentioned here
for the sake of simplicity, bitwise operations in C also translate into the corresponding bit-
wise operations in JESSIE. Field selection and array subscripting in C translate into field

68

selection and pointer arithmetic in JESSIE, while respecting the translation of types. As-
signment in C translates to assignment in JESSIE, with a special treatment for structure
assignment in C, so that fields are individually assigned. Casts in C translate to casts in
JESSIE, for those casts that are supported.

Arithmetic operations in C translate to the corresponding arithmetic operations in
JESSIE. Since JESSIE integer operations return a result of type integer, it must be
converted to the appropriate integer range if necessary. Casts from an integer range to
integer, e.g., for operands of arithmetic operators, are left as implicit promotions.
Comparison and (dis)equality operations in C translate to the corresponding JESSIE

operations, returning a boolean. When a boolean term is used where an integer
is expected, a choice operation is generated, with value 1 when the boolean is true and 0
otherwise. When an integer or a pointer term is used where a boolean is expected,
the corresponding non-null test is generated.

i + 3 (i + 3) . int32

j = (i <= 9) j := ((i ≤ 9) ? 1 : 0) . int32

if (p) if (p 6≡ null)

Field selection in C with either one of operators → and . translates to JESSIE

field selection, which expects a left operand of pointer type. If the left operand has
union type in C, a cast to the appropriate structure type is generated in JESSIE, before
proper field selection. Finally, indirection operator * in C translates to field selection of the
appropriate field in JESSIE, after the underlying type is translated to a JESSIE structure type.

s→i s.i

s.i s.i

u.i (u . Ui[..]).i

*p p.int32m

Array subscripting in C translates readily into pointer arithmetic and field selection in
JESSIE.

a[i].f (a ⊕ i).f

a[i] (a ⊕ i).int32m

Casts between types are more strictly delimited in JESSIE than in C. They are of two
kinds: casts between mathematical types and integer ranges, a.k.a. base casts, and casts
between pointer types, a.k.a. pointer casts. As seen in JESSIE semantics in Section 2.2.4,
base casts to and from integer are precisely defined, based on the integer model chosen.
Other base casts behave as if casting first to integer and then from integer to the
original destination type. Pointer casts in C translate to pointer casts in JESSIE. They allow
one to reinterpret freely the underlying byte pattern. The remaining casts in C cannot be
translated into JESSIE. In C, a compiler can always choose to reinterpret a bit-pattern from
one type to another type, even if the C standard forbids it. E.g., casting between a pointer
type and an integer is undefined according to the standard, but most compilers allow it by
reinterpreting the bit-pattern. In JESSIE, no such cast between base type and pointer type is

69

allowed.

(short)i i . int16

(int*)x x . Int32[..]

Allocation Like in Caduceus, calls to the standard allocation functions are recognized, so
that a proper type is usually given to the allocated block.

Since JESSIE does not provide initializations, all variables whose type changes
from non-pointer in C to pointer in JESSIE, due to the translation, should be properly
allocated before use, and, for some of them, properly deallocated before going out of
scope. A variable x of a structure type or whose address is taken is thus allocated
by inserting x := new S[1] in the appropriate function if x is a local variable, or
in the global initialization function if x is a global variable. If it is a local variable,
deallocation should be performed before the function returns, by inserting free x.
A variable of an array type is similarly allocated (resp. deallocated) by inserting
a := new S[size] (resp. free a).

x = (int*)malloc(n * sizeof(int)); x := new Int32[n]

2.3.2 Control Translation

Translating control structures from C to JESSIE is much simpler than translating data struc-
tures. Most of it has been described extensively in the context of tools ESC/Java [123, 122],
Loop [95] and Caduceus [68, 2, 93].

CIL infinite loops with break and continue translate into infinite loops in JESSIE

with intraprocedural exceptions. Likewise, forward outward gotos translate into intrapro-
cedural exceptions. The CIL translation of switch into a sequence of if statements is
modified so that it does not generate inward gotos.

C programs with arbitrary gotos could in theory be translated into programs without
gotos [148, 65], or at least only those forward outward gotos that we already translate into
intraprocedural exceptions. This is not currently implemented in our tool.

2.3.3 A Simple Example: Linear Search

Here is an implementation of linear search in C.

1 int linear_search(int arr[], unsigned int len, int key) {
2 int idx = 0;
3 while (idx < len) {
4 if (arr[idx] == key) {
5 return idx; // key found
6 }
7 idx = idx + 1;
8 }
9 return −1; // key not found
10 }

70

It translates into the following JESSIE program.

1 range int32 = −2147483648..2147483647
2 range uint32 = 0..4294967295
3
4 struct Int32 = { int32 int32m : 32 }
5
6 int32 linear_search(Int32[..] arr, uint32 len, int32 key) =
7 int32 idx
8 idx := 0
9 try
10 loop
11 if (¬ (idx < len)) then
12 throw Break
13 else if ((arr ⊕ idx).int32m ≡ key) then
14 return idx
15 else
16 idx := (idx + 1) . int32
17 catch Break
18 return −1

2.4 JESSIE Annotation Language

JESSIE is not limited to operational constructs that mimic the ones found in C. It contains
additional constructs in the form of an annotation language, that allows reasoning about
execution of JESSIE programs. All these logical constructs are also part of ACSL [14], the
ANSI C Specification Language, that was designed in parallel with JESSIE. Both languages
were largely inspired by JML, the JAVA Modeling Language.

Some of these logical constructs belong to a new syntactic class of propositions, while
others are just new terms that are added to those presented before. JESSIE also contains
other types and globals than those presented so far, whose purpose is to express logical
properties of programs. We present these logical constructs as extensions of the JESSIE

syntax presented before.
Chapters 4, 6 and 7 will extend this annotation language beyond the usual first-order

logical constructs presented here. These extensions give a handle to semantic properties
in a JESSIE program by making its execution model presented in JESSIE semantics (see
Section 2.2) explicit. In particular, it will be possible to express the following questions: is
this memory access valid? do these memory accesses interfere? Expressing these constructs
at the level of JESSIE programs, and not buried into various analyses on JESSIE, has two
advantages. First, it makes it possible for a human to interact with the proof at the level
of source code, either by specifying properties of interest, or by querying the properties
found automatically. Secondly, it allows analyses to communicate their results in a common
language.

In the following, we define extensions of the syntactic categories of JESSIE already pre-
sented in Section 2.2.1, as well as new syntactic categories for purely logical constructs.
While explaining the informal semantics of each construct, we may freely reference a cate-
gory only defined later on.

71

type ::= ...
| id logic type

logic-type-def ::= logic id logic type def

Figure 2.26: Grammar of JESSIE extended types

location ::= ...
| (location ⊕ [term? .. term?]) . id range location
| { location : prop } comprehension location
| result function result

term ::= ...
| id ((term (, term)∗)?) logic function application
| old (term) initial value

Figure 2.27: Grammar of JESSIE extended terms

Logic Types Figure 2.26 presents the abstract syntax of JESSIE types, extended with log-
ical types. These types can be used as parameter and result types in logical functions and
predicates.

Logic Terms Figure 2.27 presents the abstract syntax of JESSIE terms, extended with
logical terms and locations used when describing effects of a function.

Location (t⊕[i..j]).m extends the notation for memory locations to ranges
of offsets, while notation by comprehension {t:p} refines a set of locations by
designating only those locations t that satisfy proposition p. Any pointer arith-
metic location (x⊕i).m can be expressed as a range location (x⊕[i..i]).m, and
any range location (x⊕[i..j]).m can be expressed as a comprehension location
{(x⊕[i..j]).m : true}. Therefore, we will freely use locations in comprehen-
sion notation to denote any location in algorithms. Furthermore, any location can be over-
approximated by a path, which is the location where all predicates in comprehensions have
been changed to true , which rewrites immediately to a location without comprehension.
We will freely use paths in range notation to denote any path in algorithms.

Location result denotes the special location used by a function to store its returned
value; it should be used only in a function postcondition. Term old(t) gives the value of
term t in the precondition of a function; it should be used only in a function postcondition.

Propositions Figure 2.28 presents the abstract syntax of JESSIE propositions, containing
the usual constructs of first-order logic.

72

rel-op ::= ≡ | 6≡ | ≤ | ≥ | < | > | < | =

prop ::= true | false
| term rel-op term comparison
| id ((term (, term)∗)?) predicate application
| prop ∧ prop conjunction
| prop ∨ prop disjunction
| prop =⇒ prop implication
| prop ⇐⇒ prop equivalence
| ¬ prop negation
| ∀ type id ; prop universal quantification
| ∃ type id ; prop existential quantification

Figure 2.28: Grammar of JESSIE propositions

instr ::= ...
| assert pred assertion

stmt ::= ...
| loop invariant pred stmt infinite loop

Figure 2.29: Grammar of JESSIE extended statements

73

var-def ::= type id

parameters ::= (type id (, type id)∗)?

locations ::= nothing empty set of locations
| location (, location)∗ union of locations

logic-fun-def ::= type id (parameters)
(reads locations | = term) memory footprint or def

pred-def ::= id (parameters)
(reads locations | = prop) memory footprint or def

fun-def ::= (requires prop)? precondition
(ensures prop)? postcondition
(assigns locations)? memory footprint
(allocates term (, term)∗)? allocation footprint
(frees term (, term)∗)? deallocation footprint
type id (parameters)
(= (type id)∗ stat)? optional def

axiom-def ::= axiom id = prop axiom def
| lemma id = prop lemma def

glob ::= range-def ranged integer
| struct-def structure
| logic-type-def logic type
| var-def global variable
| fun-def function
| logic-fun-def logic function
| pred-def predicate
| axiom-def axiom

Figure 2.30: Grammar of JESSIE extended globals

Statement Annotations Figure 2.29 presents the abstract syntax of JESSIE statements,
extended with assertions and invariants on loops. The semantics of an asserted proposition
is that it should hold when execution reaches the assertion. The semantics of a loop invariant
is that it should hold whenever execution reaches the loop beginning, either for the first time
or while looping.

Logic Functions and Predicates Figure 2.30 presents the abstract syntax of JESSIE glob-
als, extended with logical functions, predicates and axioms. A logical function (resp. a
predicate) may either be defined by a term (resp. a proposition) or less precisely with a set
of locations on which it depends, its memory footprint. An axiom is a closed valid formula

74

in our model, that can be trusted by provers. It can come in the form of a lemma, which
means that it should be possible to derive it from non-lemma axioms, although this proof
cannot in general be done automatically.

Function Contracts Figure 2.30 also presents an extended definition of functions. A
function may be defined by a body, like before, or by a function contract, or both. A
function contract is made up of various optional parts:

• a precondition, which should hold every time the function is called;

• a postcondition, which should hold every time the function returns;

• a frame condition, which approximates the effects of calling the function.

The frame condition usually describes which global variables and locations a call to
the function may assign to, so that the value stored in these global variables and locations
in the pre-state cannot be relied upon in the post-state. The crucial point here is that all
other global variables and locations remain untouched. More generally, the frame condition
can be defined as a compact representation of the set of possible changes to the state when
calling a function, similar to the frame problem in artificial intelligence [25]. From the point
of view of the caller, a callee’s frame condition is all it needs to perform a sound analysis of
the effects of calling the function.

Thus, the frame condition may be richer than only a set of global variables and loca-
tions possibly assigned to. It may provide information about the set of exceptions possibly
raised (in a language with interprocedural exceptions), on the set of locations allocated and
deallocated (in a language with dynamic allocation), on the maximum time taken to call the
function, etc. The set of global variables and locations possibly assigned to by a function is
called its memory footprint [32]. Contrary to the memory footprint of logic functions and
predicates, it does not include the global variables and locations possibly read. Memory
footprint is a part of the frame condition for that function. The only other way a call can
modify the state is to allocate or deallocate memory. Therefore, we define an assigns clause
for the memory footprint, an allocates clause for the allocation footprint and a frees clause
for the deallocation footprint. Like memory footprint, the deallocation part of a frame con-
dition is an over-approximation of what is deallocated. Contrary to memory footprint, the
allocation part of a frame condition is an under-approximation of what is allocated. This al-
lows one to safely approximate which pointers are valid after a call: a pointer remains valid
if it does not alias with a pointer possibly deallocated, and it becomes valid if it belongs to
the set of newly allocated pointers.

2.5 JESSIE to WHY Translation

WHY [67] is a unique language specialized for deductive verification. Like JESSIE, it con-
tains both operational and logical constructs, as well as exceptions. However, there are two
crucial differences between JESSIE and WHY:

75

• monadic style - There is no implicit memory in WHY. Thus, memory must be ex-
plicitly passed in calls as an extra argument to every function that accesses memory,
whether for reading or writing it.

• alias-free - By severely restricting the use of references (only single-level references)
and parameter passing (no argument can be passed in twice), WHY is a rare case of
an alias-free language, where two syntactically different locations cannot represent
the same semantic location at runtime.

The translation from JESSIE to WHY bears much resemblance with the translation from
the Caduceus intermediate language to WHY [67, 68]. We only detail in the following those
elements that are useful to understand later on which changes to this translation we propose
in this thesis.

Special types are defined for pointers and memory:

• pointer is the type of pointers;

• heap is the type of memories.

Special functions are defined for accessing memory through a pointer:

• select takes a memory variable Heap, a pointer x, an integer offset off and an integer
size siz in arguments, and it returns the bit vector stored in Heap at offset off from
the location pointed-to by x, spanning siz bytes.

• update takes a heap variable Heap, a pointer x, an integer offset off , an integer size
siz and a bit vector value v in arguments, and it returns a modified Heap such that the
bit vector value stored in the returned heap at offset off from the location pointed-to
by x, spanning siz bytes, is now v.

Then, functions of -bitsτ and to-bitsτ for each type τ allow one to convert between a
value of type τ and the bit vector which represents this value in memory.

E.g., function linear_search translated in JESSIE in Section 2.3.3 translates into
the following WHY program.

1 logic type int32
2 logic type uint32
3
4 logic type Int32
5
6 int32 linear_search
7 (pointer arr, uint32 len, int32 key, heap Heap) =
8 int32 ref idx
9 idx := 0
10 try
11 loop
12 if (¬ (idx < len)) then
13 throw Break
14 else if (of_bits_int32m(
15 select(Heap,arr ⊕ idx,
16 offsetof(int32m),sizeof(int32m)))

76

17 ≡ key) then
18 return idx
19 else
20 idx := (idx + 1) . int32
21 catch Break
22 return −1

2.6 Other Related Work

Many tools for program verification use an intermediate language to simplify the com-
plex task of generating verification conditions. Caduceus [68] and Krakatoa [129] use the
intermediate language WHY for that purpose, ESC/Java [70] relies on a guarded-command
language, HAVOC [47], Spec# [10] and VCC [43] rely on language BoogiePL which makes
memory explicit as a single heap variable.

Many other tools directly work on the input language. LOOP [18] directly translates
Java and JML code into a set of higher-order theories for PVS. Jack [13] directly generates
verification conditions from Java bytecode. KeY [15] and KIV [149] rely on dynamic logic
to simulate program execution in logic. Smallfoot [17] directly translates the effects of
program statements in terms of separation logic effects.

Our intermediate language JESSIE is not meant to be the intermediate language used
for generating verification conditions, but rather an intermediate language for generating
annotations, prior to generating verification conditions.

2.7 Chapter Summary

We presented the intermediate language JESSIE, which combines a simple imperative oper-
ational language with a logic annotation language. C programs annotated in ACSL can be
translated into equivalent JESSIE programs so that a program in C is safe iff its translation
to JESSIE is safe.

JESSIE considerably simplifies the task of creating analyses for the verification of C
programs. It offers a simple yet powerful syntax and semantics, which allows for an easy
exposure and understanding of analyses. Its embedded logic annotation language allows the
communication of results between analyses in a uniform way.

77

78

Chapter 3

Integer Safety Checking

Contents
3.1 Assertions for Integer Safety . 80

3.1.1 Integer Checks . 80
3.1.2 Integer Safety for Linear Search 80
3.1.3 Assertions from Annotations 81

3.2 Abstract Interpretation for Integer Programs 82
3.2.1 Theory of Abstract Interpretation 82
3.2.2 Practical Abstract Domains . 84
3.2.3 Application to JESSIE Integer Programs 86
3.2.4 Illustration on Linear Search 88

3.3 Deductive Verification for Integer Programs 89
3.3.1 Hoare Logics and Dijkstra’s Weakest Preconditions 90
3.3.2 Application to JESSIE Integer Programs 91
3.3.3 Illustration on Linear Search 91

3.4 Other Related Work . 93
3.5 Chapter Summary . 93

In this chapter, we present two techniques for integer safety checking of annotated
JESSIE programs, in an automatic and modular way: abstract interpretation and deductive
verification.

The most essential data type in programming languages is the type of integers. Most
program analysis techniques were initially developed for programs that exclusively manip-
ulate integers, a.k.a. integer programs. Static safety checking for JESSIE integer programs
reduces to checking the absence of arithmetic errors: integer overflow and division or mod-
ulo by zero. Section 3.1 reduces static safety checking for JESSIE integer programs to
assertion checking.

Since abstract interpretation and deductive verification target assertion checking, it is
possible to apply them to check those assertions that guard against integer safety errors.
Section 3.2 presents the theory and practice of abstract interpretation in general, and its

79

application to check integer safety of JESSIE programs in particular. Section 3.3 presents
the theory and practice of deductive verification in general, and its application to check
integer safety of JESSIE programs in particular.

3.1 Assertions for Integer Safety

3.1.1 Integer Checks

Absence of errors due to operations on integers during execution of a JESSIE program can
be expressed as checks in JESSIE, i.e., assertions that guard against erroneous executions.
According to JESSIE semantics presented in Section 2.2.4, there are two such possible errors
that stem from using integers: division and modulo by zero and integer overflow in the
bounded integer model. All other errors stem from the use of pointers. In the following, we
reuse the variable names from each semantic rule considered.

In rule BINOP, a binary operation should be defined on its operands. In JESSIE, only the
division and modulo are not defined for some values of operands, namely when the divisor
is null. This can be guarded by assertion

t2 6≡ 0.

In rule TO-RANGE, casting an integer to an integer range is allowed only if the operand
is within the bounds of the integer range type, which is expressed by assertion

minE ≤ t ≤ maxE .

JESSIE semantics ensures that well-typed JESSIE programs are safe w.r.t. operations on
integers iff these checks hold.

3.1.2 Integer Safety for Linear Search

Searching is a simple task, and searching in an unordered list of items, a.k.a. linear search, is
probably one of the simplest programming assignments given to every beginner. Although
it is very simple, it is not trivial, thus being a perfect candidate as a running example for pro-
gram verification [28]. Here is the program linear_search presented in Section 2.3.3,
annotated in ACSL, where INT_MAX is used as a convenient shorthand for the constant
2147483647. In the following, we freely use constants from the C standard library for
the sake of clarity.

1 /*@ requires len ≤ INT_MAX;
2 @ ensures −1 ≤ \result < len;
3 @ assigns \nothing;
4 @*/
5 int linear_search(int arr[], unsigned int len, int key) {
6 int idx = 0;
7 //@ loop invariant 0 ≤ idx ≤ len;
8 while (idx < len) {
9 if (arr[idx] == key) {
10 return idx; // key found

80

11 }
12 idx = idx + 1;
13 }
14 return −1; // key not found
15 }

Annotations only deal with ranges of integer variables here. Still, these annotations
guarantee integer safety, and that the value returned is within simple bounds. The C program
translates into the following JESSIE program.

1 range int32 = −2147483648..2147483647
2 range uint32 = 0..4294967295
3
4 struct Int32 = { int32 int32m : 32 }
5
6 requires len ≤ INT_MAX
7 ensures −1 ≤ result < len
8 assigns nothing
9 int32 linear_search(Int32[..] arr, uint32 len, int32 key) =
10 int32 idx
11 idx := 0
12 try
13 loop invariant 0 ≤ idx ≤ len
14 if (¬ (idx < len)) then
15 throw Break
16 else if ((arr ⊕ idx).int32m ≡ key) then
17 return idx
18 else
19 idx := (idx + 1) . int32
20 catch Break
21 return −1

This program contains one check for integer safety on line 19, plus a loop invariant on
line 13, a postcondition on line 7 and a frame condition on line 8. On line 19 (line 12 in C),
addition on idx should not overflow, which gives check C12:

C12
.= INT_MIN ≤ idx + 1 ≤ INT_MAX.

It is already known by typing that the following invariant holds at the same program point:

typ12
.= INT_MIN ≤ idx ≤ INT_MAX.

This proves that the lower bound on idx + 1 holds in C12, but not that the upper bound
holds. In fact, a precondition is needed to ensure that C12 holds. The precondition stated
in line 6 (line 1 in C) requires from the calling context to pass in a length len not bigger
than the maximum signed integer. This condition effectively ensures that C12 holds. We are
going to present how to apply abstract interpretation and deductive verification to JESSIE

programs to automatically prove that such integer checks and annotations hold.

3.1.3 Assertions from Annotations

In Section 2.4, we added assertions, loop invariants and function contracts to JESSIE. In
order to use them for proving that checks hold, we should prove the corresponding logical
assertions.

81

An assertion of proposition p asks for p to hold at that point. A loop invariant of propo-
sition p asks for p to hold each time control reaches the beginning of the loop. Calling a
function f is valid only when its precondition pref is satisfied, where function parameters
−−−−→parami are replaced with actual arguments

−→
ti :

pref [−−−−→parami 7→
−→
ti].

Returning from a function f is valid only when its postcondition postf and frame condition
framef hold:

postf ∧ framef .

3.2 Abstract Interpretation for Integer Programs

Abstract interpretation [51] is a theory of abstract semantics of programs. From a theoretical
point of view, it allows one both to relate an abstract semantics to the concrete semantics of
a program, and to compare abstract semantics between them. From a practical point of view,
it gives techniques to automatically build models of programs in some chosen directions of
abstraction, which allows one to infer invariants on the models that are true on the programs
too. It works by successive iterations on the program’s control flow that collect the sets of
values of variables in the model at each point.

3.2.1 Theory of Abstract Interpretation

An abstract domain defines a direction of abstraction for building an abstract model of the
program. It relies on an internal abstract lattice, an algebraic structure that describes the
ordering relation between elements in the model, so that each iteration on the program’s
control flow can only increase abstract values w.r.t. this ordering. A lattice is usually best
described by a tuple (L,@,⊥,>,t,u), where:

• L is the set of elements in the lattice;

• @ is the (non-strict) ordering relation;

• ⊥ is the least element in the lattice;

• > is the greatest element in the lattice;

• t is the union (join) of elements in the lattice;

• u is the intersection (meet) of elements in the lattice.

An important property is that t and u are consistent with respect to the ordering @, which
amounts to

x @ y ⇒ (x t y = y ∧ x u y = x),
x t y = y ⇒ x @ y,

x u y = x⇒ x @ y.

82

Connection between the program and its model is done through a Galois connection
(α, γ), where the abstraction function α maps each set of concrete program states into an
abstract element of L, and the concretization function γ maps each abstract element of L
to a set of concrete program states. For the lattice to correctly over-approximate the set of
possible program behaviors, we need the following properties on the concrete side:

γ(x t y) ⊇ γ(x) ∪ γ(y), (3.1)

γ(x u y) ⊆ γ(x) ∩ γ(y), (3.2)

γ ◦ α(s) ⊇ s. (3.3)

Most lattices we use in practice are convex, or stable by intersection, which means that we
can rewrite equation (3.2) into

γ(x u y) = γ(x) ∩ γ(y). (3.4)

Given an abstract latticeL, an abstract domain D can be built onL by defining additional
transfer functions that over-approximate the effect of a program statement on a value of L:

• D.test is the transfer function for test;

• D.assign is the transfer function for assignment;

• D.forget is the transfer function for reset.

The effect of an assignment is over-approximated either by D.assign when the right-hand
side of the assignment is simple enough, or by D.forget otherwise, in which case all infor-
mation about the value of the location assigned is lost. These transfer functions are usually
built upon the underlying lattice operations. The essential property of these transfer func-
tions is monotonicity, which amounts to

x1 @ x2 ⇒ D.f(x1) @ D.f(x2),

for D.f any of D.test, D.assign or D.forget.
Other operations of the abstract domain are simple wrappers on underlying lattice oper-

ations:

• D.union is the join operation t;

• D.included is the ordering relation @.

D.union is used to perform unions of abstract values at junctions of paths during the prop-
agation leading to the definition of the abstract model of a program. D.included is used to
check the validity of a proposition expressed as an element of L.

There is generally a last operation defining an abstract domain:

• D.widen is the widening operation.

83

When the lattice L has bounded height, convergence of the propagation is ensured by the
monotonicity of transfer functions. When L has infinite height, convergence is not ensured
by monotonicity. D.widen allows one to ensure or to accelerate convergence. It is used to
jump to an over-approximation of the set of reachable states of the program, possibly after
several applications of D.widen. Given an ascending chain of abstract values Ai, the chain
A′i defined by

A′0
.= A0

A′i+1
.= D.widen(A′i,Ai)

is guaranteed to converge, i.e.,

∃ k . ∀ i . k ≤ i =⇒ A′i+1 ≡ A′i.

Finally, in order to facilitate some analyses, we require that the domain considered
provides two query operations:

• D.lbound is the lower bound query;

• D.ubound is the upper bound query.

D.lbound provides a (possibly empty) set of lower bounds −→xl for the abstract value x given
in argument, such that each lower bound verifies xl @ x. D.ubound provides a (possibly
empty) set of upper bounds −→xu for the abstract value x given in argument, such that each
upper bound verifies x @ xu. Neither of these operators is required to return a set of all
lower or upper bounds. Returning the empty set is a valid behavior for both operations.

Propagation of abstract values through the control-flow graph can follow different iter-
ation strategies [27].

3.2.2 Practical Abstract Domains

Many abstract domains have been devised for inferring bounds on the value of integer vari-
ables, or relations between the values of two or more integer variables. These abstract
domains usually belong to one of four main categories:

• non-relational domains - These domains bound or restrict in some way the value of
individual variables.

• relational domains - These domains restrict the possible relations between the value
of two or more variables.

• combination domains - These domains build more complex domains based on simpler
ones.

Their time and space complexity can be measured in terms of the number of variables con-
sidered, whether it is the number of variables in the term considered (for non-relational

84

domains), the number of variables in packs, i.e., sets of variables which might be related
(e.g., for octagons), or the number of variables related (e.g., for polyhedrons). In the fol-
lowing, we denote the set of these variables by V .

The simplest abstract domains are non-relational domains. They are also the cheap-
est ones, when considering both time and space complexity of abstract domain operations
(constant or linear), and convergence (by being of finite height or with a cheap widening
operation).

• sign: L .= {⊥,−,+,>} - Sign − represents all negative integers, while sign +
represents all positive integers. It can be refined to represent zero, non-negative and
non-positive integers as well. It has finite height 3.

• intervals: L .= { [a ; b] such that a, b ∈ Z ∪ ±∞} - It bounds the value of integer
variables. It is very cheap while providing generally useful information, which makes
it the most commonly used abstract domain.

• congruence: L
.= Z × N - Pair (a, b) represents the set of integers {a + i ×

b such that i ∈ Z}. It is notably used for representing addresses, which should
be aligned both w.r.t. machine architecture and w.r.t. the enclosing structure if any.

The most complex abstract domains still commonly used are relational domains. They
vary in complexity, from quadratic or cubic complexity for weakly relational domains which
relate the value of 2 or 3 variables to exponential complexity in the worst case for full
relational domains which relate the value of an unbounded number of variables.

• DBM (Difference Bound Matrices) [60]: L .= P({a ≤ x − y ≤ b such that a, b ∈
Z ∪ ±∞∧ x, y ∈ V}) - It represents sets of potential constraints between variables.

• octagons [132]: L .= P({a ≤ x ± y ≤ b such that a, b ∈ Z ∪ ±∞ ∧ x, y ∈ V}) -
It represents a refinement of DBM, so that both differences and sums of variables are
represented.

• linear equalities [108]: L .= P({
∑
ai × xi ≡ b such that ai, b ∈ Z ∧ xi ∈ V}) - It

represents linear equalities between program variables.

• polyhedrons [52, 44]: L .= P({
∑
ai × xi ≤ b such that ai, b ∈ Z ∧ xi ∈ V}) - It

represents linear inequalities between program variables.

Combination domains build on simpler domains A and B, with respective latticesA and
B, to combine their results or to express disjunctive properties.

• cross product [50]: L .= A×B - It simply adds up the results of A and B.

• reduced product [50]: L .= A × B - It combines the results of A and B in a way
that the results of one abstract domain are used to refine the results of the other and
conversely.

85

t treated by D.assign
{x := t} ` A ⇒ D.assign(A, x, t)

ASSIGN-VAR

t not treated by D.assign
{x := t} ` A ⇒ D.forget(A, x)

FORGET-VAR

{t1.m := t2} ` A ⇒ A
IGNORE-FIELD

{x := new S[t]} ` A ⇒ A
IGNORE-NEW

{free t} ` A ⇒ A
IGNORE-FREE

{x := f(
−→
ti)} ` A ⇒ D.test(D.forget(A, xj), postf [

−−−−−−−−→
parami 7→ ti, result 7→ x])

CALL

Figure 3.1: Intraprocedural abstract interpretation of instructions

• power domain [50]: L .= A × B - An abstract element (a, b) expresses that con-
crete elements represented by a should also be represented by b. It is also called the
implication domain. It is a form of disjunctive property.

• disjunctive completion [50]: L
.= A × A × . . . × A - An abstract element

(a1, a2, . . . , an) represents the disjunction of elements
∨
ai. As any disjunctive rep-

resentation, it may quickly diverge.

• logical product [80]: L .= A×B - It combines the results of A and B in a more precise
way than a reduced product would, provided A and B are logical lattices (i.e., whose
elements are finite conjunctions of atoms from a theory) and the underlying theories
are convex, stably infinite and disjoint. It relies on the Nelson-Oppen combination of
theories.

3.2.3 Application to JESSIE Integer Programs

The intraprocedural abstract interpretation of JESSIE programs can be defined as a data-
flow analysis on instructions and statements. For the sake of simplicity, we only consider
the case of a single intraprocedural exception X , but the generalization to more than one
exception is obvious. We denote the abstract value at the current program point as A.

The effect of an instruction s is described by judgment

{s} ` A1 ⇒ A2,

with the meaning that executing instruction s from a state in the concretization of abstract
state A1 leads to a state in the concretization of abstract state A2. Figure 3.1 presents the

86

{s} ` AN1 ⇒ AN2
{s} ` AN1 ⇒ (AN2 , ε, ε)

INSTR

{s1} ` AN1 ⇒ (AN2 ,AR2 ,AX2) {s2} ` AN2 ⇒ (AN3 ,AR3 ,AX3)
{s1 s2} ` AN1 ⇒ (AN3 ,D.union(AR2 ,AR3),D.union(AX2 ,AX3))

SEQ

{s1} ` D.test(AN1 , t)⇒ (AN2 ,AR2 ,AX2)
{s2} ` D.test(AN1 ,¬t)⇒ (AN3 ,AR3 ,AX3)

{if t then s1 else s2} ` AN1 ⇒
(D.union(AN2 ,AN3),D.union(AR2 ,AR3),D.union(AX2 ,AX3))

IF

{s} ` AN1 ⇒ (AN2 ,AR2 ,AX2)
{loop s} ` D.union(AN1 ,AN2)⇒ (AN3 ,AR3 ,AX3)

{loop s} ` AN1 ⇒ (AN3 ,AR3 ,AX3)
LOOP-UNROLL

{s} ` AN1 ⇒ (AN2 ,AR2 ,AX2)
D.included(AN2 ,AN1)

{loop s} ` AN1 ⇒ (AN1 ,AR2 ,AX2)
LOOP-CONVERGE

{return t} ` AN1 ⇒ (ε,AN1 , ε)
RETURN

{throw X} ` AN1 ⇒ (ε, ε,AN1)
THROW

{s1} ` AN1 ⇒ (AN2 ,AR2 ,AX2) {s2} ` AX2 ⇒ (AN3 ,AR3 ,AX3)
{try s1 catch X s2} ` AN1 ⇒ (D.union(AN2 ,AN3),D.union(AR2 ,AR3),AX3)

TRY

Figure 3.2: Intraprocedural abstract interpretation of statements

87

abstract interpretation of JESSIE instructions. All instructions that do not modify the value
of integer variables are ignored. In rule CALL, xj denotes any variable that can be modified
by calling f . Of course, if an actual parameter ti mentions a modified variable xj , then the
value of this parameter is lost by operation D.forget. This can be improved upon by adding
temporary variables to hold the value of parameters in the pre-state. Moreover, the analysis
can be made more precise by filtering valid calls through an application of D.test to the
precondition of the call.

The effect of a statement s is described by judgment

{s} ` AN1 ⇒ (AN2 ,AR2 ,AX2),

with the meaning that executing statement s from a state in the concretization of abstract
state AN1 leads to a state in the concretization of one of three abstract states depending on
the outcome of s, as defined in JESSIE semantics (Section 2.2.4):

• AN2 if the outcome is Normal;

• AR2 if the outcome is Return;

• AX2 if the outcome is Throw(X).

Figure 3.2 presents the abstract interpretation of JESSIE statements. Rule LOOP-UNROLL

is the only recursive rule. It implicitly suggests an iterative procedure to discover a fix-
point to the data-flow propagation, namely to iterate the propagation through the loop body
until it converges, which is expressed by rule LOOP-CONVERGE. When convergence is not
ensured, it is the role of the widening function to provide it.

Taking type invariants and annotations (e.g., preconditions) into account simply consists
in calling D.test to further constrain the current abstract value. Checking that a proposi-
tion p holds is possible if p can be expressed as an abstract value Ap. Then, p holds if
D.included(A,Ap), where A is the current abstract value.

In this thesis, we only consider intraprocedural abstract interpretation. Rousset, in his
PhD thesis [156], presents the interprocedural abstract interpretation of JESSIE programs,
with interprocedural exceptions, in the context of the verification of JAVA programs.

3.2.4 Illustration on Linear Search

Various abstract domains among those presented in Section 3.2.2 can be considered to per-
form abstract interpretation of unannotated function linear_search presented in Sec-
tion 2.3.3:

• Sign, the abstract domain of signs;

• Interv, the abstract domain of intervals;

• Oct, the abstract domain of octagons;

• Poly, the abstract domain of polyhedrons.

88

loop invariant invariant at C12 postcondition
Sign 0 ≤ idx 0 ≤ idx

Interv 0 ≤ idx 0 ≤ idx −1 ≤ result
Oct 0 ≤ idx ≤ len 0 ≤ idx < len −1 ≤ result < len
Poly 0 ≤ idx ≤ len 0 ≤ idx < len −1 ≤ result < len

Figure 3.3: Abstract interpretation of unannotated function linear_search

The results, presented in Figure 3.3, do not allow one to prove integer safety for function
linear_searchwhich, according to Section 3.1.2, amounts to verification of checkC12:

C12
.= INT_MIN ≤ idx + 1 ≤ INT_MAX.

Indeed, inequality idx + 1 ≤ INT_MAX is not implied by any invariant at C12, since
unsigned integer len might be as big as UINT_MAX. Taking into account typed invariants
to strengthen invariants does not allow one to prove C12 either.

loop invariant invariant at C12 postcondition

Sign 0 ≤ idx
0 ≤ len

0 ≤ idx
0 ≤ len

Interv 0 ≤ idx ≤ INT_MAX
0 ≤ len ≤ INT_MAX

0 ≤ idx ≤ INT_MAX
0 ≤ len ≤ INT_MAX −1 ≤ result ≤ INT_MAX

Oct 0 ≤ idx ≤ len
len ≤ INT_MAX

0 ≤ idx < len
len ≤ INT_MAX

−1 ≤ result < len
len ≤ INT_MAX

Poly 0 ≤ idx ≤ len
len ≤ INT_MAX

0 ≤ idx < len
len ≤ INT_MAX

−1 ≤ result < len
len ≤ INT_MAX

Figure 3.4: Abstract interpretation of annotated function linear_search

The same abstract domains can be considered to perform abstract interpretation of func-
tion linear_search annotated in ACSL presented in Section 3.1.2. The results, pre-
sented in Figure 3.4, allow one to prove C12 with either one of Oct or Poly.

3.3 Deductive Verification for Integer Programs

Deductive verification, through the definition of a suitable Hoare logics, reduces the verifi-
cation of checks in a fully annotated program to the validity of formulas. Computation of
Dijkstra’s weakest preconditions or strongest postconditions allows one to reduce the an-
notation burden to only a few specific annotations: function pre- and postconditions, loop
invariants. Classically, weakest preconditions are preferred over strongest postconditions,
because they avoid the introduction of existential quantifiers which may increase the diffi-
culty of automatically proving the resulting formula.

89

p1 ⇒ p2[x 7→ t]
{p1}x := t{p2}

HOARE-ASSIGN
{p1}s1{p2} {p2}s2{p3}
{p1}s1 ; s2{p3}

HOARE-SEQ

{p1 ∧ t}s1{p2} {p1 ∧ ¬t}s2{p2}
{p1}if t then s1 else s2{p2}

HOARE-IF

p1 ⇒ pi {pi ∧ t}s{pi} pi ∧ ¬t⇒ p2

{p1}while t do s{p2}
HOARE-LOOP

Figure 3.5: Generic rules of Hoare logics

3.3.1 Hoare Logics and Dijkstra’s Weakest Preconditions

Hoare logics is a general framework for the definition of programs logics, allowing one to
reason about program executions. It defines rules for the validity of Hoare triples

{p1} s {p2},

where p1, p2 are propositions and s is an instruction or a statement with a possible effect on
the state. The meaning of such a Hoare triple is that whenever proposition p1 holds before
the execution of s, proposition p2 holds afterwards.

Generic rules include the rule for assignment HOARE-ASSIGN, the rule for sequence
HOARE-SEQ, the rule for branching HOARE-IF and the rule for loop HOARE-LOOP. Notice
that the generic rule for loop expects a loop with a test to indicate when to exit the loop,
which is not the case in JESSIE.

To verify that a proposition holds at some program point, one must manually annotate
all statements before this program point in the control-flow graph of the function. This is
not feasible except for very small programs. Dijkstra’s calculus, either through weakest pre-
conditions or strongest postconditions, allows the automatic generation of most annotations.
Weakest preconditions can be defined as a functionW st

{W{s}(p)} s {p},

i.e., wheneverW{s}(p) holds before s is executed, p holds afterwards. Similarly, strongest
postconditions can be defined as a function S st

{p} s {S{s}(p)},

i.e., whenever p holds before s is executed, S{s}(p) holds afterwards. By a suitable defini-
tion ofW and S, these functions should be the best such functions in the logic considered.
Figure 3.6 and Figure 3.7 describe respectively generic rules for defining weakest precon-
ditions and strongest postconditions. Notice that the definition for the loop depends on an
externally provided loop invariant I , that should hold at the loop’s first entry (loop invariant

90

initialization) and that should be maintained by each loop iteration (loop invariant preser-
vation). The rules described here are not totally standard, in that they check loop invariant
initialization and preservation together with other properties, by simply renaming variables
−→xi modified in the loop, a.k.a. inductive variables, with fresh variable names−→yi . This allows
one to preserve information about variables that the loop does not modify, through the loop.

3.3.2 Application to JESSIE Integer Programs

The intraprocedural deductive verification of JESSIE programs can be defined as the ver-
ification of the validity of formulas computed by weakest preconditions. For the sake of
simplicity, we only consider the case of a single intraprocedural exception X , but the gen-
eralization to more than one exception is obvious.

The weakest preconditions function W for instructions takes an instruction s and a
proposition p in arguments, and returns the weakest preconditionW{s}(p) that should hold
before s so that p holds afterwards. Figure 3.8 definesW for instructions. All instructions
that do not modify the value of integer variables are ignored. The rule for calls renames
variables −→xi modified in the function with fresh variable names −→yi .

The weakest preconditions function W for statements takes a statement s and three
propositions in arguments, depending on the outcome of s, as defined in JESSIE seman-
tics 2.2.4:

• pN if the outcome is Normal;

• pR if the outcome is Return;

• pX if the outcome is Throw(X).

It returns the weakest precondition W{s}(pN , pR, pX) that should hold before s so that
the proper propositions hold afterwards. Figure 3.9 definesW for statements. Notice that,
contrary to the rules for abstract interpretation, these rules do not provide an iterative pro-
cedure. This is fortunate, as there is no such thing as a widening in Hoare logics to force
convergence. It is the presence of loop invariants and function pre- and postconditions that
effectively cut the iterative propagation.

Taking type invariants and annotations (e.g., preconditions) into account simply consists
in treating them as tests in every state, or initially and after each assignment and function
call. Checking that a proposition p holds consists in conjoining it to the weakest precon-
dition formula when the computation described in Figure 3.8 and Figure 3.9 reaches the
corresponding program point. Then, all checks in the function hold if the function precon-
dition implies the validity of the weakest precondition propagated through the function’s
body.

3.3.3 Illustration on Linear Search

Computing the weakest precondition of unannotated function linear_search presented
in Section 2.3.3 leads to formula

91

W{x := t}(p) .= p[x 7→ t]
W{s1 ; s2}(p)

.= W{s1}(W{s2}(p))
W{if t then s1 else s2}(p)

.= (t⇒W{s1}(p)) ∧ (¬t⇒W{s2}(p))
W{whileI t do s}(p) .= I ∧ (I ∧ t⇒W{s}(I))[−−−−−→xi 7→ yi]

∧(I ∧ ¬t⇒ p)[−−−−−→xi 7→ yi]

Figure 3.6: Generic rules of Dijkstra’s weakest preconditions

S{x := t}(p) .= ∃y.p[x 7→ y] ∧ x ≡ t[x 7→ y]
S{s1 ; s2}(p)

.= S{s2}(S{s1}(p))
S{if t then s1 else s2}(p)

.= S{s1}(t ∧ p) ∨ S{s2}(¬t ∧ p)
S{whileI t do s}(p) .= I ∧ (S{s}(I ∧ t)⇒ I)[−−−−−→xi 7→ yi]

∧(I ∧ ¬t⇒ p)[−−−−−→xi 7→ yi]

Figure 3.7: Generic rules of Dijkstra’s strongest postconditions

W{x := t}(p) .= p[x 7→ t]
W{t1.m := t2}(p)

.= p
W{x := new S[t]}(p) .= p

W{free t}(p) .= p

W{x := f(
−→
ti)}(p) .= pref ∧ (postf ⇒ p)[−−−−−→xi 7→ yi][x 7→ y][result 7→ x]

Figure 3.8: Weakest preconditions over instructions

W{s1 s2}(pN , pR, pX) .= W{s1}(W{s2}(pN , pR, pX), pR, pX)
W{if t then s1 else s2}(pN , pR, pX) .= (t⇒W{s1}(pN , pR, pX))

∧ (¬t⇒W{s2}(pN , pR, pX))
W{loop invariant I s}(pN , pR, pX) .= I ∧ (I ⇒W{s}(I, pR, pX))[−−−−−→xi 7→ yi]

W{return t}(pN , pR, pX) .= pR[result 7→ t]
W{throw X}(pN , pR, pX) .= pX

W{try s1 catch X s2}(pN , pR, pX)) .= W{s1}(pN , pR,W{s2}(pN , pR, pX))

Figure 3.9: Weakest preconditions over statements

92

idx < len⇒ C12,

where C12 is
C12

.= INT_MIN ≤ idx + 1 ≤ INT_MAX.

This formula obviously does not hold. Taking into account typed invariants leads to

(INT_MIN ≤ idx ≤ INT_MAX ∧ idx < len ∧ 0 ≤ len ≤ UINT_MAX)⇒ C12,

which does not prove C12 either.
Considering instead the weakest precondition of annotated function linear_search

presented in Section 3.1.2 leads to formula

(INT_MIN ≤ idx ≤ INT_MAX ∧ idx < len ∧ 0 ≤ len ≤ INT_MAX)⇒ C12,

which is valid. Validity can be checked here using linear programming. In general, it
requires calling an automatic prover or a proof assistant.

3.4 Other Related Work

Floyd-Hoare logics were formulated to allow axiomatic reasoning on programs [89, 72].
Dijkstra’s computations allow to automate part of this reasoning [59].

Division of execution into normal/return/throw has been studied extensively [54, 7, 128,
110, 124, 95].

Some tools, like ASTRÉE [21], rely on abstract interpretation both to generate invariants
and to perform safety checking, which stresses the precision of abstract domains. Other
tools, like LOOP [18] and KeY [15], rely on the programmer to provide invariants. The
combination of abstract interpretation followed by weakest preconditions generation is im-
plemented in Boogie [11].

3.5 Chapter Summary

We presented integer safety checking of JESSIE annotated programs using either abstract
interpretation or deductive verification.

First, checks that guarantee integer safety are generated, thus reducing integer safety
checking to assertion checking. Then, an intraprocedural analysis based on logical anno-
tations (function pre- and postconditions, loop invariants) is performed to prove that the
generated checks hold.

93

94

Chapter 4

Memory Safety Checking

Contents
4.1 Assertions for Memory Safety . 96

4.1.1 Memory Model Accessors . 96

4.1.2 Memory Checks . 99

4.1.3 Memory Safety for Linear Search 100

4.2 Abstract Variables . 101
4.2.1 Abstract Memory Locations 102

4.2.2 Abstract Logic Function Applications 105

4.2.3 Overlaps Between Locations 106

4.2.4 Application to Linear Search 107

4.3 Abstract Interpretation for Pointer Programs 108
4.3.1 Lifting Abstract Domains . 108

4.3.2 Application to JESSIE Pointer Programs 109

4.3.3 Illustration on Linear Search 109

4.4 Deductive Verification for Pointer Programs 112
4.4.1 Lifting Weakest Preconditions 112

4.4.2 Application to JESSIE Pointer Programs 114

4.4.3 Illustration on Linear Search 114

4.5 Chapter Summary . 115

In this chapter, we extend the techniques for integer safety checking presented in Chap-
ter 3 to tackle memory safety checking of annotated JESSIE programs, in an automatic and
modular way.

Section 4.1 presents annotations that give access to the JESSIE memory model. Based
on these annotations, we show how static safety checking for JESSIE programs reduces to
assertion checking. In order to check these assertions, we assume all functions are com-
pletely annotated with pre- and postconditions and loop invariants.

95

Section 4.2 extends the notion of variable to memory locations, in order to be able to
reason about the value of these abstract variables. Then, Sections 4.3 and 4.4 respectively
describe the application of abstract interpretation and deductive verification to prove that
those checks which guarantee the absence of memory errors hold.

4.1 Assertions for Memory Safety

4.1.1 Memory Model Accessors

Section 2.2.3 presented the byte-level block memory model of JESSIE. In Section 2.2.4,
this memory model was used to define JESSIE semantics. In order to check memory safety,
accessors to this memory model should be defined in the JESSIE language to allow writing
specifications of memory properties.

Although the semantics of JESSIE is defined w.r.t. a byte-level memory model, it is more
convenient to consider typed accessors to this memory model in specifications. This does
not preclude the translation of these typed accessors as byte-level ones internally.

Natural Encoding A natural idea is to give direct accessors to the JESSIE memory model.
In this model, a memory block is a tuple of a label, an address and an offset, with each label
being associated with the size of the corresponding allocated block. This is roughly the
approach adopted in HAVOC, VCC and Caduceus, where the following logical constructs
are defined for a pointer t of type S[..]:

• base-addr(t) is the label of the memory block pointed-to by t;

• offset(t) is the typed offset of pointer t in its memory block;

• block -length(t) is the size of the memory block pointed-to by t.

Figure 4.1 relates these logical constructs. A memory access t.m is valid iff pointer t of
type S[..] is valid , which is expressed as

valid(t) .= 0 ≤ offset(t) ∧ offset(t) < block -length(t).

Notice that offset and block -length depend on the type of t, so that, in general

offset(t) 6≡ offset(t . T [..]) ∧ block -length(t) 6≡ block -length(t . T [..]),

where T and S have different sizes. Pointer arithmetic has no effect on base-addr and
block -length , and its effect on offset is described by

offset(t⊕ i) .= offset(t) + i.

Then, a memory access (t⊕ i).m involving pointer arithmetic is valid iff

valid(t⊕ i) .= − i ≤ offset(t) < block -length(t)− i.

96

0 1

t
offset(t) offset(t) + 1 block -length(t)

block(t)
︸ ︷︷ ︸

base-addr(t)

Figure 4.1: Natural accessors for the JESSIE memory model (t of type S[..], S of size 3)

offset-min(t) −1

t

0 1 offset-max (t)

block(t)
︸ ︷︷ ︸

address(t)

Figure 4.2: Local accessors for the JESSIE memory model (t of type S[..], S of size 3)

Thus, to prove that the upper bound is respected, which is the most likely to be violated, one
must know the values of both offset(t) and block -length(t). The corresponding inequality
has at least 3 variables (counting i), maybe more if i is a term with more than one variable,
and arithmetic operations. As a result, generating automatically such propositions is costly.
E.g., generation of such an invariant by abstract interpretation requires using the domain of
polyhedrons.

Local Encoding We devised a slightly different set of accessors to JESSIE memory
model [136] for a pointer t of type S[..]:

• base-block(t) is the label of the memory block pointed-to by t;

• address(t) is the address pointed-to by t;

• offset-min(t) is the (usually non-positive) minimal offset that can be added to pointer
t to obtain a valid pointer t⊕ i;

• offset-max (t) is the (usually non-negative) maximal offset that can be added to
pointer t to obtain a valid pointer t⊕ i.

Figure 4.2 relates these logical constructs. A memory access t.m is valid iff

offset -min(t) ≤ 0 ≤ offset -max (t).

97

Notice again that offset-min and offset-max depend on the type of t, so that, in general

offset -min(t) 6≡ offset -min(t . T [..]) ∧ offset -max (t) 6≡ offset -max (t . T [..]),

where T and S have different sizes. Pointer arithmetic has an effect on offset-min and
offset-max described by

offset-min(t⊕ i) .= offset-min(t)− i,
offset-max (t⊕ i) .= offset-max (t)− i.

Then, a memory access (t⊕ i).m involving pointer arithmetic is valid iff

offset -min(t) ≤ i ≤ offset -max (t).

Thus, proving that the upper and lower bounds are respected is equally difficult. In partic-
ular, whenever the lower bounds holds trivially, which is quite common, the proof for the
upper bound is easier than with the model of Caduceus, because it only involves 2 variables,
when i is a variable. Many more abstract domains allow the generation of such propositions
by abstract interpretation (e.g., octagons), and automatic provers do a better job of proving
it.

This encoding has another interesting locality property, not present in the natural en-
coding: it is possible to restrict the set of locations accessible through a pointer. E.g., in the
following JESSIE code, q, r and s are obtained from p by restricting the range of indices
allowed.

1 p := new T[10] ;
2 q := p . T[3..5] ;
3 r := p . T[3..] ;
4 s := p . T[..5]

This restriction can be reflected in the semantics of such casts, so that, after
line 4, offset_min(q) and offset_min(r) are 3, offset_max(q) and
offset_max(s) are 5. There is no way to do the same with the natural encoding,
because it refers to total block length, that does not change (unless block -length is rein-
terpreted so that it does not mean total block length anymore). Therefore, we call this new
encoding the local encoding of block memory model, to distinguish it from the natural
encoding of block memory model.

The natural encoding of block memory model is quite common. It is the model used in
CSSV [62] and many other works since then [162, 157, 179, 43]. BOON [175] uses an even
simpler version of it. Recently, others have started to use the same encoding as us [77].

We define convenient shorthands based on the local encoding:

same-block(x, y) .= base-block(x) ≡ base-block(y)
valid(x) .= offset-min(x) ≤ 0 ≤ offset-max (x)

valid -index (x, i) .= offset-min(x) ≤ i ≤ offset-max (x)
valid -range(x, i, j) .= offset-min(x) ≤ i ∧ j ≤ offset-max (x)

98

term ::= ...
| base_block (term) memory block
| address (term) address
| offset_min (term) minimal offset
| offset_max (term) maximal offset

Figure 4.3: Grammar of JESSIE extended terms

Extended Annotation Language Memory model accessors are injected in the JESSIE

annotation language in a straightforward way. Figure 4.3 presents the abstract syntax of
JESSIE terms, extended with logical terms.

Since ACSL defines roughly the same memory model accessors, the translation of these
logical constructs from ACSL to JESSIE is straightforward.

4.1.2 Memory Checks

In Section 2.2.4, we presented the semantics of erroneous executions of JESSIE programs,
with examples of inference rules for erroneous executions. Then, it is possible to completely
guard against erroneous executions in JESSIE by going through each one of these rules, and
check that the conditions to trigger them do not arise. We only need to consider those rules
that directly complement the rules for correct execution, as found in the semantics of terms
presented in Figure 2.17, the semantics of instructions presented in Figure 2.20 and the
semantics of statements presented in Figure 2.21, and not those rules that simply propagate
the erroneous outcome. In each case, the condition for not triggering the rule for erroneous
execution can be expressed as a check, i.e., an assertion that guards against an erroneous
execution.

Section 3.1.1 already presented the checks that guard against integer errors. It remains
to show the checks that guard against memory errors. In the following, we reuse the variable
names from each semantic rule considered.

In rule SUBPTR, pointers can be subtracted only when they point into the same memory
block, which can be expressed as

same-block(t1, t2).

In rules FIELD and ASSIGN-FIELD, reading or writing the value of a field in memory is
possible only if the underlying structure accessed is allocated, which can be expressed as

valid(t).

In rule NEW, allocation should be passed a non-negative argument, which can be ex-
pressed as

0 ≤ t.
In rule FREE, deallocation should be called only on a pointer to the start of an allocated

block, which can be expressed as

offset -min(t) ≡ 0 ∧ 0 ≤ offset -max (t).

99

In rule LOW-PTR-CAST, casting a pointer to a pointer type with a lower bound is allowed
only if

offset -min(t . S[..]) ≤ min.

In rule UP-PTR-CAST, casting a pointer to a pointer type with an upper bound is allowed
only if

max ≤ offset -max (t . S[..]).

In rule BOUND-PTR-CAST, casting a pointer to a bounded pointer type is allowed only
if

offset -min(t . S[..]) ≤ min ∧max ≤ offset -max (t . S[..]).

Theorem 1 A well-typed JESSIE program executes without any error (possibly not termi-
nating), on an imaginary machine with an infinite memory, if integer checks and memory
checks defined respectively in Sections 3.1.1 and 4.1.2 hold.

Proof Sketch. Suppose all integer checks and memory checks defined in Sections 3.1.1
and 4.1.2 hold, according to some verification technique. By correction of the verification
technique, the corresponding assertions are valid on all executions of the program. By
definition of the original checks, all side-conditions of rules for correct execution described
in JESSIE semantics are valid whenever a rule is applicable. Thus, rules for erroneous
execution are never triggered, which is the same as saying that the program executes without
any error. �

4.1.3 Memory Safety for Linear Search

Here is the program linear_search presented in Section 2.3.3, annotated in ACSL.
It repeats annotations for integer safety already presented in Section 3.1.2, and it adds a
precondition for memory safety.

1 /*@ requires len ≤ INT_MAX ∧ \valid_range(arr,0,len−1);
2 @ ensures −1 ≤ \result < len;
3 @ assigns \nothing;
4 @*/
5 int linear_search(int arr[], unsigned int len, int key) {
6 int idx = 0;
7 //@ loop invariant 0 ≤ idx ≤ len;
8 while (idx < len) {
9 if (arr[idx] == key) {
10 return idx; // key found
11 }
12 idx = idx + 1;
13 }
14 return −1; // key not found
15 }

Annotations are not the most precise possible, e.g., they do not ensure that func-
tion linear_search terminates or relate the result of linear_search to the pres-
ence of the value searched in the array. Still, these annotations guarantee that executing
linear_search does not lead to a runtime error, and that the value returned is within
simple bounds. It translates to the following JESSIE program.

100

1 range int32 = −2147483648..2147483647
2 range uint32 = 0..4294967295
3
4 struct Int32 = { int32 int32m : 32 }
5
6 requires len ≤ INT_MAX
7 ∧ offset_min(arr) ≤ 0 ∧ len − 1 ≤ offset_max(arr)
8 ensures −1 ≤ result < len
9 assigns nothing
10 int32 linear_search(Int32[..] arr, uint32 len, int32 key) =
11 int32 idx
12 idx := 0
13 try
14 loop invariant 0 ≤ idx ≤ len
15 if (¬ (idx < len)) then
16 throw Break
17 else if ((arr ⊕ idx).int32m ≡ key) then
18 return idx
19 else
20 idx := (idx + 1) . int32
21 catch Break
22 return −1

This program contains two checks at lines 17 and 20, plus a loop invariant at line 14, a
postcondition at line 8 and a frame condition at line 9. The check at line 20 (line 12 in C) is
the integer overflow check C12 already described in Section 3.1.2. At line 17 (line 9 in C),
pointer arr should be accessed within bounds, which gives check C9:

C9
.= offset -min(arr) ≤ idx ≤ offset -max (arr)

A precondition is needed to ensure the safety of function linear_search. The pre-
condition stated in line 7 (line 1 in C) requires from the calling context to pass in an array
arr that can be safely dereferenced between its indices 0 and len−1. This condition
effectively ensures that check C9 holds.

Altogether, function linear_search is completely safe, as soon as it is called in
a context specified by its precondition. It is easy to check it with specific arguments for
the function linear_search, by applying the semantics rules given Section 2.2.4 and
checking that they never block. We are going to present techniques for proving this for any
set of arguments.

4.2 Abstract Variables

The most important issue to deal with in order to analyze a program is the choice of vari-
ables. Quite naturally, program variables translate into abstract variables. This is easy in
JESSIE because neither global nor local variables can be modified through pointers, which
makes named access the only way to modify the content of such a variable.

Following a common pattern too [62, 77], we choose to abstract integer memory model
accessors associated with pointer program variables: if x is a program variable of type
pointer, then address(x), offset-min(x) and offset-max (x) are the pseudo-variables asso-
ciated with x; base-block(x) is not a pseudo-variable, because it does not have type integer.

101

These pseudo-variables associated with x can only be modified when x is assigned or the
underlying memory is deallocated.

It remains to define abstract variables for memory locations and logical constructs at-
tached to program entities.

4.2.1 Abstract Memory Locations

Summary Abstract Locations The tricky part is to abstract memory locations. There
is an unbounded and possibly infinite number of memory locations, which should be ab-
stracted to make the analysis tractable. Usually, when doing abstract interpretation over
pointer programs, one associates abstract variables with summary locations (a.k.a. shrunk
array cells in Astrée [21] or abstract memory references in C GLOBAL SURVEYOR [174]).
A summary location represents a set of concrete locations, e.g., the set of concrete loca-
tions corresponding to an array when performing abstract interpretation over arrays. This
partitioning of concrete locations into summary locations can be either static or dynamic.
Then, when a concrete operation like an assignment (resp. a test) modifies a concrete lo-
cation (resp. constrains a concrete location), the corresponding abstract operation can be
performed on the single summary location corresponding to the concrete location. The
main advantage of summary locations is that they isolate the problem of alias analysis from
other analyses.

The problem with this approach is that, in general, a summary location corresponds to
more than one concrete location, so a concrete operation (on one concrete location) cannot
make the value of a summary location more precise, only less precise. Assignment to a
concrete location translates in the abstract world into a union between the previous abstract
value and the abstract value assigned. E.g., function ptrzero below nullifies the value
pointed-to by x. Although its postcondition seems trivial, it is not possible to check it by
abstract interpretation when using summary locations. If the concrete location pointed-to
by x is abstracted into summary location α, assigning 0 to *x does not nullify the value
associated with α, because α may represent more than one concrete location, and not all of
them are nullified.

1 //@ ensures *x ≡ 0;
2 void ptrzero(int *x) {
3 *x = 0;
4 }

Even worse, constraining the value of one concrete location in this set does not make
the abstract value of the corresponding summary location more precise. E.g., it makes it
impossible to check the postcondition of function ptrabs below, which changes the value
pointed-to by x into its absolute value. If the concrete location pointed-to by x is abstracted
into summary location α, testing that *x is negative does not make the value associated
with α more precise, because α may represent more than one concrete location, and not all
of them are strictly negative.

1 //@ ensures *x ≥ 0;
2 void ptrabs(int *x) {

102

3 if (*x < 0) {
4 *x = −(*x);
5 }
6 }

Access Path Abstract Locations Various works on context-sensitive pointer analyses re-
fine summary locations into access path locations [58, 37, 38] or object names [113]. These
access path locations describe concrete locations by how they are accessed from an initial
variable. Hence, they are mostly local to a function. E.g., x→f is not defined outside the
current function when x is a function parameter, although the concrete memory locations
it represents may not be local to the function. Contrary to the summary location approach
where an lvalue may be associated with different abstract variables (depending on the pro-
gram point, the control path followed, etc.), in the access path location approach, an lvalue
is always associated with the same abstract variable. But the set of concrete locations repre-
sented by a syntactic location may vary (depending on the program point, the path followed,
etc.).

Given some hypotheses on the calling context of the function, these access path lo-
cations can partition memory, like summary locations do. Hence, associating an abstract
variable with these locations when analyzing a function correctly isolates the problem of
alias analysis from other analyses. Like a summary location, an access path location may
represent more than one concrete location for three different reasons:

• aggregate abstraction - An access path location may represent various locations at
the same time, e.g., all the cells in an array.

• control path insensitivity - An access path location may represent only one location
at a time, but more than one location due to the merge of control paths in a function
control-flow graph.

• context insensitivity - An access path location may represent only one location at a
time, but more than one location due to the merge of calling contexts for a function.

Based on the local description of an access path location, it is easy to distinguish the case
where context insensitivity is the reason why the access path location may represent more
than one concrete location. In that case, this access path location can be considered as
representing a single location during the intraprocedural analysis of a function, which allows
precise treatment of the associated assignments and tests and greatly improves precision
of the analysis. Testing a concrete location simply translates into testing an access path
location, as in the summary location approach. Here, we additionally get the advantage that
the associated abstract value gets constrained if the access path location represents a single
location. Assigning a concrete location translates to assigning the access path location, with
a strong update if the path location represents a single location.

E.g., in both examples above, we define an abstract variable α*x that represents the set
of concrete locations pointed-to by x. Although functions ptrzero and ptrabs may be
called with pointer arguments to different concrete locations, the lvalue *x only represents
one concrete location inside each function body. Therefore, by restricting the analysis to

103

one function, it may be as precise on access path locations as on program variables. Indeed,
with such path abstract variables, we can easily check the postconditions of ptrzero and
ptrabs by abstract interpretation.

Syntactic Abstract Locations In this thesis, we make a different choice about abstract
memory locations. We do not require that access path locations partition memory. This
makes it possible to associate an abstract variable with every location mentioned in the pro-
gram, not worrying about possible aliasing between them. We call these syntactic abstract
locations. This choice does not completely separate alias analysis from other analyses, but
it makes it possible to improve precision. E.g., using access path locations, one cannot prop-
erly analyze function ptrmax below, because it can be called in a context where parameters
x and y are aliased. Then, a single access path location α*x and α*y represents both. A
context-sensitive analysis is required to improve on this situation, in order to consider sepa-
rately contexts in which x and y are aliased, and contexts in which they are unaliased. With
syntactic locations, we can prove the postcondition of function ptrmax.

1 //@ ensures *\result ≥ *x ∧ *\result ≥ *y;
2 int *ptrmax(int *x, int *y) {
3 int *res = x;
4 if (*y >= *x) {
5 res = y;
6 }
7 return res;
8 }

Things are especially easy with this function, as it does not assign memory. On the
path that successfully passes the test, the invariant α*y ≥ α*x holds, and assigning y to
res translates in the abstract into assigning α*y to α*res. Therefore, α*res ≡ α*y ≥
α*x holds at the end of the function on the path through the test, while on the other path
α*res ≡ α*x > α*y holds. Altogether, we can check the postcondition of ptrmax by
abstract interpretation, using syntactic locations.

Assigning a concrete location is not as simple as in the summary and access path lo-
cation approaches. Indeed, it does not translate into assigning a single summary location,
because more than one syntactic location may represent the same concrete location. In func-
tion sort below, syntactic locations α*x and α*y may well represent the same location,
if x == y at function beginning. Therefore, assigning to *x at line 5 should translate into
an abstract assignment to α*x and a possible abstract assignment to α*y. Adding x != y
to the precondition does not solve the problem though. In our byte-level memory model,
there is also the possibility that x and y are different but only a few bytes apart, so that
assigning to *x assigns some bytes of the concrete location pointed-to by y. Therefore,
without any more information on the locations pointed-to by x and y, the assignment to
*x results in an abstract assignment to α*x and the loss of any information on α*y. The
converse occurs for the assignment to *y at line 6, which makes it impossible to check the
postcondition of sort. We will address these problems of memory separation in Section 6.

104

1 //@ ensures *x ≤ *y;
2 void sort(int *x, int *y) {
3 if (*y >= *x) {
4 int tmp = *x;
5 *x = *y;
6 *y = tmp;
7 }
8 }

Syntactic abstract locations are a simple and powerful solution to the aliasing problem
in the context of intraprocedural analysis. This solution is much better than the ad hoc so-
lutions presented sometimes [62], that are both partial (working on a very limited set of
examples) and complex (associating various alias analyses). Syntactic abstract locations
can be seen as a simplified version of the symbolic values used by Chang and Leino [36],
without the congruence-closure domain and the repeated renamings and projections.

4.2.2 Abstract Logic Function Applications

In some cases, it is not sufficient to track the value of variables and memory loca-
tions to prove safety. E.g., consider function string_search which is a variant of
linear_search where the bound for search is not given explicitly as a parameter, but
corresponds to the position of the implicit sentinel null character in the argument string
arr.

1 /*@ ensures −1 ≤ \result;
2 @ assigns \nothing;
3 @*/
4 int string_search(char arr[], char key) {
5 int idx = 0;
6 //@ loop invariant 0 ≤ idx;
7 while (arr[idx] != ’\0’) {
8 if (arr[idx] == key) {
9 return idx; // key found
10 }
11 idx = idx + 1;
12 }
13 return −1; // key not found
14 }

The precondition of string_search should express that it must be called in a
context where its parameter arr can be safely dereferenced between indices 0 and
strlen(arr), which is the length of string arr as returned by a call to C standard
library function strlen. Annotations cannot refer to the result of calling a C function.
Instead, the functionality of strlen can be duplicated in the logic by defining a logic
function strlen:

//@ logic integer strlen(char *s) reads s[0..];

Since logic function strlen cannot be defined with a body, it must be given a mem-
ory footprint, which assesses that it reads the memory pointed-to by its pointer argument,
starting from the location pointed-to and upwards. Its functionality can be defined through
a proper axiomatization. Notice strlen is a complete function, implicitly defined for all

105

argument pointer values, although the value for non-string pointers is left unspecified (any
negative integer would do, see Section 8.1.1).

Then, the following precondition expresses the desired constraint on valid contexts for
safely calling string_search.

//@ requires 0 ≤ strlen(arr) ∧ \valid_range(arr,0,strlen(arr));

The memory safety of function string_search depends on the fact that index idx
used to access arr remains bounded from above by strlen(arr), while strlen(arr) can-
not be greater than INT_MAX by typing, which translates into loop invariant:

//@ loop invariant 0 ≤ idx ≤ strlen(arr) ≤ INT_MAX;

Therefore, it is crucial to track the value of strlen(arr). In general, it is necessary to
track the value of strlen(s) for every string s to prove memory safety of string manipulating
functions.

This motivates the definition of abstract values for logic function applications. Whether
the logic function is defined with a body or a memory footprint, it is possible to compute
the set of locations on which the result of the logic function depends. Any modification of
the corresponding syntactic abstract variables leads to the loss of any information on the
logic function application abstract variable. Still, it allows inferring invariants about the
value of such logic function applications without requiring the development of a dedicated
abstract domain. Thus, the value of such an abstract variable can only be maintained until
the underlying memory locations mentioned in the reads clause get assigned, which causes
the value of the abstract variable to be lost.

Like in expression abstraction [79], it could be possible to use inference rules to make
the value of such abstract variables more precise, but it is best left to a prover to deal with
the axiomatization of logic functions.

4.2.3 Overlaps Between Locations

As already mentioned in Section 4.2.1, syntactic abstract locations may alias, i.e., they
can represent overlapping concrete memory locations. To track such overlaps, we define a
function paths-may-overlap on paths such that paths-may-overlap(π1, π2) conservatively
over-approximates the property of overlap between the concrete locations represented by
these paths. It is presented in Figure 4.4. It consists in a pattern matching over the structure
of argument paths π1 and π2, with three different cases:

1. π1 and π2 represent the same variable x, in which case they do overlap;

2. π1 and π2 represent arbitrary memory locations (underscores are used as anonymous
names), in which case they may overlap;

3. π1 or π2 represents a variable x, and the other one represents either a different variable
or a memory location, in which case they do not overlap.

106

1 define paths-may-overlap:
2 input paths π1 and π2

3 output whether π1 and π2 represent overlapping locations
4 match (π1,π2) with
5 (1) | (x,x)→ return true
6 (2) | ((_⊕_)._,(_⊕_)._)→ return true
7 (3) | (x,_) | (_,x)→ return false

Figure 4.4: Overlapping of paths

1 define path-of-location:
2 input location λ
3 output path π that over-approximates location λ
4 match λ with
5 | x→ return x
6 | (λ1 ⊕ [i?..j?]).m→ return (path-of-location(λ1) ⊕ [i?..j?]).m
7 | { λ1 : _ }→ return path-of-location(λ1)
8
9 define locations-may-overlap:
10 input locations λ1 and λ2

11 output whether λ1 and λ2 represent overlapping locations
12 return paths-may-overlap(path-of-location λ1, path-of-location λ2)

Figure 4.5: Overlapping of locations

Function paths-may-overlap is the cornerstone of the memory analyses presented in
Sections 4.3 and 4.4. Although its definition presented in Figure 4.4 is quite imprecise,
we will show how to refine it given restrictions on the programs analyzed in Chapters 5, 6
and 7.

JESSIE locations can be over-approximated by paths, as described in Section 2.4. Func-
tion path-of -location defines this computation, which allows one to lift function paths-
may-overlap to locations in function locations-may-overlap.

4.2.4 Application to Linear Search

According to our definition of abstract variables, there are 8 syntactic abstract variables
in the JESSIE program linear_search presented in Section 2.3.3, and no abstract
logic function application. To increase readability, we use C names for locations (e.g.,
arr[idx]) instead of JESSIE names (e.g., (arr⊕idx).int32_f). These abstract vari-
ables can be grouped into

• 4 local variables: len, key, idx, result,

• 3 pseudo-variables: address(arr), offset-min(arr), offset-max (arr),

• and 1 syntactic abstract location: arr[idx].

107

Since arr is the only pointer, there is no possible overlapping between abstract loca-
tions in linear_search.

4.3 Abstract Interpretation for Pointer Programs

Section 3.2 presented abstract interpretation for JESSIE integer programs. All information
about memory was ignored in that analysis. Here, we present an extension of the analysis
presented in Section 3.2 to handle JESSIE pointer programs, i.e., arbitrary JESSIE programs
with pointers.

In order to prove memory safety using abstract interpretation, memory checks should
be represented exactly in the abstract domain, as mentioned in Section 3.2. As shown in
Section 4.1, the checks generated for memory safety are mostly linear (in)equalities, which
can be represented exactly in many relational domains.

4.3.1 Lifting Abstract Domains

As presented in Section 3.2, there exists many efficient domains for abstract interpretation
over integer variables, both relational and non-relational ones. Take such a domain D,
defined by functions

• D.test, the transfer function for test;

• D.assign, the transfer function for assignment;

• D.forget, the transfer function for reset;

• D.union, the join operation;

• D.included, the inclusion test;

• D.widen, the widening operation;

• D.lbound, the lower bound query;

• D.ubound, the upper bound query.

When using summary abstract locations or path abstract locations, an assignment
through path π in a JESSIE program directly translates to an abstract assignment of the cor-
responding summary abstract location απ in D. This is not the case anymore with syntactic
abstract locations, because they may represent overlapping locations.

Instead, it is possible to define an abstract domain D such that assigning through path
π in a JESSIE program translates to an abstract assignment of the corresponding syntactic
abstract location απ in D. Abstract domain D lifts abstract domain D to work with syntactic
abstract locations. Testing, union, inclusion, widening and queries are the same on syntactic
abstract variables as on regular abstract variables:

D.test
.= D.test D.union

.= D.union D.included
.= D.included

D.widen
.= D.widen D.lbound

.= D.lbound D.rbound
.= D.rbound

108

Assignment should take into account possible overlaps of locations, so that assigning
through path π1 forgets about the value of π2 whenever π1 and π2 might overlap. If d is an
abstract value from domain D, π is a path assigned, α is the syntactic abstract location for π,
αi is the syntactic abstract location for some location πi and v is a value assigned to π (e.g.,
a linear combination of abstract variables), then assignment in D of a value v supported by
D.assign is defined as

D.assign(d, α, v) .=
D.forget(D.assign(d, α, v), {αi such that αi 6≡ α ∧ paths-may-overlap(π, πi)})

Likewise, assignment in D of a value v not supported by D.assign is defined as

D.forget(d, α) .=
D.forget(D.forget(d, α), {αi such that αi 6≡ α ∧ paths-may-overlap(π, πi)})

With the definition of paths-may-overlap presented in Section 4.2.3, the precision of
D.assign and D.forget is poor. Indeed, any assignment to memory leads to forgetting all
memory information previously computed. Refinements of paths-may-overlap will improve
on the precision of D.assign and D.forget.

In their work on symbolic values [36], Chang and Leino choose the opposite way of
maintaining as much information as possible about the current state: they look for locations
whose value does not change by maintaining a stack of heap updates in a special heap
succession abstract domain. However, this special domain only seems to be able to handle
assignments to the heap that occur in sequence, while losing all information on joins, e.g.,
after an if-statement.

4.3.2 Application to JESSIE Pointer Programs

The intraprocedural abstract interpretation of JESSIE programs can be defined as a data-flow
analysis on instructions and statements. Rules presented in Figures 4.6 and 4.7 adapt the
rules for abstract interpretation of integer programs presented in Section 3.2. This time, in
rule CALL, αj denotes any abstract variable that overlaps with an abstract variable possibly
modified by calling f . Rules ASSIGN-VAR and FORGET-VAR assign to abstract variables
offset-min(x) and offset-max (x) only for those variables x of pointer type. Rules for
statements are identical, except D operations are called instead of D ones.

4.3.3 Illustration on Linear Search

It is now possible to apply abstract interpretation to check the memory safety of program
linear_search presented in Section 4.1.3. We assume the abstract domain D chosen is
the abstract domain of octagons.

The precondition of linear_search is a conjunction of inequalities between at most
two variables, which can be exactly encoded into the weakly relational domain of octagons.
It is the conjunction of the typing precondition

typ .= 0 ≤ len ≤ UINT_MAX ∧ INT_MIN ≤ key ≤ INT_MAX

109

t treated by D.assign
{x := t} ` A ⇒
D.assign(D.assign(D.assign(A, αoffset-min(x), αoffset-min(t)),

αoffset-max(x), αoffset-max(t)), αx, t)

ASSIGN-VAR

t not treated by D.assign
{x := t} ` A ⇒
D.forget(D.assign(D.assign(A, αoffset-min(x), αoffset-min(t)),

αoffset-max(x), αoffset-max(t)), αx)

FORGET-VAR

t2 treated by D.assign
{t1.m := t2} ` A ⇒ D.assign(A, αt1.m, t2)

ASSIGN-FIELD

t2 not treated by D.assign
{t1.m := t2} ` A ⇒ D.forget(A, αt1.m)

FORGET-FIELD

t treated by D.assign
{x := new S[t]} ` A ⇒
D.assign(D.assign(A, αoffset-min(x), 0), αoffset-max(x), t− 1)

ASSIGN-NEW

t not treated by D.assign
{x := new S[t]} ` A ⇒
D.forget(D.assign(A, αoffset-min(x), 0), αoffset-max(x))

FORGET-NEW

{free t} ` A ⇒ D.assign(D.assign(A, αoffset-min(t), 0), αoffset-max(t),−1)
FREE

{x := f(
−→
ti)} ` A ⇒ D.test(D.forget(A,−→αj), postf [

−−−−−−−−→
parami 7→ ti, result 7→ x])

CALL

Figure 4.6: Intraprocedural abstract interpretation of instructions

110

{s} ` AN1 ⇒ AN2
{s} ` AN1 ⇒ (AN2 , ε, ε)

INSTR

{s1} ` AN1 ⇒ (AN2 ,AR2 ,AX2) {s2} ` AN2 ⇒ (AN3 ,AR3 ,AX3)
{s1 s2} ` AN1 ⇒ (AN3 ,D.union(AR2 ,AR3),D.union(AX2 ,AX3))

SEQ

{s1} ` D.test(AN1 , t)⇒ (AN2 ,AR2 ,AX2)
{s2} ` D.test(AN1 ,¬t)⇒ (AN3 ,AR3 ,AX3)

{if t then s1 else s2} ` AN1 ⇒
(D.union(AN2 ,AN3),D.union(AR2 ,AR3),D.union(AX2 ,AX3))

IF

{s} ` AN1 ⇒ (AN2 ,AR2 ,AX2)
{loop s} ` D.union(AN1 ,AN2)⇒ (AN3 ,AR3 ,AX3)

{loop s} ` AN1 ⇒ (AN3 ,AR3 ,AX3)
LOOP-UNROLL

{s} ` AN1 ⇒ (AN2 ,AR2 ,AX2)
D.included(AN2 ,AN1)

{loop s} ` AN1 ⇒ (AN1 ,AR2 ,AX2)
LOOP-CONVERGE

{return t} ` AN1 ⇒ (ε,AN1 , ε)
RETURN

{throw X} ` AN1 ⇒ (ε, ε,AN1)
THROW

{s1} ` AN1 ⇒ (AN2 ,AR2 ,AX2) {s2} ` AX2 ⇒ (AN3 ,AR3 ,AX3)
{try s1 catch X s2} ` AN1 ⇒ (D.union(AN2 ,AN3),D.union(AR2 ,AR3),AX3)

TRY

Figure 4.7: Intraprocedural abstract interpretation of statements

111

and the annotated precondition

annot .= offset -min(arr) ≤ 0 ∧ len− 1 ≤ offset -max (arr) ∧ len ≤ INT_MAX.

Thus, the complete precondition for linear_search is

pre .= typ ∧ annot .

The invariant computed by abstract interpretation for the loop at line 8 of
linear_search is

inv8
.= pre ∧ 0 ≤ idx ≤ len.

This invariant implies trivially that loop invariant 0 ≤ idx ≤ len holds. Then, the in-
variant computed at line 9 where arr is accessed is almost the same, with the additional
information that idx < len, which gives

inv9
.= pre ∧ 0 ≤ idx < len.

This invariant trivially implies that check C9 holds. Notice that the manually annotated
loop invariant was never necessary here. On the contrary, abstract interpretation allows us
to infer this invariant.

4.4 Deductive Verification for Pointer Programs

Section 3.3 presented deductive verification for JESSIE integer programs. All information
about memory was ignored in this analysis. Here, we present an extension of the analysis
presented in Section 3.3 to handle JESSIE pointer programs, i.e., arbitrary JESSIE programs
with pointers.

4.4.1 Lifting Weakest Preconditions

The usual way to define weakest preconditions for pointer programs is to make memory
explicit as one (or as a set of) additional variable(s), and rely on the axioms of the theory of
arrays to model rules for memory accesses. Then, one needs a theorem prover to check the
validity of the generated formulas or to simplify them (e.g., by eliminating quantifiers). This
is what we do in the Why Platform, when we translate a JESSIE program into WHY [68, 69].

Given the low-level memory model for JESSIE defined in Section 2.2.3, any two pointers
may point to overlapping memory locations. Thus, a single heap variable Heap is defined.
Writes and reads to memory location t1.m are encoded by applications of logic functions
selectm and updatem, for each field m:

• selectm takes a heap variable Heap and a pointer x as arguments, and it returns the
value of field m in the structure pointed-to by x stored in Heap;

• updatem takes a heap variable Heap, a pointer x and a value v as arguments, and it
returns a modified Heap such that the value of field m in the structure pointed-to by
x stored in the returned heap is now v.

112

W{x := t}(p) .= p[x 7→ t]
W{t1.m := t2}(p)

.= p[Heap 7→ updatem(Heap, t1, t2)]
W{x := new S[t]}(p) .= p[Alloc 7→

update(Alloc, base-block(x), sizeof (S)× t)][x 7→ y]
W{free t}(p) .= p[Alloc 7→ update(Alloc, base-block(t),−1)]

W{x := f(
−→
ti)}(p) .= pref ∧ (postf ⇒ p)[−−−−−→xi 7→ yi]

[Heap 7→ Heap′][x 7→ y][result 7→ x]

Figure 4.8: Weakest preconditions over instructions

Those functions are only declared in WHY. Their definition is provided through a proper
axiomatization of the theory of arrays. Here, only one of the classical axioms of the theory
of arrays makes sense, since we cannot express non-overlap between memory locations yet:

selectm(updatem(Heap, x, v), x) ≡ v

It states that writing value v in field m of the structure pointed-to by pointer x and later on
reading this field gives back the value v.

Likewise, a single allocation variable Alloc is defined. Allocations and deallocations
perform writes on this allocation variable, while accesses perform reads, to check that only
valid pointers are accessed. These writes and reads are encoded by applications of logic
functions select and update , similarly to what is done for accesses to Heap.

Figure 4.8 redefines W for instructions w.r.t. the definition given in Section 3.3. If
calling f modifies the heap, Heap variable gets renamed. The definition for statements
stays the same.

The problem with this translation is that the generated formulas cannot be easily under-
stood by other analyses working at the level of JESSIE programs, as it mentions memory
explicitly, whereas memory is implicit at the level of JESSIE programs, which is better for
the kind of analyses we want to perform. Therefore, we define lightweight preconditions in
which memory remains implicit. These preconditions no longer correspond to the “best” or
weakest preconditions. Rather, they lift the weakest preconditions presented in Section 3.3
to work with syntactic abstract variables. For the sake of simplicity though, we will still
refer to these as our weakest preconditions on JESSIE programs.

It requires that the substitution rule is modified. Given a path π and α the
syntactic abstract location for π, a set of paths πi that may overlap with π (i.e.,
paths-may-overlap(π, πi) returns true) and αi the corresponding syntactic abstract lo-
cations, we redefine the substitution

p[α 7→ t],

as first renaming all syntactic abstract locations αi before substituting t for α. This has the
effect of first generalizing the formula being propagated over all possible values for possibly

113

W{x := t}(p) .= p[αx 7→ t]
W{t1.m := t2}(p)

.= p[αt1.m 7→ t2]
W{x := new S[t]}(p) .= p[offset-min(x) 7→ 0][offset-max (x) 7→ t− 1][x 7→ y]

W{free t}(p) .= p[offset-min(t) 7→ 0]
[offset-max (t) 7→ − 1][−−−−−→αi 7→ αj]

W{x := f(
−→
ti)}(p) .= pref ∧ (postf ⇒ p)[−−−−−→αi 7→ αj][x 7→ y][result 7→ x]

Figure 4.9: Preconditions over instructions

overlapping syntactic abstract locations. Say the formula p propagated is α ≡ 0 ∧ α1 ≡ 1,
where α and α1 correspond to possibly overlapping paths. While the simple substitution
rule for computing p[α 7→ t] returns formula t ≡ 0∧α1 ≡ 1, our modified substitution rule
returns here ∀x.t ≡ 0 ∧ x ≡ 1.

4.4.2 Application to JESSIE Pointer Programs

Given the modified substitution rule, it is possible to adapt the weakest preconditions func-
tion W for instructions defined in Section 3.3. Figure 4.9 redefines W for instructions.
FunctionW for statements defined in Section 3.3 stays the same.

4.4.3 Illustration on Linear Search

It is now possible to apply deductive verification to check the memory safety of program
linear_search presented in Section 4.1.3. Starting from checkC9, we get the following
weakest precondition at line 9

wp9
.= C9.

After passing the loop entry test, we get weakest precondition

wp8
.= idx < len =⇒ wp9,

which becomes the following after passing the loop invariant and universally quantifying
over variables modified in the loop

wp7
.= ∀ idx. 0 ≤ idx ≤ len =⇒ wp8.

Initialization of idx simply gives

wp6
.= idx ≡ 0 =⇒ wp7,

thus leading to the weakest precondition at function beginning

wp5
.= pre =⇒ wp6.

Formula wp5 is valid, which proves that check C9 holds at line 9. Notice that the presence
of a loop invariant was essential in proving that check C9 holds. This is different from what
we observed for abstract interpretation.

114

4.5 Chapter Summary

We presented memory safety checking of JESSIE annotated programs using either abstract
interpretation or deductive verification.

First, the JESSIE annotation language is extended with constructs that give a handle on
the JESSIE memory model. Then, checks that guarantee memory safety are generated, based
on this extended annotation language, thus reducing memory safety checking to assertion
checking.

Secondly, abstract variables are defined to track the value of memory locations and logic
function applications. In particular, we define a new kind of abstraction for memory loca-
tions, syntactic abstract locations. Overlapping between locations is made explicit through
function paths-may-overlap.

Finally, we show how to lift abstract interpretation and deductive verification to
work with possibly overlapping syntactic abstract locations, based on function paths-may-
overlap.

Part I devoted to automatic and modular safety checking of annotated JESSIE programs
is thus complete. Part II will focus on the generation of annotations for unannotated JESSIE

programs.

115

116

Part II

Inference, Separation, Unions and
Casts

117

Chapter 5

Alias-Free Type-Safe Programs

Contents
5.1 Problem Overview . 120

5.1.1 Type Safety Restriction . 120

5.1.2 Aliasing Restriction . 123

5.1.3 Without Logic Annotations . 124

5.1.4 Problem Statement . 125

5.2 Inferring Logic Annotations . 125

5.2.1 Approach by Abstraction . 126

5.2.2 Approach by Deduction . 128

5.2.3 Abstraction and Deduction Together 132

5.3 Combining Abstraction and Deduction 133

5.3.1 Precondition Inference Algorithm 134

5.3.2 Comparing Inference Techniques 137

5.3.3 Taming Time and Space Complexity 139

5.4 Other Related Work . 141

5.5 Chapter Summary . 142

In this chapter, we describe how to generate automatically and modularly annotations
for alias-free type-safe JESSIE programs, so that they can be checked safe as in Chapter 4.

Section 5.1 presents the type safety and aliasing restrictions on input programs. Given
these restrictions, the checking techniques for annotated programs presented in Chapter 4
can be refined.

Section 5.2 presents known techniques, either based on abstract interpretation or deduc-
tive verification, to infer function pre- and postconditions, as well as loop invariants. Their
relative strengths and limitations are compared. We show that these techniques are not suf-
ficient, even when used together, to generate sufficient preconditions on typical C pointer
programs.

119

Section 5.3 presents a new combination of abstract interpretation and deductive ver-
ification that builds on their respective strengths. This combination improves on current
techniques. It generates satisfying sufficient preconditions on typical C pointer programs.

Finally, Section 5.4 shows how this new technique relates to other work.

5.1 Problem Overview

5.1.1 Type Safety Restriction

Type safety is the property that each byte of data is always interpreted as the same byte in
the same type. In C, type safety can be simply obtained by forbidding the use of unions
and pointer casts, as well as pointer arithmetic. More precisely, pointer arithmetic can be
allowed in type-safe programs as long as the resulting pointer is within the bounds of the
underlying array when it is dereferenced. This is similar to the restriction on source C
programs in Caduceus [68].

Not only should the C program part analyzed be free from unions, pointer casts and
unbounded pointer arithmetic, but the overall program where this program part belongs
should be free from unions, pointer casts and unbounded pointer arithmetic. This makes the
JESSIE program analyzed type-safe, as if originally written in a type-safe language instead
of C. An important consequence of type safety is that two memory accesses through non-
embedded fields m and n in JESSIE do not interfere if fields m and n are different. Our
translation ensures that accesses to embedded fields are only used as intermediate steps in
some non-embedded field access.

Figures 5.1 and 5.2 present refined operational semantics rules w.r.t. those presented
in Section 2.2.4. These rules additionally guarantee type safety. A pointer now evaluates
to a tuple (l, a, i,min,max) with (l, a, i) as before a block label, an address for the block
and a byte offset into the block, and (min,max) the current minimal and maximal offsets
allowed, as in the local encoding of the block memory model presented in Section 4.1.1.

Component-as-array Memory Model In the context of type-safe programs, the byte-
level block memory model of JESSIE can be refined successively into a type-level block
memory model, where blocks of memory remain typed from allocation to deallocation,
and then into the component-as-array memory model of Burstall [30]. In this memory
model, blocks of memory are logically divided into collections of memory chunks that
store the same field of the same structure type, for different pointers. Type safety guarantees
that accesses into different collections cannot interfere, because these collections represent
different fields.

This is the memory model used in many works on programs semantics and veri-
fication [55, 90, 173, 118] as well as many verification tools: ESC/Modula-3 [117],
ESC/Java [70], Caduceus [68], Krakatoa [129], Jack [13], etc. Figure 5.3 shows such col-
lections, where all memory chunks in the same collection share the same color.

120

JnullK = (null , 0, 0, 0,−1)
NULL

t1 : S[..] Jt1K = (l, a, i,min,max) Jt2K = j

Jt1 ⊕ t2K = (l, a, i+ j × sizeof (S),min-j ,max -j)
SHIFT

t1 : S[..] t2 : S[..] Jt1K = (l, a, i, _,_) Jt2K = (l, a, j, _,_)
Jt1 	 t2K = (i− j)/sizeof (S)

SUBPTR

Jt1K = (l1, a1, i, _,_) Jt2K = (l2, a2, j, _,_)
Jt1 � t2K = a1 + i � a2 + j

COMPAR-PTR � ∈ {<,=,≡ , 6≡ }

JtK = (l, a, i, _,_) m is embedded typeof (m) = S[min..max]
Jt.mK = (l, a, i+ offsetof (m),min,max)

EMBED-FIELD

JtK = (l, a, i,min,max) min ≤ 0 ≤ max
0 ≤ i i+ sizeof (t) ≤ Alloc(l) m is not embedded

Jt.mK = of -bitsm(Heap((a+ i)× 8 + bitoffsetof (m), bitsizeof (m)))
FIELD

t : S[..] JtK = (l, a, i,min1,max 1)
Jt . S[..]K = (l, a, i,min1,max 1)

PTR-CAST

t : S[..] JtK = (l, a, i,min1,max 1) min1 ≤ min2

0 ≤ i+ min2 × sizeof (S)
Jt . S[min2..]K = (l, a, i,min2,max 1)

LOW-PTR-CAST

t : S[..] JtK = (l, a, i,min1,max 1) max 2 ≤ max 1

i+ (max 2 + 1)× sizeof (S) ≤ Alloc(l)
Jt . S[..max 2]K = (l, a, i,min1,max 2)

UP-PTR-CAST

t : S[..] JtK = (l, a, i,min1,max 1)
min1 ≤ min2 max 2 ≤ max 1

0 ≤ i+ min2 × sizeof (S)
i+ (max 2 + 1)× sizeof (S) ≤ Alloc(l)

Jt . S[min2..max 2]K = (l, a, i,min2,max 2)
BOUND-PTR-CAST

Figure 5.1: Type-safe evaluation of JESSIE terms

121

t1 : S[..] Jt1K = (l, a, i,min,max) min ≤ 0 ≤ max
Jt2K = v 0 ≤ i i+ sizeof (S) ≤ Alloc(l)

{t1.m := t2} ` Heap⇒
Heap[((a+ i)× 8 + bitoffsetof (m), bitsizeof (m)) 7→ to-bitsm(v)]

ASSIGN-FIELD

JtK = n 0 ≤ n l /∈ dom(Alloc)
∀ i. 0 ≤ i < n× sizeof (S)→ a+ i not allocated

{x := new S[t]} ` Env⇒
Env[x 7→ (l, a, 0, 0,n-1)],Alloc⇒ Alloc[l 7→ n× sizeof (S)]

NEW

JtK = (l, a, 0, _,_) 0 ≤ Alloc(l)
{free t} ` Alloc⇒ Alloc[l 7→ − 1]

FREE

Figure 5.2: Type-safe semantics of JESSIE instructions

x x + 1 y

Figure 5.3: Component-as-array memory model

1 define paths-may-overlap:
2 input paths π1 and π2

3 output whether π1 and π2 represent overlapping locations
4 match (π1,π2) with
5 (1) | (x,x)→ return true
6 (2.1) | ((_⊕_).m,(_⊕_).m)→ return true
7 (2.2) | ((_⊕_)._,(_⊕_)._)→ return false
8 (3) | (x,_) | (_,x)→ return false

Figure 5.4: Overlaping of paths for type-safe programs

122

Reduced Overlap Between Locations Type safety positively impacts the precision of
checking techniques, as it guarantees that fewer memory accesses may interfere. This di-
rectly translates into an improvement over the naive definition of paths-may-overlap given
in Section 4.2.3. This new definition is presented in Figure 5.4. Previously, case (2) con-
cluded that two memory locations could always overlap. It now refines into cases (2.1) and
(2.2) which conclude that two memory locations can overlap only if they access the same
field m.

Improved JESSIE Analyses Abstract interpretation and deductive verification for JESSIE

programs as presented in Sections 4.3 and 4.4 cannot check safety and annotations in func-
tion type_safe below. With the hypothesis that type_safe is part of a type-safe pro-
gram, and the refined paths-may-overlap algorithm presented in Figure 5.4, locations x→m
and y→n are known not to overlap. Thus, both abstract interpretation and deductive verifi-
cation can now check safety and annotations in function type_safe.

1 struct S { int m; };
2 struct T { int n; };
3
4 /*@ requires \valid(x) ∧ \valid(y) ∧ y→n ≡ 1;
5 @ ensures x→m ≡ 0;
6 @*/
7 void type_safe(struct S *x, struct T *y) {
8 x→m = 0;
9 //@ assert y→n ≡ 1;
10 }

Improved Translation to WHY Likewise, the translation of JESSIE into WHY benefits
from the type safety restriction. Global variable Heap as shown in Section 2.5 can be
replaced by a collection of Heapm variables, one for each field m, which naturally encodes
the absence of interference between accesses to the corresponding fields. Thus, separation
of fields is directly encoded in the generated verification conditions, which greatly simplifies
the proofs.

1 unit type_safe(pointer x, pointer y, heap Heap_m, heap Heap_n) =
2 update_m(Heap_m,x,0)
3 assert select_n(Heap_n,y) == 1

5.1.2 Aliasing Restriction

In a type-safe context, overlap of locations reduces to aliasing of pointers, without the need
to observe at low-level whether two locations may partially overlap. In a language with
arrays like C (and JESSIE), there is no point in completely banning aliasing: array locations
arr[i] and arr[j] in C (or (arr⊕i).m and (arr⊕j).m in JESSIE) are aliases
whenever i ≡ j.

Definition 1 Alias-free programs are programs which contain no aliasing between syntac-
tically different paths except aliasing due to equality of array indices.

123

1 define paths-may-overlap:
2 input paths π1 and π2

3 output whether π1 and π2 represent overlapping locations
4 match (π1,π2) with
5 (1) | (x,x)→ return true
6 (2.1’) | ((π3⊕_).m,(π4⊕_).m)→ return paths-may-overlap(π3,π4)
7 (2.2) | ((_⊕_)._,(_⊕_)._)→ return false
8 (3) | (x,_) | (_,x)→ return false

Figure 5.5: Overlaping of paths for alias-free programs

Reduced Overlap Between Locations Like type safety, restricting aliasing guarantees
that fewer memory accesses may interfere. Again, this translates into an improved definition
of paths-may-overlap presented in Figure 5.5 w.r.t. function paths-may-overlap presented in
Section 5.1.1 for type-safe programs. Previously, case (2.1) concluded that two memory lo-
cations accessing the same field could always overlap. It now refines into case (2.1’) which
concludes that two memory locations accessing the same field can overlap only if the two
paths obtained by ignoring the last pointer arithmetic and field access overlap themselves.

Improved JESSIE Analyses With the hypothesis that function alias_free below is
part of an alias-free program, and the refined paths-may-overlap algorithm presented above,
both abstract interpretation and deductive verification can check safety and annotations in
function alias_free, which is not possible otherwise.

1 struct S { int m; };
2
3 /*@ requires \valid(x) ∧ \valid(y) ∧ y→m ≡ 1;
4 @ ensures x→m ≡ 0;
5 @*/
6 void alias_free(struct S *x, struct S *y) {
7 x→m = 0;
8 //@ assert y→m ≡ 1;
9 }

Unlike the type safety restriction, the aliasing restriction is not reflected in the transla-
tion from JESSIE to WHY.

5.1.3 Without Logic Annotations

First, we consider checking the safety of program linear_search introduced in Sec-
tion 2.3.3 without any logic annotation. There are two checks in this function: a buffer
overflow check C4 on line 4:

C4
.= offset -min(arr) ≤ idx ≤ offset -max (arr),

and an integer overflow check C7 on line 7:

C7
.= INT_MIN ≤ idx + 1 ≤ INT_MAX.

124

Without additional information about this program, it is not possible to be confident
that these checks will succeed on every run. In fact, it is possible to find inputs to this
program that make any of those two checks false. Taking null for arr and 1 for len
makes C4 false the first time execution reaches it. Taking INT_MAX + 2 for len makes
C7 false after INT_MAX iterations through the loop. In a real execution, where integers
follow an overflow semantics, idx then becomes negative, in fact it takes the least possible
value INT_MIN, which leads to a buffer index bounds error in the iteration of the loop that
follows.

Therefore, however simple this program is, it contains two serious vulnerabilities that
could lead to a buffer overflow, thus making the whole surrounding program unsafe. A
common practice to remove such vulnerabilities is to program defensively, by checking
dynamically the validity of operations before performing them. It can be done by the pro-
grammer or a safe compiler like CCured. E.g., it is possible here to defend against violations
of the second check, by testing whether idx belongs to the range where increment does not
overflow, that is idx < INT_MAX. However, it impacts the efficiency of the program,
possibly for no benefit if the check can be shown to be valid in all calling contexts. For the
first check, such a dynamic monitoring is not even possible from the user perspective, as
the C language does not provide constructs like offset-min and offset-max . It is possible
though with a safe compiler like CCured which automatically inserts guards before pointer
dereferences, based on extra variables added to keep track of pointer offsets. From a verifi-
cation perspective, the solution to these problems is to add annotations to the program that
specify which calling contexts are allowed, thus making all checks valid.

5.1.4 Problem Statement

In this chapter, we consider the problem of generating logic annotations for type-safe alias-
free programs. As seen in Sections 5.1.1 and 5.1.2, type safety and aliasing restrictions
allow us to improve the results of abstract interpretation and deductive verification in check-
ing safety and annotations of JESSIE programs. Hopefully, the same hypotheses should help
in generating annotations.

Our main goal is to generate, in a modular and automatic way, a sufficient precondition
and a necessary postcondition for each function. The precondition inferred should be suf-
ficient to prove safety and annotations in the function, in particular the generated postcon-
dition. The postcondition inferred should be as precise as possible, given the precondition.
Of course, we should seek the weakest possible precondition and the strongest possible
postcondition, as false is otherwise a valid precondition and true a valid postcondition.

When a function body contains loops, we should also generate inductive loop invariants
implied by the context given by the function precondition. The crucial point here is that
the loop invariant should be inductive, i.e., provably true either by abstract interpretation or
deductive verification.

5.2 Inferring Logic Annotations

125

1 define ABSINTERP:
2 input program P
3 output invariants I and logical annotations for P
4 compute invariants I by forward abstract interpretation
5 use ILoop to strengthen loop invariants in P
6 use IPost to strengthen P postcondition
7 done

Figure 5.6: Algorithm ABSINTERP

5.2.1 Approach by Abstraction

Postcondition and Loop Invariant Generation Abstract interpretation of a program
builds an over-approximation of a program semantics. At every program point, abstract
interpretation returns an invariant that over-approximates the set of possible states reached
during execution at this program point. Therefore, abstract interpretation naturally com-
putes loop invariants and function postconditions. We call ABSINTERP this classical ap-
plication of forward abstract interpretation to generate invariants and annotations, that we
present in Figure 5.6. E.g., on program linear_search, abstract interpretation produces
loop invariant:

0 ≤ idx ≤ len, (5.1)

and postcondition:
0 ≤ result < len ∨ result ≡ − 1. (5.2)

More precisely, abstract interpretation computes invariant IC4

.= 0 ≤ idx < len at
check C4 and invariant IC7

.= 0 ≤ idx < len ∧ arr[idx] 6≡ key at check C7. Then,
the corresponding check is proved if the invariant implies it. Check C4 is proved if the
following formula holds:

0 ≤ idx < len︸ ︷︷ ︸
IC4

=⇒ offset-min(arr) ≤ idx ≤ offset-max (arr)︸ ︷︷ ︸
C4

This is not the case, therefore C4 is not proved. C7 is proved if the following formula holds:

0 ≤ idx < len︸ ︷︷ ︸
IC7

=⇒ INT_MIN ≤ idx + 1 ≤ INT_MAX︸ ︷︷ ︸
C7

This is not the case either, therefore C7 is not proved, but the first part of check C7 alone is
proved, since the following is a valid implication:

0 ≤ idx < len︸ ︷︷ ︸
IC7

=⇒ INT_MIN ≤ idx + 1︸ ︷︷ ︸
C7 1st conjunct

The fact C4 and C7 cannot be proved by forward abstract interpretation is not surprising,
as we saw in Section 5.1.3 that a precondition should be added to linear_search to
prevent both overflows.

126

Precondition Generation Unfortunately, abstract interpretation does not lead naturally to
the generation of preconditions. Bourdoncle introduced abstract debugging [26] as a tech-
nique based on abstract interpretation that computes preconditions. It propagates an over-
approximation of the program state backwards through the program control-flow graph.
Abstract debugging only considers those paths that may lead to a specific program point of
interest, typically a check point. This allows us to perform some kind of trace partitioning
as defined by Mauborgne [130], which amounts to the generation of disjunctive invariants,
where each disjunct represents an invariant for a set of traces (execution paths through the
program). To that end, abstract debugging requires that the results of a forward abstract
interpretation pass are available.

For program linear_search, the forward invariant at check C4 is 0 ≤ idx <
len. Abstract debugging starts with strengthening this invariant with check C4, which
gives invariant

0 ≤ idx < len ∧ offset -min(arr) ≤ idx ≤ offset -max (arr).

Notice len and offset-max (arr) get similar roles in this formula, although they have
quite opposite responsibilities w.r.t. the assertion holding or not. Backward propagating this
invariant through the loop leads to invariant

0 ≤ idx < len ∧ idx ≤ offset -max (arr)

at loop beginning. Indeed, the offset-min lower bound on idx is lost when performing
widening, due to assignment to idx on line 7. If we keep working with a usual convex
domain that cannot treat disjunctions, the path that never enters the loop forces us to lose all
information at loop entry. Still propagating the formula backward, if we allow some kind
of trace partitioning based on loop entrance, we get invariant

idx ≡ 0 ∧ (len ≡ 0 ∨ (0 < len ∧ 0 ≤ offset -max (arr)))

at loop entry. This finally leads to precondition

len ≡ 0 ∨ (0 < len ∧ 0 ≤ offset -max (arr)). (5.3)

A very similar propagation performed from check C7 leads to some stronger precondition.
This precondition does not guard against any of the possible overflows in

linear_search. The problem is that backward abstract interpretation computes
an over-approximation of program states. While forward abstract interpretation computes
necessary postconditions, which is fine, backward abstract interpretation computes neces-
sary preconditions, which is not enough. In very special cases, where forward invariants
are very precise, and with a user specifying control points that every execution should
reach (a.k.a. intermittent assertions [26]), the technique of abstract debugging generates
sufficient preconditions for checking assertions.

Rival introduced alarm diagnosis [153], a variant of abstract debugging which propa-
gates backwards sets of forbidden states instead of sets of desirable states. By taking the

127

negation of all such undesirable preconditions found, we may reach a sufficient precondi-
tion. On linear_search, we can start with forbidden states

0 ≤ idx < len︸ ︷︷ ︸
IC4

∧ idx < offset-min(arr)︸ ︷︷ ︸
¬C4

at check C4. This leads to the same forbidden set at loop beginning, and finally to

0 < len ∧ 0 < offset -min(arr)

at function entry. By negating it, we get sufficient precondition

len ≤ 0 ∨ offset -min(arr) ≤ 0. (5.4)

that guards against underflow at check C4. Unfortunately, starting from
offset-max (arr) < idx at check C4 or INT_MAX < idx + 1 at check C7 leads
to the overly conservative precondition len ≤ 0. We do not consider this precondition in
the following.

5.2.2 Approach by Deduction

Pre- and Postcondition Generation Techniques based on Dijkstra’s weakest precon-
ditions or strongest postconditions rely on preexisting loop invariants. E.g., functions
sequence and looping below are identical except for line 4 in both. In sequence,
line 4 simply adds x to local variable z. Absence of loops in sequence makes it easy to
derive function precondition x 6≡ y by weakest preconditions from check z 6≡ 0 on line 5.
Likewise, postcondition result ≡ 1 is derivable by strongest postconditions from function
beginning.

1 //@ requires 0 ≤ x ∧ 0 ≤ y;
2 int sequence(int x, int y) {
3 int z = −y;
4 z += x;
5 return (x − y)/z;
6 }

In looping, on the contrary, nothing is known on the value of z after the loop, which
prevents the generation of any useful precondition and postcondition.

1 //@ requires 0 ≤ x ∧ 0 ≤ y;
2 int looping(int x, int y) {
3 int z = −y;
4 for (int i = 0; i < x; i++) z++;
5 return (x − y)/z;
6 }

By adding a sufficiently precise loop invariant, we can compute for looping the same
precondition and postcondition as for sequence.

128

//@ loop invariant 0 ≤ i ≤ x ∧ z ≡ i − y;

Indeed, in that case, the result of weakest preconditions is

∃ i1, i2, z2. 0 ≤ x ∧ 0 ≤ y︸ ︷︷ ︸
precondition

∧ z1 ≡ -y ∧ i1 ≡ 0︸ ︷︷ ︸
assignments

∧ 0 ≤ i2 ≤ x ∧ z2 ≡ i2 − y︸ ︷︷ ︸
loop invariant

∧ x ≤ i2︸ ︷︷ ︸
loop exit

=⇒ z2 6≡ 0︸ ︷︷ ︸
check

,

which, together with the hand-written precondition, is equivalent to

0 ≤ x ∧ 0 ≤ y ∧ x 6≡ y

by mechanical elimination of quantifiers. The same loop invariant makes it possible to infer
postcondition result ≡ 1.

Going back to our running example linear_search, both checks happen to occur
inside a loop, which makes the generation of a suitable precondition by weakest precon-
ditions very dependent on the associated loop invariant. Without any loop invariant, the
weakest precondition of check C4 is

∃ idx1. ∀ idx2.

typ ∧ idx1 ≡ 0︸ ︷︷ ︸
assignment

∧ idx2 < len︸ ︷︷ ︸
loop test

=⇒ offset-min(arr) ≤ idx2 ≤ offset-max (arr)︸ ︷︷ ︸
C1

where typ is the invariant given by typing:

0 ≤ len ≤ UINT_MAX ∧ INT_MIN ≤ key ≤ INT_MAX

∧ INT_MIN ≤ idx1 ≤ INT_MAX ∧ INT_MIN ≤ idx2 ≤ INT_MAX.

After quantifier elimination, this precondition is equivalent to

false,

but, by considering one conjunct at a time, for the second conjunct in check C4, we get
instead

∃ idx1. ∀ idx2. typ ∧ idx1 ≡ 0︸ ︷︷ ︸
assignment

∧ idx2 < len︸ ︷︷ ︸
loop test

=⇒ idx2 ≤ offset-max (arr)︸ ︷︷ ︸
C1 2nd conjunct

,

which is equivalent to a useful precondition

len ≤ offset -max (arr) + 1.

Likewise, starting from check C7, we can compute the weakest precondition

∃ idx1. ∀ idx2. typ ∧ idx1 ≡ 0︸ ︷︷ ︸
assignment

∧ idx2 < len︸ ︷︷ ︸
loop test

=⇒ INT_MIN ≤ idx2 + 1 ≤ INT_MAX︸ ︷︷ ︸
C2

,

which is equivalent to
len ≤ INT_MAX.

129

Overall, we obtain the following precondition by weakest preconditions:

len ≤ offset -max (arr) + 1 ∧ len ≤ INT_MAX. (5.5)

This proves the absence of overflow from above in both C4 and C7, but not the absence of
overflow from below, a.k.a. underflow.

The postcondition obtained by strongest postconditions is simply

result < len ∨ result ≡ − 1 (5.6)

Loop Invariant Generation Induction-iteration by Suzuki and Ishihata [166, 181] is
a technique that generates loop invariants by repeated applications of weakest precondi-
tions. The basic idea is to strengthen repeatedly a candidate loop invariant by computing
its weakest precondition through the loop body, until an inductive invariant is found. For
our linear_search example, the following formula obtained by weakest preconditions
from C4 is a candidate loop invariant:

W0
.= idx2 < len︸ ︷︷ ︸

loop test

=⇒ offset-min(arr) ≤ idx2 ≤ offset-max (arr)︸ ︷︷ ︸
C4

.

To check whether W0 is an inductive invariant, one computes its weakest precondition
through the loop body, denoted W1:

W1
.= idx2 < len︸ ︷︷ ︸

loop test

∧ idx2 + 1 < len︸ ︷︷ ︸
loop test

∧ offset-min(arr) ≤ idx2 ≤ offset-max (arr)︸ ︷︷ ︸
C4

.

=⇒ offset-min(arr) ≤ idx2 + 1 ≤ offset-max (arr)︸ ︷︷ ︸
C4

.

W0 is an inductive invariant iff the following formula holds:

W0 =⇒W1. (5.7)

This is not the case. Then, the process can be repeated from the stronger candidate invariant

W0 ∧W1,

and possibly next W0 ∧W1 ∧W2, etc. In our example, no such finite conjunct is inductive,
therefore strengthening does not terminate. In that case, induction-iteration resorts to gen-
eralization, which further strengthens the invariant by eliminating all variables modified in
the loop, a.k.a. inductive variables. Applying generalization right away on W0 gives

false,

130

but, by considering one conjunct at a time, the same computation of W0 on the second
conjunct in C4 followed by generalization results in formula

len ≤ offset -max (arr) + 1,

which is not only an inductive invariant, but also a precondition that guards against an
overflow (but not an underflow) at check C4.

Here, induction-iteration with generalization is reduced to plain weakest precondi-
tions with quantifier elimination. Theoretically though, induction-iteration could generate
an inductive invariant that still mentions inductive variables, which is not possible with
plain weakest preconditions. The first case that shows this situation is when induction-
iteration reaches an inductive invariant without the need for generalization, as in functions
induction1 and induction2 below.

1 void induction1(int x, int y)
2 {
3 while (1) {
4 //@ assert x < y;
5 x = x − 1;
6 }
7 }

1 void induction2(int x, int y)
2 {
3 while (1) {
4 if (x > 0) {
5 //@ assert x < y;
6 }
7 x = −x;
8 }
9 }

In function induction1, Formula 5.7 becomes

x < y =⇒ x− 1 < y,

which always holds. Therefore, x < y is an inductive loop invariant for function
induction1. In function induction2, Formula 5.7 becomes

(x > 0 =⇒ x < y) =⇒ ((x > 0 =⇒ x < y) ∧ (-x > 0 =⇒ -x < y)),

which does not always hold, but W0 ∧W1 in this case is

(x > 0 =⇒ x < y) ∧ (-x > 0 =⇒ -x < y),

which is indeed an inductive invariant, as shown by the validity of

((x > 0 =⇒ x < y) ∧ (-x > 0 =⇒ -x < y))
=⇒ ((-x > 0 =⇒ -x < y) ∧ (x > 0 =⇒ x < y)),

which trivially holds.
The second case where induction-iteration outperforms weakest preconditions plus

quantifier elimination is when induction-iteration reaches an inductive invariant by elimi-
nating only some inductive variables, but not all. This is the case in function induction3
below.

131

1 void induction3(int x, int y, int z) {
2 while (x < z) {
3 //@ assert x < y;
4 x = x + 2;
5 y = y + 1;
6 }
7 }

In function induction3, Formula 5.7 becomes

(x < z =⇒ x < y) =⇒ (x < z ∧ x < y ∧ x + 2 < z =⇒ x + 2 < y + 1)

This formula is not inductive, and more generally, no finite conjunct of Wi is inductive.
Therefore, one must perform generalization at one stage. Generalizing W0 on x results in

z ≤ y,

which is indeed an inductive loop invariant, as shown by the validity of

z ≤ y =⇒ (x ≤ z ∧ x < y =⇒ z ≤ y + 1).

Notice that the same technique can be applied to generate loop invariants from strongest
postconditions, starting from an initial candidate loop invariant obtained by weakest precon-
ditions.

5.2.3 Abstraction and Deduction Together

As shown in Sections 5.2.1 and 5.2.2, both approaches by abstraction and deduction allow us
to generate logic annotations: (i) abstract interpretation naturally generates loop invariants
and postconditions; (ii) abstract debugging, a technique based on abstract interpretation,
generates necessary preconditions; (iii) alarm diagnosis, a variant of abstract debugging,
generates sufficient preconditions; (iv) weakest preconditions and strongest postconditions
naturally generate the most precise pre- and postconditions, provided loop invariants are
provided, and (v) induction-iteration, a technique based on weakest preconditions, generates
inductive loop invariants.

Putting it all together, it seems that the conjunction of results of each technique could
succeed in generating all the annotations needed. For our linear_search example, the
loop invariant given by Formula 5.1 is

0 ≤ idx ≤ len︸ ︷︷ ︸
(i)

, (5.8)

the conjunction of preconditions given by Formulas 5.3, 5.4 and 5.5 is

(len ≤ 0 ∨ (0 < len ∧ 0 ≤ offset-max (arr)))︸ ︷︷ ︸
(ii)

∧ (len ≤ 0 ∨ offset-min(arr) ≤ 0)︸ ︷︷ ︸
(iii)

∧ len ≤ offset-max (arr) + 1 ∧ len ≤ INT_MAX︸ ︷︷ ︸
(iv)+(v)

, (5.9)

132

and the conjunction of postconditions given by Formulas 5.2 and 5.6 is

(0 ≤ result < len ∨ result ≡ − 1)︸ ︷︷ ︸
(i)

∧ (result < len ∨ result ≡ − 1)︸ ︷︷ ︸
(iv)

. (5.10)

Once rewritten, these are almost exactly the same as the hand-written annotations added
to linear_search in Section 4.1.3. In particular, they guarantee the safety of calls to
linear_search. To see this, notice first that Formula 5.8 is the same as the hand-written
loop invariant. Secondly, in conjunction with typing precondition typ, Formula 5.9 is the
same as the hand-written precondition. Only Formula 5.10 is slightly weaker than the hand-
written postcondition, but this has no effect on the safety of calls to linear_search.

The generated precondition could be weaker though. Indeed, both checks C4 and C7

occur in the loop, which means that executions that do not enter the loop need not guard
against C4 and C7. This corresponds to executions where len ≤ 0, the first conjunct in the
preconditions obtained by abstract debugging and alarm diagnosis. Thus, the following is a
weaker sufficient precondition than Formula 5.9:

len ≤ 0 ∨ (offset-min(arr) ≤ 0︸ ︷︷ ︸
underflow

< len ≤ offset-max (arr) + 1 ∧ len ≤ INT_MAX︸ ︷︷ ︸
overflow

).

(5.11)
We have marked the part of the precondition that guards against underflow and the one that
guards against overflow. The latter could be generated in this weakened form, by applying
the same weakest preconditions technique we presented to a modified linear_search
program where the loop is unrolled once:

1 int linear_search(int arr[], unsigned int len, int key) {
2 int idx = 0;
3 if (idx < len) {
4 if (arr[idx] == key)
5 return idx; // key found
6 idx = idx + 1;
7 while (idx < len) {
8 if (arr[idx] == key)
9 return idx; // key found
10 idx = idx + 1;
11 }
12 }
13 return −1; // key not found
14 }

5.3 Combining Abstraction and Deduction

It is possible that putting together the results of abstraction techniques and deduction
techniques leads to a satisfactory set of generated logic annotations, like on our simple
linear_search example. Notice though the many twists we had to perform to make
it work for such a simple example: we had to discard overly conservative preconditions
generated by alarm diagnosis, and we performed loop unrolling to improve the precision of
weakest preconditions. More generally, it is not easy to recognize and select the best result

133

1 define ABSGENERIC:
2 input program P
3 output logical annotations for P
4 compute invariants I by INVGEN
5 for each check C do
6 define φC as C weakened by IC: φC = IC =⇒ C
7 define φ as the result of applying PRECOND to φC

8 define ψ as the result of applying QUANTELIM to φ
9 use ψ to strengthen P precondition
10 done

Figure 5.7: Algorithm ABSGENERIC

in case a technique outperforms another, and adding each technique’s results to the com-
bination does not solve the limitations of each one. On one hand, abstraction techniques
poorly handle disjunctions and under-approximations, thus generating overly liberal pre-
conditions. On the other hand, deduction techniques poorly handle over-approximations,
thus generating imprecise loop invariants.

5.3.1 Precondition Inference Algorithm

An efficient combination of abstraction and deduction would rely on abstraction for over-
approximations, and on deduction for under-approximations and disjunctions. Therefore,
the forward propagation should better be left to abstraction and the backward propagation
to deduction. We are going to present such an algorithm for inferring sufficient function
preconditions.

A Plugin Architecture We suppose we are given an algorithm INVGEN for computing
invariants, e.g., by forward abstract interpretation, an algorithm PRECOND for computing
preconditions, e.g., by weakest preconditions and an algorithm QUANTELIM for computing
stronger (possibly equivalent) quantifier-free formulas, e.g., by (equivalence-preserving)
quantifier elimination. Figure 5.7 presents our inference algorithm ABSGENERIC, which is
parametric over INVGEN, PRECOND and QUANTELIM.

Algorithm ABSGENERIC starts with computing invariants on line 4. These invariants
should be used to strengthen loop invariants and function postcondition.

Then, ABSGENERIC treats each check C in turn, to generate a sufficient function pre-
condition for C to hold. First, C is weakened by the invariant IC computed at the same
program point. Indeed, since IC is known to hold, proving C is equivalent to proving
IC =⇒ C, as shown by the validity of Formula 5.12:

IC =⇒ (C ⇐⇒ (IC =⇒ C)). (5.12)

Finally, ABSGENERIC computes a precondition φ of this formula on line 7. Since our
goal is to generate a usable precondition, that can be easily taken into account by analyses,
we would rather not leave quantifiers in this formula. Therefore, ABSGENERIC eliminates

134

quantifiers from φ on line 8, returning a stronger (possibly equivalent) formula ψ without
quantifiers. Since it is stronger, this quantifier-free precondition still implies that C holds.

ABSGENERIC consists in a special arrangement of existing well-established techniques
in program analysis: invariant generation, preconditions, quantifier elimination. This plu-
gin architecture allows both reuse of existing building blocks and specialization to specific
assertions and programs.

We use the same algorithm to generate loop invariants on the way, by treating loop be-
ginnings like function starts. The generated loop invariant is sufficient to prove the property
of interest, but it is not guaranteed to be inductive, thus it should always be proved.

Application to JESSIE Programs Sections 4.3 and 4.4 describe the application of ab-
stract interpretation and weakest preconditions to JESSIE programs, so that it remains to
define a quantifier elimination procedure for formulas obtained by weakest preconditions
on JESSIE programs.

According to the rules presented in Sections 4.3.2 and 4.4.2, and for most checks pre-
sented in Sections 3.1.1 and 4.1.2, if the underlying abstract domain D chosen generates
invariants in the form of conjunctions or disjunctions of linear (in)equalities of integer vari-
ables, which is the case for most useful abstract domains, and if the program manipulates
linear combinations of variables, then the formula generated fits in the theory of Presburger
arithmetic, i.e., arithmetic without multiplication between variables. Then, any quantifier
elimination for Presburger arithmetic can be used: Cooper’s method, Omega test, Fourier-
Motzkin method. The popular and efficient Simplex method cannot be used because it does
not apply to a formula where some variables are not quantified.

Quantifier elimination for Presburger arithmetic is inherently triply exponential [176],
which is far too expensive in practice, as we checked it in our experiments with Cooper’s
method. Instead, we turn to quantifier elimination for rational (or real) linear arithmetic, for
which there exists algorithms with a doubly exponential complexity [85, 140, 28]. In fact,
it has been proved that this problem has at least exponential complexity, but no algorithm
has a better complexity than doubly exponential.

Classically, we exploit the particular form of the formulas generated by weakest pre-
conditions. Our quantified formulas are universally quantified prenex formulas, meaning
only universal quantifiers ∀ appear in front of a quantifier-free formula. Then, quantifier
elimination over the rationals only returns a stronger formula than quantifier elimination
over the integers, which is a correct behavior for QUANTELIM.

In practice, we rewrite the universal formula ∀−→x .φ into the equivalent ¬∃−→x .¬φ and we
transform formula ¬φ into its disjunctive normal form (DNF), so that the existential quan-
tifier distributes over all disjuncts and the Fourier-Motzkin method to eliminate quantifiers
can be applied individually to each disjunct. The conversion to DNF formula has expo-
nential complexity and the Fourier-Motzkin method has doubly exponential complexity in
theory, but closer to exponential in practice [134]. Therefore, we obtain this way a doubly
exponential complexity in practice, which is practical only for small examples.

Overall, we define algorithm ABSWEAK as the specialization of ABSGENERIC with:

• forward abstract interpretation ABSINTERP for invariant generation method IN-

135

1 define ABSWEAK:
2 input program P
3 output logical annotations for P
4 compute invariants I by ABSINTERP
5 for each check C do
6 define φC as C weakened by IC: φC = IC =⇒ C
7 define φ as the result of applyingW to φC

8 define ψ as the result of applying Fourier-Motzkin to φ
9 use ψ to strengthen P precondition
10 done

Figure 5.8: Algorithm ABSWEAK

VGEN;

• weakest preconditionsW defined in Section 4.4.2 for precondition generation method
PRECOND;

• Fourier-Motzkin method for quantifier elimination method QUANTELIM.

Illustration on Linear Search On unannotated program linear_search presented
in Section 2.3.3, ABSWEAK works as follows:

line 4: invariant IL is computed at loop entry, and IP at function exit
loop invariant becomes IL

.= 0 ≤ idx ≤ len
postcondition becomes IP

.= 0 ≤ result < len ∨ result ≡ − 1
line 5: treat check C4

line 7:
φ1

.= ∀ idx1, idx2. typ ∧ idx1 ≡ 0
=⇒ (IL[idx 7→ idx2] ∧ idx2 < len

=⇒ offset -min(arr) ≤ idx2 ≤ offset -max (arr))

line 8:
φ1

.= 0 < len =⇒ (offset -min(arr) ≤ 0 ∧ len ≤ offset -max (arr) + 1)
line 9: precondition becomes typ ∧ φ1

line 5: treat check C7

line 7: φ2
.= ∀ idx1, idx2. typ ∧ idx1 ≡ 0
=⇒ (IL[idx 7→ idx2] ∧ idx2 < len =⇒ INT_MIN ≤ idx2 + 1 ≤ INT_MAX)

line 8: φ2
.= 0 < len =⇒ len ≤ INT_MAX

line 9: precondition becomes typ ∧ φ1 ∧ φ2

Notice that we obtain the same results with ABSWEAK alone as with the addition of all
the techniques mentioned previously, and without any of the twists.

136

5.3.2 Comparing Inference Techniques

Our goal is to generate a sufficient precondition ensuring safety, that allows as many calling
contexts as possible. Thus, a technique outperforms another if (1) it is the only one to
generate a sufficient precondition or (2) it generates a weaker sufficient precondition.

Theorem 2 For each check C, ABSWEAK generates a precondition ensuring that check C
holds. The precondition generated is both sufficient, contrary to the precondition generated
by abstract debugging, and better than the precondition generated by induction-iteration
with immediate generalization.

Proof. The weakest precondition computed on line 7 returns a sufficient precondition for
IC =⇒ C to hold, by definition of weakest preconditions. According to Formula 5.12, it
is also a sufficient precondition for C to hold. By the property that quantifier elimination
returns a stronger (possibly equivalent) formula, the quantifier-free formula computed on
line 8 is also a sufficient precondition for C to hold. Then, this formula is a sufficient
precondition ensuring that C holds.

The precondition generated by abstract debugging is not guaranteed to be a sufficient
precondition, as shown in Section 5.2.1.

The precondition generated by induction-iteration, where generalization is performed
at the first iteration, is obtained with weakest preconditions from C, the same way the
precondition generated by ABSWEAK is obtained from IC =⇒ C. Since IC =⇒ C is
weaker than C, the generated precondition is also weaker, thus better. �

Theorem 3 ABSWEAK and abstract debugging are not comparable.

Proof. It is sufficient to show that, in some cases, ABSWEAK is better than abstract debug-
ging, while in other cases the opposite holds.

For function linear_search, ABSWEAK generates a sufficient precondition while
abstract debugging does not, thus ABSWEAK is better in this case.

1 void dummy1(int i, int n) {
2 while (1) {
3 i = i + 1;
4 i = i − 1;
5 assert (i < n);
6 }
7 }

On function dummy1 above, forward abstract interpretation in both abstract debugging
and ABSWEAK cannot generate a non-trivial loop invariant, no matter which abstract do-
main is used, because nothing is known at function entry. Then, ABSWEAK generates no
precondition, because the weakest precondition is

∀ i. i < n

which is equivalent, after quantifier elimination, to false . Abstract debugging generates
loop invariant

i < n

137

by backward abstract interpretation around the loop, which finally leads to the generation
of necessary precondition i < n, which is also a sufficient precondition in this case. Thus
abstract debugging is better in this case. �

As a side remark, our implementation in Frama-C does generate an appropriate suffi-
cient precondition i < n thanks to the automatic introduction of intermediate offset vari-
ables (see Section 8.1). Introducing an offset variable for variable i to track relative changes
to i’s value allows one to generate the expected loop invariant that this offset is null at each
loop iteration. This in turn allows one to generate the expected precondition.

More generally, the case of dummy1 where backward abstract interpretation succeeds
in generating a loop invariant that forward abstract interpretation cannot generate is very
unlikely in practice. Thus, ABSWEAK should be preferred in general over abstract debug-
ging.

Theorem 4 ABSWEAK and induction-iteration are not comparable.

Proof. It is sufficient to show that, in some cases, ABSWEAK is better than induction-
iteration, while in other cases the opposite holds.

On function linear_search, ABSWEAK generates a sufficient precondition while
induction-iteration does not, thus ABSWEAK is better in this case.

1 void dummy2(int i, int j, int n) {
2 while (1) {
3 assert (i < n);
4 i = j;
5 }
6 }

On function dummy2 above, forward abstract interpretation in ABSWEAK cannot gen-
erate a non-trivial loop invariant, no matter which abstract domain is used, because nothing
is known at function entry. Then, the weakest precondition is

∀ i. i < n

which is equivalent, after quantifier elimination, to false . This is the trivial sufficient pre-
condition that ABSWEAK generates in this case. Induction-iteration quickly converges if
generalization is not performed:

W0
.= i < n W1

.= j < n W2
.= j < n.

This leads to the generation of sufficient precondition i < n ∧ j < n. Thus induction-
iteration is better in this case. �

It should be clear that dummy2 is a carefully crafted example that seldom occurs in
practice. Most loop invariants in programs result from the natural forward sequencing of
instructions, which depends a lot on what precedes the loop. This is precisely what cannot
be captured by induction-iteration. Thus, ABSWEAK should be preferred in general over
induction-iteration.

138

5.3.3 Taming Time and Space Complexity

More Efficient Preconditions ABSWEAK results may be very satisfying on a small scale,
but its time and space complexity prevent applying it to larger programs. Indeed, it suffers
from multiple sources of exponential explosion, both in space and time:

1. The classical computation of weakest preconditions is exponential in the number of
branches in the program [59]. This can be overcome with an efficient computation of
weakest preconditions [119], that is quadratic in theory but linear in practice. We did
not implement these optimized weakest preconditions, as the benefit of it would be
wasted by the transformation to DNF before Fourier-Motzkin quantifier elimination.

2. Conversion to DNF has exponential complexity in the size of the formula.

3. Fourier-Motzkin quantifier elimination for the rationals (or real numbers) from a DNF
formula has doubly exponential complexity in theory, and simple exponential com-
plexity in practice.

Overall, the classical computation of weakest preconditions can be seen as performing
a part of the conversion to DNF, which leads to a combined doubly exponential complexity
in practice. This is still too costly to be applicable to larger programs, which we checked in
our experiments in Chapter 8. Thus, we devised variants of ABSGENERIC that differ from
ABSWEAK by the precondition method PRECOND used:

• Algorithm ABSSTRONG is based on a precondition method that computes a stronger
formula than plain weakest preconditions, by ignoring statements that do not interfere
directly with the formula being propagated backwards. A statement interferes with a
formula φ either by constraining (in a test) or modifying (in an assignment or a call)
a location that overlaps with a syntactic abstract variable in φ. Overlap of locations
is determined by calling function paths-may-overlap. This lifts the heuristic back-
propagation described by Janota [102] to work with syntactic abstract variables.

• Algorithm ABSELIM completely replaces the weakest preconditions propagation by
quantifying the desired initial formula over all possibly modified syntactic abstract
variables, which relies on a computation of effects and function paths-may-overlap
to define possible overlaps.

Although ABSSTRONG and ABSELIM have the same complexity as ABSWEAK, they
generate in practice much simpler quantified formulas, which leads to practical quantifier
elimination for programs of a few hundred loc (see Chapter 8).

On our linear_search example, ABSSTRONG and ABSELIM perform as well as
ABSWEAK, leading to the same sufficient precondition. This is not always the case, as
ABSSTRONG and ABSELIM may fail to take into account relations between variables that
stem from statements that ABSSTRONG ignores or that were not caught by the invariant
used in ABSELIM. Indeed, ABSELIM performs as well as ABSWEAK in those cases where
the invariant obtained by abstract interpretation is so precise that a backward propagation

139

by weakest preconditions is not needed. Likewise, ABSSTRONG performs as well as AB-
SWEAK in those cases where either the invariant obtained by abstract interpretation is pre-
cise enough, like for ABSELIM, or the strong preconditions computation captures the miss-
ing relational information.

More Efficient Quantifier Elimination The efficiency of our technique depends cru-
cially on the efficiency of the quantifier elimination method chosen. A recent technique
shows great promise in this matter [134], by removing the need for conversion to DNF and
relying instead on an SMT-solver to explore the possible models of a formula.

Indeed, ABSELIM remains impractical for large programs, with many variables. To see
this, let us consider the case of function elim.

1 int a1, a2, b1, b2, c1, c2, d1, d2;
2
3 void elim(int x, int y, int z) {
4 while (1) {
5 if (a1 <= x && a2 <= x && x <= b1 && x <= b2 &&
6 c1 <= y && c2 <= y && y <= d1 && y <= d2) {
7 //@ assert y < z;
8 }
9 x = y + 1;
10 y = x − 1;
11 }
12 }

In function elim, the invariant computed by abstract interpretation at the assertion
point is

IC
.= a1 ≤ x ∧ a2 ≤ x ∧ x ≤ b1 ∧ x ≤ b2 ∧ c1 ≤ y ∧ c2 ≤ y ∧ y ≤ d1 ∧ y ≤ d2.

Since x and y are both modified in the loop, they should be universally quantified, as in

φ
.= ∀ x, y. a1 ≤ x ∧ a2 ≤ x ∧ x ≤ b1 ∧ x ≤ b2 ∧ c1 ≤ y

∧c2 ≤ y ∧ y ≤ d1 ∧ y ≤ d2 =⇒ y < z.

Eliminating those quantifiers leads to precondition

ψ
.= a1 ≤ b1 ∧ a1 ≤ b2 ∧ a2 ≤ b1 ∧ a2 ≤ b2 ∧ c1 ≤ d1

∧c1 ≤ d2 ∧ c2 ≤ d1 ∧ c2 ≤ d2 =⇒ (d1 < z ∨ d2 < z). (5.13)

Checking this big disjunctive precondition at elim call sites usually leads to exponential
blowup of the initial formula when performing Fourier-Motzkin elimination. We noticed
that most of these disjuncts correspond to escaping conditions, that are satisfied on execu-
tions that do not reach the check. Then, a possible solution is to remove these escaping
disjuncts from the precondition inferred [147]. Instead of the precise precondition 5.13, this
would generate the stronger

d1 < z ∨ d2 < z. (5.14)

140

The problem is that the resulting precondition is usually too strong, therefore we did not
adopt this solution in our implementation.

A similar result could be obtained by modifying quantifier elimination. The first idea is
to limit quantifier elimination to those variables that appear in the check considered. In our
example, only y appears in check y < z. Therefore, eliminating only y leads to formula

∀ x. a1 ≤ x ∧ a2 ≤ x ∧ x ≤ b1 ∧ x ≤ b2 ∧ c1 ≤ d1 ∧ c1 ≤ d2 ∧ c2 ≤ d1 ∧ c2 ≤ d2

=⇒ (d1 < z ∨ d2 < z).

Then, removing from the DNF those disjuncts that still mention quantified variables leads
to precondition

c1 ≤ d1 ∧ c1 ≤ d2 ∧ c2 ≤ d1 ∧ c2 ≤ d2 =⇒ (d1 < z ∨ d2 < z).

This formula is indeed a stronger precondition than precondition 5.13. The second idea is
to apply Fourier-Motzkin only on pairs of inequalities that mention the check. This leads to
precondition

d1 < z ∨ d2 < z. (5.15)

This is indeed the same formula as precondition 5.14. With these improved elimination
methods, ABSELIM indeed scales to large programs.

Now, the precondition generated might be too strong. In particular, it might be false ,
which prevents any call to this function, or it may be inconsistent with the precondition of
the function, whether a user precondition or the implicit one guaranteed by typing. There-
fore, we systematically test the consistency of the conjunction before we add an inferred
precondition. Of course, it might still be that no possible context satisfies this precondition.
E.g., precondition

0 < 2× i < 2

does not have solutions for an integer parameter i, but it has solutions in rationals, so a
quantifier elimination method for rationals such as the Fourier-Motzkin quantifier elimina-
tion might return such a formula, and we will keep it as a valid precondition.

5.4 Other Related Work

Loop Invariant Inference Historically, array bound checking has been one of the first dif-
ficult properties about programs that people tried to prove, the hardest part of the verification
task being the automatic inference of loop invariants. In 1978, Cousot and Halbwachs [52]
applied abstract interpretation over polyhedra and managed to check memory safety of an
implementation of heapsort, using manual preconditions. A year earlier, Suzuki and
Ishihata [166] devised a method based on weakest preconditions to check memory safety of
an implementation of tree sort. They used Fourier-Motzkin elimination at loop entrance as
a heuristic to make their induction-iteration method converge.

More recently, Xu et al. [181, 180] have refined with success the induction-iteration
method for safety checking of machine code. They use forward abstract interpretation and

141

induction-iteration separately to generate loop invariants, and they rely on user precondi-
tions to provide a valid calling context.

More generally, much work has targeted loop invariant inference by abstract interpreta-
tion, predicate abstraction and weakest preconditions/strongest postconditions, or a combi-
nation thereof. This is likely to continue to be a major research goal in the years to come.
Promising techniques combine abstract interpretation and deductive verification. Leino and
Logozzo [120] build a real feedback loop between a theorem prover and an abstract interpre-
tation module to generate loop invariants. In [121], the same authors present an embedding
of the abstract interpretation technique of widening inside a theorem prover. The oppo-
site approach of performing abstract interpretation on logic formulas has been presented by
Tiwari and Gulwani [80].

Precondition Inference Bourdoncle defines abstract debugging [26] as backward abstract
interpretation from assertions. Along the way, he generates loop invariants and precondi-
tions in order to prove these assertions. He focuses on array bound checking too. His
backward propagation merges the conditions to reach the program point where the assertion
is checked and the conditions to make this assertion valid. The dual approach of propagat-
ing backward a superset of the forbidden states is described by Rival [153]. We have shown
in this chapter the limitations of these approaches.

Gulwani and Tiwari [81] consider the problem of assertion checking for the special
case of equalities in a restricted language with only non-deterministic branching. Using a
method based on unification, they manage to generate necessary and sufficient preconditions
for assertions to hold. Unfortunately, unification does not work for the relations that arise
most often in practice for safety checking, namely less-than and greater-than relations. Our
method only generates sufficient preconditions, but it applies to those arithmetic relations
found in practice.

In a recent article, Popeea et al. [147] describe a technique similar to ours to gener-
ate sufficient preconditions. They combine forward abstract interpretation with constraint
solving to generate preconditions for optimization of C programs.

5.5 Chapter Summary

We described a new method to infer annotations for functions, i.e., loop invariants and func-
tion contracts, when there exists an elimination method for those atoms mentioning modi-
fied variables. This method combines the strengths of the two most effective techniques at
inferring annotations: abstract interpretation and deductive verification. It is highly modu-
lar, as it can be applied to a single function, and its precision/cost ratio can be finely tuned.

We showed that this new method applies well to memory safety, where atoms consist in
linear inequalities in the program variables and pseudo-variables introduced by our model
of memory and programming idioms (e.g., strings).

142

Chapter 6

Type-Safe Programs with Aliasing

Contents
6.1 Problem Overview . 144

6.1.1 Memory Aliasing and Separation 144

6.1.2 Frame Condition Equivalent Postcondition 145

6.1.3 Aliasing Considered Harmful 147

6.1.4 Aliasing as a Programming Discipline 148

6.1.5 Problems with Alias Analyses 150

6.1.6 Problems with Alias Control Techniques 151

6.1.7 Problem Statement . 151

6.2 Inferring Regions: Existing Type-Based Approaches 152
6.2.1 Steensgaard’s Region Inference 152

6.2.2 Talpin’s Region Inference . 154

6.3 Refining Regions: a New Type-and-Effect Approach 156
6.3.1 Equivalence of Paths and Regions 156

6.3.2 Modular Region Inference . 156

6.3.3 Complete Region Inference for Interference-Free Programs . . . 160

6.3.4 Refined Region Inference . 162

6.3.5 Incompleteness of Refined Region Inference 164

6.4 Other Related Work . 164
6.5 Chapter Summary . 165

In this chapter, we describe how to generate automatically and modularly annotations
for type-safe JESSIE programs with aliasing, so that they can be checked safe as in Chap-
ter 4.

Section 6.1 extends the JESSIE annotation language to express (non-)overlapping loca-
tions in type-safe programs. This allows one to express the frame condition as a normal
function postcondition. Then, the pros and cons of aliasing in programs are detailed, to
better understand what aliasing is used for in type-safe programs, and what it entails for

143

type ::= ...
| pset set of pointers

Figure 6.1: Grammar of JESSIE extended types

analyzing such programs. Finally, the limitations of existing alias analyses and alias control
techniques are discussed.

To provide a better solution to this aliasing problem, Section 6.2 starts with presenting
Talpin’s alias analysis [94], a contextual variant of Steensgaard’s alias analysis. It allows
refining the checking techniques for annotated programs presented in Chapter 4. We show
that this analysis is an instance of the more general solution of syntactic control of interfer-
ence by Reynolds [152].

Section 6.3 exploits this parallel to define extensions of Talpin’s analysis that make
it both modular and complete. These extensions refine the type checking phase of Talpin’s
analysis with a verification phase involving automatic provers, when typing is not sufficient.

Finally, Section 6.4 shows how this new technique relates to other work.

6.1 Problem Overview

6.1.1 Memory Aliasing and Separation

Non-Overlap of Locations Aliasing is the property that a memory location can be ref-
erenced by two different names at some point in the program, or equivalently that two
paths may refer to overlapping locations. As already mentioned in Section 4.2.3, any two
memory locations may overlap in general. As discussed in Section 5.1.1, type safety re-
stricts possible overlap, as locations which correspond to different fields may not overlap in
type-safe programs. This coarse separation is not sufficient in many cases. Therefore, it is
necessary to provide a fine grain separation through a new predicate separated , such that
separated(x, y) indicates that pointers x and y point to non-overlapping locations.

Predicate separated can be defined in terms of the memory model encoding of JESSIE,
as defined in Section 4.1.1. Given a pointer x of type T [..] and a pointer y of type S[..],
non-overlap of the locations pointed-to by x and y can be expressed as

separated(x, y) .= base-block(x) 6≡ base-block(y)
∨ address(x) + sizeof (T) ≤ address(y)
∨ address(y) + sizeof (S) ≤ address(x).

In practice, it is convenient to express the pairwise separation of two or more sets of pointers
using the same separated predicate, with the meaning that any two pointers in different sets
are separated as above.

Extending the JESSIE Annotation Language Figure 6.1 presents the abstract syntax of
JESSIE types, extended with a special logic type for sets of pointers. Pointers in a set should

144

prop ::= ...
| separated (pset (, pset)+) memory separation

Figure 6.2: Grammar of JESSIE extended propositions

have the same type.
Figure 6.2 presents the abstract syntax of JESSIE propositions, extended with a predicate

separated that expresses separation of sets of pointers.

6.1.2 Frame Condition Equivalent Postcondition

Based on the separated predicate, the frame condition of a function f in a type-safe program
can be translated into an additional postcondition for this function. In fact, each part of the
frame condition can be translated into an additional postcondition.

Memory Footprint Without loss of generality, the memory footprint of a function f can
be written

assigns −→xi ,
−→
λj

where each xi denotes a global variable and each λj denotes a memory location. By defi-
nition of memory locations in JESSIE, each λj can be rewritten in comprehension notation
as

{tj .mj : pj}

where tj is a term of type Tj [..], mj is a field of structure Tj and pj is the conjunction of the
original predicates from locations in comprehension notation in λj .

Then, the memory footprint of f is equivalent to postcondition

post -memf
.=

∧
x/∈−→xi

x ≡ old(x)

∧
∧
T,m

∀ T [..] x ; old(valid(x)) ∧ valid(x) =⇒ ∧
mj≡m

(pj =⇒ separated(x, old(tj)))

 =⇒ x.m ≡ old(x.m),

where the first conjunction ranges over global variables, and the second conjunction ranges
over structures and their fields.

1 int i, j;
2 //@ assigns i, *x;
3 void f_mem(int *x);

As an example, the memory footprint of function f_mem is equivalent to postcondition

145

1 /*@ ensures j ≡ \old(j)
2 @ ∧ (∀ int *y; \old(\valid(y)) ∧ \valid(y) =⇒
3 @ separated(y,x) =⇒ *y ≡ \old(*y))
4 @ ∧ ∀ char *y; old(valid(y)) ∧ valid(y) =⇒ *y ≡ \old(*y)
5 @ ∧ ...
6 @*/

where the quantification is limited to pointers to integers and characters. Indeed, all other
pointers should be treated similarly.

Deallocation Footprint Likewise, without loss of generality, the deallocation footprint of
f can be written

deallocates
−→
ti

where each ti denotes a term of type Ti[..]. Then, f deallocation footprint is equivalent to
postcondition

post -deallocf
.=

∧
T

∀ T [..] x ; old(valid(x)) =⇒ ∧
Ti≡T

separated(x, old(ti))

 =⇒ valid(x)

1 //@ frees x;
2 void f_dealloc(int *x);

As an example, the deallocation footprint of function f_dealloc is equivalent to
postcondition

1 /*@ ensures
2 @ ∀ int *y; \old(\valid(y)) =⇒ separated(y,x) =⇒ \valid(y);
3 @ ∧ ∀ char *y; \old(\valid(y)) =⇒ \valid(y)
4 @ ∧ ...
5 @*/

where the quantification is limited to pointers to integers and characters. Indeed, all other
pointers should be treated similarly.

Allocation Footprint Finally, without loss generality, the allocation footprint of f can be
written

allocates
−→
ti

where each ti denotes a term of type Ti[..]. Then, the allocation footprint of f is equivalent
to postcondition

post -allocf
.=

∧
i

valid(ti)

∧
∧
T

∀ T [..] x ; old(valid(x)) ∧ valid(x) =⇒
∧
Ti≡T

separated(x, ti)

146

1 //@ allocates x;
2 void f_alloc(int *x);

As an example, the allocation footprint of function f_alloc is equivalent to postcon-
dition

1 /*@ ensures \valid(x)
2 @ ∧ ∀ int *y; \old(\valid(y)) ∧ \valid(y)
3 @ =⇒ separated(y,x);
4 @*/

where the quantification is complete here.

6.1.3 Aliasing Considered Harmful

Aliasing can be rightfully considered harmful from the point of view of most program anal-
yses, because it degrades their performance, both in terms of scalability and precision. This
is true for analyses directed either at optimization or at verification. Optimization analyses
tend to err on the safe side, assuming more aliasing than necessary, although some compiler
optimizations assume less aliasing than necessary when instructed to do so by a user, like
−−strict-aliasing in gcc, thus leading to subtle errors when misused. On the other
hand, many verification analyses prefer being unsound w.r.t. aliasing to fully supporting it,
in order to give generally accurate, if not always correct, results. This is the case in bug
finders and program understanding tools.

1 void linear_search_ptr
2 (int arr[], unsigned int *len, int *key, int *idx) {
3 *idx = 0;
4 while (*idx < *len) {
5 if (arr[*idx] == *key) {
6 return; // key found
7 }
8 *idx = *idx + 1;
9 }
10 *idx = −1; // key not found
11 }

It is easy to see why aliasing is such a nuisance on a simple example. Consider a modi-
fied version of function linear_search presented in Section 2.3.3, where len and key
are now pointers, and idx is a pointer parameter updated to the correct value before return-
ing. Without any more information on the calling context of linear_search_ptr, there
could be aliases between any two of key, idx and arr[i] for any integer index i. As a
consequence, assigning to *idx on line 8 might change the value of any element in arr,
as well as the value pointed-to by key. In the case of linear_search_ptr, since idx
is the only pointer assigned-to, and the value of *idx is the only one that matters for safety,
the contract of function linear_search presented in Section 4.1.3 is still correct. This
is quite fortunate. In general, the presence of aliasing may either lead to errors, or totally
change the behavior of a function.

147

6.1.4 Aliasing as a Programming Discipline

C programs usually rely on aliasing in many ways, some of which can even be considered
idiomatic, i.e., characteristic of C programming. Hackett and Aiken have presented an in-
depth study of uses of aliasing in C programs [83] (for systems software). They identify
nine patterns of aliasing which account for almost all aliasing. Quoting their work, these
patterns belong to two categories:

• incidental aliasing: when a pointer targets locations outside unbounded structures;

• cursor aliasing: when a pointer may target locations within an unbounded structure;

and they can arise at four different levels:

• entry aliasing is specific to the entry state of a function;

• exit aliasing is specific to the exit state of a function;

• global invariant aliasing is specific to a global variable;

• type invariant aliasing is specific to all values of a type.

Quoting again their work, incidental aliasing represents five patterns:

• parent pointers are references to particular data closer to the root of a structure;

• child pointers are additional references to particular data stored deeper in a struc-
ture;

• shared immutable pointers are multiple references to data at the same level, where all
are used only for reading;

• shared I/O pointers are two references to data at the same level, where one is used
only for reading and the other only for writing;

• global pointers are references to a global variable and an alias of the global within
the same scope;

while cursor aliasing represents four patterns:

• index cursors support the use of an additional index for a structure;

• tail cursors hold the end point of an existing index;

• query cursors read data internal to an existing index;

• update cursors write data internal to an existing index.

Parent and child pointers are typical of type and global invariant aliasing. Indeed, many
data structures in C rely on aliased pointer fields. E.g., circular lists as below with prev
and next fields alias x with x→next→prev.

148

1 struct List {
2 struct List *prev;
3 struct List *next;
4 };

Failing to take such aliasing into account in our analysis would lead to wrong results.
E.g., if we assumed function remove_head below alias-free and applied the techniques
from Chapter 5 to check its safety, we would end up guaranteeing it cannot fail, while it
does fail for a circular list with only one element, where list→next and list→prev
represent the same element.

5 /*@ requires \valid(list)
6 @ ∧ \valid(list→prev) ∧ \valid(list→next);
7 @*/
8 void remove_head(struct List *list) {
9 list→next→prev = list→prev;
10 list→next = 0;
11 list→prev→next = list→next; // list→prev may be null
12 list→prev = 0;
13 }

Shared immutable pointers, shared I/O pointers and global pointers are mostly used in
entry and exit aliasing. They allow a program to pass around parts of larger data structures
between functions. When data is only read, as in shared immutable pointers, aliasing does
not impact the function’s behavior.

1 struct Node { int id; };
2
3 /*@ requires \valid(x) ∧ \valid(y);
4 @ ensures \result ≡ x→id − y→id;
5 @*/
6 int compare(struct Node *x, struct Node *y) {
7 return x→id − y→id;
8 }

E.g., in function compare, the structures pointed-to by parameters x and y are only
read, therefore there is no problem in allowing x and y to alias. This may be the case
if compare is used as a comparison function in a sorting algorithm for a collection with
repeated elements. Shared I/O pointers and global pointers are trickier to handle correctly,
as writes and reads may interfere. In general, writes are performed after reads, so that values
read do not depend in an indirect way on values written.

Finally, cursor aliasing serves to iterate through elements of a collection, whether a
simple array or a more complex recursive structure.

1 /*@ requires \valid_range(x,0,end-x);
2 @ ensures *x ≡ \old(*x) − 1 ∧ *end ≡ \old(*end) − 1;
3 @*/
4 void scan(int *x, int *end) {
5 int *iter = x;
6 while (iter != end) {
7 *iter = *iter − 1; // iter and x are aliases the first time
8 iter = iter + 1;

149

9 }
10 *iter = *iter − 1; // iter and end are aliases at that point
11 }

In function scan above, x is an index cursor, end a tail cursor associated to x, and
iter an update cursor associated to x. Failing to take both sources of aliasing into account
can lead to wrong results. E.g., assuming function scan is alias-free and applying the
techniques from Chapter 5 (without using function paths-may-overlap) would lead us to
prove scan’s postcondition cannot hold, because it depends on the aliasing of iter with
x and end.

6.1.5 Problems with Alias Analyses

There is considerable work on alias analyses [88, 178]. Most focus on may-aliasing, com-
puting an over-approximation of real aliasing, while a few deal also with must-aliasing,
computing an under-approximation of real aliasing. In our setting, non-interference of reads
and writes to memory is the property of most interest, therefore may-aliasing is the inter-
esting one. Analyses for may-aliasing fall into two categories: points-to analyses compute
for each pointer the set of locations it points to, while alias analyses determine whether two
pointers point to the same location. Points-to analyses do not fit well with our situation:
(1) points-to analyses do not handle well full modularity, sometimes downward modular-
ity [154] where a function is missing, never upward modularity where the context is miss-
ing (or in that case the analysis depends on a previous global analysis [155]); (2) there is
no technique to build function summaries expressing the results of a points-to analysis in
logic. Therefore, we are left with may-alias analyses [37, 38].

May-alias analyses compute an over-approximation of the set of pointers aliased at ev-
ery program point. Like points-to analyses, they are essentially not modular, usually re-
quiring the complete program to work. Another problem is the precision of results: alias
analyses that scale are context-, flow- and path-insensitive [88], while program verification
asks for context-, flow- and path-sensitive analyses [83]. In a modular setting, where the
calling context of a function is not known, the usual solution is to assume as much aliasing
as possible. In our type-safe setting, this would lead to possible aliasing between any two
pointers of the same type. This only makes the precision problem worse.

1 void plus_minus(int* x, int* y,
2 int* z, int* t) {
3 *z = *x + *y;
4 *t = *x − *y;
5 }

6 void id(int* p, int* q) {
7 }
8 void opp(int* p, int* q) {
9 *q = − *q;
10 }

To see why we need to consider that much aliasing, consider function plus_minus
above. A "natural" contract for function plus_minus would be the following paraphrase
of its code:

/*@ requires \valid(x) ∧ \valid(y) ∧ \valid(z) ∧ \valid(t);
@ ensures *z ≡ *x + *y ∧ *t ≡ *x − *y;
@*/

150

Unfortunately, this contract is only correct if aliasing between plus_minus parameters is
restricted. Functions id and opp are special instances of function plus_minus that do
not respect this contract. Indeed, whenever p and q do not alias, id(p,q) is the same as
plus_minus(p,q,p,p), but it is false in general that *p ≡ *p− *q∧ *p ≡ *p+ *q
when id returns. Likewise, opp(p,q) is the same as plusminus(p,q,q,q), but it
is false in general that *q ≡ *p − *q ∧ *q ≡ *p + *q when opp returns. With only
4 parameters in plus_minus, there are already 15 partitions of the set {x,y,z,t}, that
represent each a different aliasing context, possibly leading to a different behavior. Both
common sense and software engineering practice command that function plus_minus
cannot behave correctly in all these different cases. To say it another way, the author
of function plus_minus cannot have intended to support that many different usages of
plus_minus.

A naive solution would require all parameters of plus_minus to be pairwise differ-
ent. On one hand, it would make plus_minus alias-free, thus allowing us to apply the
results of Chapter 5. On the other hand, it could rule out desirable aliasing like those cases
mentioned in Section 6.1.4. In particular, aliasing between x and y is not a problem, as it
does not falsify the postcondition of plus_minus. Some kinds of aliasing should defi-
nitely be allowed, while others could be forbidden. Existing alias analyses do not provide
any solution to analyze modularly function plus_minus while allowing some kinds of
aliasing.

6.1.6 Problems with Alias Control Techniques

To overcome the lack of modularity of alias analyses, many alias control techniques have
been described. These techniques have not been widely adopted industrially, either because
they overly restrict the kind of programs allowed, or because they require programs to be
annotated with additional types or complex logical formulas.

The reason we are interested in aliasing analyses is non-interference of reads and writes
to memory. Only separation propositions can give us the assurance that parts of the heap do
not overlap. In fact, this non-interference property is also useful in optimizing code, which
motivated the introduction of keyword restrict in C99. A few annotation-based sys-
tems help programmers specify pointer separation [1, 111] for use in dedicated analyzers.

Reynolds’s separation logic [151] is currently the most researched alias control tech-
nique for C-level programs. It allows one to specify separation of pointers in a spe-
cial pointer logic, in a very concise way. Despite much work, separation logic annota-
tions are still difficult to check, although tools do provide some level of automatic check-
ing [17, 61, 101]. Separation logic annotations are also difficult to infer automatically, and
they do not offer the same flexibility as simple applications of a separation predicate, e.g.,
when dealing with partially shared data structures.

6.1.7 Problem Statement

In this chapter, we consider the problem of automatically generating and checking logic
annotations for type-safe incomplete programs with aliasing. Existing techniques do not

151

fit well with these constraints: techniques based on abstraction like alias analyses are
poorly modular, while techniques based on deduction like alias control techniques necessi-
tate heavyweight annotations and either overly restrict valid programs or cannot be verified
easily.

Our goal is to generate an appropriate non-aliasing context for each function, that is
strong enough that function safety can be checked modularly, and weak enough that usual
usages of aliasing are still allowed. In fact, we should seek the weakest possible non-aliasing
context that still allows us to prove safety. The inherent difficulty of this task is that aliasing
is not a local property.

Ideally, the solution aliasing context should make it possible both to improve on the def-
inition of paths-may-overlap presented in Section 4.2.3, and to generate a better translation
to WHY.

6.2 Inferring Regions: Existing Type-Based Approaches

As seen in Section 5.1.1, the restriction to type-safe programs allows the partition of mem-
ory into disjoint parts, which makes both inference and checking of annotations in JESSIE

easier. Another crucial benefit from this partitioning of memory is that it translates easily
to WHY, so that deductive verification in WHY is also much easier. This is the basis for our
solution.

6.2.1 Steensgaard’s Region Inference

When all the program is available, Steensgaard’s unification-based alias analysis [165] al-
lows one to partition memory. Instead of partitioning memory according to types, which is
possible with type safety, Steensgaard’s analysis partitions memory according to aliasing.

Although presented initially in terms of equivalence classes of pointers, we present it
here in terms of sets of memory locations, a.k.a. regions, such that two pointers aliased
necessarily point to the same region. The algorithm is based on unification, with all paths
initially assumed to be in a different region, and regions unified as necessary, based on a
few rules:

• assignment - regions pointed to by both sides of an assignment are unified;

• function call - regions pointed to by corresponding parameters and arguments of a
call are unified;

• return - region pointed to by a function result and a term returned are unified.

This ensures that aliases necessarily point to the same region. In particular, pointer arith-
metic does not change regions: p and p⊕i point to the same region. Likewise, embedded
field access, whose semantics is similar to pointer arithmetic, does not change regions. Fi-
nally, normal field access to pointer field m from different pointers to region ρ1 always result
in pointers to the same region ρ2. Figure 6.3 presents locations that belong to the same re-
gion with different colors, while Figure 6.4 refines the separation obtained by safe typing
with regions.

152

x x + 1 y

Figure 6.3: Regions in a byte-level memory model

x x + 1 y

Figure 6.4: Regions in a component-as-array memory model

Reduced Overlap Between Locations After regions are computed, function
region-of -path simply returns the region of a path. Then, it is easy to refine func-
tion paths-may-overlap presented in Section 5.1.1 for type-safe programs. This new
definition is presented in Figure 6.5. Previously, case (2.1) concluded that two memory
locations accessing the same field could always overlap. It now refines into case (2.1”)
which concludes that two memory locations accessing the same field can overlap only if
they belong to the same region.

Improved JESSIE Analyses The improvement of function paths-may-overlap translates
into better JESSIE analyses. E.g., function alias_free below is the same as the one
presented in Section 5.1.2, except we do not assume it is alias-free anymore. Instead, we
present it in the context of a complete program. There are 2 Steensgaard regions for this
program: {sx,x→m} and {sy,y→m}. Then, both abstract interpretation and deductive ver-

1 define region-of-path:
2 input path π
3 output region ρ of π
4
5 define paths-may-overlap:
6 input paths π1 and π2

7 output whether π1 and π2 represent overlapping locations
8 match (π1,π2) with
9 (1) | (x,x)→ return true
10 (2.1”) | ((_⊕_).m,(_⊕_).m)→ return region-of-path(π1) ≡ region-of-path(π2)
11 (2.2) | ((_⊕_)._,(_⊕_)._)→ return false
12 (3) | (x,_) | (_,x)→ return false

Figure 6.5: Overlap of paths with regions

153

ification on JESSIE can benefit from the non-overlap of x→m and y→m in alias_free,
so that all annotations can be checked.

1 struct S { int m; };
2
3 /*@ requires \valid(x) ∧ \valid(y) ∧ y→m ≡ 1;
4 @ ensures x→m ≡ 0;
5 @*/
6 void alias_free(struct S *x, struct S *y) {
7 x→m = 0;
8 //@ assert y→m ≡ 1;
9 }
10
11 void main() {
12 struct S sx;
13 struct S sy = { 1 };
14 alias_free(&sx,&sy);
15 }

Improved Translation to WHY The translation from JESSIE to WHY also benefits from
the partitioning of memory into regions. Memory variable Heapm for field m can be re-
placed by a collection of HeapRm variables, one for each region R, which naturally encodes
the absence of interference between accesses to the corresponding regions.

E.g., here is the translation of function alias_free into WHY:

1 unit alias_free
2 (pointer x, pointer y, heap Heap_m_x, heap Heap_m_y) =
3 update_m(Heap_m_x,x,0)
4 assert select_m(Heap_m_y,y) ≡ 1

6.2.2 Talpin’s Region Inference

There are two problems with Steensgaard’s regions: (i) lack of context sensitivity, which
aliases more pointers than necessary, and (ii) lack of modularity, as the complete program
is needed. Problem (i) manifests on alias_free with the following code for main:

11 void main() {
12 struct S sx, sz;
13 struct S sy = { 1 };
14 alias_free(&sx,&sy);
15 sx.m = sx.m + 1;
16 alias_free(&sz,&sx);
17 }

In this program, sx is used both in position of first argument to alias_free on
line 14, and as second argument to alias_free on line 15. Then, there is only one
Steensgaard’s region {sx,x→m,sy,y→m,sz} for the complete program, which prevents
checking annotations in this program.

154

A Contextual Variant of Steensgaard’s Region Inference Hubert and Marché have de-
scribed a solution to this problem, Talpin’s alias analysis [94], following an original idea
from Talpin and Jouvelot for computing effects [167, 168], used later on by Tofte and Talpin
for static memory allocation [170]. Instead of computing only global regions, like in Steens-
gaard’s analysis, they compute both global and parametric regions. A parametric region can
be viewed as an additional parameter of the function, so that calls to this function must pass
in either a global or a parametric region in scope. This allows various calls to the same
function to specify different region instances for each call, thus preventing aliasing due to
merging of contexts.

There is no need to change function paths-may-overlap to use these new regions. The
only change is that region-of -path now returns the result of Talpin’s analysis instead of
plain Steensgaard’s analysis. On our modified complete alias_free program, Talpin’s
analysis computes 2 local regions in function alias_free, namely regions {x→m} and
{y→m}, and 3 local regions in function main, namely regions {sx}, {sy} and {sz}.

Then, analyses on JESSIE programs can benefit from the improvement in function paths-
may-overlap, as before. E.g., function alias_free with the main function given above
can be checked safe by both abstract interpretation and deductive verification of the corre-
sponding JESSIE program. Talpin’s region also translate into a partitioning of memory in
WHY, like Steensgaard’s regions.

Incompleteness of Talpin’s Region Inference A strict constraint to ensure soundness
of the approach is that no two regions accessed in a function should be in fact be equal
for a particular call. This is the same condition as the one expressed by Reynolds in his
work on syntactic control of interference [152], where regions play in our case the role of
collections in his work. This is guaranteed by failing to compute contextual regions in any
of the following two cases:

1. if calling a function leads to passing twice the same region in parameter;

2. if calling a function leads to passing as a parameter a global region already accessed
in the callee.

Talpin’s region inference trades incompleteness for precision and scaling: it either suc-
ceeds quickly with precise results, or it fails.

1 int glob;
2
3 /*@ requires \valid(x) ∧ \valid(y);
4 @ ensures *x ≡ *y + 1 ∧ glob ≡ *y + 1;
5 @*/
6 void bad_regions(int *x, int *y) {
7 *x = *y + 1;
8 glob = *y + 1;
9 }
10
11 void main() {
12 int loc;
13 bad_regions(&loc,&loc);

155

14 bad_regions(&loc,&glob);
15 }

Function bad_regions illustrates why both cases should not be allowed. Talpin’s
analysis computes 2 local regions {*x} and {*y} in function bad_regions, plus global
region {glob}. These 3 regions being different, it is possible to check bad_regions
annotations by abstract interpretation or deductive verification in JESSIE. Then, the call to
bad_regions on line 13 would not establish postcondition *x ≡ *y + 1. This is not
allowed, as this call passes region {loc} as a parameter twice, which violates (1). Likewise,
call to bad_regions on line 14 would not establish postcondition glob ≡ *y+ 1. This
is not allowed, as this call passes region {glob} in parameter, which violates (2).

6.3 Refining Regions: a New Type-and-Effect Approach

Talpin’s alias analysis [94] computes regions in a way that solves problem (i), context in-
sensitivity, but still suffers from problem (ii), lack of modularity, while it adds a new prob-
lem (iii), incompleteness. We propose a solution to both problems, provided aliasing in the
program analyzed is reasonably restricted, which is precisely defined.

6.3.1 Equivalence of Paths and Regions

We have already defined function region-of -path that returns the region of a path. Since a
region is an equivalence class of paths, it is also possible to define function paths-of -region
that maps a region to its preimage by region-of -path . In fact, this preimage is restricted
to those paths not mentioning local variables, a.k.a. interface paths, that can be used in a
function contract.

Unfortunately, paths-of -region is not always computable, as there might be an infi-
nite number of interface paths in the preimage, due to recursive structures. For those
paths going through recursive structures, we use a notation by comprehension to express
the corresponding locations. This allows us to define a function locations-of -region
such that locations-of -region(ρ) returns the finite set of locations denoting all interface
paths in paths-of -region(ρ).

6.3.2 Modular Region Inference

Beyond Enforced Non-Modularity Talpin’s analysis is mostly modular, as regions are
computed in a modular way. Only the verification that different regions in a callee are not
instantiated with the same region in the caller is not modular. We propose to delay this
verification for incomplete programs by computing equivalent separation preconditions.

In order to be precise enough, we assume invariants have been computed by abstract
interpretation over domain D at every program point. Then, Figure 6.6 defines function
immutable-lower -bound (resp. immutable-upper -bound) that optionally returns a lower
bound (resp. an upper bound) for a term that is valid at every program point in the func-
tion, in particular in the function precondition. E.g., in function linear_search, an

156

1 define immutable-lower-bound:
2 input term t1 and invariant I
3 output either nothing or a term t2 such that t2 is immutable and I =⇒ t2 ≤ t1
4 if t1 is immutable then
5 return t1
6 else
7 define E = D.lbound(I,t1)
8 if E has no immutable element then return nothing else return such an element
9
10 define immutable-upper-bound:
11 input term t1 and invariant I
12 output either nothing or a term t2 such that t2 is immutable and I =⇒ t1 ≤ t2
13 if t1 is immutable then
14 return t1
15 else
16 define E = D.ubound(I,t1)
17 if E has no immutable element then return nothing else return such an element

Figure 6.6: Immutable bounds for terms

immutable lower bound for term idx is 0, and an immutable upper bound for idx is len.

Based on these, function path-effects returns a set of immutable paths and regions
accessed by its argument path. Paths are more precise than regions, therefore they are
preferred whenever possible. Immutable paths are those paths that are syntactically built
from terms whose value does not change during the function. E.g., the path effect for path
arr[idx] in linear_search, given invariant 0 ≤ idx ≤ len is arr[0..len].

Memory can also be accessed indirectly through a call. Given the effects of a callee,
function call -effects returns a set of immutable paths and regions accessed by the caller.
Function function-effects simply collects all effects of a function due to its memory ac-
cesses and calls. Functions are processed in reverse topological order of the call-graph, and
recursive calls are handled by iterating on strongly connected components until a fix-point
is reached.

Once effects of a function are computed, function generate-function-precondition de-
fined in Figure 6.8 generates a precondition that guarantees soundness of Talpin’s analysis.
For each pair of locations possibly accessed in different regions, it generates a separation
condition that guarantees they may not overlap. It calls regions-may-overlap which re-
turns false if type safety ensures the regions may not overlap, or if one region is internal to a
function, defined as a region inaccessible by any interface path. Indeed, in this last case, the
internal region cannot possibly overlap with any other internal region or a region external
to the function.

Illustration To see how this works, we recall the code of function bad_regions:

6 void bad_regions(int *x, int *y) {
7 *x = *y + 1;

157

1 define path-effects:
2 input path π1 and invariant I
3 output pair of a set of immutable paths Π and a set of regions P accessed by π1

4 match π1 with
5 | x→ if x is not modified in the current function then return (x,∅)
6 else return (∅,region-of-path(x))
7 | (π2 ⊕ [t1..t2]).m→
8 define (Π2,P2) = path-effects(π2,I)
9 if P2 ≡ ∅ then
10 define tlow = immutable-lower-bound(t1,I)
11 define tup = immutable-upper-bound(t2,I)
12 define π3 as the longest path in Π2 (others are just prefixes of π3)
13 define π4 =
14 match (tlow,tup) with
15 | (nothing,nothing)→ (π3 ⊕ [..]).m
16 | (tlow,nothing)→ (π3 ⊕ [tlow..]).m
17 | (nothing,tup)→ (π3 ⊕ [..tup]).m
18 | (tlow,tup)→ (π3 ⊕ [tlow..tup]).m
19 return ({π4} ∪ Π2,∅)
20 else return (Π2,{region-of-path(π1)} ∪ P2)
21
22 define call-effects:
23 input function f with parameters x1..xn called with arguments t1..tn, and invariant I
24 output set of immutable paths and regions accessed by f(t1..tn)
25 define (paths1,regions1) = function-effects(f)
26 define paths2 as the empty set
27 define regions2 as the current function instances for regions1
28 for each π1 ∈ paths1 do
29 substitute f parameters by call arguments in π1

30 add path-effects(π1,I) to (paths2,regions2)
31 done
32 return (paths2,regions2)
33
34 define function-effects:
35 input function f and invariant I
36 output set of immutable paths and regions accessed by f
37 define effects = empty set
38 for each path π accessed in f do add path-effects(π1,I) to effects done
39 for each call g(t1..tn) in f do add call-effects(g(t1..tn),I) to effects done
40 return effects

Figure 6.7: Computation of effects

158

1 define locations-of-region:
2 input region ρ
3 output set of locations containing all interface paths that belong to region ρ
4
5 define equivalent-locations:
6 input set S of paths and regions
7 output equivalent set of locations
8 define locations = empty set
9 for each path π ∈ S do add π to locations done
10 for each region ρ ∈ S do add locations-of-region(ρ) to locations done
11 return locations
12
13 define regions-may-overlap:
14 input regions ρ1 and ρ2

15 output whether ρ1 and ρ2 may overlap or not
16 if ρ1 and ρ2 cannot overlap due to type safety then return false
17 else if ρ1 or ρ2 is internal to a function then return false
18 else return true
19
20 define generate-function-precondition:
21 input function f and invariants I
22 output separation precondition for function f
23 define effects = function-effects(f,I)
24 define locations = equivalent-locations(effects)
25 define condition = true
26 for each (λ1,λ2) ∈ locations × locations such that λ1 6≡ λ2 do
27 define π1 = path-of-location(λ1) and π2 = path-of-location(λ2)
28 define ρ1 = region-of-path(π1) and ρ2 = region-of-path(π2)
29 if ρ1 6≡ ρ2 ∧ regions-may-overlap(ρ1,ρ2) then
30 add conjunct separated(λ1,λ2) to condition
31 done
32 return condition

Figure 6.8: Generation of function preconditions for separation

159

8 glob = *y + 1;
9 }

On this function, we compute effects

function-effects(bad_regions) ≡ *x, *y, glob,

where all three paths have a different region, which leads to precondition

separated(x, y, &glob).

We recall too the code of function alias_free:

6 void alias_free(struct S *x, struct S *y) {
7 x→m = 0;
8 //@ assert y→m ≡ 1;
9 }

On this function, we compute effects

function-effects(alias_free) ≡ x→m, y→m

where both paths have a different region, which leads to precondition

separated(x, y).

Separation preconditions make Talpin’s alias analysis completely modular, thus solving
problem (ii).

6.3.3 Complete Region Inference for Interference-Free Programs

Beyond Typing The separation preconditions just found are not only useful for making
Talpin’s analysis modular. They also provide a solution to express separation logically when
expressing it by typing fails. E.g., take again function bad_regions in a new context:

1 int glob;
2
3 /*@ requires \valid(x) ∧ \valid(y) ∧ \separated(x,y,&glob);
4 @ ensures *x ≡ *y + 1 ∧ glob ≡ *y + 1;
5 @*/
6 void bad_regions(int *x, int *y) {
7 *x = *y + 1;
8 glob = *y + 1;
9 }
10
11 void main() {
12 int loc[2];
13 int *p = &glob;
14 p = loc;
15 bad_regions(p,p+1);
16 }

160

Region typing asks that the regions of *x, *y and glob are all different. This is not
the case with the call to bad_regions on line 15, as *p and *(p+1) both have the
same region, which is also the region of glob. In this case, the separation condition that
guarantees soundness of Talpin’s analysis can be expressed as precondition

separated(x,y,&glob). (6.1)

Since it is indeed the case that p, p+1 and &glob are separated pointers when
bad_regions is called, the program can still be checked, although memory separation
cannot completely be checked by typing.

Notice that this use of Talpin’s region inference requires one to refine the translation
from JESSIE to WHY presented in Section 6.2, because the partitioning of memory into
regions is not the same in the caller and the callee. E.g., bad_regions must be translated
into two different functions: a function f1 where the regions of *x, *y and glob are
all different, as previously, and a function f2 where *x, *y and glob are of the same
region, and the non-interference is guaranteed by precondition 6.1. The contract for function
bad_regions is still checked on f1, while f2 is a function without body but the same
contract as f1, except for the added separation condition, whose purpose is to be called
where f1 cannot.

In fact, our technique is complete on interference-free programs, where pairs of locally
non-overlapping paths do not access overlapping locations.

Theorem 5 Given a complete JESSIE program P , if P is checked safe by a combination of
JESSIE analyses using function paths-may-overlap defined in Section 6.2 with Talpin’s re-
gions or deductive verification of the corresponding WHY program, and the separation pre-
conditions generated by function generate-function-precondition in Figure 6.8 are proved
at each function call on the WHY program, then program P is indeed safe.

Proof. The separation precondition generated by function
generate-function-precondition ensures that all accesses to different regions inside
a function f correspond indeed to non-overlapping locations. Since JESSIE analyses
described in Chapter 4 and deductive verification of WHY programs only refer to these
locations, it is correct to assume they belong to different regions when checking the safety
and contract of function f . �

Illustration on String Copy The following implementation is the usual implementation
of C standard function strcpy that copies a source string src to a destination buffer
dest:

1 char *strcpy(char *dest, const char *src) {
2 char *s = dest;
3 while (*s++ = *src++) ;
4 return dest;
5 }

161

Given a very coarse analysis of effects that does not provide any immutable bounds, we
generate the separation precondition

separated(dest + (..), src + (..)),

where ACSL term s+ (..) denotes the set of pointers that can be obtained by pointer arith-
metic from pointer s in the same memory block. Given more precise immutable bounds
provided by abstract interpretation, we get the weaker precondition

separated(dest + (0..strlen(src)), src + (0..strlen(src)),

where strlen is the logic function at the center of our logical model of strings described in
Section 8.1.1. The results of our experiments on safety checking of function strcpy and
related string functions are reported in Section 8.2.1.

6.3.4 Refined Region Inference

As already noted by Reynolds [152], asking for the separation of all pairs of regions is
overly restrictive. Regions that are only read cannot interfere, thus there is no need to ask
for separation of these read-only regions, or passive phrases in Reynolds’s terminology. It is
illustrated by function read_regions below, where Talpin’s analysis infers precondition
separated(*x,*y). In fact, function read_regions’s behavior does not depend on the
possible aliasing of its parameters, as it only reads the corresponding regions.

1 //@ requires separated(*x,*y);
2 int read_regions(int *x, int *y) {
3 return *x + *y;
4 }

To avoid generating undue separation conditions between regions only read, we re-
define variants of function path-effects: function path-read -effects returns the set of im-
mutable paths and regions corresponding to all but the last access on the path, while function
path-read -or -write-effects returns the set of immutable paths and regions corresponding
to the last access on the path.

Then, function-effects presented in Figure 6.7 can be obviously refined into
function-read -effects and function-write-effects that over-approximate respectively the
set of locations read and written by the function, by distinguishing those paths that origi-
nate in left-hand side of assignments. From these functions, it is possible to redefine func-
tion generate-function-precondition so that only pairs of paths where one path at least is
potentially written are required to be separated. This is the meaning of line 7 in Figure 6.10.

With this improved algorithm, the separation precondition generated for function
read_regions is simply true .

Theorem 6 Given a complete JESSIE program P , if P is checked safe by a combination of
JESSIE analyses using function paths-may-overlap defined in Section 6.2 with Talpin’s re-
gions or deductive verification of the corresponding WHY program, and the separation pre-
conditions generated by refined function generate-function-precondition in Figure 6.10
are proved at each function call on the WHY program, then program P is indeed safe.

162

1 define path-read-effects:
2 input path π1 and invariant I
3 output set of immutable paths and regions only read by π1

4 match π1 with
5 | x→ return empty set
6 | (π2 ⊕ [t1..t2]).m→ return path-effects(π2,I)
7 | (π2 ⊕ t).m→ return path-effects(π2,I)
8 | π2.m→ return path-effects(π2,I)
9
10 define path-read-or-write-effects:
11 input path π1 and invariant I
12 output set of immutable paths and regions possibly read or written by π1

13 define ρ1 = region of π1

14 match π1 with
15 | x→ if x is not modified in the current function then return (x,∅)
16 else return (∅,ρ1)
17 | (π2 ⊕ [t1..t2]).m→
18 define tlow = immutable-lower-bound(t1,I)
19 define tup = immutable-upper-bound(t2,I)
20 define (paths2,regions2) = path-effects(π2,I)
21 if regions2 is empty then
22 define π3 as the longest path in paths2 (others are just prefixes of π3)
23 define π4 =
24 match (tlow,tup) with
25 | (nothing,nothing)→ (π3 ⊕ [..]).m
26 | (tlow,nothing)→ (π3 ⊕ [tlow..]).m
27 | (nothing,tup)→ (π3 ⊕ [..tup]).m
28 | (tlow,tup)→ (π3 ⊕ [tlow..tup]).m
29 return {π4}
30 else return {ρ1}
31 | (π2 ⊕ t).m→ return path-read-or-write-effects((π2 ⊕ [t..t]).m,I)
32 | π2.m→ return path-read-or-write-effects((π2 ⊕ [0..0]).m,I)

Figure 6.9: Computation of refined read/write effects

1 define generate-function-precondition:
2 input function f and invariants I
3 output separation precondition for function f
4 define reads = equivalent-locations(function-read-effects(f,I))
5 define writes = equivalent-locations(function-write-effects(f,I))
6 define condition = true
7 for each (λ1,λ2) ∈ writes × (writes ∪ reads) such that λ1 6≡ λ2 do
8 define π1 = path-of-location(λ1) and π2 = path-of-location(λ2)
9 define ρ1 = region-of-path(π1) and ρ2 = region-of-path(π2)
10 if ρ1 6≡ ρ2 ∧ regions-may-overlap(ρ1,ρ2) then
11 add conjunct separated(λ1,λ2) to condition
12 done
13 return condition

Figure 6.10: Generation of refined function preconditions for separation

163

Proof. The separation precondition generated by the refined function
generate-function-precondition ensures that all accesses to different regions inside
a function f correspond indeed to non-overlapping locations, except for those regions that
are only read. Then, JESSIE analyses described in Chapter 4 and deductive verification of
WHY programs can only wrongly assume overlapping locations to be of different regions
when they are only read. Thus these locations keep their original value from the start of the
function, and their overlap is not a problem. Therefore, it is correct to assume they belong
to different regions when checking the safety and contract of function f . �

6.3.5 Incompleteness of Refined Region Inference

Refined pre- and postconditions do not completely solve problem (iii), incompleteness of
Talpin’s alias analysis. As mentioned in Section 6.1, there are many valid uses of alias-
ing in C. For those uses where aliasing is not explicit in the function body, and where
interference may be possible between aliased paths, Talpin’s analysis may wrongly assume
separation. It is the case for function swap below.

1 /*@ requires \valid(x) ∧ \valid(y);
2 @ ensures *x ≡ \old(*y) ∧ *y ≡ \old(*x);
3 @*/
4 void swap(int *x, int *y) {
5 int tmp = *x;
6 *x = *y;
7 *y = tmp;
8 }

Our technique generates precondition separated(x,y) for function swap, which allows
us to prove swap postcondition. This is a stronger precondition than necessary, as swap
contract is still correct for aliased parameters. Indeed, a call to swap(x,x) does ensure
that *x ≡ old(*x) when swap returns.

For those cases where our technique generates stronger separation conditions than nec-
essary, a solution would be to manually annotate function parameters with explicit regions,
much as what is done in Cyclone [104], as in

void swap(int *R x, int *R y);

Then, it is sufficient to take these annotations into account in Talpin’s alias analysis to
prevent the generation of wrong separation preconditions by our analysis.

6.4 Other Related Work

Alias Analyses Based on Regions The possibility of dividing memory into regions with
the results of a type-based alias analyses dates back to the work of Talpin and Jouvelot
on higher-order functional languages [167, 168]. The purpose of their work is to compute
effects, so overlap between regions is allowed, which makes it easy to compute regions with
a context-sensitive analysis. Tofte and Talpin apply this analysis to perform static memory
allocation [170]. Again, overlap between regions is not a concern.

164

Steensgaard’s alias analysis [165] is the global context-insensitive counterpart of
Talpin’s local context-sensitive analysis. It is a real alias analysis, meaning that different
regions truly cannot overlap. It is the best known scalable alias analysis, but, being *-
insensitive, its precision is low. Liang and Harrold present a context-sensitive variant of
Steensgaard’s alias analysis to improve its precision [126, 114]. Contrary to Talpin’s anal-
ysis, they merge callee’s regions when they correspond to the same region in the caller,
possibly losing some precision. Hubert and Marché have chosen instead to fail in this case,
thus gaining in precision at the cost of completeness [94]. We manage to retain this pre-
cision and still be complete by generating function contracts to be checked by deductive
verification.

Alias Control Techniques Alias control techniques have been pioneered by Reynolds in
his work on syntactic control of interference [152], where collections play the role of regions
in our work. This notion has been granted a keyword, restrict, in C99 standard [98],
that conveys the programmer’s "guarantee" that a pointer is the unique reference on some
memory. Various authors have described annotation-based systems to help programmers
specify pointer separation [4, 1, 111]. Our treatment of separation with a dedicated first-
order predicate is inspired from these works. It is simple enough that inferring sufficient
separation preconditions is possible and general-purpose automatic theorem provers cor-
rectly handle our separation annotations.

Heap and Shape Analyses It may come to a surprise that we do not need a deeper un-
derstanding of the heap to analyze programs with lists, trees, or other pointer-based data
structures. This is because we only consider here safety checking, which is not so much
concerned with the shape of the heap, contrary to program termination and verification of
behavioral properties. In particular, we do not relate to separation logic or shape analysis.
Calcagno et al. [32] present an analysis to infer sufficient preconditions for list manipulating
programs.

6.5 Chapter Summary

We presented a simple criterion for modular analysis and proof of functions in the presence
of aliasing. Enforcing it prevents interfering accesses to memory due to aliases, thus en-
abling many optimizations and simplifications in analysis and proof. This criterion is both
easy to understand from a user point of view, and automatically checkable thanks to the
generation of dedicated annotations.

This criterion allowed us to lift the annotation inference method presented in the pre-
vious chapter in an alias-free context to fit the fully aliased context. We showed how a
function could be analyzed only once, while the results of this analysis could be used in
different aliasing contexts.

165

166

Chapter 7

Programs with Unions and Casts

Contents
7.1 Prefix Casts . 168

7.1.1 Extending JESSIE with Subtyping 168

7.1.2 Crawling the Type Hierarchy 169

7.2 Moderated Unions . 171
7.2.1 Discriminated Unions in JESSIE 171

7.2.2 Byte-Level Unions in JESSIE 175

7.2.3 Choice of Union in JESSIE . 177

7.3 Other Unions and Casts . 177
7.4 Other Related Work . 180
7.5 Chapter Summary . 181

In this chapter, we describe how to take unions and casts into account in deductive
verification without resorting to a completely untyped memory model.

Section 7.1 considers the special case of prefix casts, the most common form of pointer
casts in C. It extends the JESSIE language so that C programs with prefix casts can be trans-
lated to type-safe JESSIE programs. Then, it extends the techniques presented in Chapter 6
to programs with this restricted form of pointer casts.

Section 7.2 considers the special case of moderated unions, the most common form of
unions in C, which divide into discriminated unions and byte-level unions. It extends the
JESSIE language so that C programs with discriminated unions can be translated to type-
safe JESSIE programs, and C programs with byte-level unions can be translated to type-safe
JESSIE programs based upon a different memory model. Then, it extends the techniques
presented in Chapter 6 to programs with these restricted forms of unions.

Section 7.3 considers the cases of C unions and casts not treated before. It defines a
locally untyped memory model in which these unions and casts can be interpreted. This
local memory model relates to the global component-as-array memory model, so that the
effect of a union or cast does not propagate beyond function boundaries. Then, it extends
the techniques presented in Chapter 6 to C programs with arbitrary unions and pointer casts.

167

Finally, Section 7.4 shows how this new interpretation relates to other work.

7.1 Prefix Casts

A prefix cast in C is a pointer cast between two structure types such that the fields of one
structure form a prefix of the fields of the other structure. Due to the freedom left by
the C standard to compilers w.r.t. layout of structures, there is no guarantee that fields in
this common prefix are laid out similarly in both structures. In fact, the C standard only
requires that the first field of a structure has the same address as the enclosing structure.
In only one special case, when structures belong to a same union, the C standard requires
that their common prefix is laid out similarly. However, it is generally supported by the
Application Binary Interfaces (ABI) implemented in C compilers, that give the same layout
to structures on a common prefix. In our case, the layout of each structure is computed
during the translation from C to CIL, which makes it easy to restrict prefix casts to those
cases where fields in the common prefix are exactly laid out at the same offsets.

Such casts are commonly used in C to encode downcasts and upcasts as usually defined
in object-oriented languages. In 1999, Siff, Chandra, Reps et al. noticed the prevalence of
such pointer casts in telecommunication C programs [161, 35]. They define a notion of
physical subtyping between structures to support the view of prefix casts as upcasts and
downcasts (for an example, see function get_color in the following). An upcast cor-
responds to a prefix cast where the destination structure fields form a prefix of the source
structure fields. In particular, casting to void* counts as an upcast, since the destination
type has no fields. A downcast corresponds to a prefix cast where the source structure fields
form a prefix of the destination structure fields. Authors of the safe compiler CCured claim
that such upcasts and downcasts, together with discriminated unions, account for 99% of
pointer casts in C programs [48], based on their experience at compiling millions loc of
open-source C systems code.

7.1.1 Extending JESSIE with Subtyping

Figure 7.1 presents an extension of JESSIE types to support named inheritance, in which
a structure may be defined to extend another structure. As usual, a structure inherits the
fields of the structure it extends. These inherited fields can be considered as a prefix of the
ordered list of fields of a structure. Inheritance relations form a tree-like directed graph.
A structure is a subtype of the structure it extends, which is the only possible subtyping
relation in JESSIE.

Figure 7.2 presents the abstract syntax of JESSIE propositions to support subtyping.
Operator :: expresses that a term has a specific dynamic type, that should be a subtype of
its static type. Operator / expresses that the dynamic type of a term is a subtype of a given
type.

Figure 7.3 presents the extended semantics supporting subtyping. It requires the addi-
tion of a new part to the state model described in Section 2.2.3: DynType maps memory
block labels to their dynamic structure type. The allocation instruction additionally updates
the table for dynamic types.

168

7.1.2 Crawling the Type Hierarchy

JESSIE Translation Function get_color is an example of a use of a prefix cast (from
Siff et al. [161]). Although function get_color takes a parameter of static type Point*,
it should really be of type ColorPoint*, as expressed in the function precondition, so
that its color field can be retrieved.

1 typedef struct { short x; short y; } Point;
2 typedef struct { short x; short y; int color; } ColorPoint;
3
4 //@ requires \valid(pt) ∧ pt / ColorPoint*;
5 int get_color(Point *pt) {
6 return ((ColorPoint*)pt)→color;
7 }

The physical subtyping between ColorPoint and Point in C can be translated into
structure subtyping in JESSIE, and the prefix cast in C can be translated into a hierarchical
cast in JESSIE, as shown by the translation of this program in JESSIE:

1 struct Point = { int16 x; int16 y }
2 struct ColorPoint extends Point = { int32 color }
3
4 requires valid(pt) ∧ typeof(pt) / type(ColorPoint)
5 int32 get_color(Point[..] pt) =
6 return (pt . ColorPoint[0]).color

Figure 7.4 illustrates this situation, in which the same fields can be seen as belonging to
a Point or a ColorPoint.

It should be noted that such hierarchical casts should restrict the set of allowed offsets
to the only offset 0 to prevent pointer arithmetic on the resulting pointer. This ensures that
we retain type safety. Figure 7.5 presents the semantics of such pointer casts.

Theorem 7 A well-typed JESSIE program with subtyping executes without any error (pos-
sibly not terminating), on an imaginary machine with an infinite memory, if integer checks,
memory checks and type checks defined respectively in Sections 3.1.1, 4.1.2 and Figure 7.5
hold.

Proof Sketch. A JESSIE program with subtyping is equivalent to a similar JESSIE program
without subtyping, where all inherited fields are explicitly mentioned. Theorem 1 presented
in Section 4.1.2 already showed that validity of checks implies program safety, not even
considering type checks. Thus, the desired implication trivially holds. Type checks are only
added to facilitate the translation from JESSIE to WHY. �

JESSIE Analysis Much like pointer arithmetic, pointer casts do not change the region of
pointers: p and p . T point to the same region. So, function paths-may-overlap defined
in Section 6.2 correctly over-approximates overlap for programs with subtyping. Thus, the
techniques for inferring annotations and checking safety presented in Chapter 6 still apply
to programs with subtyping.

169

struct-def ::= struct id (extends id)? = fields structure def

Figure 7.1: Grammar of JESSIE types with inheritance

prop ::= ...
| term :: type dynamic typing
| term / type subtyping relation

Figure 7.2: Grammar of JESSIE propositions for subtyping

JtK = n 0 ≤ n l /∈ dom(Alloc)
∀ i. 0 ≤ i < n× sizeof (S)→ a+ i not allocated
{x := new S[t]} ` DynType⇒ DynType[l 7→ S]

NEW

Figure 7.3: Semantics of JESSIE constructs for subtyping

pt

pt . ColorPoint[0]

Figure 7.4: Prefix Cast

JtK = (l, a, i,min,max) DynType(l) / S
0 ≤ i i+ sizeof (S) ≤ Alloc(l)

Jt . S[0]K = (l, a, i, 0, 0)
PREFIX-CAST

Figure 7.5: Semantics of JESSIE hierarchical casts

170

WHY Translation The translation already presented in Section 5.1.1 for type-safe pro-
grams is still applicable for JESSIE programs with subtyping. Additional tag tables track
the dynamic types of memory blocks, much like allocation tables track their size, as already
shown in the context of tool Krakatoa for deductive verification of JAVA programs [129].

7.2 Moderated Unions

A moderated union in C is a union whose field addresses are not taken. This makes it
mandatory to pass through the surrounding union to access any field inside, thus giving the
union a role of moderator. There are two kinds of moderated unions, depending on the kind
of accesses to union fields:

• discriminated unions, in which all fields can always be written, but only the last field
written should be read (writing thus performs a kind of strong update);

• byte-level unions, in which all fields can always be written and read, which means a
field read is not necessarily the last one written.

In the following, we show how to translate discriminated unions and byte-level unions
in JESSIE. Both unions in JESSIE are defined as a collection of structures, as indicated in
Figure 7.6. No such structure should be involved in a hierarchy of structures as defined
in 7.1. A union name can be used anywhere a structure name is allowed in JESSIE.

7.2.1 Discriminated Unions in JESSIE

A discriminated union in C is a moderated union type such that a field of the union is read
only if it is the last field written to. It is similar to variant types in OCAML or discriminated
unions in Ada, in that no byte-level reinterpretation is needed to get the value of a union
field. But, contrary to these safe constructs, discriminated unions rely on programming
idioms which can be misused by the programmer. Typically, C programmers use discrim-
inated unions inside fields of structures, so that the value of another field indicates which
field of the union is currently set [103].

JESSIE Translation Function compact is an example of a use of a discriminated union
Item. At function entry, its parameter x should have its net field set, while at function
exit, x has its gross field set.

1 typedef struct { short net_price; char tax; } Net;
2 typedef struct { short gross_price; } Gross;
3 typedef union { Net net; Gross gross } Item;
4
5 /*@ requires \valid(x) ∧ x :: Net*;
6 @ ensures x :: Gross*
7 @ ∧ x→gross.gross_price
8 @ ≡ \old(x→net.net_price + x→net.tax);
9 @*/
10 void compact(Item *x) {

171

11 short price = x→net.net_price + x→net.tax;
12 x→gross.gross_price = tmp;
13 }

Discriminated union Item in C can be translated into JESSIE. All three types Net,
Gross and Item are designated collectively as discriminated union types. Figures 7.7
and 7.8 illustrate this situation.

1 struct Net = { int16 net_price: 16; int8 tax: 8; unit _: 8 }
2 struct Gross = { int16 gross_price: 16; unit _: 16 }
3 discrunion Item = [Net | Gross]
4
5 requires valid(x) ∧ x :: Net[..]
6 ensures x :: Gross[..]
7 ∧ (x . Gross[..]).gross_price ≡
8 \old((x . Net[..]).net_price + (x . Net[..]).tax);
9 unit compact(Item[..] x) =
10 int16 price
11 price := (x . Net[..]).net_price + (x . Net[..]).tax
12 (x . Gross[..]).gross_price := price

Figure 7.9 presents the semantics of such pointer casts, which is similar to the semantics
of type-safe casts presented in Section 5.1.1, with the addition of a type check, as in the
semantics of prefix casts presented in Section 7.1.2. Figure 7.10 presents the semantics of
assignment to fields of discriminated unions. Indeed, assigning to a field of a discriminated
union changes the dynamic type of the corresponding memory block. In rule ASSIGN-
VFIELD, t1 is obtained from a pointer of discriminated union type T with a succession of
embedded fields and pointer arithmetic. Thus, T is the enclosing discriminated union type.
Notice that in this semantics, embedded fields cannot have discriminated union type, since
the dynamic type of the memory block for an embedded field is the dynamic type of the
enclosing structure.

Theorem 8 A well-typed JESSIE program with subtyping and discriminated unions exe-
cutes without any error (possibly not terminating), on an imaginary machine with an in-
finite memory, if integer checks, memory checks and type checks defined respectively in
Sections 3.1.1, 4.1.2, Figure 7.5 and Figure 7.9 hold.

Proof Sketch. Theorem 7 presented in Section 7.1.2 already shows this property for well-
typed JESSIE programs with subtyping. Discriminated unions only restrict casts and assign-
ments in order to facilitate the translation from JESSIE to WHY, thus Theorem 7 still holds.
�

JESSIE Analysis Function paths-may-overlap presented in Section 6.2 for type-safe pro-
grams with aliasing must be modified to take into account the possible overlap between
fields of a union. This new definition is presented in Figure 7.11. Previously, case (2.2)
concluded that two memory locations accessing different fields could never overlap. It now
refines into cases (2.2’) which concludes that two memory locations accessing different
fields can overlap only if they correspond to overlapping fields in enclosing locations of the
same union type that possibly overlap.

172

hierarchy-def ::= discr-union id = id∗ discriminated union def
| plain-union id = id∗ byte-level union def

Figure 7.6: Grammar of JESSIE unions

x

x . Net

Figure 7.7: Function entry

x

x . Gross

Figure 7.8: Function exit

JtK = (l, a, i,min1,max 1) DynType(l) / S
Jt . S[..]K = (l, a, i,min1,max 1)

VPTR-CAST

JtK = (l, a, i,min1,max 1) min1 ≤ min2 DynType(l) / S
0 ≤ i+ min2 × sizeof (S)

Jt . S[min2..]K = (l, a, i,min2,max 1)
LOW-VPTR-CAST

JtK = (l, a, i,min1,max 1) max 2 ≤ max 1 DynType(l) / S
i+ (max 2 + 1)× sizeof (S) ≤ Alloc(l)

Jt . S[..max 2]K = (l, a, i,min1,max 2)
UP-VPTR-CAST

JtK = (l, a, i,min1,max 1) min1 ≤ min2 max 2 ≤ max 1

DynType(l) / S 0 ≤ i+ min2 × sizeof (S)
i+ (max 2 + 1)× sizeof (S) ≤ Alloc(l)
Jt . S[min2..max 2]K = (l, a, i,min2,max 2)

BOUND-VPTR-CAST

Figure 7.9: Semantics of JESSIE discriminated union casts

173

t1 : S[..] Jt1K = (l, a, i,min,max) min ≤ 0 ≤ max
Jt2K = v 0 ≤ i i+ sizeof (S) ≤ Alloc(l)

T enclosing discriminated union type
{t1.m := t2} ` Heap,DynType⇒
Heap[((a+ i)× 8 + bitoffsetof (m), bitsizeof (m)) 7→ to-bitsm(v)]
DynType[l 7→ T]

ASSIGN-VFIELD

Figure 7.10: Semantics of JESSIE discriminated union assignment

1 define union-path:
2 input path π1

3 output a tuple (π2,min,max) for a union type, nothing otherwise
4 match π1 with
5 | x→ if x is of union type then return (x,0,0) else return nothing
6 | (π2 ⊕ [t1..t2]).m→
7 if m is an embedded field then
8 match union-path(π2) with
9 | (π3,t3,t4)→ (π3,t3+t1×sizeof(π2)+offsetof(m),t4+t2×sizeof(π2)+offsetof(m))
10 | nothing→ nothing
11 else return (π1,0,0)
12
13 define intervals-may-overlap:
14 input integer intervals (min1,max1) and (min2,max2)
15 output whether input intervals overlap
16 return min1 ≤ max2 ∧ min2 ≤ max1

17
18 define paths-may-overlap:
19 input paths π1 and π2

20 output whether π1 and π2 represent overlapping locations
21 match (π1,π2) with
22 (1) | (x,x)→ return true
23 (2.1”) | ((_⊕_).m,(_⊕_).m)→ return region-of-path(π1) ≡ region-of-path(π2)
24 (2.2’) | ((_⊕_).m,(_⊕_).n)→
25 match (union-path π1,union-path π2) with
26 | ((π3,off1,off2),(π4,off3,off4))→
27 return paths-may-overlap(π3,π4)
28 ∧ intervals-may-overlap
29 ((off1,off2+sizeof(m)−1),(off3,off4+sizeof(n)−1))
30 | _→ return false
31 (3) | (x,_) | (_,x)→ return false

Figure 7.11: Overlap of paths with unions

174

WHY Translation The translation presented in Section 7.1.2 for type-safe programs with
subtyping is still applicable for JESSIE programs with unions. Assignment to a field inside
a union modifies the dynamic type of the corresponding memory block, which translates
into an update of the tag table.

7.2.2 Byte-Level Unions in JESSIE

A byte-level union in C is a moderated union type such that a field read is not necessarily
the last one written. Therefore, the value written may have to be reinterpreted in a different
type.

JESSIE Translation Function init is an example of use of a byte-level union Sock. It
is convenient to set field all to zero instead of individually setting each sub-field of field
s to zero. This amounts to exactly the same result, as all and s have the same size, and C
standard mandates that the all-zeros bit-pattern is a valid representation of integer zero for
any type of integer. Then, it should be possible to read the value pointed-to by x through its
s field, as in the postcondition.

1 typedef struct {
2 short socket_num; char flags; char filters;
3 } Socket;
4 typedef union { int all; Socket s; } Sock;
5
6 /*@ requires \valid(x);
7 @ ensures x→s.socket_num ≡ 0
8 @ ∧ x→s.flags ≡ 0 ∧ x→s.filters ≡ 0;
9 @*/
10 void init(Sock *x) {
11 x→all = 0;
12 }

Byte-level union Sock can be translated into a union type in JESSIE. All three types
Int32P, Socket and Sock are designated collectively as union types. Figure 7.12 illus-
trates this situation.

1 struct Socket =
2 { int16 socket_num: 16; int8 flags: 8; int8 filters: 8 }
3 struct Int32P = { int32 int32m: 32 }
4 plainunion Sock = [Int32P & Socket]
5
6 requires valid(x)
7 ensures (x . Socket[..]).socket_num ≡ 0
8 ∧ (x . Socket[..]).flags ≡ 0
9 ∧ (x . Socket[..]).filters ≡ 0
10 unit init(Sock[..] x) =
11 (x . Int32P).int32m := 0

Figure 7.13 presents the semantics of such pointer casts, which is similar to the seman-
tics of type-safe casts presented in Section 5.1.1, without the requirement that the argument
pointer type and the destination type refer to the same structure.

175

x . Int32P

x . Socket

Figure 7.12: Byte-level union

JtK = (l, a, i,min1,max 1)
Jt . S[..]K = (l, a, i,min1,max 1)

UPTR-CAST

JtK = (l, a, i,min1,max 1) min1 ≤ min2

0 ≤ i+ min2 × sizeof (S)
Jt . S[min2..]K = (l, a, i,min2,max 1)

LOW-UPTR-CAST

JtK = (l, a, i,min1,max 1) max 2 ≤ max 1

i+ (max 2 + 1)× sizeof (S) ≤ Alloc(l)
Jt . S[..max 2]K = (l, a, i,min1,max 2)

UP-UPTR-CAST

JtK = (l, a, i,min1,max 1) min1 ≤ min2 max 2 ≤ max 1

0 ≤ i+ min2 × sizeof (S)
i+ (max 2 + 1)× sizeof (S) ≤ Alloc(l)
Jt . S[min2..max 2]K = (l, a, i,min2,max 2)

BOUND-UPTR-CAST

Figure 7.13: Semantics of JESSIE byte-level union casts

x x + 1 y

x x + 1 y

Figure 7.14: Coexisting byte-level and typed memory models

176

Theorem 9 A well-typed JESSIE program with subtyping, discriminated unions and byte-
level unions executes without any error (possibly not terminating), on an imaginary ma-
chine with an infinite memory, if integer checks, memory checks and type checks defined
respectively in Sections 3.1.1, 4.1.2, Figure 7.5 and Figure 7.9 hold.

Proof Sketch. Adding byte-level unions only restrict casts in order to facilitate the transla-
tion from JESSIE to WHY, so that Theorem 8 still holds. �

JESSIE Analysis Function paths-may-overlap must be modified to take into account the
possible overlap between fields of a union, the same way as for a discriminated union.

WHY Translation Except for unions, the translation already presented in Section 5.1.1
for type-safe programs is still applicable for JESSIE programs with unions. Union types are
replaced by bit-vectors of the appropriate size, so that any access to a field inside a union
translates into an access to the corresponding bit-vector. This translation uses functions
of -bitsm and to-bitsm for a field m such as those defined in Section 2.2.3.

7.2.3 Choice of Union in JESSIE

C unions can be translated either into JESSIE discriminated unions or into JESSIE byte-level
unions. Although the latter are more flexible, by not restricting reads to the last field written
to, they do not mix well with region inference as presented in Section 6.2. Roughly, it is
not possible to give different regions to different pointer fields in a byte-level union, while
it is possible for fields of a discriminated union. Thus, we choose to translate C unions into
JESSIE discriminated unions whenever some field or subfield of the union has pointer type.
Otherwise, C unions are translated into byte-level unions.

7.3 Other Unions and Casts

Other unions and casts between pointers in C reinterpret the bit-pattern in memory as a
value a type or another. This makes it necessary to consider multiple coexisting memory
models, a byte-level memory model as defined in Section 2.2.3, and various typed memory
models on top of it, as sketched in Figure 7.14.

JESSIE Translation Byte-level unions and pointer casts in C are translated into pointer
casts in JESSIE, as presented in Section 2.3.

JESSIE Analysis Byte-level casts in JESSIE do not preserve type safety. Thus, it is not
possible anymore to use function paths-may-overlap presented in Section 5.1.1 for type-
safe programs. Without region inference presented in Chapter 6, the very imprecise func-
tion paths-may-overlap defined in Section 4.2.3 must be used. With region inference, the
more precise function paths-may-overlap presented in Section 6.2 for type-safe programs
can be modified to handle programs with pointer casts. This new definition is presented in

177

1 define paths-may-overlap:
2 input paths π1 and π2

3 output whether π1 and π2 represent overlapping locations
4 match (π1,π2) with
5 (1) | (x,x)→ return true
6 (2.3) | ((_⊕_)._,(_⊕_)._)→ return region-of-path(π1) ≡ region-of-path(π2)
7 (3) | (x,_) | (_,x)→ return false

Figure 7.15: Overlap of paths with regions only

Figure 7.15. Previously, case (2) concluded that two memory locations could always over-
lap. It now refines into case (2.3) which concludes that two memory locations can overlap
only if they belong to the same region.

WHY Translation Similarly to what is done for unions in JESSIE, accesses to byte-level
memory can be translated as accessing a bit-vector in WHY, with the appropriate calls to
functions of -bitsm and to-bitsm, to convert values between a field type and bit-vectors.
This allows one to check the safety and postcondition of function reverse_endian,
which accesses individual bytes in the representation of a short to switch them. Endianness
is defined by axiomatization.

1 /*@ axiom little_endian_low_byte_short:
2 @ ∀ short *s; *(char*)s ≡ *s % 256;
3 @
4 @ axiom little_endian_high_byte_short:
5 @ ∀ short *s; *((char*)s+1) ≡ *s / 256;
6 @*/
7
8 /*@ requires \valid(s);
9 @ ensures *s ≡ 256 * (\old(*s) % 256) + (\old(*s) / 256);
10 @*/
11 void reverse_endian(short *s) {
12 char *c = (char*)s;
13 char tmp = *c;
14 *c = *(c+1);
15 *(c+1) = tmp;
16 }

A first remark is that, when regions are used, only those regions accessed through casted
pointers need to be interpreted in a byte-level memory model. All other regions can still be
interpreted in a component-as-array memory model refined with regions. Another remark
is that different regions can be interpreted as different bit-vectors, so that the separation
between regions translates into WHY.

The problem with this translation is that it quickly propagates to all the program through
calls [2], thus completely replacing the component-as-array memory model and annihilating
the associated benefit, automatic separation of fields.

178

To avoid this problem, we propose to enforce the locality of byte-level accesses inside a
function f , so that both f callers and f callees can be interpreted and verified independently
of the byte-level accesses in f .

Isolating the byte-level memory model of f from its callers can be obtained by:

• typed function declaration - Although f is verified w.r.t. a byte-level memory model,
another function f ′ should be called, which is obtained by translating the declaration
of f in a typed memory model. In particular, effects of f ′ should be expressed in a
typed memory model.

• typed memory model accessors - Validity of pointers in the byte-level memory model
is not sufficient to ensure validity of pointers in the typed memory model, as a valid
pointer of type T [..] is not a valid pointer of type S[..]. Therefore, the body of f
should be verified w.r.t. typed memory model accessors: offset-min and offset-max
should be replaced by offset-min-S and offset-max -S for every structure type S.

Isolating the byte-level memory model of f from its callees can be obtained by:

• bytes-to-types call prelude - Before calling a function g, byte-level pieces of memory
accessed by g should be translated to typed pieces of memory. In order to ensure sep-
aration of fields in the component-as-array memory model, those pieces of memory
accessed in g through different types should correspond to separated locations in f .
This is similar to the generation of separation preconditions in the refined Talpin’s
alias analysis presented in Section 6.3.

• types-to-bytes call postlude - After calling a function g, typed pieces of memory
written to by g which correspond to byte-level pieces of memory in f should be
translated back.

In function reverse_endian below, function swap is called to switch the two
bytes in the representation of a short. Function swap does not contain any union or
pointer cast, thus it is interpreted in a component-as-array memory model. Function
reverse_endian, on the contrary, contains a cast of pointer s. Thus, pointers s and
c are interpreted in a byte-level memory model. Before calling swap, a component-as-
array memory model is reconstructed from the byte-level one, and effects on this model are
translated back on the byte-level memory model after the call. In this case, no separation
precondition is generated. We manage to completely prove the safety and the annotations
in reverse_endian using any automatic prover among Alt-Ergo, Simplify and Z3.

1 /*@ requires \valid_range(x,0,1);
2 @ ensures x[0] ≡ \old(x[1]) ∧ x[1] ≡ \old(x[0]);
3 @*/
4 void swap(char *x) {
5 char tmp = *x;
6 x[0] = x[1];
7 x[1] = tmp;
8 }
9
10 /*@ requires \valid(s);

179

11 @ ensures *s ≡ 256 * (\old(*s) % 256) + (\old(*s) / 256);
12 @*/
13 void reverse_endian(short *s) {
14 char *c = (char*)s;
15 swap(c);
16 }

The separation precondition generated by (1) the conversion between byte-level and
component-as-array memory models, and (2) the region alias analysis presented in Sec-
tion 6.3 may add up, as in reverse_endian below. The precondition (1) is true while
the precondition (2) is that *c and *(c+1) are separated, which is true. This time, we
manage to completely prove the safety and the annotations in reverse_endian only
using automatic prover Alt-Ergo.

1 /*@ requires \valid(x) ∧ \valid(y);
2 @ ensures *x ≡ \old(*y) ∧ *y ≡ \old(*x);
3 @*/
4 void swap(char *x, char *y) {
5 char tmp = *x;
6 *x = *y;
7 *y = tmp;
8 }
9
10 /*@ requires \valid(s);
11 @ ensures *s ≡ 256 * (\old(*s) % 256) + (\old(*s) / 256);
12 @*/
13 void reverse_endian(short *s) {
14 char *c = (char*)s;
15 swap(c,c+1);
16 }

As a slight improvement over the translation presented so far, casts that occur in the
arguments of a call could be considered as casts in the surrounding function, so that the
corresponding regions remain interpreted in a component-as-array memory model. This
could simplify the proof of function reverse_endian below.

10 /*@ requires \valid(s);
11 @ ensures *s ≡ 256 * (\old(*s) % 256) + (\old(*s) / 256);
12 @*/
13 void reverse_endian(short *s) {
14 swap((char*)s,(char*)s+1);
15 }

7.4 Other Related Work

Siff and others [161] collected uses of casts in large C programs. They introduce the notion
of platform-dependent physical subtyping. Their algorithm emphasizes equality of field
names and sub-structure boundaries for deciding subtyping, which is not needed for safe
access. It is rather an additional requirement they impose as a good software engineering
practice.

180

In [161], they use this notion of physical subtyping to statically classify casts in upcasts,
downcasts or mismatch (remaining cases). Chandra and Reps use it in [35] to devise a phys-
ical type checking algorithm for C, that statically rejects programs that cannot be proved
correct with respect to physical subtyping. As mentioned in their paper, their algorithm
does not target programs which emulate inheritance using discriminated union and cast as
we do.

Andronick, in her PhD thesis [2], treats unions and casts in Caduceus like byte-level
unions, by providing an ad hoc synchronization function for each such case. This only
applies to casts and unions on structures whose address is not taken.

Jhala, Majumdar and Xu have described in [103] an algorithm to automatically discover
the type invariants that guarantee proper use of union as discriminated union in C. Although
quite effective at discovering the proper invariants in large C programs, their method is
limited to simple forms of invariants. Moreover, we believe that the overhead of manually
annotating union types is not big when doing program verification.

Another direction was taken by Tuch, Klein and Norrish in [172] to allow reasoning
about C union and cast in deductive verification. They choose to work with a byte-level
memory model (described in [171]), with lifting functions providing a typed view of the
heap. It is possible in their model to reason about any cast and union, even those that
reinterpret typed memory through a different type, at the cost of manually providing the
rules for how the lifted views of the heap change during these unsafe operations. Our
structure subtyping feature is more restricted but also better suited for automatic proof. In
their case, they do manual proofs in Isabelle/HOL.

7.5 Chapter Summary

Based on existing statistics of the kind of unions and pointer casts most commonly found in
C programs, we propose a classification of unions and pointer casts.

A majority of them, prefix casts and discriminated moderated unions, can be directly
translated at the type level, using an encoding of subtyping in Jessie. Byte-level moderated
unions can be translated into Jessie unions, thus using a byte-level memory model for union
fields while keeping a component-as-array memory model everywhere else. Finally, re-
maining unions and casts must be interpreted in a local byte-level memory model, which is
not propagated to callers and callees of the function thanks to the generation of appropriate
separation preconditions.

We showed how to adapt the techniques presented in previous chapters to programs with
such unions and casts. In particular, we further refined our criterion for separation, so that
functions can still be analyzed modularly. Independently from other functions, a function
can either be analyzed and proved at the type level, or a mixed type and byte level, or even
at the byte level, which has not been shown previously.

181

182

Part III

Experiments

183

Chapter 8

Experiments on Real C Programs

Contents
8.1 Notes of Implementation . 186

8.1.1 Logical Model of Strings . 186

8.1.2 Preprocessing . 187

8.1.3 Filtering Results . 189

8.2 String Libraries . 189
8.2.1 MINIX 3 Standard String Library 189

8.2.2 CERT Managed String Library 195

8.2.3 Related Works . 202

8.3 Benchmarks of Vulnerabilities . 202
8.3.1 Verisec Suite . 203

8.3.2 Zitser’s Benchmark . 206

8.3.3 Related Works . 206

8.4 Chapter Summary . 207

The techniques described in this thesis have been implemented in Frama-C [73], an
open-source platform for the modular analysis of C programs. Target C programs are
translated to CIL, then JESSIE and finally WHY, before verification conditions (VC) are
generated and sent to automatic provers to prove the safety of the original C programs, as
described in Figure 1.4 in Section 1.5.

In Section 8.1, we mention those implementation details needed to understand our ex-
periments. In Section 8.2, we describe the results of applying our tool to check the safety
of available string libraries. In Section 8.3, we describe the results of applying our tool to
discriminate between unsafe and patched versions of open-source programs with vulnera-
bilities. The verification was performed completely automatically and modularly, with each
function analyzed separately.

Source programs for these benchmarks as well as scripts to replay tests can be down-
loaded from www.lri.fr/~moy. Source lines of code are measured using David A.

185

www.lri.fr/~moy

Wheeler’s SLOCCount. Provers are run with a time limit of 10 s on each verification con-
dition. We present reference results obtained on a 3.19 GHz processor with 2 G RAM.

8.1 Notes of Implementation

8.1.1 Logical Model of Strings

We developed a logical model of strings to use in annotations. In particular, we define a
logic function strlen as in Section 4.2.2 to provide a handle on the length of a string.

1 //@ logic integer strlen(char *s) reads s[0..];

The behavior of strlen should be the following:

• in general, strlen(s) should be the value of the smallest non-negative index i that fits
in a C int at which s[i] is null;

• if such an index does not exist, strlen(s) can have any negative value (the exact value
can be left underspecified).

This behavior can be defined by the following axioms:

2 /*@ axiom strlen_pos_or_null:
3 @ ∀ char* s; ∀ integer i;
4 @ (0 ≤ i ≤ INT_MAX
5 @ ∧ (∀ integer j; 0 ≤ j < i =⇒ s[j] 6≡ ’\0’)
6 @ ∧ s[i] ≡ ’\0’) =⇒ strlen(s) ≡ i;
7 @
8 @ axiom strlen_neg:
9 @ ∀ char* s;
10 @ (∀ integer i; 0 ≤ i ≤ INT_MAX =⇒ s[i] 6≡ ’\0’)
11 @ =⇒ strlen(s) < 0;
12 */

Of course, automatic provers require the definition of auxiliary lemmas, that could be
proved from the above axioms in a proof assistant.

13 /*@ lemma strlen_upper_bound:
14 @ ∀ char* s; strlen(s) ≤ INT_MAX;
15 @
16 @ lemma strlen_before_null:
17 @ ∀ char* s; ∀ integer i; 0 ≤ i < strlen(s) =⇒ s[i] 6≡ ’\0’;
18 @
19 @ lemma strlen_at_null:
20 @ ∀ char* s; 0 ≤ strlen(s) =⇒ s[strlen(s)] ≡ ’\0’;
21 @
22 @ lemma strlen_not_zero:
23 @ ∀ char* s; ∀ integer i;
24 @ 0 ≤ i ≤ strlen(s) ∧ s[i] 6≡ ’\0’ =⇒ i < strlen(s);
25 @
26 @ lemma strlen_zero:
27 @ ∀ char* s; ∀ integer i;
28 @ 0 ≤ i ≤ strlen(s) ∧ s[i] ≡ ’\0’ =⇒ i ≡ strlen(s);

186

29 @
30 @ lemma strlen_sup:
31 @ ∀ char* s; ∀ integer i;
32 @ 0 ≤ i ≤ INT_MAX ∧ s[i] ≡ ’\0’ =⇒ 0 ≤ strlen(s) ≤ i;
33 @
34 @ lemma strlen_shift:
35 @ ∀ char* s; ∀ integer i;
36 @ 0 ≤ i ≤ strlen(s) =⇒ strlen(s + i) ≡ strlen(s) − i;
37 @
38 @ lemma strlen_create:
39 @ ∀ char* s; ∀ integer i;
40 @ 0 ≤ i ≤ INT_MAX ∧ s[i] ≡ ’\0’ =⇒ 0 ≤ strlen(s) ≤ i;
41 @
42 @ lemma strlen_create_shift:
43 @ ∀ char* s; ∀ integer i; ∀ integer k;
44 @ 0 ≤ k ≤ i ≤ INT_MAX ∧ s[i] ≡ ’\0’
45 @ =⇒ 0 ≤ strlen(s+k) ≤ i − k;
46 @*/

In order to deduce useful invariants by abstract interpretation based on this strlen logic
function, we define a predicate expressing what it means to be a string:

47 /*@ predicate valid_string(char *s) =
48 @ 0 ≤ strlen(s) ∧ \valid_range(s,0,strlen(s));
49 @*/

After initial experiments, we realized no precise annotations could be inferred with-
out a small amount of manual annotations which identify those pointer variables that can
hold strings. In order to minimize the annotation burden, we made it possible to define
declaration specifiers naming a predicate that expand into preconditions for function pa-
rameters and postconditions for function returns, similarly to what is done in SAL [84]
or Deputy [184]. E.g., here is a macro defining such a declaration specifier for predicate
valid -string :

#define FRAMA_C_STRING __declspec(valid_string)

This macro can be used to decorate function signatures. E.g., function strcpy that
copies a string src into a buffer dest gets decorated as follows:

char *strcpy(char *ret, const char *FRAMA_C_STRING s2);

8.1.2 Preprocessing

We implemented in Frama-C two simple syntactic transformations:

• a cursor-to-base translation of pointers and integers;

• an insertion of assertions for string usage.

The cursor-to-base translation consists in identifying those cursor variables that are
only defined as offsets from another base variable. Then, it is possible to explicit the value

187

of such an offset as a new integer variable, such that the cursor variable can be replaced
by the sum of its base variable and this offset. This applies in particular to index cursor
pointers [83] which point into a buffer, as well as integer parameters used as counters (in-
cremented or decremented).

The insertion of assertions for string usage recognizes patterns of string usage in the
program and automatically inserts corresponding hints in the program. A hint is an asser-
tion that can be used in our annotation inference methods, provided it is also proved, but
which should not be used as target assertion to infer preconditions. Indeed, validity of hints
usually relies on complex properties that can only be captured by axiomatization. Thus, our
annotation inference methods are not powerful enough to generate sufficient preconditions
for such hints. We generate two kinds of hints for string variables, i.e., variables decorated
with declaration specifier FRAMA_C_STRING:

• accessing strings: reading or writing through string variable s at index i generates
hint 0 ≤ i ≤ strlen(s).

• testing string termination: testing the nullity of string variable s at index i generates
hint i < strlen(s) for the non-null branch and hint i ≡ strlen(s) for the null
branch.

E.g., this automatic insertion of assertions in function strcpy is almost equivalent
to the following hand-written annotations, where Pre is a predefined label in ACSL for
denoting the pre-state of a function:

1 //@ requires valid_string(s2);
2 char *strcpy(char *ret, const char *s2) {
3 char *s1 = ret;
4 //@ assert 0 ≤ s2 − \at(s2,Pre) ≤ strlen(\at(s2,Pre));
5 while (*s1++ = *s2++)
6 //@ assert s2 − \at(s2,Pre) < strlen(\at(s2,Pre));
7 /* EMPTY */ ;
8 //@ assert s2 − \at(s2,Pre) ≡ strlen(\at(s2,Pre));
9 return ret;
10 }

It is best seen on the real intermediate program that we generate and analyze, where
integer is ideally the logical type of integers, but currently the largest C integer type:

1 //@ requires valid_string(s2);
2 char *strcpy(char *ret, const char *s2) {
3 integer s1_offset = 0;
4 integer s2_offset = 0;
5 while (1) {
6 //@ assert 0 ≤ s2_offset ≤ strlen(s2);
7 char tmp = s2[s2_offset]
8 ret[s1_offset] = tmp;
9 s1_offset++;
10 s2_offset++;
11 if (tmp == 0) break;
12 //@ assert s2_offset < strlen(s2);
13 }

188

14 //@ assert s2_offset ≡ strlen(s2);
15 return ret;
16 }

Notice that although some tests contain pointer casts between types void*, char*
and unsigned char*, these casts are not considered as pointer casts in JESSIE, as these
types are all synonyms for char* in our implementation.

8.1.3 Filtering Results

Without further care, the generated preconditions are too strong. E.g., some preconditions
take the form:

strlen(s) ≤ 0 (8.1)

or
offset-max (s) < strlen(s). (8.2)

Precondition 8.1 requires that string s has null length, while precondition 8.2 requires that
string s is larger than the size of the underlying buffer. Such preconditions are generated in
those cases where our techniques cannot generate an appropriate precondition, because the
validity of the original check depends on axiomatized properties.

We filter out such results by removing from conjuncts those inequalities that bound
strlen and offset-min from below or offset-max from above, which cannot correspond to
appropriate preconditions for the programs analyzed.

8.2 String Libraries

Strings are character buffers guarded by a sentinel null character. Before this sentinel,
characters belong to the string; after it, characters are ignored. Strings are both pervasive, as
the native way of communicating information in C programs, and potentially unsafe, as their
safety depends on the presence of a null character somewhere in the buffer. Unintentionally
erasing this character usually leads to a buffer overflow. Therefore, it is particularly useful
to check the safety of string libraries implementations.

8.2.1 MINIX 3 Standard String Library

MINIX 3 is an open-source operating system designed to be highly reliable, flexible, and
secure. To reach these goals, its code is intentionally small and simple. In particular, it
implements a library for strings in an idiomatic and straightforward style, quite closely
following the C standard. E.g., here is the code for function strcpy that copies the content
of a string s2 to a buffer ret:

1 char *strcpy(char *ret, const char *s2) {
2 char *s1 = ret;
3 while (*s1++ = *s2++)
4 /* EMPTY */ ;
5 return ret;
6 }

189

Overall, the standard C library for strings specifies 22 functions, all of which are im-
plemented in the MINIX 3 library. We applied the different annotation inference methods
described in this thesis to check the safety of all of these functions at the exclusion of
strtok whose safety relies on the proper sequencing of successive calls to strtok, a
temporal property that cannot be catched by our inference methods.

By default, we run our tests with the abstract domain of octagons and region analysis
set. A few tests required a different set of options:

• strcat, strncat and memmove require the use of polyhedrons to express pre-
conditions or loop invariants on 3 variables;

• memmove requires that region analysis is not set, so that it is analyzed in a context
where its pointer parameters may overlap.

Exact Integer Model In a first phase, we ran the benchmark with a mathematical model
for integers, where it is assumed that integers neither overflow nor wrap around. Annota-
tions inferred by abstract interpretations were not reproved by deductive verification. We
compared 4 runs of the benchmark:

1. no annotation inference - No annotation at all is inferred.

2. abstract interpretation - Loop invariants are inferred by abstract interpretation, fol-
lowing algorithm ABSINTERP.

3. quantifier elimination - First, loop invariants are inferred by abstract interpretation,
and then preconditions are inferred by quantifier elimination, following algorithm
ABSELIM.

4. weakest preconditions - First, loop invariants are inferred by abstract interpretation,
and then preconditions are inferred by weakest preconditions and quantifier elimina-
tion. We tried both algorithms ABSSTRONG and ABSWEAK, which gave the exact
same results, due to the small size of source programs.

Results for these runs are summarized in Figures 8.1, 8.2, 8.3 and 8.4. The total num-
ber of verification conditions (VC) varies between runs as it depends on the annotations
inferred. Provers are summarized by their initial letter: A for Alt-Ergo v0.8, S for Simplify
v1.5.4, Y for Yices v1.0.16 and Z for Z3 v1.3. As expected, automatic provers succeed in
proving more verification conditions when more annotations are inferred. When the most
precise method is used, prover Z3 manages to prove all verification conditions, which is
shown by filling the corresponding column on Figure 8.4.

Not surprisingly, the total time elapsed decreases with the number of annotations in-
ferred, as shown in Figure 8.5. Indeed, in this case, the time spent for inferring annotations
is far smaller than the time spent trying to prove unprovable verification conditions.

With the most precise inference method, a satisfying sufficient precondition to ensure
the safety of each function is inferred. A precondition is satisfying when it is not too strong,
so that usual patterns of usage for this function are allowed. We detail these preconditions in

190

provers

nu
m

V
C

pr
ov

ed

ZYSA

315

150

70%
66%

68%

55%

Figure 8.1: No annotation inference

provers

nu
m

V
C

pr
ov

ed

ZYSA

307

150

88%
85%

87%

70%

Figure 8.2: Abstract interpretation

provers

nu
m

V
C

pr
ov

ed

ZYSA

307

150

96%
92%

95%

73%

Figure 8.3: Quantifier elimination

provers

nu
m

V
C

pr
ov

ed

ZYSA

354

150

100%
96%

98%

72%

Figure 8.4: Weakest preconditions

provers

ti
m

e
(m

)

ZYSA

10

8

6

4

2

0

no annotation inference

abstract interpretation

quantifier elimination
weakest preconditions

Figure 8.5: Total time elapsed

191

the following. For the sake of clarity, we rewrite offset-min(x) ≤ a ∧ b ≤ offset-max (x)
into valid -range(x, a, b), and offset-min(x) ≤ c ≤ offset-max (x) into valid -index (x, c).
Loop invariants are inferred too, but they usually mention intermediate variables introduced
by the transformation from C to JESSIE, so they are not detailed here. They can be found
in the log of the testing run. ACSL term s + (..) denotes the set of pointers that can be
obtained by pointer arithmetic from pointer s in the same memory block.

memmove(void *s1, const void *s2, size_t n)
- copy characters from buffer to possibly overlapping buffer -

n ≤ − 1 ∨ (valid -range(s1, 0, n− 1) ∧ valid -range(s2, 0, n− 1))

strcpy(char *ret, const char *FRAMA_C_STRING s2)
- copy characters from string to buffer -

separated(ret + (..), s2 + (..)) ∧ valid -range(ret, 0, strlen(s2))

strncpy(char *ret, const char *FRAMA_C_STRING s2, size_t n)
- copy characters from string to buffer -

separated(ret + (..), s2 + (..)) ∧ (n ≤ 0 ∨ valid -range(ret, 0, n− 1))

strcat(char *FRAMA_C_STRING ret, const char *FRAMA_C_STRING s2)
- concatenate strings -

separated(ret + (..), s2 + (..)) ∧ strlen(ret) + strlen(s2) ≤ offset -max (ret)

At first glance, it may seem strange that only offset-max (ret) is bounded. In fact, by
joining this precondition inferred with the one implicit in FRAMA_C_STRING declaration
specifiers, we get the expected precondition:

separated(ret + (..), s2 + (..)) ∧ valid -range(ret, 0, strlen(ret) + strlen(s2))

strncat(char *FRAMA_C_STRING ret,
const char *FRAMA_C_STRING s2, size_t n)

- concatenate strings up to some bound -

separated(ret + (..), s2 + (..))

∧

n ≤ 0

∨ strlen(ret) + strlen(s2) ≤ offset -max (ret)
∧strlen(ret) + n ≤ offset -max (ret)

∨ strlen(s2) ≤ n− 2 ∧ strlen(ret) + n− 1 ≤ offset -max (ret)

The precondition inferred is strictly stronger than the expected one:

separated(ret + (..), s2 + (..))
∧ (strlen(ret) + strlen(s2) ≤ offset -max (ret)
∨strlen(ret) + n− 1 ≤ offset -max (ret))

192

memcmp(const void *s1, const void *s2, size_t n)
- compare the content of buffers -

n ≤ 0 ∨ (valid -range(s1, 0, n− 1) ∧ valid -range(s2, 0, n− 1))

strcmp(const char *FRAMA_C_STRING s1, const char *FRAMA_C_STRING s2)
- compare the content of strings -

true

The precondition inferred is indeed sufficient to prove safety of this function, as
FRAMA_C_STRING declaration specifiers already assess that parameters are strings.

strcoll(const char *FRAMA_C_STRING s1, const char *FRAMA_C_STRING s2)
- compare the content of strings w.r.t. current locale -

true

strncmp(const char *FRAMA_C_STRING s1,
const char *FRAMA_C_STRING s2, size_t n)

- compare the content of strings up to some bound -

true

strxfrm(char *s1, const char *FRAMA_C_STRING save, size_t n)
- transform a string taking into account the current locale -

separated(s1 + (..), save + (..))

∧

n ≤ 0 ∧ strlen(save) ≤ 0

∨ n ≤ 0 ∧ valid -range(s1, 0, n− 2)
∨ n ≤ 1 ∧ valid -range(s1, 0, n− 1)
∨ strlen(save) ≤ 0 ∧ valid -range(s1, 0, n− 1)
∨ valid -range(s1, 0, strlen(save))

The precondition inferred is strictly weaker than the expected one:

separated(s1 + (..), save + (..)) ∧ (n ≤ 0 ∨ valid -range(s1, 0, n− 1))

memchr(const void *s, int c, size_t n)
- locate the presence of a character in a buffer -

n ≤ 0 ∨ valid -range(s, 0, n− 1)

strcspn(const char *FRAMA_C_STRING string,
const char *FRAMA_C_STRING notin)

- filter a prefix of a string based on exclusion -

true

193

strpbrk(const char *FRAMA_C_STRING string,
const char *FRAMA_C_STRING brk)

- locate the presence of a string character in a string -

true

strrchr(const char *FRAMA_C_STRING s, int c)
- locate the last presence of a character in a string -

true

strspn(const char *FRAMA_C_STRING string,
const char *FRAMA_C_STRING in)

- filter a prefix of a string based on inclusion -

true

strstr(const char *FRAMA_C_STRING s,
const char *FRAMA_C_STRING wanted)

- find a substring in a string -

true

memset(void *s, int c, size_t n)
- initialize the content of a buffer -

n ≤ − 1 ∨ valid -range(s, 0, n− 1)

strerror(int errnum)
- return an error string -

errnum ≤ − 1 ∨ _sys_nerr ≤ errnum ∨ valid -index (_sys_errlist, errnum)

strlen(const char *FRAMA_C_STRING org)
- compute the length of a string -

true

Bounded Integer Model In a second phase, we ran the benchmark with a bounded model
for integers, where it is verified that integers do not overflow. Annotations inferred by ab-
stract interpretations were not reproved by deductive verification. We used the abstract
domain of polyhedrons. We ran all tests in the same setting, where loop invariants are first
inferred by abstract interpretation, and then preconditions are inferred by weakest precon-
ditions and quantifier elimination, with algorithm ABSSTRONG.

Analysis of function memmove fails due to a limitation of our implementation: vari-
ous instrumentation integer variables introduced to serve as pointer and integer offsets (see

194

provers
nu

m
V

C
pr

ov
ed

ZYSA

868

0

100%

85%

99% 100%

Figure 8.6: Bounded integer model

Section 8.1.2) should have logical integer type. This is not yet possible in our tool, instead
we had to give them a large C integer type. In function memmove, this leads to the gen-
eration of a loop invariants with many useless inequalities involving large integers, which
later on makes algorithm ABSSTRONG run out of space. Thus, we report our results on the
remaining 20 functions.

Only one additional precondition inferred w.r.t. those inferred in the exact integer model
is not obvious from the type of parameters. It requires that the integer used to initialize an
array of characters in function memset fits indeed in a character:

−128 ≤ c ≤ 127

Figure 8.6 summarizes the results of these runs. There are 868 verification conditions
(VC), which is well above the 354 VC obtained with the exact integer model. This is
expected, as all integer operations now require that the result fits in the corresponding C
integral type. It comes as a surprise that prover Yices proves all VC with this integer model,
like prover Z3, which is shown by filling the corresponding columns on Figure 8.6. After
checking that it does not come from an inconsistency allowing to prove a false formula,
we can conclude that our encoding of bounded integers fits better prover Yices than plain
arithmetic on logical integer variables.

8.2.2 CERT Managed String Library

Source Code and Annotations CERT managed string library defines an abstract data
type string_m to be used instead of plain strings. It is defined as a pointer to structure
string_mx which encapsulates a few fields to store the string and maintain its consis-
tency.

1 union str_union_t {
2 char *cstr;
3 wchar_t *wstr;
4 };
5

195

6 struct string_mx {
7 size_t size; // allocated size of buffer
8 size_t maxsize; // maximum size of string
9 unsigned char strtype; // tag denoting the type of string
10 union str_union_t charset; // set of valid characters
11 union str_union_t str; // the real string
12 };
13
14 typedef struct string_mx *string_m;

String operations defined by the standard are implemented for these managed strings
in a defensive programming style, including bound checking, so that misuses of the library
should not lead to safety errors. Additionally, the library can ensure proper data sanitization
by checking that all characters in a string (in field str) belong to a predefined set of safe
characters (in field charset). Ignoring sanitization, the invariant maintained by library
operations can be expressed as predicate managed -string in ACSL. Due to its complexity,
this invariant was not inferred automatically but rather generated manually from the imple-
mentation of managed strings during the iterative proof process. In particular, some func-
tions only ensure that the weakest almost-managed -cstring or almost-managed -wstring
are verified.

15 /*@ predicate almost_managed_cstring(string_m s) =
16 @ s→strtype ≡ STRTYPE_NTBS // a plain character string
17 @ ∧ (valid_string(s→str.cstr) // content is a valid string
18 @ ∧ strlen(s→str.cstr) < s→size // and string size is bounded
19 @ ∧ \valid_range(s→str.cstr, // and buffer size is bounded
20 @ 0,s→size − 1)
21 @ ∨ s→str.cstr ≡ NULL // or pointer is NULL
22 @ ∧ s→size ≡ 0); // and size is null too
23 @
24 @ predicate managed_cstring(string_m s) =
25 @ almost_managed_cstring(s)
26 @ ∧ valid_string_or_null(// filter is a valid string
27 @ s→charset.cstr)
28 @ ∧ (s→maxsize ≡ 0 // maximum not set
29 @ ∨ s→size ≤ s→maxsize); // or size is below maximum
30 @
31 @ predicate almost_managed_wstring(string_m s) =
32 @ s→strtype ≡ STRTYPE_WSTR // a wide character string
33 @ ∧ (valid_wstring(s→str.wstr) // content is a valid string
34 @ ∧ wcslen(s→str.wstr) < s→size // and string size is bounded
35 @ ∧ \valid_range(s→str.wstr, // and buffer size is bounded
36 @ 0,s→size − 1)
37 @ ∨ s→str.wstr ≡ NULL // or pointer is NULL
38 @ ∧ s→size ≡ 0); // and size is null too
39 @
40 @ predicate managed_wstring(string_m s) =
41 @ almost_managed_wstring(s)
42 @ ∧ valid_wstring_or_null(// filter is a valid string
43 @ s→charset.wstr)
44 @ ∧ (s→maxsize ≡ 0 // maximum not set
45 @ ∨ s→size ≤ s→maxsize); // or size is below maximum
46 @
47 @ predicate managed_string(string_m s) =
48 @ \valid(s) ∧ (managed_cstring(s) ∨ managed_wstring(s));
49 @*/

196

Overall, we analyzed 49 functions operating over managed strings. From a total of 64
functions over 6,156 sloc, we cannot analyze 15 functions:

• 12 are input/output functions with a variadic number of arguments, which we do not
support;

• the remaining 3 are the poorly designed strtok_m, whose comment warns that “this
function is really messed up–need to redesign”, and two related functions.

Thus, we manually annotated 49 functions with pre- and postconditions, as well as:

• 103 behaviors to further specify functions;

• 14 loop invariants for those functions with loops;

• 153 intermediate assertions to help provers;

for a total of 782 sloc for ACSL annotations. We did not generate any annotations for these
functions, but we used the automatic separation of memory regions. Here is the imple-
mentation of the simplest function over managed strings, strlen_m, which computes the
length of a managed string, together with annotations in ACSL that are needed to prove
both strlen_m safety and the safety of functions that call strlen_m.

50 /*@ requires managed_string(s) ∨ s ≡ NULL;
51 @ requires \valid(size) ∨ size ≡ NULL;
52 @ assigns *size;
53 @ behavior ok_cstr:
54 @ assumes \valid(s) ∧ managed_cstring(s) ∧ \valid(size);
55 @ assigns *size;
56 @ ensures managed_string(s) ∧ \result ≡ 0;
57 @ ensures \old(s→str.cstr ≡ NULL) =⇒ *size ≡ 0;
58 @ ensures \old(s→str.cstr 6≡ NULL) =⇒ *size ≡ strlen(s→str.cstr);
59 @ behavior ok_wstr:
60 @ assumes \valid(s) ∧ managed_wstring(s) ∧ \valid(size);
61 @ assigns *size;
62 @ ensures managed_string(s) ∧ \result ≡ 0;
63 @ ensures \old(s→str.wstr ≡ NULL) =⇒ *size ≡ 0;
64 @ ensures \old(s→str.wstr 6≡ NULL) =⇒ *size ≡ wcslen(s→str.wstr);
65 @ behavior bad:
66 @ assumes s ≡ NULL ∨ size ≡ NULL;
67 @ assigns *size;
68 @ ensures \result 6≡ 0;
69 @*/
70 errno_t strlen_m(const string_m s, size_t *size) {
71 register size_t n;
72
73 if (!size) ERROR(EINVAL);
74 *size = 0;
75
76 //validate s
77 if (!s){
78 ERROR(EINVAL);
79 }
80
81 if (s→strtype == STRTYPE_WSTR) {

197

82 wchar_t *lp;
83
84 if (!s→str.wstr) { // Null string has length 0
85 *size = 0;
86 return 0;
87 }
88 n = 0;
89 /*@ loop invariant
90 @ lp ≡ s→str.wstr + n ∧ 0 ≤ n ≤ wcslen(s→str.wstr);
91 @*/
92 for (lp = s→str.wstr; n < s→size && *lp; lp++, n++)
93 ;
94 if (n >= s→size) ERROR(EINVAL);
95
96 *size=n;
97 } else if (s→strtype == STRTYPE_NTBS) {
98 char *lp;
99
100 if (!s→str.cstr) { // Null string has length 0
101 *size = 0;
102 return 0;
103 }
104 n = 0;
105 /*@ loop invariant
106 @ lp ≡ s→str.cstr + n ∧ 0 ≤ n ≤ strlen(s→str.cstr);
107 @*/
108 for (lp = s→str.cstr; n < s→size && *lp; lp++, n++)
109 ;
110 if (n >= s→size) ERROR(EINVAL);
111
112 *size=n;
113 } else{
114 ERROR(EINVAL);
115 }
116 return 0;
117} // end strlen_m

Source Code Modifications and Bugs In order to fully prove the safety of managed
string functions, we had to patch the code for various reasons:

• We modeled allocation function realloc as malloc in our tool, thus missing the
fact that calloc returns zero-initialized memory. We patched the source code to
make for this incomplete modeling of realloc.

• Arrays of wchar_t were copied through calls to memcpy, thus requiring a cast
to char*. Although our mixed memory model handles this situation, we did not
try to come up with appropriate lemmas for automatic provers to discover that, with
appropriate preconditions, a string over wide characters is copied this way. Thus we
changed such calls to a new function memcpy_wchar_t which we specified.

• Various calls to deallocation function free made it much more difficult to automat-
ically prove the validity of subsequent accesses to newly allocated memory in the
same region, thus we ignored these calls.

198

Although these modifications change the semantics of the program analyzed, in par-
ticular the one that removes calls to free, proving the resulting program safe was still
challenging. In particular, the first invariant we manually inferred for managed strings was
far from being the actual one ensured by their implementation. Through an iterative process,
we corrected both the invariant and function annotations and we proved implementation re-
spected its annotations. In the process, we uncovered various bugs in the implementation
that can lead to safety violations, plus a few functional bugs and typos that cannot lead
to safety violations, that we do not report here. We report each occurence of a bug once,
although it may appear more than once due to copy-paste.

1. In function makestr, tag STRTYPE_WSTR for wide characters strings is set instead
of STRTYPE_NTBS, for the special case of an empty string. This can lead to safety
violations after field charset is set to a string instead of a wide string.

2. In function makestr, where len is the rounding to the upper nearest multiple
of 4 of strlen(cstr), len is used as size argument to memcpy instead of
strlen(cstr), which can lead to a safety violation.

3. In str2wstr_m, calls to mbstowcs are wrongly supposed to set errno on fail-
ure. This can lead to safety violations if errno’s value is zero, in which case
str2wstr_m returns success code zero while the managed string has not been trans-
formed into a wide managed string.

4. In str2wstr_m, variable ncharset is allocated with a size len, while it should
have size len+1 in order to accomodate the final null character in the string copied.

5. In function csetcharset_m, the call to mbstowcs is missing, which wrongly
causes variable t to be the empty string.

6. In function setmaxlen_m, the nullity test on maxlen should be performed before
so that the function aborts if the size of the managed string is already greater than the
default maximum size. Although the functions analyzed do not directly use this max-
imum size, failure to respect managed strings invariant could lead to safety violations
in client code.

7. In cstrcat_m, code does not guard against the possibility that the newly created
string has a size greater than its maximum size.

8. In cstrcmp_m, allocation is performed with wrong size strlen(cstr) instead
of (strlen(cstr) + 1) * sizeof(wchar_t), which can cause a safety
violation when function mbstowcs is called on the resulting buffer.

9. In strcreate_m, in the case where the call to makestr fails, the return statement
is missing, which causes control-flow to continue with an invalid managed string.

10. In wstrcreate_m, in the case the input string is null, a wrong return of success
is performed before fields charset and maxsize are set, which may cause safety
violations in the client code.

199

11. In cstrslice_m, in the case a wide string s1 is passed in argument, the nullity test
for parameter cstr is missing, which can cause a safety violation when strlen is
applied to NULL.

12. In cstrright_m, the test that s1→size < ilen + s1_size holds before
copying the string is missing, so that a string too long for the actual capacity can be
copied.

13. In wstrright_m, in the case of a plain string argument, test !rv is used instead of
rv != 0 to test for the failure of a call to str2wstr_m. As the result, execution
can only proceed from this point with an incorrect managed string.

For each bug, we patched the library to ensure a correct behavior. Altogether, we re-
ported 45 bugs to the authors of the library at CERT, which confirmed their status and
included the corresponding patches for future releases. To assess the difficulty of finding
these bugs, we also run the bug-finder Coverity on the complete set of 64 functions. It
found 20 errors, 9 of which in the same 49 functions we analyzed: 2 errors are memory er-
rors we found; the 7 remaining errors are related to uses of the deallocation function which
we ignore. In the following, we describe the safety checking of the modified and patched
library.

Results We ran the benchmark with a mathematical model for integers. Results for this
run are summarized in Figures 8.7, 8.8, 8.9 and 8.10. Provers are summarized by their
initial letter: A for Alt-Ergo v0.8, S for Simplify v1.5.4 and Z for Z3 v1.3. Yices v1.0.16
was not precise enough for this benchmark, which implied it unsuccessfully searched for a
proof during the full 10 s time limit for too many VC. As a consequence, it ran too long to
be either practical or competitive with other provers, so we did not try it on the complete
benchmark.

Figure 8.7 shows that no single prover proves all VC. In fact, even their combination
does not prove all VC. While 99.9 % of VC are proved automatically (18,080 VC for a total
of 18,089), 9 VC are not proved automatically:

• In makestr and wmakestr, 2 VC for an intermediate assertion we added are not
proved. They require reasoning about arithmetic with division (coming from bitwise
arithmetic in the program), which provers do not handle well.

• In strdup_m, 4 VC for an intermediate assertion we added are not even provable
with the given annotations. To be provable in theory, they would require specifying
that managed strings respect a relation involving division between their actual and
maximum sizes, which provers do not handle well, thus we did not even write these
annotations.

• In wstrright_m, 3 VC for intermediate assertions we added are not proved. Our
guess is that the number of variables involved in arithmetic relations and the size of
the context leads provers in unsuccessful parts of the search tree.

200

provers

nu
m

V
C

pr
ov

ed

allZSA

18089

0

96%98%97% 99%

Figure 8.7: Proof results

provers
to

ta
l

ti
m

e
el

ap
se

d
(h

)
ZSA

5

4

3

2

1

0

Figure 8.8: Time results

provers

nu
m

V
C

pr
ov

ed

ZSA

200

160

120

80

40

0

44

187

35

Figure 8.9: Provers strength

provers

nu
m

V
C

no
t

pr
ov

ed

ZSA

750

600

450

300

150

0

654

218

402

Figure 8.10: Provers weakness

201

For each one, we provided a manual proof that the corresponding goal holds.
Figure 8.8 presents the total running time for all three provers, which does not exceed 3

hours for each one.
Figure 8.9 and Figure 8.10 show why it is in general a good idea to use a combination of

provers rather than a single prover. Figure 8.9 presents the number of VC that each prover
is the only one to prove. Notice that using all 3 provers is indeed mandatory to reach an
almost complete automatic proof. Figure 8.10 presents the number of VC that each prover
does not prove although the VC is proved by some other prover.

8.2.3 Related Works

In his Master’s thesis [164], Starostin fully verified a string library he implemented in C0.
While our work focuses on automatic verification of safety only, his work is a manual
verification inside Isabelle/HOL of the complete behavior of functions. Also, he codesigned
the implementation and the proof, while we want to check the safety of existing libraries.

In his PhD thesis [143], Norrish presents a complete verification of the behavior of func-
tion strcpy as implemented by Kernighan and Ritchie [109]. It is in fact the same as the
one still implemented in most systems, like the one in MINIX 3 presented in Section 8.2.1.
His work is a manual verification inside HOL based on a deep embedding of C semantics,
but he still manages to automate the proof of some properties involving arithmetic, most no-
tably safety properties and separation properties. However, he notices the poor performance
of automated techniques in HOL on the particular verification goals he generates.

8.3 Benchmarks of Vulnerabilities

We ran our tool on two benchmarks of real code vulnerabilities, the Verisec Suite and
Zitser’s benchmark. These benchmarks consist in snippets of open-source code contain-
ing buffer overflow vulnerabilities, together with their patched versions. Vulnerabilities are
identified by their CVE number (ex: CVE-2004-0940). They are extracted from popular
open-source server programs such as apache, samba and sendmail. Variations over each
vulnerability are presented as a set of “bad” and “ok” snippets of code, usually in pairs, so
that each “ok” version corresponds to the patch of a “bad” version. The two benchmarks
differ in the number and difficulty of snippets:

• The Verisec Suite [112] targets 22 vulnerabilities in 12 programs, for a total of 144
“bad” and 140 “ok” snippets of code. Each snippet has a size between 16 and 233
loc, with an average of 69 loc, not counting include files.

• Zitser’s benchmark [185] targets 14 vulnerabilities in 3 programs, with a “bad” and
an “ok” snippet of code for each. Each snippet has a size between 218 and 777 loc,
with an average of 506 loc, not counting include files.

As expected from these figures, Zitser’s benchmark is more difficult to verify than the
Verisec Suite, while the latter allows a finer analysis of results due to its large number
of snippets with small variations. Although these snippets come equipped with a main

202

function, we do not perform any global analysis on programs. Indeed, our target is to test
the performance of our techniques to check safety both automatically and modularly, not
needing the complete program. Thus, each function is analyzed independently of its calling
context, in reverse topological order of the call-graph (i.e., leaf functions first).

8.3.1 Verisec Suite

Source Code and Annotations To give an idea of the kind of programs analyzed, here
is the code of an average size “bad” snippet close-angle_ptr_two_tests_bad.c:

1 int main (void)
2 {
3 char buffer[BASE_SZ+1];
4 char input[BASE_SZ+70];
5 char *buf;
6 char *buflim;
7 char *FRAMA_C_STRING in;
8 char cur;
9 int anglelev;
10 int skipping;
11
12 input[BASE_SZ+70−1] = EOS;
13
14 in = input;
15 buf = buffer;
16 buflim = &buffer[sizeof buffer − 1];
17 skipping = 0;
18
19 cur = *in;
20 while (cur != EOS)
21 {
22 if (buf >= buflim)
23 skipping = 1;
24 else
25 skipping = 0;
26
27 if (cur == ’<’)
28 {
29 if (!skipping)
30 anglelev = 1;
31 }

32 else
33 goto out;
34
35 if (!skipping)
36 {
37 *buf = cur;
38 buf++;
39 }
40
41 out:
42 in++;
43 cur = *in;
44 }
45
46 if (anglelev > 0)
47 {
48 *buf = ’>’;
49 buf++;
50 }
51
52 /* BAD */
53 *buf = EOS;
54 buf++;
55
56 return 0;
57 }

The /* BAD */ comment in the code identifies a possibly out-of-bound buffer ac-
cess, that can indeed be triggered on some inputs. The corresponding “ok” snippet
close-angle_ptr_two_tests_ok.c only differs from one line of code:

16 buflim = &buffer[sizeof buffer − 2];

First, we added FRAMA_C_STRING user annotations in the code, like the annotation
on line 7 in the code of close-angle_ptr_two_tests_bad.c. Overall, we added
389 FRAMA_C_STRING annotations denoting those parameters, returns and variables that
should be strings.

203

For some cases where our inference technique does not generate precise enough anno-
tations, we selectively added manual annotations in the code, in the form of assertions. E.g.,
on the code of close-angle_ptr_two_tests_ok.c, we added the following asser-
tion at line 36, to palliate the lack of control path sensitivity of our abstract interpretation
pass:

36 //@ assert buf < buflim;

We did not complete this process until all VC are proved, for lack of time. During
this process, we found 16 bugs in the “ok” snippets, where a buffer was either incorrectly
not null-terminated, or a buffer possibly accessed beyond its bounds. We reported the cor-
responding patches to the authors of the suite, which recognized their suite was mostly
designed to distinguish between “ok” and “bad” accesses at one particular point in each
program, not necessarily granting safety of “ok” snippets.

Setup of Experiments We chose a mathematical model for integers. Annotations inferred
by abstract interpretations were not reproved by deductive verification. Finally, we selected
the following set of options:

• provers Alt-Ergo v0.8, Simplify v1.5.4 and Z3 v1.3: these are the provers that perform
best on our verification conditions, denoted A, S and Z respectively. In addition, we
ran Alt-Ergo with some heuristics for selecting hypotheses (denoted AS), triggered
by positioning option −select 1 [49, 46], which focuses proof search on the goal
and consequently allows to find easy proofs more quickly.

• annotation inference ABSSTRONG : it is the most precise annotation inference
method that scales to these functions of up to 200 loc with many conditions and loops.
The cheaper ABSINTERP and ABSELIM are not precise enough in many cases, and
the more precise ABSWEAK does not scale.

• abstract domain of octagons: it is the most appropriate abstract domain for these
tests, whose safety essentially depends on relations between pairs of variables. It
is cheaper that the abstract domain of polyhedrons, and it leads to better widening
results in many cases.

Results Due to current limitations in our tool, only 105 “ok” snippets out of 140 can be
analyzed. On these snippets analyzed, Figure 8.11 shows that, while 99.7 % of VC are
proved automatically (38,968 VC for a total of 39,080), 112 VC are not proved automati-
cally. Overall, the snippets fall into the following cases:

• 35 snippets cannot be analyzed: 14 tests reach the allowed memory bound (0.25 M)
or time bound (10 mn) during generation of annotations, 1 contains backward gotos,
the remaining ones trigger limitations in our implementation;

• 78 snippets are completely proved;

204

provers

nu
m

V
C

pr
ov

ed

AllZSASA

39080

0

99%98%98%
93%

99%

Figure 8.11: Proof results (105/140)

provers

to
ta

l
ti

m
e

el
ap

se
d

(h
)

ZSASA

5

4

3

2

1

0

Figure 8.12: Time results (105/140)

provers

nu
m

V
C

pr
ov

ed

ZSASA

200

160

120

80

40

0

88

7

44
50

Figure 8.13: Provers strength (105/140)

num VC not proved

nu
m

te
st

s

≥87654321

5

4

3

2

1

0

Figure 8.14: Unproved VC (27/140)

annotations

nu
m

re
la

ti
on

s

I⇐I⇒PostPre

2200

0

263

1563

2126

432

Figure 8.15: Verisec annotations

annotations

nu
m

re
la

ti
on

s

I⇐I⇒PostPre

250

0

145

233

177

46

Figure 8.16: Zitser annotations

205

• 27 snippets are partly proved. Figure 8.14 shows that, among these tests, a majority
have only a few unproved VC, which could be dealt with manually, either to add
intermediate assertions to help provers, or by review.

Figure 8.12 presents the total running time for all four provers, which only exceeds 3
hours for Alt-Ergo with selection of hypotheses, because some goals then become unprov-
able, which causes the prover to reach the 10 s timeout while searching for an impossible
proof.

Figure 8.13 shows why it is in general a good idea to use a combination of provers rather
than a single prover. It presents the number of VC that each prover is the only one to prove.
Notice that using all 4 provers, including Alt-Ergo with selection of hypotheses, is indeed
mandatory to decrease the number of unproved VC.

Figure 8.15 presents the number of relations ((dis-)equalities and inequalities) in an-
notations inferred. Columns Pre and Post report the number of relations in preconditions
and postconditions inferred, while columns I⇒ and I⇐ report the number of relations in
loop invariants inferred respectively by forward abstract interpretation and backward AB-
SSTRONG algorithm. Formulas in I⇐ do not repeat those found in I⇒. The number of
relations is larger in postconditions because they are built as a disjunction of cases for each
return statement in the source program, and in loop invariants because they mention local
variables, both from the source program and generated by our instrumentation.

8.3.2 Zitser’s Benchmark

We tried generating annotations using forward abstract interpretation based on polyhedrons
and algorithm ABSSTRONG. Our tool fails short of analyzing any of the 14 examples of the
benchmark: 9 tests reach the allowed memory bound (0.5 M) or time bound (1 h) during
generation of annotations, 1 contains backward gotos, the 4 remaining ones trigger limita-
tions in our implementation. Although the verification is not complete, we can still report
in Figure 8.16 the number of relations ((dis-)equalities and inequalities) in annotations in-
ferred.

Despite these problems, there is no fundamental reason why our techniques should not
apply to programs in Zitser’s benchmark. What is certainly needed is a better quantifier
elimination procedure, like the one presented by Monniaux [134], for which it would also
make sense to generate a more compact formula using efficient weakest preconditions [119].
In particular, we manage to translate pointer casts in C programs into accesses to low-level
accesses to memory. It is left to future work to analyze and prove these programs using
Frama-C.

8.3.3 Related Works

Zitser’s benchmark has had a great influence on the design of tools for safety checking of C
programs. This was partly due to the integration of Zitser’s programs in the SAMATE Refer-
ence Dataset used to compare tools for software assurance. By showing in their study [185]
that none of the five modern static analysis tools tested was better than a random choice

206

when discriminating between an unsafe program and its patched version, Zitser et al. have
set a milestone for such tools. Since then, various tools have claimed to be able to improve
on their results:

• Hackett et al. present a tool based on SAL lightweight annotations [84] that succeeds
in discriminating most Zitser’s test cases. However, since they use unsound static
analysis techniques, they cannot make any claim about the safety of the patched pro-
grams.

• Chaki and Hissam present a tool [34] based on software model checking that im-
proves on the confusion rate. They obtain that whenever their tool detects a potential
buffer overflow in an unsafe program, it proves safety of the same buffer access in
the patched version. Unfortunately, their tool also has lower detection and resolution
rates than the two best tools presented in the study of Zitser et al., namely PolySpace
and Splint.

The Verisec Suite was developed with the same interface as Zitser’s benchmark, to
provide many simpler and diverse examples more amenable to verification. In particular,
it makes it easier to bound the size of inputs for model checkers. Hart et al. manage to
discriminate 49 tests out of 59 taken from the Verisec Suite by applying template-based
model checking, where models of the program invariants are given by the programmer [86].
Like Hackett et al., they only report their results on these identified potential overflows in
the unsafe programs, not on all possible overflows. Contrary to our work, they perform
a global analysis that takes profit from the simple crafted calling context of functions. In
particular, they exploit the small bound on the size of buffers, which is expected in software
model checking.

8.4 Chapter Summary

Experiments on real programs show that automatic and modular generation of annotations
is effective. It allows us to prove the safety of most MINIX 3 string library functions and
half “ok” snippets from the Verisec Suite of real vulnerabilities, while the remaining snip-
pets analyzed has only a few VC not proved, which allows a manual review. Experiments
also show that automatic separation of memory regions is effective. Without it, the safety
of MINIX 3 string library functions and “ok” snippets from the Verisec Suite could not
have been shown. It is also crucial in proving the safety of CERT managed string library
functions. Finally, appropriate translation of unions and casts for deductive verification is
successfully used both in proving the safety of CERT managed string library functions and
in the failed attempts to prove safety of “ok” snippets from Zitser’s benchmark.

A lesson learned from these experiments is that SMT automatic theorem provers are
usually best used in combination, since each one may prove some VC no other prover
handles. This extends to strategies in provers that simplify the goal at hand, as shown
with prover Alt-Ergo and its option that prunes hypotheses. The particular set of provers
selected for these experiments was chosen for their ability to handle axiomatized theories
together with arithmetic, which is not the case of saturation-based provers [56]. It slighlty

207

differs from the set of provers chosen in an experiment to show safety properties of SPARK
Ada programs [100], which compared the results of Yices, CVC3, Simplify and Praxis’s
Simplifier, because Alt-Ergo, Z3, Yices and Simplify were found to be more effective than
CVC3 on our VC. We did not experiment with Praxis’s Simplifier.

As an aside, these experiments allowed us to discover a number of bugs in both CERT
managed string library and Verisec Suite.

208

Conclusion

209

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire
plus courte.

Blaise Pascal

Retrospective A few years before this thesis began, the results of two developments of
specialized static analyzers based on abstract interpretation notably raised the state-of-
practice in static safety checking of C programs. Both tools were developed for specific
large programs written in a restricted subset of C (see Section 1.3.2).

2003 - Cousot et al. [21] report on static safety checking of 100+ kloc of command-
control software written in C for the new airplane A380 by Airbus. This is the first time
abstract interpretation is shown to scale to such large programs for checking non-trivial
properties. Their tool, ASTRÉE, completely proves that the program analyzed is free from
a set of runtime errors. This level of precision is reached thanks to the restricted subset
of C in which command-control software is written, which is almost alias-free, and to the
special-purpose abstract domains developed for this kind of programs.

2004 - Venet and Brat [174] report on array bound checking of 280+ kloc of NASA
software written in C, with a level of precision of 80%. Their tool, C GLOBAL SUR-
VEYOR, is specialized for NASA programs in the MPF family, which are written in an
object-oriented style. Although not proving 100% of checks, their work sets a new record
for scalability of abstract interpretation for checking non-trivial properties.

In order to assess the efficiency of the many tools available for static safety checking
of arbitrary C programs, most of them being academic tools, Zitser et al. conducted an
evaluation with unambiguous conclusions, that initiated the search for better techniques
and tools (see Section 8.3.3).

2004 - Zitser et al. report on benchmarking various academic and industrial tools to
check safety of C programs with real vulnerabilities extracted from well-known server pro-
grams [185]. Their main conclusion is that no tool discriminates between the unsafe and
patched versions of the same programs.

2005 - NIST initiates the SAMATE project (see Section 1.1.4), most notably to support
the improvement of tools for static safety checking of C programs. It creates the SAMATE
Reference Dataset (SRD), a list of test cases for software assurance, most of which relate
to safety vulnerabilities in C programs. Zitser benchmark belongs to the SRD.

Meanwhile, a few research projects succeeded in proving memory safety of unrestricted
C programs with aliasing, strings and complex control-flow. These results were obtained
on much smaller programs than those targeted with ASTRÉE and C GLOBAL SURVEYOR

(see Section 8.2.3).
2003 - Dor et al. [62] apply integer constraint solving to check memory safety of C

programs with strings. Their tool, CSSV, handles small string-manipulating functions from
Airbus, for a total of 400 loc. This is the first time a sound tool taking aliasing into account
manages to treat such delicate programs.

211

2005 - Beyer et al. [20] apply their model checking tool BLAST to check memory safety
of C programs, expressed as checks in source code inserted by safe compiler CCured. They
manage to discharge roughly half the runtime checks inserted in small C programs of a few
hundred lines.

Contribution of This Thesis This thesis targets static safety checking of arbitrary C pro-
grams by deductive verification. While the current focus on industry is on static analysis
for verification, the motivation behind our choice of deductive verification as technological
core is two-fold:

• modularity - Although static analysis techniques and tools work on complete pro-
grams, the next generation of tools should be modular, i.e., they should be able to
check the safety of individual functions and modules (group of functions). This is
driven both by the fast-pace growth of programs, that cannot be matched by simi-
lar gains in tool scalability, and the demand for early safety checking by developers
themselves, before the complete program is built.

• precision - The level of complexity of arbitrary C programs can only be matched by
completely modeling the behavior of an execution inside the analyzer, which is what
deductive verification provides.

The need for modularity and precision is at the root of many existing tools for verifica-
tion, which are also based on deductive verification: HAVOC, VCC, EAU CLAIRE, KEY-C,
PERFECT C. This thesis presents techniques for static safety checking of industrial C pro-
grams by deductive verification. More precisely, we propose an answer to each of the three
main problems one must face when trying to apply deductive verification to industrial C
programs [93]:

• annotation generation - Deductive verification without the ability to automatically
generate the necessary logical annotations may only be undertaken for very few
projects, due to the cost of manually adding annotations.

In Chapter 5, we present a technique to generate logical annotations based on abstract
interpretation and weakest preconditions. In particular, it generates precise sufficient
function preconditions, which has not been done before.

• modular memory separation - Fine memory separation is the only way to generate
verification conditions that can be verified by automatic provers. This is especially
true in a context where annotations are automatically generated.

In Chapter 6, we present an alias control technique based on Talpin’s alias analysis,
a context sensitive variant of Steensgaard’s type-based alias analysis. It is the first
instance of an alias analysis that generates necessary function preconditions of cor-
rectness, thus explicitly dedicated to deductive verification. This technique allows
one to express separation properties clearly in verification conditions, in a way that is
optimal for automatic provers.

212

• support for unions and casts - Industrial C programs do use the low-level memory
management capabilities of the C language, most notably unions and casts of point-
ers. Failure to support these features in past tools has been recognized as the major
barrier to adoption of these tools in an industrial context.

In Chapter 7, we present a mixed typed and byte-level memory model that allows
one to handle unions and casts in deductive verification, while keeping as much as
possible the benefits of the typed model. It relies on the modular memory separation
technique mentioned above.

These techniques have been implemented in Frama-C [73], an open-source platform for
modular analysis of C programs, and the Why Platform [69], an open-source platform for
deductive verification of programs.

We manage to check the safety of existing C string libraries and to discriminate between
unsafe and patched versions of the same programs in benchmarks of vulnerabilities.

Finally, safety is only the first “easy” step in dependability of programs. The techniques
we present and deductive verification in general allow one to prove functional properties as
well. It remains to be seen how to follow this path in practice.

Research Perspectives The techniques we developed in this thesis still suffer from vari-
ous limitations:

• The annotation inference technique described in Chapter 5 depends on quantifier
elimination for rational linear arithmetic, for which all known algorithms have worst-
case doubly exponential complexity. Although it is possible to reduce this complexity
in practice by restricting the use of quantifier elimination to simplified formulas (see
Section 5.3.3), more efficient quantifier elimination methods are needed to scale to
larger programs. In this respect, recent results show great promise [134].

• The region inference technique described in Chapter 6 is incomplete (see Sec-
tion 6.3.5), which means that a program containing a function such as swap cannot
be analyzed with region inference. A solution could be to manually express con-
straints between regions in annotations in such rare cases, much as what is done in
Cyclone [104]. The status of these regions in ACSL and operations on those remains
to be investigated.

• The separation preconditions generated by both region inference in Chapter 6 and
interfacing of a low-level memory model with a typed memory model in Chapter 7
result in hard verification conditions for automatic provers. Developing a decision
procedure for sets inside SMT-solvers would certainly ease the proof of such verifi-
cation conditions.

This thesis would not be complete without an account of the current focus in research
on static safety checking of C programs. Indeed, the state-of-the-art changed considerably
in the past three years, this thesis’s time.

Combination of techniques is a very active line of research. Abstract interpretation
is used everywhere to compute invariants and discharge simpler checks. Symbolic model

213

checking and deductive verification compete to provide an automatic proof that remaining
checks hold.

Heap analysis is probably the most researched area in static safety checking. It con-
sists in inferring and checking invariants on the heap structure. Separation logic is the key
technology enabling these successes. As more decision procedures are built for separation
logic, it might be profitable to generate the separation preconditions generated by our mod-
ular inference of region in this logic rather than as conjunctions of separated predicates in
first-order logic, as we do it currently.

Finally, the emergence of certified compilers makes it all the more useful to have source
programs checked safe, knowing that a certified compiler cannot introduce any error after-
wards.

Industrial Trends This thesis was supported by a CIFRE fellowship from Orange Labs,
as well as ANR project CAT (C Analysis Toolbox) involving industrial users such as Airbus,
Dassault Aviation and Orange Labs. This project, which lead to the development of Frama-
C, raised interest in the industry. Support and development for Frama-C will continue inside
ANR project U3CAT, with even more industrial partners.

An implementation of the techniques described in this thesis is available in the Frama-C
Tertium release, issued in October 2008. Early experiments at Airbus and Dassault Aviation
have confirmed the interest for the techniques of annotation and region inference developed
in this thesis.

At least one lightweight annotation language for C programs is now widely used in
industry at Microsoft: SAL properties expressed as declaration specifiers allowed to dis-
cover +3000 buffer overflows in the code of Microsoft Vista Windows release [84], which
prompted their adoption in the normal development process and lead to far fewer security
problems with recent products.

Spec# for C is another annotations language for C developed in Microsoft. Using
SAL and Spec# annotations, the Hyper-V project between University of Saarbrücken and
Microsoft targets safety checking and concurrency properties verification of the 60 kloc
Microsoft Hyper-V virtualization product shipped as a component of Windows Server
2008 [43].

Meanwhile, tools based on abstract interpretation are drawing more and more attention
from the industry, due to the level of automation (w.r.t. deductive verification) and the guar-
antees (w.r.t. bug finders) they provide. This is currently leading to their industrialization,
as exemplified by Astrée [21], Clousot [66], CodeHawk [3], Frama-C [73], F-Soft [99],
Penjili, Sparrow [183].

A Few Final Words This thesis began in 2006, 10 years after Aleph One happily broad-
casted on the Internet the details of how to smash the stack for fun and profit [144], based
on vulnerabilities in C programs. It ends in 2008, 20 years after the Morris worm, the first
worldwide Internet attack partly based on a buffer overflow in a C program. Since then,
attacks based on safety vulnerabilities in C programs have cost businesses billions of dol-
lars, while their anonymous authors remained hidden behind the names of the worms they

214

created: Code Red, SQL Slammer, Blaster, Sasser, Witty worm, Zotob, etc.
Despite much efforts from researchers, companies and governments, safety of C pro-

grams still represents a challenge. In 2007, 13 of the SANS Institute Top 20 Software
Vulnerabilities are still related to buffer overflows or memory corruption in C programs.
In 2008, an analysis of the first 60 Ubuntu Security Notices, from the leading Linux dis-
tribution Ubuntu, shows that 45% of vulnerabilities stem from buffer overflows. Current
software practice, based on compliance with a qualified process and validation by testing
will not be sufficient to assess the dependability of software systems, as they keep growing
in size: currently, C programs in phones are as big as 100k loc, those in planes contain
millions loc and those in PCs tens of millions loc.

It is not possible to get rid of this safety problem, as some pretend to do, by saying
that it has been solved in many modern programming languages. Despite all its safety
issues, C still appears to be the first most demanded general-purpose programming language
from programmers in job offers on the Web in 2007 [64]. Moreover, many aerospace,
avionics and defense industries currently switch from the safer language Ada to C to benefit
from better compiler and tool availability and better education and training support. Broad
application of C to program safety critical systems requires the support from new techniques
and tools.

Finally, I would like to pay a tribute to a few researchers which, 30 years ago, in 1978,
laid down the basis the present work. At POPL conference, in Tucson, Arizona, three
seminal works by Reynolds, Cousot and Halbwachs, German defined respectively Syntactic
Control of Interference, Automatic Discovery of Linear Restraints Among Variables of a
Program and Automating Proofs of the Absence of Common Runtime Errors. Indeed, my
thesis is an attempt at building an effective tool for static safety checking of programs, based
on deductive verification and automatic provers, much as in the Stanford Pascal Verifier of
German et al.. The first key ingredient is a precondition inference technique that strongly
relies on abstract interpretation to generate linear invariants, which was pioneered by the
work of Cousot and Halbwachs. The second key ingredient is an aliasing control technique
that originates in the work of Reynolds.

Ironically, while their work targeted array bound checking as a means to “simply” save
runtime checks in Pascal programs, mine and other current work on similar buffer overflow
issues more tragically attempt to prevent attacks on computer systems, due to the unsafe
nature of C programs. It is all the more ironic to realize that it is during the very same year
1978 that Kernighan and Ritchie gave an initial definition of the C programming language.

215

216

Appendix A

Résumé en Français

217

A.1 Introduction

Sûreté de fonctionnement des programmes C Par rapport aux langages plus sûrs
développés depuis, le langage C créé à la fin des années 70 offre de nombreuses facil-
ités pour manipuler efficacement la mémoire de l’ordinateur et pour s’interfacer avec des
composants matériels. Ces facilités en font le langage préféré pour la programmation sys-
tème, au détriment de la sécurité dans sa composante sûreté de fonctionnement. En effet,
les mêmes facilités de programmation bas-niveau rendent difficile la protection des pro-
grammes contre des utilisateurs malveillants. Elles rendent même possible la prise de con-
trôle à distance d’un ordinateur par un attaquant. C’est ce qui se passe avec la faille bien
connue de dépassement de capacité ("buffer overflow") exploitée dans des attaques restées
célèbres affectant des millions d’ordinateurs personnels à travers Internet, telles que Code
Red (2001), Blaster (2003) ou Sasser (2004). Le coût humain, économique et sociétal de
cette vulnérabilité des systèmes informatiques pousse les chercheurs, les entreprises et les
gouvernements à accroître l’effort global en vue de garantir la sûreté de fonctionnement de
ces systèmes, à travers notamment une meilleure identification des problèmes (base de con-
naissance CWE, base de problèmes CVE) et un partage des meilleures pratiques et outils
(conférences scientifiques, projet SAMATE).

Problèmes de sûreté du langage C Malgré une standardisation précoce en 1978, et dif-
férentes actualisations depuis, de nombreux dialectes légèrement différents du C standard-
isé coexistent aujourd’hui (par ex. : Visual C, GNU C), ce qui complique l’analyse des
programmes C. De plus, le standard laisse un certain nombre de choix importants au com-
pilateur, l’outil qui transforme le texte d’un programme C en un programme exécutable par
une machine (par ex. : l’ordre d’évaluation des arguments d’une fonction). Un même pro-
gramme compilé par deux compilateurs différents peut donc se comporter de deux façons
différentes. Enfin, il n’existe pas de sémantique formelle standard du langage C, donnée
dans un langage logique non ambigu, mais seulement un texte en langue naturelle (l’anglais)
sujet à interprétation. Norrish dans sa thèse de doctorat [143] et Leroy et al. dans la con-
struction d’un compilateur certifié [23, 22, 125] définissent une sémantique formelle du
langage C pouvant être mécanisée, c.à.d. exploitée dans des programmes d’analyse.

Par rapport aux langages assembleurs, le langage C définit une abstraction des données
sous forme de types et une abstraction du contrôle sous forme de graphe d’appel, mais il
ne garantit pas le respect de la première, ce qui permet en pratique de s’affranchir com-
plètement des deux abstractions. Afin de protéger un programme contre les attaques les
plus graves qui violent l’abstraction du contrôle, par ex. les prises de contrôle à distance,
il suffit de prouver la sûreté des accès mémoire. C’est pourquoi nous avons choisi de nous
concentrer sur la sûreté des accès mémoire dans cette thèse.

Différentes techniques permettent de limiter les conséquences des corruptions mé-
moire : empêcher l’exécution de code sur la pile, adopter une programmation défensive
pour les fonctions de bibliothèque standard (Libsafe [9]), distribuer de façon aléatoire les
adresses des programmes (PaX), détecter les réécritures des adresses de retour de fonc-
tion (StackGuard, StackShield), encrypter la valeur des pointeurs (PointGuard [53]), instru-
menter le code à la compilation pour vérifier la validité des accès mémoire (Safe C [5],

218

CCured [138]). Ces techniques partagent les mêmes limitations : elles doivent être mises
en place par chaque utilisateur d’un programme ; en dehors de l’instrumentation à la compi-
lation, elles sont incomplètes ; elles n’empêchent pas l’apparition d’erreurs mais seulement
leur exploitation. Pourtant, ce sont ces techniques qui sont les plus efficaces en pratique
aujourd’hui.

D’autres initiatives ont pour objectif d’améliorer le langage C afin de rendre les accès
mémoire plus sûrs. Les propositions les plus intrusives sont à la fois les plus efficaces et
les plus coûteuses à mettre en place. En ordre croissant d’efficacité et de coût, ces propo-
sitions sont : l’utilisation de bibliothèques standard sûres, notamment pour les chaînes de
caractères (The Better String Library, SafeStr, Vstr, Erwin, CERT managed string library) ;
la restriction à un sous-ensemble du C en excluant certaines facilités problématiques telles
que les unions et les casts (MISRA-C [133], C0 [116]) ; la définition d’un dialecte plus
sûr inspiré du C (Cyclone [104], BitC [160], D [16]) ; l’ajout d’annotations logiques pour
spécifier les comportements des programmes (Deputy [184], SAL [84]). Les techniques
d’annotation notamment ont permis récemment de corriger un grand nombre de failles liées
aux accès mémoire dans des programmes industriels [84].

Afin de prouver statiquement (avant exécution) la sûreté de fonctionnement des pro-
grammes C existants, d’autres techniques et outils ont été développés. Il existe trois grandes
familles de techniques, suivant qu’elles résolvent le problème d’exploration d’un nombre
infini d’états du programme par énumération, abstraction ou déduction.

• énumération - Ces techniques explorent systématiquement tous les états en se limitant
à une taille de problème finie. C’est le cas des tests [107], la technique de vérification
la plus simple et la plus utilisée, où la notion de couverture remplace l’exhaustivité.
C’est le cas aussi dans la simulation, la vérification de modèle [42] (VeriSoft [75]), la
vérification de modèle symbolique (Cadence Incisive, CBMC [40], F-Soft [99]).

• abstraction - Ces techniques construisent une abstraction finie du programme adaptée
au problème à résoudre. D’une part, la définition d’abstraction sûres par interpréta-
tion abstraite [51] permet de développer des vérificateurs pouvant être utilisés comme
des détecteurs de bogues (Astrée [21], C Global Surveyor [174], CodeHawk [3],
Clousot [66], Penjili, The Mathworks PolySpace, Sparrow [183]). D’autre part,
l’utilisation d’abstraction non sûres par analyse statique permet de développer des
détecteurs de bogues plus efficaces (Microsoft Prefix/Prefast, Fortify SCA, Gram-
matech CodeSonar, Klocwork Insight, Coverity Prevent).

• déduction - Ces techniques reposent sur la génération d’obligations de preuve
(logique de Hoare [89], calcul de Dijkstra [59]), des formules logiques dont la va-
lidité garantit la correction du programme, validité qui peut être prouvée grâce à des
prouveurs de théorèmes. Suivant l’outil, différentes logiques sont utilisées : logique
classique du premier ordre (Frama-C [73], VCC [43]), logique dynamique du pre-
mier ordre (Key-C [137]), logique de séparation (SLAyer [182]). Certains prouveurs
sont interactifs (Coq [19], HOL [142] , Isabelle/HOL [141], PVS [145]) et d’autres
automatiques (Alt-Ergo [46], CVC3 [12], Simplify [57], Yices [63], Z3 [135]).

219

Objectifs de la thèse et résultats obtenus Seule la découverte de techniques de vérifica-
tion modulaires et automatiques permettra de s’adapter à l’accroissement continu de la taille
des systèmes logiciels. Cette thèse propose de s’appuyer sur les techniques de vérification
déductive pour y parvenir. Plus précisément, nous répondons aux trois problèmes posés par
l’application de la vérification déductive aux programmes C industriels [93], de manière
modulaire et automatique : la génération d’annotations, la séparation de la mémoire en
régions disjointes, le traitement des unions et des casts.

A.2 Opérations entières et accès mémoire

A.2.1 Définition d’un langage intermédiaire

Il existe de nombreux langages intermédiaires pour faciliter la compilation
(GENERIC [163], SIMPLE [87], MSIL [39, 131]) et l’analyse (CIL [139], Newspeak [96],
Cminor [22], C0 [116]) de programmes C. Nous définissons un langage intermédiaire
JESSIE qui présente deux nouveautés : il réussit à conserver des types de données structurés
tout en les simplifiant considérablement, et il combine des traits opérationnels hérités
du C avec des traits logiques hérités des langages d’annotations de Caduceus [68] et
Krakatoa [129], eux-mêmes hérités de JML [115] (JAVA Modeling Language).

Les types de données de JESSIE se répartissent en types de base, essentiellement les
rangées entières similaires aux types entiers d’ADA, et les types structurés agrégés en
tableaux et ne pouvant être accédés que par pointeur. Cela réduit la syntaxe des accès
mémoire à une succession d’opérations arithmétiques sur des pointeurs et d’accès à des
champs de structure à partir d’une variable, par ex. (x⊕i).m, avec x une variable de type
pointeur, i un terme de type entier et m un champ de structure. La syntaxe abstraite du
langage comporte ainsi des types, des termes, des instructions, des structures de contrôle et
des entités globales (variables et fonctions). Des règles de typage permettent de définir pré-
cisément un certain nombre de contraintes à respecter pour écrire des programmes JESSIE

valides. Le modèle mémoire du langage JESSIE comporte trois types de données : les vari-
ables globales, les variables locales et la mémoire, qui regroupe les données accédées par
pointeur. Afin de concilier l’expressivité du modèle mémoire réaliste, qui considère toute la
mémoire comme un grand tableau d’octets, et la précision du modèle mémoire par blocs, qui
découpe la mémoire en blocs disjoints incomparables, nous définissons un nouveau modèle
mémoire intermédiaire qui associe une adresse à chaque bloc. Nous définissons l’exécution
d’un programme JESSIE à l’aide d’une sémantique naturelle basée sur ce modèle mémoire,
qui différencie clairement les exécutions correctes, les exécutions en erreur et les exécutions
qui ne terminent pas.

La traduction d’un programme C en un programme JESSIE utilise comme étape inter-
médiaire le langage CIL, une forme de syntaxe abstraite encore très proche du C. La traduc-
tion de C à CIL préexistante impose un certain nombre de choix d’implémentation, comme
l’ordre d’évaluation des arguments. Nous présentons des règles précise pour la traduction
de CIL à JESSIE, de telle sorte qu’un programme C traduit en JESSIE et interprété grâce à la
sémantique de JESSIE ait le même comportement que s’il était exécuté après compilation sur
une machine avec mémoire infinie. Cette traduction, qui exclut pour l’instant les flottants et

220

les pointeurs de fonction, permet de prouver la sûreté de fonctionnement d’un programme C
en analysant sa version équivalente en JESSIE. L’expression de propriétés des programmes
JESSIE est facilitée par l’inclusion d’entités logiques dans le langage : types logiques, ter-
mes logiques, propositions, assertions, invariants de boucles, fonctions logiques, prédicats,
contrats de fonction. Ce dernier se décompose en précondition, postcondition et condition
d’effets. Les annotations logiques du programme C exprimées en ACSL [14] (ANSI C
Specification Language), sont également traduites vers des entités logiques en JESSIE.

Après analyse du programme JESSIE, sa traduction en un programme WHY permet
d’appliquer les techniques habituelles de vérification déductive [67, 68] : des obligations
de preuve sont générées et leur preuve garantit la sûreté de fonctionnement du programme
JESSIE équivalent, et donc du programme C original.

A.2.2 Preuve de la sûreté des opérations entières

Le type de données le plus essentiel en programmation est le type des entiers. La plupart
des techniques d’analyse de programme ont d’ailleurs été développées initialement pour
des programmes manipulant seulement des entiers. La sûreté de fonctionnement de ces
programmes en JESSIE est garantie par l’absence de débordements entiers et de division (ou
modulo) par zéro, ce qui peut s’exprimer par des assertions logiques dans les programmes.
Prouver ces assertions par interprétation abstraite ou vérification déductive garantit donc la
sûreté de fonctionnement du programme.

La théorie de l’interprétation abstraite repose sur la définition de valeurs abstraites qui
surapproximent les valeurs concrètes manipulées par le programme. Les opérations con-
crètes du programme sont elles-aussi surapproximées par des opérations abstraites sur ces
valeurs abstraites. La précision et l’efficacité de la construction d’un modèle abstrait du
programme dépendent du choix du domaine abstrait qui représente les valeurs abstraites :
les domaines non relationnels décrivent des valeurs individuelles (signe, intervalles, con-
gruences) ; les domaines relationnels décrivent les relations entre au moins deux variables
(DBM [60], octogones [132], égalités linéaires [108], polyèdres [52, 44]) ; les domaines
produits combinent les résultats de plusieurs domaines (produit cartésien [50], produit ré-
duit [50], complétion disjonctive [50], produit logique [80]). Nous décrivons l’interprétation
abstraite intraprocédurale des programmes JESSIE sous forme de règles d’inférence.

La vérification déductive repose sur les règles de la logique de Hoare, qui donnent
la possibilité de raisonner sur les opérations d’un programme complètement annoté. Les
calculs par plus-faibles-préconditions ou plus-fortes-postconditions de Dijkstra réduisent
les besoins d’annotations aux seuls invariants de boucles et contrats de fonction. Nous
décrivons un calcul de plus-faibles-préconditions des programmes JESSIE sous forme de
définition de fonction par récurrence structurelle.

A.2.3 Preuve de la sûreté des accès mémoire

En vue de prouver la validité des accès mémoire, nous définissons un encodage local du mé-
moire mémoire de JESSIE, qui réduit le nombre de variables de trois à deux dans les asser-
tions générées, par rapport à l’encodage naturel. En effet, comme pour l’absence d’erreurs

221

1 define paths-may-overlap:
2 input chemins π1 et π2

3 output si oui ou non π1 et π2 représentent des zones mémoires non disjointes
4 match (π1,π2) with
5 (1) | (x,x)→ return true
6 (2) | ((_⊕_)._,(_⊕_)._)→ return true
7 (3) | (x,_) | (_,x)→ return false

Figure A.1: Superposition de chemins

entières, nous pouvons exprimer la validité des accès mémoire par des assertions logiques
dans les programmes, qui prennent le plus souvent la forme d’inégalités entre deux vari-
ables, par ex. i ≤ offset-max (x) pour exprimer l’absence de débordement par valeur
supérieure lors de l’accès mémoire (x⊕i).m.

Nous introduisons une nouvelle forme de variables abstraites pour représenter des zones
mémoire, qui correspondent simplement à des chemins syntaxiques du programme C. Ces
variables abstraites syntaxiques se différencient des variables abstraites résumé [21, 174] et
des variables abstraites de chemin [58, 37, 38, 113] par la possibilité pour deux variables
abstraites syntaxiques de représenter des zones mémoire non disjointes. Afin d’exprimer par
inégalités des propriétés arbitrairement complexes sur les programmes, nous introduisons
également des variables abstraites d’application, qui correspondent à l’application d’une
fonction logique à des variables du programme, par ex. strlen(x) pour la longueur d’une
chaîne de caractères x. L’algorithme paths-may-overlap présenté à la Figure A.1 définit
de façon conservative dans quels cas deux chemins syntaxiques sont garantis de ne pas se
superposer, c.à.d. qu’il représentent des zones mémoires disjointes. Avec cette version
naïve de l’algorithme, toutes les zones mémoire sont considérées non disjointes.

Nous utilisons l’algorithme paths-may-overlap pour adapter les analyses de pro-
grammes JESSIE sans pointeurs présentée à la Section A.2.2 aux programmes JESSIE avec
pointeurs. Il s’agit principalement d’ignorer les valeurs de variables abstraites pouvant se
superposer à la variable abstraite réaffectée lors du traitement d’une affectation. Dans le
cas de l’interprétation abstraite, cela revient à modifier l’affectation de variable abstraite ;
dans le cas de la vérification déductive, il faut seulement redéfinir la règle de substitution de
variable abstraite.

A.3 Inférence, séparation, unions et casts

A.3.1 Programmes typés sans partage mémoire

Nous commençons par nous restreindre aux programmes JESSIE fortement typés et sans
partage mémoire. Dans ces programmes, une zone mémoire n’a qu’un seul type possible et
n’est accédée que par un seul chemin. Ces restrictions permettent de donner une définition
beaucoup plus précise de l’algorithme paths-may-overlap, qu’il est possible d’exploiter
dans les analyses de programmes JESSIE par interprétation abstraite ou vérification déduc-

222

tive.
Pour ces programmes plus simples, il existe des techniques d’inférence d’annotations

logiques, de façon à éviter l’ajout d’annotations manuelles par l’utilisateur pour les invari-
ants de boucles et les contrats de fonctions. Différentes techniques sont applicables :

• interprétation abstraite - Il est naturel de générer des invariants de boucles et des
postconditions de fonction par interprétation abstraite.

• déboguage abstrait - Cette technique introduite par Bourdoncle [26] permet de
générer des préconditions de fonction nécessaires par interprétation abstraite arrière.

• diagnostique d’alarme - Cette variante du déboguage abstrait inventée par Rival [153]
permet de générer des préconditions de fonction suffisantes.

• plus-faibles-préconditions - Il est naturel de générer des préconditions de fonctions
par plus-faibles-préconditions.

• induction-itération - Cette technique introduite par Suzuki and Ishihata [166, 181]
permet de générer des invariants de boucle par plus-faibles-préconditions et élimina-
tion de quantificateurs.

Aucune de ces techniques n’est pleinement satisfaisante, pas plus que leur accumu-
lation. Les techniques à base d’interprétation abstraite sont peu efficaces pour traiter les
sous-approximations et les disjonctions, alors que les techniques à base de plus-faibles-
préconditions conduisent à de mauvaises surapproximations. Il est donc raisonnable
d’espérer combiner ces techniques pour profiter de leurs forces respectives. L’algorithme
ABSGENERIC présenté à la Figure A.2 propose une telle combinaison, à partir d’une
technique de génération d’invariants INVGEN, d’un calcul de précondition PRECOND

et d’une technique d’élimination de quantificateurs QUANTELIM. En remplaçant IN-
VGEN par une instance d’interprétation abstraite, PRECOND par un calcul par plus-faibles-
préconditions et QUANTELIM par l’élimination de Fourier-Motzkin, nous obtenons un al-
gorithme d’inférence d’annotations qui, bien qu’incomparable en théorie, donne de bien
meilleurs résultats que les techniques existantes sur des exemples typiques de programmes
C. La complexité doublement exponentielle de cet algorithme le rend cependant trop coû-
teux pour les programmes réels, ce qui justifie l’utilisation d’un calcul par plus-faibles-
préconditions moins précis mais plus efficace pour PRECOND, ce qui ne change pas la
complexité en théorie mais rend l’algorithme utilisable en pratique.

A.3.2 Programmes typés avec partage mémoire

Nous considérons maintenant les programmes fortement typés avec partage mémoire.
Comme précédemment, le typage fort garantit qu’une zone mémoire n’a qu’un seul type
possible. En revanche, elle peut désormais être accédée par plusieurs chemins. Nous éten-
dons le langage JESSIE avec un prédicat separated pour pouvoir exprimer la séparation de
zones mémoires. Alors que le partage mémoire ou aliasing est utilisé dans de nombreux
cas par les programmeurs C de façon contrôlée, les techniques d’analyse d’alias [88, 178]
sont souvent trop imprécises et les techniques de contrôle d’alias [151] trop restrictives.

223

1 define ABSGENERIC:
2 input programme P
3 output annotations logiques pour P
4 calculer des invariants I par INVGEN
5 for chaque assertion C do
6 define φC comme C affaibli par IC: φC = IC =⇒ C
7 define φ comme le résultat de l’application de PRECOND à φC

8 define ψ comme le résultat de l’application de QUANTELIM à φ
9 utiliser ψ pour renforcer la précondition de P
10 done

Figure A.2: Algorithme ABSGENERIC

L’analyse d’alias de Steensgaard découpe la mémoire en régions distinctes qui, parce
qu’elles correspondent à un sous-typage du programme, peuvent aussi bien être utilisées
pour rendre l’algorithme paths-may-overlap plus précis que pour améliorer la traduction
de JESSIE à WHY. Cette analyse présente cependant deux problèmes : (i) l’absence de
sensibilité au contexte, ce qui entraîne parfois un découpage grossier de la mémoire, et (ii)
l’impossibilité d’analyser un programme de façon modulaire, fonction par fonction. Hu-
bert et Marché [94] ont décrit une solution au problème (i) en s’inspirant de l’algorithme
de calcul d’effet de Talpin et Jouvelot [167, 168]. Au lieu de calculer des régions glob-
ales comme dans l’algorithme de Steensgaard, ils calculent à la fois des régions globales et
des régions paramétriques attachées à chaque fonction, qui sont instanciées différemment à
chaque appel de fonction. Ce raffinement des régions contribue directement à améliorer la
précision de l’algorithme paths-may-overlap et la traduction de JESSIE à WHY. Cepen-
dant, cette approche nécessite de vérifier des contraintes supplémentaires sur le programme,
présentées initialement par Reynolds dans son travail sur le contrôle syntaxique des inter-
férences [152] : à chaque appel, deux régions paramétriques ne doivent jamais être in-
stanciées par la même région ou par une région globale déjà utilisée par la fonction. Ces
contraintes garantissent en effet la séparation des zones mémoires représentées par deux
régions différentes. Cette analyse est donc incomplète, c.à.d. que les programmes qui ne
respectent pas ces contraintes ne peuvent pas être analysés, ce qui représente la plupart des
programmes systèmes étudiés dans le cadre de cette thèse.

Nous proposons un raffinement de l’algorithme de Hubert et Marché qui résout les prob-
lèmes (ii) de modularité et (iii) d’incomplétude. Pour résoudre le problème (ii), nous pro-
posons d’utiliser un calcul d’effets basé sur des invariants calculés par interprétation ab-
straite. Cela permet d’exprimer la séparation des régions dans une fonction sous forme
d’applications du prédicat de séparation à des ensembles de pointeurs qui surapproximent
les effets de la fonction sur ces régions. Ainsi, notre algorithme appliqué à une fonction
en dehors de son contexte d’appel retourne une précondition de séparation devant être véri-
fiée à l’appel. Ces préconditions de séparation donnent aussi une solution au problème
(iii) pour de nombreux programmes : au lieu d’échouer quand deux régions paramétriques
sont instanciées par la même région lors d’un appel, il suffit d’ajouter une assertion à véri-
fier qui reprend les applications du prédicat de séparation à ces régions. Enfin, deux ré-

224

gions seulement lues ne peuvent pas être la cause d’interférences, comme déjà remarqué
par Reynolds [152]. Cela permet de raffiner encore l’algorithme d’inférence de régions, de
façon à fournir une solution complète pour les programmes sans interférences, qui représen-
tent la plupart des programmes rencontrés en pratique. Pour les programmes comme swap
utilisés dans des contextes interférant (avec x et y aliasés), nous indiquons des solutions
possibles permettant d’interagir avec l’utilisateur.

1 void swap(int *x, int *y) {
2 int tmp = *x;
3 *x = *y;
4 *y = tmp;
5 }

A.3.3 Programmes avec unions et casts

Nous considérons enfin des extensions du langage JESSIE permettant la traduction vers
JESSIE des programmes C avec unions et casts, ainsi que l’adaptation des algorithmes déjà
définis.

Comme observé par Siff et al. [161, 35], la majorité des casts dans les programmes C
systèmes sont des casts entre sous-types physiques, c.à.d. que les types des structures source
et cible du cast possèdent les mêmes champs aux mêmes décalages par rapport à l’adresse
pointée. Ces casts révèlent donc une hiérarchie de types sous-jacente exploitée par le pro-
gramme. Nous étendons le langage JESSIE avec une notion de sous-typage de façon à pou-
voir exprimer ces relations entre types, et nous étendons la sémantique de JESSIE afin de mé-
moriser le type réel des objets en mémoire. En gardant les casts vers des types dérivés dans
la hiérarchie par une assertion appropriée, nous garantissons que les programmes JESSIE

avec sous-typage respectent un typage fort, comme précédemment. Les algorithmes étudiés
précédemment pour l’inférence d’annotations et la séparation mémoire en régions peuvent
donc leur être appliqués.

De même, la majorité des unions sont modérées, c.à.d. que leurs champs ne sont accédés
qu’en accédant d’abord à l’union tout entière. Ceci est garanti par l’utilisation d’un critère
syntaxique, l’absence de prise d’adresse des champs de l’union. Ces unions modérées sont
de deux types :

• unions discriminées - Dans ces unions, seul le dernier champ écrit est lu. L’adaptation
des algorithmes vus précédemment à ce type d’unions se fait facilement, en interpré-
tant l’écriture dans un champ d’union comme modifiant en parallèle les autres champs
de l’union d’une manière aléatoire.

• unions bas-niveau - Dans ces unions, tout champ peut être lu à tout moment. Nous
traduisons ces unions par des structures avec un seul champ contenant un vecteur
d’octets. L’accès à un champ spécifique de l’union correspond à l’interprétation vers
un type spécifique d’une portion du vecteur d’octet complet. L’adaptation des algo-
rithmes vus précédemment est immédiate, puisque l’union est traduite en une struc-
ture avec un seul champ, un cas déjà traité.

225

Nous choisissons de traduire les unions avec champs de type pointeur comme des unions
discriminées, afin de pouvoir continuer à utiliser le découpage en régions mémoires décrit
à la Section A.3.2.

Pour les programmes avec unions et casts qui ne rentrent pas dans les catégories évo-
quées précédemment, un nouveau modèle mémoire bas-niveau est nécessaire, de façon à
pouvoir interpréter un même vecteur d’octets comme un type ou un autre. Le problème
avec cette approche, même en limitant l’utilisation du modèle bas-niveau aux seules ré-
gions concernées par un tel cast ou une telle union, est la propagation du modèle bas-niveau
à de nombreuses parties du programme [2]. Pour éviter ce problème, nous proposons de
confiner le modèle bas-niveau à l’intérieur de chaque fonction f , de façon à ce que les fonc-
tions appelant f ou appelées par f puissent être analysées indépendamment de f . Cette
localité du modèle bas-niveau est obtenue en :

• isolant f des fonctions appelantes - Bien que f soit vérifiée dans un modèle mé-
moire bas-niveau, une déclaration de fonction f ′ équivalente dans un modèle typé
doit être utilisée dans les fonctions appelantes. La validité de pointeur dans le modèle
bas-niveau doit être vérifiée par rapport à des accesseurs dépendant de la structure
accédée.

• isolant f des fonctions appelées - Avant l’appel d’une fonction g dans f , les zones
mémoires passant d’un modèle mémoire bas-niveau à un modèle mémoire typé
doivent être traduites. Une condition de séparation garantit la séparation des champs
de structure. Une traduction inverse est effectuée après le retour de l’appel à g.

Les préconditions générées pour garantir la séparation en régions distinctes et celles
générées pour garantir la localité du modèle bas-niveau s’ajoutent sans générer de conflit.

A.4 Expériences sur des programmes C réels

Les techniques décrites dans cette thèse ont été implémentées dans l’outil Frama-C [73],
une plateforme libre pour l’analyse modulaire des programmes C. Les obligations de preuve
(OP) générées ont été prouvées par les prouveurs automatiques Alt-Ergo (A), Simplify (S),
Yices (Y) ou Z3 (Z).

A.4.1 Bibliothèques de chaînes de caractères

Les chaînes de caractères en C sont des tableaux de caractères terminés par un caractère
nul. L’absence de cette sentinelle dans les bornes d’un bloc mémoire alloué n’est aucune-
ment garantie par le langage, ce qui est la cause de la plupart des vulnérabilités les plus
graves des programmes C. Il est donc important de vérifier la sûreté de fonctionnement
des bibliothèques manipulant des chaînes de caractères, avant même de vérifier la sûreté de
fonctionnement des programmes utilisant ces bibliothèques. Les techniques décrites dans
cette thèse s’appliquent parfaitement dans ce contexte modulaire.

226

provers

nu
m

V
C

pr
ov

ed

ZYSA

354

150

100%
96%

98%

72%

Figure A.3: Modèle d’entiers exacts

provers

nu
m

V
C

pr
ov

ed

ZYSA

868

0

100%

85%

99% 100%

Figure A.4: Modèle d’entiers bornés

MINIX 3 est un système d’exploitation libre ayant comme objectif la sûreté de fonction-
nement. En particulier, sa bibliothèque standard de chaînes de caractères est implémentée
de façon simple et idiomatique. Voici par exemple le code de la fonction de copie de chaîne :

1 char *strcpy(char *ret, const char *s2) {
2 char *s1 = ret;
3 while (*s1++ = *s2++)
4 /* EMPTY */ ;
5 return ret;
6 }

En tout, la bibliothèque de chaînes comporte 22 fonctions. Nous avons analysé ces
fonctions complètement automatiquement, ce qui comprend la génération d’annotations,
le découpage en régions mémoires et la vérification de la sûreté des accès mémoire et
des opérations entières. La Figure A.3 décrit les résultats obtenus avec différents prou-
veurs automatiques dans un modèle où les entiers mathématiques sont utilisés (21 fonctions
analysées) et la Figure A.4 décrits les mêmes résultats dans un modèle où les véritables
entiers machines bornés sont utilisés (20 fonctions analysées). Dans les deux cas, nous
réussissons à prouver complètement la sûreté de fonctionnement des fonctions analysées
vis-à-vis des préconditions générées.

La bibliothèque de chaînes sûres du CERT définit un type abstrait string_m à utiliser
à la place des chaînes natives du C. Cette structure encapsule un ensemble de champs devant
respecter un invariant complexe pour garantir la sûreté de fonctionnement, les fonctions de
la bibliothèque devant établir ou maintenir cet invariant suivant les cas. Voici l’invariant
managed -string reconstruit à partir du code de la bibliothèque, à partir d’essais-erreurs
lors de la vérification :

1 /*@ predicate almost_managed_cstring(string_m s) =
2 @ s→strtype ≡ STRTYPE_NTBS // a plain character string
3 @ ∧ (valid_string(s→str.cstr) // content is a valid string
4 @ ∧ strlen(s→str.cstr) < s→size // and string size is bounded
5 @ ∧ \valid_range(s→str.cstr, // and buffer size is bounded

227

6 @ 0,s→size − 1)
7 @ ∨ s→str.cstr ≡ NULL // or pointer is NULL
8 @ ∧ s→size ≡ 0); // and size is null too
9 @
10 @ predicate managed_cstring(string_m s) =
11 @ almost_managed_cstring(s)
12 @ ∧ valid_string_or_null(// filter is a valid string
13 @ s→charset.cstr)
14 @ ∧ (s→maxsize ≡ 0 // maximum not set
15 @ ∨ s→size ≤ s→maxsize); // or size is below maximum
16 @
17 @ predicate almost_managed_wstring(string_m s) =
18 @ s→strtype ≡ STRTYPE_WSTR // a wide character string
19 @ ∧ (valid_wstring(s→str.wstr) // content is a valid string
20 @ ∧ wcslen(s→str.wstr) < s→size // and string size is bounded
21 @ ∧ \valid_range(s→str.wstr, // and buffer size is bounded
22 @ 0,s→size − 1)
23 @ ∨ s→str.wstr ≡ NULL // or pointer is NULL
24 @ ∧ s→size ≡ 0); // and size is null too
25 @
26 @ predicate managed_wstring(string_m s) =
27 @ almost_managed_wstring(s)
28 @ ∧ valid_wstring_or_null(// filter is a valid string
29 @ s→charset.wstr)
30 @ ∧ (s→maxsize ≡ 0 // maximum not set
31 @ ∨ s→size ≤ s→maxsize); // or size is below maximum
32 @
33 @ predicate managed_string(string_m s) =
34 @ \valid(s) ∧ (managed_cstring(s) ∨ managed_wstring(s));
35 @*/

Etant donné la complexité de l’invariant à maintenir, nous avons annoté manuellement
49 fonctions de la bibliothèque (à l’exclusion des fonctions d’entrée-sortie). Nous avons
cherché à prouver l’absence d’erreurs lors des accès mémoire dans un modèle mémoire
simplifié ignorant les déallocations mémoire. Cela nous a permis de découvrir 45 erreurs
de programmation pouvant être exploitées lors d’attaques, erreurs confirmées par l’équipe
du CERT. Une fois ces erreurs corrigées, nous avons réussi à prouver la sûreté des accès
mémoire dans le modèle mémoire simplifié utilisé :

• preuve automatique - Comme la Figure A.5 le montre, nous avons prouvé 99,9% des
obligations de preuve automatiquement, soit 18.080 sur un total de 18.089. La Fig-
ure A.6 montre que chacun des trois prouveurs automatiques prouve seul un nombre
non négligeable d’obligations de preuves, ce qui est un argument pour l’utilisation
conjointe de plusieurs prouveurs.

• revue de code manuelle - Nous avons démontré la validité des 9 obligations de preuve
restantes manuellement, par un raisonnement non formel.

A.4.2 Jeux de tests de vulnérabilités

Deux jeux de tests, la suite Verisec [112] et le jeux de tests de Zitser [185], isolent des
vulnérabilités connues de dépassement de capacité dans des programmes libres populaires,

228

provers

nu
m

V
C

pr
ov

ed

allZSA

18089

0

96%98%97% 99%

Figure A.5: OP prouvées

provers

nu
m

V
C

pr
ov

ed

ZSA

200

160

120

80

40

0

44

187

35

Figure A.6: OP prouvées une seule fois

servant par ex. à l’envoi d’email ou à la gestion d’impression. Chaque test est fourni dans
une version "bad" qui reproduit la vulnérabilité, et une version "ok" corrigée. La difficulté
principale, observée par Zitser lors de son expérience initiale, est de distinguer les versions
corrigées des versions incorrectes.

La suite Verisec contient 140 tests de degré de difficulté variable et le jeux de tests de
Zitser contient seulement 14 tests de difficulté élevée. Bien que chaque test soit équipé
d’une fonction main, nous analysons chaque fonction indépendamment de son contexte
d’appel. Dans les deux cas, nous avons au préalable annoté le code avec des qualificateurs
de type indiquant quelles variables et champs de structures sont utilisés comme des chaînes
de caractères. Sur les 140 tests "ok" de la suite Verisec :

• 35 tests n’ont pas pu être analysés (limitations) ;

• 78 tests ont été complètement prouvés sûrs ;

• 27 tests ont été partiellement prouvés, la majorité n’ayant que quelques obligations
de preuve non prouvées.

La Figure A.7 montre que 99,7% des OP sont prouvées automatiquement, alors que
la Figure A.8 montre encore une fois que chaque prouveur prouve seul un nombre non
négligeable d’OP. Le prouveur AS est une modification du prouveur Alt-Ergo qui applique
certaines heuristiques pour sélectionner les hypothèses les plus pertinentes.

Aucun des tests de Zitser n’a pu être analysé. Dans 9 cas sur 14, cela a été causé par le
dépassement de la limite imposée en espace ou en temps. Nous envisageons d’implémenter
une meilleure technique d’élimination de quantificateurs que l’élimination de Fourier-
Motzkin pour pouvoir analyser ces programmes, par ex. la technique proposée par Monni-
aux [134].

229

provers

nu
m

V
C

pr
ov

ed

AllZSASA

39080

0

99%98%98%
93%

99%

Figure A.7: OP prouvées

provers

nu
m

V
C

pr
ov

ed

ZSASA

200

160

120

80

40

0

88

7

44
50

Figure A.8: OP prouvées une seule fois

A.5 Conclusion

Quelques années avant que cette thèse ne débute, les résultats obtenus par deux outils
(Astrée [21], CGS [174]) spécialisés pour des programmes C restreints utilisés en avion-
ique ont démontré que la preuve de sûreté de fonctionnement de programmes C réels de
plusieurs centaines de milliers de lignes était possible. Ces outils basés sur l’interprétation
abstraite laissaient ouverts un certain nombre de problèmes, essentiellement l’analyse de
programmes incomplets (modularité), la prise en compte du partage mémoire (aliasing),
l’adaptation aux programmes C non contraints (unions et casts). Dans sa thèse de doctorat
portant sur la preuve de programmes C industriels par vérification déductive [93], Hubert
concluait par la nécessité de répondre aux trois mêmes problèmes, en plus du problème de
génération d’annotations propre à la vérification déductive.

Dans cette thèse, nous proposons des solutions à chacun de ces problèmes, dans le
cadre de la vérification déductive de programmes C systèmes. Ces solutions sont à la fois
automatiques et modulaires :

• génération d’annotations - Nous présentons une technique de génération
d’annotations logiques basée sur une combinaison nouvelle des techniques
d’interprétation abstraite, de plus-faibles-préconditions et d’élimination de quantifi-
cateurs. En particulier, nous générons des préconditions suffisantes précises, ce qui
n’a pas été fait précédemment.

• séparation de la mémoire en régions - Nous présentons une technique de contrôle du
partage mémoire basée sur l’analyse de régions de Hubert et Marché. Cette technique
permet d’exprimer les conditions de séparation comme des obligations de preuve
adaptées à la preuve automatique.

• traitement des unions et casts - Nous présentons un modèle mémoire mixte typé ou
bas-niveau qui permet de traiter les unions et les casts en vérification déductive, tout
en gardant au maximum les bénéfices du modèle mémoire typé. Cette technique
repose sur la génération de régions mémoires susmentionnée.

230

Ces techniques ont été implémentées dans Frama-C [73], une plateforme libre pour
l’analyse modulaire des programmes C. Nous avons ainsi réussi à prouver la sûreté de
fonctionnement d’une bibliothèque de chaînes de caractères standard, à trouver un nombre
importants d’erreurs de programmation dans une bibliothèque de chaînes "sûres" et à dis-
criminer entre les versions incorrectes et corrigées dans des jeux de tests de vulnérabilités
réelles.

La taille modeste des programmes analysés lors de cette thèse ne permet pas de conclure
que les techniques développées s’appliqueront aussi facilement à des programmes beaucoup
plus gros, mais la propriété de modularité de ces techniques indique que c’est envisageable.
Enfin, la preuve de sûreté de fonctionnement des programmes n’est qu’un premier pas vers
la preuve de propriétés fonctionnelles souvent plus complexes, pour lesquelles les mêmes
techniques seront certainement utiles.

231

Index

A
abstract domain . 32, 82
abstract interpretation 32, 82
abstract lattice . 82
abstract variable . 101
abstraction .31
access path location 103
alias analysis . 150
alias-free program . 123
aliasing . 25, 147
allocation .24
annotation language 71
ANSI C see C standard
Application Binary Interface 63
Application Binary Interface 168
Application Binary Interface 22
assembly language . 16
attack . 19
automatic prover . 33

B
block memory model 52
bounded integer model . . . see integer model
buffer overflow . 18, 24
byte-level block memory model54
byte-level memory model 52
byte-level union . 175

C
C language . 16
C dialects . 22
C standard . 22
C89 . see C standard
C90 . see C standard
C99 . see C standard

cast . 47
CEGAR . 34
check . 80, 99
CIL . 42
complexity . 135, 139
Component-as-array memory model . . . 120
CVE . 21
CWE . 22

D
deduction .31
deductive verification 33, 89
dependability . 16
discriminated union 171
disjunctive normal form.135
division by zero . 80
downcast . 168

E
embedded field .45
embedded systems . 16
enumeration . 31
exploit . 18, 19

F
Fourier-Motzkin method 135, 136, 139
frame condition . 75
function contract . 75

G
GNU C . see C dialects

H
Hoare logics . 90

I
immutable paths . 157

232

implementation-defined 23
infinite state space . 30
instructions . 43
integer model . 65, 69
integer overflow . 80
integer program . 79
integer range . 44
integrity . 16
interface paths . 156
intervals . 85
Invariant generation 34
ISO C . see C standard

J
JESSIE .41

K
K&R C see C standard

L
layout . 168
left-value . see lvalue
linear search . .70, 80, 88, 91, 100, 107, 109,

114, 136
location . 47
lvalue . 47

M
memory footprint 74, 75
memory model . 52, 96
memory safety . 24
model checking . 31
moderated union . 171
modulo integer model see integer model

O
octagons . 85
overlapping . 106

P
path . 72
paths-may-overlap . . . 106, 123, 124, 153,

172, 177
pointer . 25
polyhedrons . 85
portability . 16, 22

postcondition . 75
precondition . 75
predicate abstraction 33
prefix cast . 168
proof assistant . 33
propositions . 44

Q
quantifier elimination 131, 135

R
region . 152
reliability . 16
runtime error . 17

S
safety . 16
SAMATE Reference Dataset 22, 206
SANS Top 10 list . 20
security . 16
separated . 144
separation logic . 151
simulation . 31
software bug . 19
software-dominant systems 16
state-explosion problem 31
statements . 43
static analysis . 32
static safety checking 17
Steensgaard ’s alias analysis 152
strlen . 105
strongest postconditions 33, 89
subtype . 168
summary location . 102
symbolic model checking 31
syntactic abstract location 104

T
Talpin’s alias analysis 154
terms . 44
testing . 31
type safety . 120
typing . 24

U
undefined. .23

233

unspecified . 23
upcast . 168

V
verification . 17
verification condition 33
Visual-C see C dialects

W
weakest preconditions 33, 89

Z
Zitser’s benchmark 34, 206

234

Bibliography

[1] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking and
inferring local non-aliasing. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 129–140,
New York, NY, USA, 2003. ACM.

[2] June Andronick. Modélisation et Vérification Formelles de Systèmes Embarqués
dans les Cartes à Microprocesseur Plate-Forme Java Card et Système d’Exploitation.
PhD thesis, Université Paris-Sud, 2006.

[3] J. Anton, E. Bush, A. Goldberg, K. Havelund, D. Smith, and A. Venet. Towards the
industrial scale development of custom static analyzers. In Proceedings of the Static
Analysis Summit. U.S. National Institute of Standards and Technology, June 2006.

[4] M. G. Assaad and G. T. Leavens. Alias-free parameters in C for better reasoning and
optimization. Technical Report 01-11, Department of Computer Science, Iowa State
University, 2001.

[5] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. pages 290–301. Association for Computing Machin-
ery, 1994.

[6] A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of dependability.
Research Report N01145, LAAS-CNRS, April 2001.

[7] R.-J. R. Back and M. Karttunen. A predicate transformer semantics for statements
with multiple exits, 1983. unpublished manuscript.

[8] Thomas Ball and Sriram K. Rajamani. The slam project: debugging system software
via static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 1–3, New York, NY,
USA, 2002. ACM.

[9] A. Baratloo, N. Singh, and T. Tsai. Libsafe: Protecting critical elements of stacks.
White paper, December 1999.

[10] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In Proceedings of CASSIS 2004: Construction and Analysis
of Safe, Secure and Interoperable Smart devices, pages 49–69. Springer, 2004.

235

[11] Mike Barnett, Bor yuh Evan Chang, Robert Deline, Bart Jacobs, and K. Rustanm.
Leino. Boogie: A modular reusable verifier for object-oriented programs. In Formal
Methods for Components and Objects: 4th International Symposium, FMCO 2005,
volume 4111 of Lecture Notes in Computer Science, pages 364–387. Springer, 2006.

[12] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns, ed-
itors, Proceedings of the 19th International Conference on Computer Aided Verifica-
tion (CAV ’07), volume 4590 of Lecture Notes in Computer Science, pages 298–302.
Springer-Verlag, July 2007. Berlin, Germany.

[13] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet, M. Pavlova,
and A. Requet. JACK: a tool for validation of security and behaviour of Java appli-
cations. In FMCO: Proceedings of 5th International Symposium on Formal Methods
for Components and Objects, Lecture Notes in Computer Science. Springer-Verlag,
2007. To appear.

[14] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C specification language. Tech-
nical report, 2008.

[15] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

[16] Kris Bell, Lars Ivar Igesund, Sean Kelly, and Michael Parker. Learn to Tango with
D. The Expert’s Voice. Apress, 2008.

[17] Josh Berdine, Cristiano Calcagno, and Peter W. O’hearn. Smallfoot: Modular au-
tomatic assertion checking with separation logic. In In Proceedings of the Fourth
International Symposium on Formal Methods for Components and Objects, pages
115–137. Springer, 2005.

[18] Joachim van den Berg and Bart Jacobs. The loop compiler for java and jml. In
TACAS 2001: Proceedings of the 7th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 299–312, London, UK,
2001. Springer-Verlag.

[19] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment. Springer-Verlag, 2004.

[20] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Checking
memory safety with BLAST. In M. Cerioli, editor, Proceedings of the 8th Interna-
tional Conference on Fundamental Approaches to Software Engineering (FASE 2005,
Edinburgh, April 2-10), LNCS 3442, pages 2–18. Springer-Verlag, Berlin, 2005.

[21] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings of

236

the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation (PLDI’03), pages 196–207, San Diego, California, USA, June 7–14 2003.
ACM Press.

[22] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C com-
piler front-end. In FM 2006: Int. Symp. on Formal Methods, volume 4085 of Lecture
Notes in Computer Science, pages 460–475. Springer, 2006.

[23] Sandrine Blazy and Xavier Leroy. Formal verification of a memory model for C-like
imperative languages. In International Conference on Formal Engineering Methods
(ICFEM 2005), volume 3785 of Lecture Notes in Computer Science, pages 280–299.
Springer, 2005.

[24] Sylvie Boldo and Jean-Christophe Filliâtre. Formal verification of floating-point
programs. In Peter Kornerup and Jean-Michel Muller, editors, Proceedings of the
18th IEEE Symposium on Computer Arithmetic, pages 187–194, Montpellier, France,
June 2007.

[25] Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame problem in
procedure specifications. IEEE Trans. Softw. Eng., 21(10):785–798, 1995.

[26] François Bourdoncle. Assertion-based debugging of imperative programs by abstract
interpretation. In ESEC ’93: Proceedings of the 4th European Software Engineering
Conference on Software Engineering, pages 501–516, London, UK, 1993. Springer-
Verlag.

[27] François Bourdoncle. Efficient chaotic iteration strategies with widenings. In In
Proceedings of the International Conference on Formal Methods in Programming
and their Applications, pages 128–141. Springer-Verlag, 1993.

[28] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Proce-
dures with Applications to Verification. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2007.

[29] Bulba and Kil3r. Bypassing Stackguard and Stackshield. Phrack Magazine, 56,
January 2000.

[30] Rod Burstall. Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence, 7:23–50, 1972.

[31] Sascha Böhme, Michal Moskal, Wolfram Schulte, and Burkhart Wolff. HOL-Boogie
- an interactive prover-backend for the verified C compiler. Journal of Automated
Reasoning (JAR), 2007.

[32] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Foot-
print analysis: A shape analysis that discovers preconditions. In Proceedings of
the 14th International Static Analysis Symposium, volume 4634 of Lecture Notes in
Computer Science, pages 402–418. Springer-Verlag, August 2007.

237

[33] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular
verification of software components in C. In ICSE ’03: Proceedings of the 25th In-
ternational Conference on Software Engineering, pages 385–395, Washington, DC,
USA, 2003. IEEE Computer Society.

[34] Sagar Chaki and Scott Hissam. Certifying the absence of buffer overflows. Techni-
cal Note CMU/SEI-2006-TN-030, Carnegie-Mellon University/Software Engineer-
ing Institute, September 2006.

[35] Satish Chandra and Thomas Reps. Physical type checking for C. SIGSOFT Softw.
Eng. Notes, 24(5):66–75, 1999.

[36] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with alien
expressions and heap structures. In VMCAI ’05: Proceedings of The 6th International
Conference on Verification, Model Checking, and Abstract Interpretation, pages 147–
163, 2005.

[37] Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant context
inference. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 133–146, New York, NY, USA,
1999. ACM.

[38] Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer analysis
using access paths: design, implementation, and evaluation. In PLDI ’00: Proceed-
ings of the ACM SIGPLAN 2000 conference on Programming language design and
implementation, pages 57–69, New York, NY, USA, 2000. ACM.

[39] Information technology – common language infrastructure (CLI) partitions I to VI.
Technical Report ISO/IEC 23271:2006, 2006.

[40] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer, 2004.

[41] Edmund Clarke and Yuan Lu. Counterexample-guided abstraction refinement. In
CAV ’00: Proceedings of the 12th International Conference on Computer Aided Ver-
ification, pages 154–169. Springer, 2000.

[42] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, 1999.

[43] Ernie Cohen, Michał Moskal, Wolfram Schulte, and Stephan Tobies. A precise yet
efficient memory model for c. oct 2008.

[44] Michael Colon, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant gen-
eration using non-linear constraint solving. In Proc. of the Int. Conf. on Computer
Aided Verification (CAV), volume 2725 of Lecture Notes in Computer Science, pages
420–432, 2003.

238

[45] X3J11 committee. Programming Language C. American National Standards Insti-
tute, 1989.

[46] Sylvain Conchon, Evelyne Contejean, Johannes Kanig, and Stéphane Lescuyer.
Cc(x): Semantic combination of congruence closure with solvable theories. Elec-
tronic Notes in Theoretical Computer Science, 198(2):51–69, May 2008.

[47] Jeremy Condit, Brian Hackett, Shuvendu Lahiri, and Shaz Qadeer. Unifying type
checking and property checking for low-level code. In POPL ’09: Proceedings of the
36th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
2009.

[48] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley
Weimer. CCured in the real world. SIGPLAN Not., 38(5):232–244, 2003.

[49] Jean-François Couchot and Thierry Hubert. A Graph-based Strategy for the Selec-
tion of Hypotheses. In FTP 2007 - International Workshop on First-Order Theorem
Proving, Liverpool, UK, September 2007.

[50] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM
Press, New York, NY.

[51] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 269–282, New York, NY, USA, 1979.
ACM.

[52] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 84–96, New
York, NY, USA, 1978. ACM.

[53] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointGuard: protect-
ing pointers from buffer overflow vulnerabilities. In SSYM’03: Proceedings of the
12th conference on USENIX Security Symposium, pages 7–7, Berkeley, CA, USA,
2003. USENIX Association.

[54] Flaviu Cristian. Correct and robust programs. 10(2):163–174, March 1984. Special
Section on Specification and Verification.

[55] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured programming.
Academic Press Ltd., London, UK, UK, 1972.

[56] Ewen Denney, Bernd Fischer, and Johann Schumann. An empirical evaluation of au-
tomated theorem provers in software certification. International Journal on Artificial
Intelligence Tools, 15(1):81–107, February 2006.

239

[57] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[58] Alain Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting.
SIGPLAN Not., 29(6):230–241, 1994.

[59] Edsger W. Dijkstra. A discipline of programming. Series in Automatic Computation.
1976.

[60] David L. Dill. Trace theory for automatic hierarchical verification of speed-
independent circuits. MIT Press, Cambridge, MA, USA, 1989.

[61] Dino Distefano and Matthew J. Parkinson J. jstar: towards practical verification
for java. In OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, pages 213–226,
New York, NY, USA, 2008. ACM.

[62] Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: towards a realistic tool for
statically detecting all buffer overflows in C. SIGPLAN Not., 38(5):155–167, 2003.

[63] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). In Proceedings of the 18th Computer-Aided Verification conference, vol-
ume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.

[64] Nicholas Enticknap. IT salary survey. Computer Weekly, February 2008.

[65] Ana M. Erosa and Laurie J. Hendren. Taming Control Flow: A Structured Approach
to Eliminating GOTO Statements. In ICCL, 1994.

[66] Pietro Ferrara, Francesco Logozzo, and Manuel Fähndrich. Safer unsafe code for
.NET. In ACM Press, editor, Proceedings of the 23rd ACM Conference on Object-
oriented Programming (OOPSLA 2008), October 2008.

[67] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research Report
1366, LRI, Université Paris Sud, March 2003.

[68] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C pro-
grams. In Jim Davies, Wolfram Schulte, and Mike Barnett, editors, 6th International
Conference on Formal Engineering Methods, volume 3308 of LNCS, pages 15–29,
Seattle, WA, USA, November 2004.

[69] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus platform
for deductive program verification. In Werner Damm and Holger Hermanns, editors,
19th International Conference on Computer Aided Verification, Berlin, Germany,
July 2007.

[70] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for java. In PLDI ’02: Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 234–245, New York, NY, USA, 2002. ACM.

240

[71] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification. In
POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 191–202, New York, NY, USA, 2002. ACM.

[72] Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on
Applied Mathematics, 19:19–32, 1967.

[73] Framework for the modular analysis of C, 2008. http://www.frama-c.cea.
fr.

[74] Jeff Gennari, Shaun Hedrick, Fred Long, Justin Pincar, and Robert C. Seacord.
Ranged integers for the C programming language. Technical Report CMU/SEI-2007-
TN-027, Software Engineering Institute, September 2007.

[75] Patrice Godefroid. Model checking for programming languages using VeriSoft. In
POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 174–186, New York, NY, USA, 1997. ACM.

[76] David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

[77] Denis Gopan and Thomas W. Reps. Low-level library analysis and summarization.
In Werner Damm and Holger Hermanns, editors, CAV ’07: Proceedings of the 19th
International Conference on Computer Aided Verification, volume 4590 of Lecture
Notes in Computer Science, pages 68–81. Springer, 2007.

[78] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS.
In CAV ’97: Proceedings of the 9th International Conference on Computer Aided
Verification, pages 72–83, London, UK, 1997. Springer-Verlag.

[79] Bhargav Gulavani and Sumit Gulwani. A numerical abstract domain based on "ex-
pression abstraction" and "max operator" with application in timing analysis. In CAV
’08: Proceedings of the 20th International Conference on Computer Aided Verifica-
tion, 2008.

[80] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. In Annual
ACM Conference on Programming Language Design and Implementation. ACM,
June 2006.

[81] Sumit Gulwani and Ashish Tiwari. Assertion checking unified. In The 8th Inter-
national Conference on Verification, Model Checking and Abstract Interpretation.
Springer, January 2007.

[82] Yuri Gurevich and James K. Huggins. The semantics of the C programming lan-
guage. In Computer Science Logic, volume 702 of LNCS, pages 274–308. Springer,
1993.

241

http://www.frama-c.cea.fr
http://www.frama-c.cea.fr

[83] Brian Hackett and Alex Aiken. How is aliasing used in systems software? In SIG-
SOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 69–80, New York, NY, USA, 2006.
ACM.

[84] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular checking for
buffer overflows in the large. In ICSE ’06: Proceedings of the 28th international
conference on Software engineering, pages 232–241, New York, NY, USA, 2006.
ACM.

[85] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, February 2009.

[86] Thomas E. Hart, Kelvin Ku, David Lie, Marsha Chechik, and Arie Gurfinkel.
Ptyasm: Software model checking with proof templates. In In Proceedings of
the 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE’08), September 2008.

[87] Laurie J. Hendren, C. Donawa, Maryam Emami, Guang R. Gao, Justiani, and B. Srid-
haran. Designing the McCAT compiler based on a family of structured intermediate
representations. In Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing, pages 406–420, London, UK, 1993. Springer-
Verlag.

[88] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In PASTE ’01:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 54–61, New York, NY, USA, 2001. ACM.

[89] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580 and 583, October 1969.

[90] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming language
pascal. Acta Informatica, (Volume 2, Number 4), December 1973.

[91] Tony Hoare. The verifying compiler: A grand challenge for computing research. J.
ACM, 50(1):63–69, 2003.

[92] Greg Hoglund and Gary Mcgraw. Exploiting Software : How to Break Code.
Addison-Wesley Professional, February 2004.

[93] Thierry Hubert. Analyse Statique et preuve de Programmes Industriels Critiques.
PhD thesis, Université Paris-Sud, 2008.

[94] Thierry Hubert and Claude Marché. Separation analysis for deductive verification.
In Heap Analysis and Verification (HAV’07), Braga, Portugal, March 2007.

[95] M. Huisman. Reasoning about Java Programs in Higher Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

242

[96] Charles Hymans and Olivier Levillain. Newspeak, Doubleplussimple Minilang for
Goodthinkful Static Analysis of C. Technical Note 2008-IW-SE-00010-1, EADS
IW/SE, 2008.

[97] International Organization for Standardization. ISO/IEC 9899:1990: Programming
Languages – C, 1990.

[98] International Organization for Standardization. ISO/IEC 9899:1999: Programming
Languages – C, 2000.

[99] Franco Ivancic, Ilya Shlyakhter, Aarti Gupta, and Malay K. Ganai. Model checking C
programs using F-SOFT. In ICCD ’05: Proceedings of the 2005 International Con-
ference on Computer Design, pages 297–308, Washington, DC, USA, 2005. IEEE
Computer Society.

[100] Paul B. Jackson, Bill J. Ellis, and Kathleen Sharp. Using SMT solvers to verify high-
integrity programs. In AFM ’07: Proceedings of the second workshop on Automated
formal methods, pages 60–68, New York, NY, USA, 2007. ACM.

[101] Bart Jacobs and Frank Piessens. The verifast program verifier. Technical Report
CW-520, Department of Computer Science, Katholieke Universiteit Leuven, August
2008.

[102] M. Janota. Assertion-based loop invariant generation. In In Proceedings of the 1st
International Workshop on Invariant Generation (WING ’07), Hagenberg, Austria,
2007. Workshop at CALCULEMUS 2007.

[103] Ranjit Jhala, Rupak Majumdar, and Ru-Gang Xu. State of the union: Type inference
via Craig interpolation. In Orna Grumberg and Michael Huth, editors, TACAS ’07:
Proceedings of The 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 4424 of Lecture Notes in Computer
Science. Springer, 2007.

[104] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In Proc. 2002 USENIX Annual
Technical Conference, pages 275–288, Berkeley, CA, USA, 2002.

[105] Gilles Kahn. Natural semantics. In STACS 87, 4th Annual Symposium on Theoretical
Aspects of Computer Science, volume 247, pages 22–39, 1987.

[106] Gilles Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming of
Future Generation Computers, pages 237–257. Elsevier, 1988.

[107] Cem Kaner, Jack L. Falk, and Hung Quoc Nguyen. Testing Computer Software,
Second Edition. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[108] Michael Karr. Affine relationships among variables of a program. In Acta Informat-
ica, 1976.

243

[109] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

[110] Steve King and Carroll Morgan. Exits in the refinement calculus. Formal Asp. Com-
put., 7(1):54–76, 1995.

[111] David Koes, Mihai Budiu, and Girish Venkataramani. Programmer specified pointer
independence. In MSP ’04: Proceedings of the 2004 workshop on Memory system
performance, pages 51–59, New York, NY, USA, 2004. ACM.

[112] Kelvin Ku, Thomas E. Hart, Marsha Chechik, and David Lie. A buffer overflow
benchmark for software model checkers. In ASE ’07: Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering,
pages 389–392, New York, NY, USA, 2007. ACM.

[113] William Landi and Barbara G. Ryder. A safe approximate algorithm for interproce-
dural pointer aliasing. SIGPLAN Not., 27(7), 1992.

[114] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive points-
to analysis with heap cloning practical for the real world. pages 278–289, 2007.

[115] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs. JML:
notations and tools supporting detailed design in Java. In OOPSLA 2000 Companion,
Minneapolis, Minnesota, pages 105–106, 2000.

[116] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal verification
of a C0 compiler: Code generation and implementation correctnes. In SEFM ’05:
Proceedings of the Third IEEE International Conference on Software Engineering
and Formal Methods, pages 2–12, Washington, DC, USA, 2005. IEEE Computer
Society.

[117] K. R. M. Leino and G. Nelson. An extended static checker for Modula-3. 1383,
1998.

[118] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, Caltech, 1995.
Technical Report Caltech-CS-TR-95-03.

[119] K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–
288, 2005.

[120] K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. In APLAS
’05: Proceedings of The 3rd ASIAN Symposium on Programming Languages and
Systems, LNCS, pages 119–134. Springer-Verlag, 2005.

[121] K. Rustan M. Leino and Francesco Logozzo. Using widenings to infer loop invariants
inside an SMT solver, or: A theorem prover as abstract domain. Technical Report
RISC-Linz Report Series No. 07-07, RISC, Hagenberg, Austria, June 2007. Proc.
WING’07.

244

[122] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Java to guarded commands
translation. Technical Report ESCJ 16c, Compaq Research Labs, August 1998.

[123] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking java programs
via guarded commands. In Proceedings of the Workshop on Formal Techniques for
Java-like Programs, pages 110–111, London, UK, 1999. Springer-Verlag.

[124] K. Rustan M. Leino and Jan L. A. van de Snepscheut. Semantics of exceptions.
In PROCOMET ’94: Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working
Conference on Programming Concepts, Methods and Calculi, pages 447–466, Ams-
terdam, The Netherlands, The Netherlands, 1994. North-Holland Publishing Co.

[125] Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. SIGPLAN Not., 41(1):42–54, 2006.

[126] Donglin Liang and Mary Jean Harrold. Efficient computation of parameterized
pointer information for interprocedural analyses. In SAS ’01: Proceedings of the
8th International Symposium on Static Analysis, pages 279–298, London, UK, 2001.
Springer-Verlag.

[127] Francesco Logozzo and Manuel Fähndrich. On the relative completeness of byte-
code analysis versus source code analysis. In CC ’08: Proceedings of The 17th In-
ternational Conference on Compiler Construction, volume 4959 of LNCS. Springer-
Verlag, 2008.

[128] M.S. Manasse and C.G. Nelson. Correct compilation of control structures. Technical
report, AT&T Bell Laboratories, 1984.

[129] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The KRAKATOA tool
for certification of JAVA/JAVACARD programs annotated in JML. Journal of Logic
and Algebraic Programming, 58(1–2):89–106, 2004. http://krakatoa.lri.
fr.

[130] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In M. Sagiv, editor, Proc. ESOP’05, volume 3444 of Lecture
Notes in Computer Science, pages 5–20, 2005.

[131] E. Meijer and J. Gough. Technical overview of the Common Language Runtime,
2000.

[132] A. Miné. The octagon abstract domain. Higher Order Symb. Comp., 19(1):31–100,
2006.

[133] MISRA-C:2004 - Guidelines for the use of the C language in critical systems. Tech-
nical report, October 2004.

[134] David Monniaux. A quantifier elimination algorithm for linear real arithmetic. In
LPAR’08: Proceedings of the 15th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, 2008.

245

http://krakatoa.lri.fr
http://krakatoa.lri.fr

[135] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In In Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS,
2008.

[136] Yannick Moy and Claude Marché. Inferring local (non-)aliasing and strings for mem-
ory safety. In Heap Analysis and Verification (HAV’07), Braga, Portugal, mar 2007.

[137] Oleg Mürk, Daniel Larsson, and Reiner Hähnle. KeY-C: A tool for verification of C
programs. In Frank Pfenning, editor, Proc. 21st Conference on Automated Deduction
(CADE), Bremen, Germany, volume 4603 of LNCS, pages 385–390. Springer-Verlag,
2007.

[138] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy software. ACM Trans. Program.
Lang. Syst., 27(3):477–526, 2005.

[139] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs. In
Computational Complexity, pages 213–228, 2002.

[140] Tobias Nipkow. Reflecting quantifier elimination for linear arithmetic. In O. Grum-
berg, T. Nipkow, and C. Pfaller, editors, Formal Logical Methods for System Security
and Correctness, pages 245–266. IOS Press, 2008.

[141] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic. Springer-Verlag, London, UK, 2002.

[142] Michael Norrish. Hol 4 kananaskis-4. http://hol.sourceforge.net/.

[143] Michael Norrish. C Formalised in HOL. PhD thesis, University of Cambridge,
November 1998.

[144] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 42, November
1996.

[145] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

[146] Nikolaos S. Papaspyrou. A Formal Semantics for the C Programming Language.
PhD thesis, National Technical University of Athens, February 1998.

[147] Corneliu Popeea, Dana N. Xu, and Wei-Ngan Chin. A practical and precise inference
and specializer for array bound checks elimination. In PEPM ’08: Proceedings
of the 2008 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 177–187, New York, NY, USA, 2008. ACM.

246

http://hol.sourceforge.net/

[148] Lyle Ramshaw. Eliminating go to’s while preserving program structure. Journal of
the ACM, 35(4):893–920, 1988.

[149] W. Reif. The KIV-approach to Software Verification. In M. Broy and S. Jähnichen,
editors, KORSO: Methods, Languages, and Tools for the Construction of Correct
Software – Final Report, LNCS 1009. Springer, Berlin, 1995.

[150] Chris Ren, Michael Weber, and Gary McGraw. Microsoft compiler flaw technical
note. Technical report, Cigital, Inc., February 2002.

[151] John Reynolds. Intuitionistic reasoning about shared mutable data structure. In Mil-
lennial Perspectives in Computer Science. Palgrave, 2000.

[152] John C. Reynolds. Syntactic control of interference. In POPL ’78: Proceedings of the
5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 39–46, New York, NY, USA, 1978. ACM.

[153] X. Rival. Understanding the origin of alarms in ASTRÉE. In 12th Static Analysis Sym-
posium (SAS’05), volume 3672 of LNCS, pages 303–319, London (UK), September
2005. Springer-Verlag.

[154] Atanas Rountev and Barbara G. Ryder. Points-to and side-effect analyses for pro-
grams built with precompiled libraries. In CC ’01: Proceedings of the 10th Inter-
national Conference on Compiler Construction, pages 20–36, London, UK, 2001.
Springer-Verlag.

[155] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis of pro-
gram fragments. SIGSOFT Softw. Eng. Notes, 24(6):235–252, 1999.

[156] Nicolas Rousset. Automatisation de la Spécification et de la Vérification
d’applications Java Card. Thèse de doctorat, Université Paris-Sud, June 2008.

[157] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. SIGPLAN Not., 35(5):182–195, 2000.

[158] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München, 2005.

[159] Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Modular verification of
higher-order methods with mandatory calls specified by model programs. In OOP-
SLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object ori-
ented programming systems and applications, pages 351–368, New York, NY, USA,
2007. ACM.

[160] Jonathan Shapiro, Swaroop Sridhar, and Scott Doerrie. BitC language specification.
Technical report, Department of Computer Science, Johns Hopkins University, 2008.

247

[161] Michael Siff, Satish Chandra, Thomas Ball, Krishna Kunchithapadam, and Thomas
Reps. Coping with type casts in C. In ESEC/FSE-7: Proceedings of the 7th Eu-
ropean software engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 180–198,
London, UK, 1999. Springer-Verlag.

[162] Axel Simon and Andy King. Analyzing string buffers in C. In AMAST ’02: Proceed-
ings of the 9th International Conference on Algebraic Methodology and Software
Technology, pages 365–379, London, UK, 2002. Springer-Verlag.

[163] Richard M. Stallman and the GCC Developer Community. GCC Internals Manual.
Free Software Foundation, Inc., 2008.

[164] Artem Starostin. Formal verification of a C-library for strings. Master’s thesis, Saar-
land University, March 2006.

[165] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL ’96: Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 32–41, New York, NY, USA, 1996. ACM.

[166] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound checker. In
POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 132–143, New York, NY, USA, 1977. ACM.

[167] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type region and effect inference.
Technical Report EMP-CRI E/150, 1991.

[168] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Seventh
Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California,
pages 162–173, Los Alamitos, California, 1992. IEEE Computer Society Press.

[169] Mads Tofte. Operational semantics and polymorphic type inference. Phd thesis,
1988.

[170] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information
and Computation, 1997.

[171] Harvey Tuch and Gerwin Klein. A unified memory model for pointers. In 12th Inter-
national Conference on Logic for Programming Artificial Intelligence and Reasoning
(LPAR-12), volume 3835 of LNCS, pages 474–488, 2005.

[172] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic.
In POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 97–108, New York, NY, USA, 2007.
ACM.

[173] Mark Utting. Reasoning about aliasing. In In The Fourth Australasian Refinement
Workshop, pages 195–211, 1995.

248

[174] Arnaud Venet and Guillaume Brat. Precise and efficient static array bound checking
for large embedded C programs. In PLDI ’04: Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation, pages 231–
242, New York, NY, USA, 2004. ACM.

[175] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step
towards automated detection of buffer overrun vulnerabilities. In NDSS Symposium,
pages 3–17, San Diego, CA, February 2000.

[176] Volker Weispfenning. Complexity and uniformity of elimination in Presburger arith-
metic. In ISSAC ’97: Proceedings of the 1997 international symposium on Symbolic
and algebraic computation, pages 48–53, New York, NY, USA, 1997. ACM.

[177] Freek Wiedijk. The Seventeen Provers of the World. Lecture Notes in Computer
Science / Lecture Notes in Artificial Intelligence. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[178] Qiang Wu. Survey of alias analysis. www.cs.princeton.edu/~jqwu/
Memory/.

[179] Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic, path-sensitive
analysis to detect memory access errors. In ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 327–336,
New York, NY, USA, 2003. ACM.

[180] Zhichen Xu. Safety checking of machine code. PhD thesis, Univ. of Wisconsin,
Madison, December 2000.

[181] Zhichen Xu, Barton P. Miller, and Thomas Reps. Safety checking of machine code.
ACM SIGPLAN Notices, 35(5):70–82, 2000.

[182] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino
Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems code. In Aarti
Gupta and Sharad Malik, editors, CAV, volume 5123 of Lecture Notes in Computer
Science, pages 385–398. Springer, 2008.

[183] Kwangkeun Yi. Catching Software Bugs Early at Build Time, 2007. Online manual.

[184] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals, Matthew
Harren, George Necula, and Eric Brewer. SafeDrive: safe and recoverable extensions
using language-based techniques. In OSDI ’06: Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation, Berkeley, CA, USA,
2006. USENIX Association.

[185] Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools using
exploitable buffer overflows from open source code. SIGSOFT Softw. Eng. Notes,
29(6):97–106, 2004.

249

www.cs.princeton.edu/~jqwu/Memory/
www.cs.princeton.edu/~jqwu/Memory/

	Introduction
	Language-Based Dependability of C Programs
	Problem Statement
	Technical Account
	Historical Account
	Work in Progress

	C Language Safety Issues
	Lack of Precise Semantics
	Lack of Language-Based Safety Mechanisms
	Remediation Techniques
	Better C Initiatives

	Techniques and Tools
	Enumeration Techniques
	Abstraction Techniques
	Deduction Techniques
	Combination Thereof

	Statement of Purpose
	Summary of Contributions
	Organization of This Thesis

	I Integer and Memory Safety Checking
	Intermediate Language Definition
	Jessie Rationale
	Jessie Syntax and Operational Semantics
	Abstract Syntax
	Typing Rules
	Execution Model
	Operational Semantics

	C to Jessie Translation
	Data Translation
	Control Translation
	A Simple Example: Linear Search

	Jessie Annotation Language
	Jessie to Why Translation
	Other Related Work
	Chapter Summary

	Integer Safety Checking
	Assertions for Integer Safety
	Integer Checks
	Integer Safety for Linear Search
	Assertions from Annotations

	Abstract Interpretation for Integer Programs
	Theory of Abstract Interpretation
	Practical Abstract Domains
	Application to Jessie Integer Programs
	Illustration on Linear Search

	Deductive Verification for Integer Programs
	Hoare Logics and Dijkstra's Weakest Preconditions
	Application to Jessie Integer Programs
	Illustration on Linear Search

	Other Related Work
	Chapter Summary

	Memory Safety Checking
	Assertions for Memory Safety
	Memory Model Accessors
	Memory Checks
	Memory Safety for Linear Search

	Abstract Variables
	Abstract Memory Locations
	Abstract Logic Function Applications
	Overlaps Between Locations
	Application to Linear Search

	Abstract Interpretation for Pointer Programs
	Lifting Abstract Domains
	Application to Jessie Pointer Programs
	Illustration on Linear Search

	Deductive Verification for Pointer Programs
	Lifting Weakest Preconditions
	Application to Jessie Pointer Programs
	Illustration on Linear Search

	Chapter Summary

	II Inference, Separation, Unions and Casts
	Alias-Free Type-Safe Programs
	Problem Overview
	Type Safety Restriction
	Aliasing Restriction
	Without Logic Annotations
	Problem Statement

	Inferring Logic Annotations
	Approach by Abstraction
	Approach by Deduction
	Abstraction and Deduction Together

	Combining Abstraction and Deduction
	Precondition Inference Algorithm
	Comparing Inference Techniques
	Taming Time and Space Complexity

	Other Related Work
	Chapter Summary

	Type-Safe Programs with Aliasing
	Problem Overview
	Memory Aliasing and Separation
	Frame Condition Equivalent Postcondition
	Aliasing Considered Harmful
	Aliasing as a Programming Discipline
	Problems with Alias Analyses
	Problems with Alias Control Techniques
	Problem Statement

	Inferring Regions: Existing Type-Based Approaches
	Steensgaard's Region Inference
	Talpin's Region Inference

	Refining Regions: a New Type-and-Effect Approach
	Equivalence of Paths and Regions
	Modular Region Inference
	Complete Region Inference for Interference-Free Programs
	Refined Region Inference
	Incompleteness of Refined Region Inference

	Other Related Work
	Chapter Summary

	Programs with Unions and Casts
	Prefix Casts
	Extending Jessie with Subtyping
	Crawling the Type Hierarchy

	Moderated Unions
	Discriminated Unions in Jessie
	Byte-Level Unions in Jessie
	Choice of Union in Jessie

	Other Unions and Casts
	Other Related Work
	Chapter Summary

	III Experiments
	Experiments on Real C Programs
	Notes of Implementation
	Logical Model of Strings
	Preprocessing
	Filtering Results

	String Libraries
	MINIX 3 Standard String Library
	CERT Managed String Library
	Related Works

	Benchmarks of Vulnerabilities
	Verisec Suite
	Zitser's Benchmark
	Related Works

	Chapter Summary

	Conclusion
	Résumé en Français
	Introduction
	Opérations entières et accès mémoire
	Définition d'un langage intermédiaire
	Preuve de la sûreté des opérations entières
	Preuve de la sûreté des accès mémoire

	Inférence, séparation, unions et casts
	Programmes typés sans partage mémoire
	Programmes typés avec partage mémoire
	Programmes avec unions et casts

	Expériences sur des programmes C réels
	Bibliothèques de chaînes de caractères
	Jeux de tests de vulnérabilités

	Conclusion

	Index
	Bibliography

