
Pad
An Alternative Approach to the Computer Interface

Ken Perlin
David Fox

Courant Institute of Mathematical Sciences
New York University

719 Broadway
12th Floor

New York, NY 10003

Abstract

We believe that navigation in information spaces is best supported
by tapping into our natural spatial and geographic ways of thinking.
To this end, we are developing a new computer interface model
called Pad.

The ongoing Pad project uses a spatial metaphor for computer
interface design. It provides an intuitive base for the support of such
applications as electronic marketplaces, information services, and
on-line collaboration. Pad is an infinite two dimensional
information plane that is shared among users, much as a network
file system is shared. Objects are organized geographically; every
object occupies a well defined region on the Pad surface.

For navigation, Pad uses “portals” - magnifying glasses that
can peer into and roam over different parts of this single infinite
shared desktop; links to specific items are established and broken
continually as the portal’s view changes. Portals can recursively
look onto other portals. This paradigm enables the sort of peripheral
activity generally found in real physical working environments.
The apparent size of an object to any user determines the amount of
detail it presents. Different users can share and view multiple
applications while assigning each a desired degree of interaction.
Documents can be visually nested and zoomed as they move back
and forth between primary and secondary working attention.
Things can be peripherally accessible.

In this paper we describe the Pad interface. We discuss how to
efficiently implement its graphical aspects, and we illustrate some
of our initial applications.

1 Introduction

Imagine that the computer screen is a section of wall about the size
of a typical bulletin board or whiteboard. Any area of this surface
can then be accessed comfortably without leaving one’s chair.
Imagine further that by applying extraordinarily good eyesight and
eye-hand coordination, a user can both read and write as
comfortably on any micron wide section of this surface as on any
larger section. This would allow the full use of a surface which is
several million pixels long and high, on which one can comfortably
create, move, read and compare information at many different
scales.

The above scenario would, if feasible, put vast quantities of
information directly at the user’s fingertips. For example, several
million pages of text could be fit on the surface by reducing it
sufficiently in scale, making any number of on-line information
services, encyclopedias, etc., directly available. In practice one
would arrange such a work surface hierarchically, to make things
easier to find. In a collaborative environment, one could then see
the layout (in miniature) of many other collaborators’ surfaces at a
glance.

The above scenario is impossible because we can’t read or
write at microscopic scale. Yet the concept is very natural since it
mimics the way we continually manage to find things by giving
everything a physical place. A good approximation to the ideal
depicted would be to provide ourselves with some sort of system of
‘magic magnifying glasses’ through which we can read, write, or
create cross-references on an indefinitely enlargeable (‘zoomable’)
surface. This paper describes the Pad interface, which is designed
using these principles.

1.1 Overview of the Paper

We begin section one with a brief summary of the basic ideas and
components of the Pad Model. We then finish section one with a
comparison of Pad to the window/icon paradigm and a summary of
prior work. Section two is a description of a typical Pad application,
and section three covers the principles of the Pad system. Section
four covers several issues in our implementation of Pad, and section
five lists some ongoing and future projects. Finally, section six
presents our conclusions and acknowledgments.

1.2 Basic Pad Model

The Pad Surface is an infinite two dimensional information plane
that is shared among users, much as a network file system is shared.
It is populated by Pad Objects, where we define a Pad Object to be
any entity that the user can interact with (examples are: a text file
that can be viewed or edited, a clock program, a personal calendar).
Pad Objects are organized geographically; every object occupies a
well defined region on the Pad surface.

To make themselves visible, Pad Objects can create two types
of “ink,” graphics and portals, and place them on the Pad Surface.
A graphic is simply any sort of mark such as a bitmap or a vector.
Portals are used for navigation, they are like magnifying glasses
that can peer into and roam over different parts of the Pad Surface.
A portal may have a highly magnified view or a very broad,
panoramic view, and this view can be easily changed. The screen
itself is just a special “root” portal.

A portal is not like a window, which represents a dedicated
link between a section of screen and a specific thing (e.g.: a Unix
shell in X-Windows or a directory in the Macintosh Finder). A

portal is, rather, a view into the single infinite shared desktop; links
to specific items are established and broken continually as the
portal’s view changes. Also, unlike windows, portals can
recursively look onto (and into) other portals.

Figure 1 shows a very large financial document on the Pad
surface. The small portal at the top of the figure shows an overview
of the entire report. The two other portals show successive closeups
of portions of the report.

1.3 Object/Portal Interaction

A Pad object may look quite different when seen through different
portals. There are two techniques that allow objects vary their
appearance: semantic zooming and portal filters .

Every object visible on the screen has a magnification that
depends upon the sequence of portals it is being seen through. As
the magnification of an object changes, the user generally finds it
useful to see different types of information about that object. For
example, when a text document is small on the screen the user may
only want to see its title. As the object is magnified, this may be
augmented by a short summary or outline. At some point the entire
text is revealed. We call this semantic zooming.

Semantic zooming works using the expose event, which says
that a particular portion of the Pad Surface will be rendered at a
particular magnification. When an object receives this event it
generates the display items needed to give an appropriate
appearance at that magnification.

Objects can also manage portal filters - portals that show non-
literal views of cooperating objects. For example, a portal may
show all objects that contain tabular data as a bar chart, but display
other objects as would any other portal. This would enable an
application to embed a bar chart within a document by placing in it
a portal filter that looks onto an object that contains tabular data.
Another application can then allow text or spreadsheet style editing
of the tabular data itself by some user. These edits will be seen as
changes in the bar chart by any user who is looking at the document.

The effect is that the bar chart filter portal will “see” any
tabular data as a bar chart, but will see other objects in the usual
way. Portal filters work by intercepting the expose event for objects
which it knows how to render. It then asks the object or objects for
any information it needs to create the display items to render them.

Another interesting portal filter would be a control modifier.
Imagine for example that a paint program has several types of
brush. Normally one would click on an image of a particular brush
to select it. When seen through a control modifier portal filter, each
brush image would appear as a panel of parameter controls with
which the user can change that brush’s internal state (width,
spattering law, etc). The same portal filter could be used to modify
the controls of any application on Pad that recognizes its message
conventions.

1.4 Pad vs. the Window/Icon Paradigm

An important distinction between the Pad universe and the universe
of other window systems is that in Pad every interaction object
possesses a definite physical location. In this sense Pad is a two
dimensional virtual reality. Yet a user’s changing view can allow
objects to appear larger or smaller.

This paradigm allows for the sort of peripheral activity found
in real physical working environments. Each object on a user’s
screen commands a degree of attention commensurate with how big
the object appears to that user. This allows each object to vary the
amount of detail it presents to each user. Different users can share
and view multiple applications while assigning to each one a
desired degree of interaction. Documents can be visually nested and

zoomed as they move back and forth between primary and
secondary working attention. Things can be peripherally
accessible.

For example, on the Macintosh desktop a user double clicks on
a folder icon to see the contents of a directory in a window. But to
see the contents of any folder within that folder, the user must
double click to create a separate window.

In comparison, a user of Pad generally views a directory
through a portal. The contents of any subdirectories are visible, in
miniature, through sub-portals. This allows the user a peripheral
awareness of a subdirectory’s contents, without the user having to
perform any explicit action. In this sense, Pad is better suited to
non-command user interfaces [16].

1.5 Prior and related work

A number of researchers developed ways to visually structure
interactive information that offer an alternative to windows/icons.
One of the first such systems was the Spatial Data Management
System [4] at MIT, which presented an information landscape on
two screens: one screen for a panoramic overview and another
(application) screen providing a closer view. The user could either
pan locally around on the application screen or else could go
directly to an area by pointing on the panoramic view.

On the other hand, Hypertext systems [15][10] allow the user
to jump from one place to another in a conceptual information
space. A notable problem with the current state of hypertext
systems is the difficulty of knowing one’s location in this space;
unless the application is designed very carefully the user can easily
get lost.

In other related work, many desktop publishing systems
provide tiny “thumbnail sketches” of images that are stored on disk.
To open an image file the user simply points to these miniature
images instead of specifying a file name.

A unique approach to providing peripheral information has
been developed by George Furnas at Bellcore Applied Research.
His Fisheye user interface [8] shows information of current interest
in great detail, while showing a progressively less detailed view of
surrounding information.

Also, some of the components of fast image zooming have
existed for a while. Williams [25] has used a pyramid of images for
texture filtering, and Burt [2] for image processing, both based on
the prior work of Tanimoto [22]. The Bad Windows interface [19]
allows drawings to be accessed at multiple levels of detail.

Three dimensional interactive virtual offices that allow a user
to change viewpoint are being developed by Mackinlay et. al. as
well as Feiner [12][6]. Changes of scale have long been used in
computer graphics for both entertainment and for scientific
visualization [3]. One notable early example was the molecular
simulation work of Nelson Max [13].

At Xerox PARC there has been a large body of interesting
work on enabling groups to remotely share a common drawing
surface for collaborative work [11][14][21]. This is part of their
larger ongoing research effort in shared “Media Spaces” [1].
Similarly, the Rendezvous system at Bellcore is a general meta-
system for building shared “conversational” interfaces for
teleconferencing situations [9], as is the work of Smith et. al. [20]

2 An Example Application

The multiscale daily/monthly calendar is a study of “semantic
zooming.” Figures 2 through 4 show what the calendar looks like at
various successive magnifications. At any level, the user can type
or draw on the calendar. As the user zooms away from the scale at

TITLE: noname.ps

CREATOR: pnmtops

CR DATE:

Figure 1: Quarterly report. Portals are views onto other parts of the Pad surface.

which the annotations were drawn they become first translucent,
then invisible. In this way, a user can overlay many levels of
annotation on a calendar without confusion.

The major problem with an application of this type is that it
can involve a large number of display items, since the spatial
density of display items on the Pad grows geometrically as the user
zooms into the calendar. Yet at any one time only a fairly small
number of display items is visible, since as the user zooms in the
screen occupies an ever smaller absolute area on the Pad.

We address this problem by designing the calendar object as
an expandable semantic tree, and identifying display items with
different nodes of this tree. Each time the calendar is displayed this
semantic tree is traversed. As each node is reached, display items
are generated as needed. Individual display items are ephemeral - if
an item is off the screen for a while it is quietly removed by the
calendar object. In this way the total number of display items
always remains manageably small.

This general notion of a geographic database that will expand
and self-prune as the user roams around the Pad has now been
encapsulated in a Scheme library called an “ephemeral database
manager.” We plan to apply this library to other Pad applications
that have an inherently tree structured semantics.

3 System Structure

In this section we introduce the abstract data types needed to
implement Pad. First we will describe the concepts necessary for
display, then those needed to support interaction.

3.1 Addresses and Regions

A Pad address A = (x, y, z) has both a location and a scale, and
defines the linear transformation T A: (u,v) → (x + u2z ,y + v2 z) .
Here z represents the log2 of scale. A Pad region R = [A, w, h] is a
rectangle defined by an address together with a raster width and

height (w, h). A region covers the portion of the Pad surface from
T A (0,0) to T A (w ,h) , or from (x, y) to (x +u2 z ,y + v2z) .

3.2 Display Items

The lowest level entities in the Pad universe are the display items ,
which come in two basic types: graphic and portal. Display items
are the only entities actually visible on the user’s screen. A graphic
consists of a raster image I and an address A. Every display item is
said to have a region [A, Iw , Ih], which is the portion of the pad
surface which it occupies.

A portal is a graphic that has an additional address, called its
look-on L. Using its raster image I as a mask, a portal have as its
“look-on” the region [L,I w ,Ih] on the Pad surface. The portion of
the Pad surface which the look-on covers and which is not masked
by the portal’s graphic is visible at the location of the portal’s
region. This raster masking enables a portal to give a shaped view
onto the Pad surface. Thus, a portal can be square, round, or even
shaped like some well known corporate logo.

We refer to a display item’s Az as its “scale.” In general, a
display item becomes visible on the screen only after being viewed
through a succession of portals, each of which may transform it. We
refer to a display item’s apparent z, as it is seen on the screen, as its
“magnification.”

The image on the user’s screen is created from a set of display
items. There is one portal associated with the user’s screen called
the “root portal”; the display process consists of rendering the root
portal. This means rendering the region of the Pad surface which
the root portal looks onto. Those display items that overlap the root
portal’s look-on are rendered. This procedure is then applied
recursively to render any display item which is itself a portal.

As the display process recurses through each portal, the
transformation T (A)T −1 (L) is applied, where A is that portal’s
address and L is that portal’s look-on. This recursion can be
expanded to compute the location of any display item on the screen.
Suppose item i is viewed through successively nested portals
p1…pn . Then to determine where (and at what magnification) to

Figure 3: The calendar object generates smaller scale display items
only for the area visible on the user’s screen. Display items that are
off the screen may be garbage collected and destroyed.

Figure 4: The user’s annotations are created in ink that also fades
out at greater magnifications.

TITLE: noname.ps

CREATOR: pnmtops

CR DATE:

Figure 2: As you approach the calendar object the large scale
display items fade out and disappear.

TITLE: noname.ps

CREATOR: pnmtops

CR DATE:

TITLE: noname.ps

CREATOR: pnmtops

CR DATE:

display i on the screen, we apply the transformations:

T −1 (Lroot)T (Ap1
)T −1(Lp1

)…T(Apn
)T −1 (Lpn

)T (Ai)

Incrementing the z component of a display item’s address will
increase its magnification. Incrementing the z component of a
portal’s look-on will double the size of its looked-on region - and
will therefore decrease the magnification of every item seen
through it. (Think of it as increasing the viewer’s altitude.)

There are several other properties of primitive display items
which are important to note:

Visibility Range: Each graphic object can have a range of
magnification outside of which it is invisible. This is important
since most display items are only useful within a certain range
of magnification.

Transparency Range: Similarly, each graphic can have a range of
magnification outside of which the graphic is transparent. This
allows objects to fade away gracefully as they are magnified
up or down. Transparency is achieved by masking with a
patterned pixel mask at screen resolution.

Private Display Items: Display items may be attached to a portal,
in which case they are only visible when viewed through that
portal and their addresses are relative to that of the portal. This
creates a hierarchy of display items and is used to implement
the filters described below.

3.3 Pad Objects

Graphics and Portals suffice to make an interesting multi-scale
drawing program. However to use Pad as a system for building
general user interfaces requires a higher level structure called a Pad
Object to interpret events and control these display items so they
behave as a single application. In Pad an object consists of a region
together with a package of code and data which respond to event
messages. An object’s behavior is specified by the application
developer. In order to make itself seen, each object manages a
collection of display items, creating, modifying, and deleting them.

Pad Objects receive events from the user’s mouse and
keyboard, plus timer events, channel events (events representing
other types of input, e.g. the output of a process), and expose events
which inform the object that some portion of itself will become
visible on someone’s screen. Events which would normally have an
x-y location have instead an address, and this address is
transformed if the event passes through a portal before being
received by an object which is interested in it. Similarly, an expose
event covers a region rather than just a rectangle, and this region is
also transformed by portals so that each object can be informed
which portion of its region will be rendered and at what
magnification.

Objects are maintained in an order, just as display items have a
drawing order, so that if two or more objects are at the mouse
address the mouse events are sent to the one in front. The object
may use this event for its own purposes, or it may pass the event on
to the objects behind it, or it may transform the event’s address and
pass it on to some other part of the Pad. Events thus passed may go
unused by the objects below, in which case the original object may
then use the event for its own purposes.

3.4 Display

Display is complicated by the fact that objects may be continually
creating and destroying display items. Before we can create the
display we first need to give each object an opportunity to know at

what magnification it will be called upon to appear, since this will
probably influence what display items it chooses to show.

Therefore display is a two phase process. In the first phase,
each object gathers all the necessary information about what
portions of it will appear on the screen and at what magnifications.
During this first phase display items may be spawned. In the second
phase the screen image is actually drawn.

During phase one each portal is displayed by having the Pad
object that controls it communicate with all objects that in- tersect
the portal’s look-on region. This process begins with a special root
object, which controls the user’s root portal. For a portal controlled
by an object O1 the procedure is as follows:

• O1 sends an expose event for the portal’s look-on region.
This event will be received by all objects whose regions
intersect the portal’s look-on region.

• for each object O2 that responds:

- O1 tells O2 to produce display items for itself with
the proper magnification and clip. If O2 controls
any portals, the procedure is invoked for them
recursively.

- any display items that O1 receives back, it attaches
to the portal.

This process continues recursively until all items large enough to
see on the screen are accounted for.

In the second phase, each portal is painted from its
accumulated list of display items. This process starts with the root
portal, and continues on through all portals seen by the root portal,
and then recursively through those portals. Note that if two portals
on the screen have overlapping look-on regions, their lists may have
display items in common.

3.5 Interacting Objects and Portals

Semantic zooming is implemented by having the object’s display
method depend upon its magnification. The object is always told its
magnification during display phase one. Portal filters are
implemented as follows. Consider the case of the bar chart filter
portal described earlier. Suppose this portal filter is managed by
object O1. During phase one of the portal display procedure, O1
sends an expose event for this portal, and receives a number of
acknowledgments. Suppose O1 has just received such an
acknowledgment from object O2 . O1 queries O2 to find out
whether O2 is a tabular object. If yes, then O1 gets the tabular data
from O2 , builds its own display items for the bar chart, and attaches
these to the portal. If no, then O1 asks O2 to produce a list of
display items as usual. The effect is that the filter portal will “see”
any tabular data as a bar chart, but will see other objects in the usual
way.

4 Implementation Details

The Pad system is written in three layers, a real-time display layer
written in C++, a Scheme interpreter providing an interface to the
C++ layer, and a collection of Scheme code implementing the Pad
application interface. It currently runs under X Windows and MS-
DOS. The X Windows version has been compiled and run on
SunOS, AIX and Linux. The source code of the most recent
released version is available via anonymous FTP from cs.nyu.edu
in the directory pub/local/perlin.

4.1 Rendering Display Items

It is absolutely essential to our system that arbitrarily scaled
bitmaps can be displayed in real time. Without an algorithm to
achieve this, our desktop model would either require special
purpose hardware, or else would lose real-time response. Either
scenario would limit the model’s general usefulness on typical
currently available graphical workstations. The method we use to
render the raster image of a graphic item depends upon the item’s
magnification. The following decisions are based on our trial and
error experiences; they reflect our best results in “tuning” this
process.

We use four different techniques for drawing the raster image
of a graphic, depending on the range of magnification m.

• m > 16. At the largest magnifications it is quickest to simply
draw individual filled squares for each pixel.

• 1 > m ≥ 16. At moderate magnifications we use look up
tables indexed by the byte pattern, amount of magnifica-
tion, and bits of shift to properly position the result within
the destination word. Different tables are used depending on
the depth of the image.

• m = 1. With no magnification we only need to worry about
the amount of shift necessary to position the result.

•
1

1024
 ≤ m < 1. To demagnify images we index into a

precomputed pyramid of images [25]. This precomputation
is done at the time a graphic is created; it creates about a 3/2
speed penalty to that process. Since graphic items are
generally reused over many screen refreshes, this penalty is
not usually a problem in practice.

• m <
1

1024
. Beyond some amount of demagnification the

bitmap is not visible and need not be drawn at all. These
techniques y ie ld a d i sp lay t ime for each ob jec t
approximately proportional to the size of the entire screen
image. In practice this tends to keep refresh time dependent
only upon screen resolution, not upon image complexity.

4.2 Address Space Limits

Addresses are implemented using floating point arithmetic, so we
cannot claim an “infinite” address space for our current system. A
true unbounded address space could be achieved by using extended
integer arithmetic. Even in its current form, the space provided is
astronomical. Suppose our numbers have a 48 bit mantissa and we
have a 212 by 212 screen. To position an object on the screen uses
12 of those 48 bits, leaving a minimum of 36 bits of precision to
position our look-on anywhere within the square -1 ≤ x, y ≤ 1. This
means, for example, that you could lay out 236 by 236 pages of text
in that area.

5 Ongoing and Future Work

5.1 Shared Object Space

Perhaps our most important goal is to create a truely distributed Pad
system, where Pad objects can exist on remote machines and can
migrate from machine to machine. When Pad objects are
distributed over many computers the problem of updating the
display of a region on one’s screen becomes a combined distributed

database and computational geometry problem. This is the subject
of ongoing research [7], and is beyond the scope of this paper. For
in-depth discussions of the implementation problems we refer the
readers to Preparata & Shamos [18] for an overview of
computational geometry and to Edelsbrunner [5] for an optimal
data structure for rendering.

5.2 Continuous Zoom

Early prototypes have used discreet zoom levels to achieve high
performance. We have also implemented a continuous zoom
algorithm (based on Bresenham’s midpoint line drawing algorithm)
that allows continuous scaling of raster images at approximately
half the speed of discreet zooming on unenhanced bitmapped
workstations. The algorithm uses table lookups to greatly speed up
the calculation.

5.3 Hierarchical Text Editor

A number of generalizations of familiar applications to the
hierarchical domain suggest themselves. A multiscale text editor is
a generalization of a traditional text editor, with the added
capabilities that text can appear at many different sizes, with
recursively inserted text. Therefore the screen structure is no longer
a two dimensional array - it is more like a set of nested boxes. This
allows a more direct look-and-feel for hypertext - footnotes and
references can be embedded in their entirety at the point of
reference. Successive zooming by the user gradually expands the
contents seen of the work referenced. Text is structured as hypertext
- a text string may contain embedded links to other text strings. The
structure of the document can be an arbitrary directed graph.
Visually, text that is linked to appears to be at the location of the
link, only smaller. Contents of a hyperlink can be accessed without
a disruptive sudden change in the view of the text that references it.

Text can also be made semantically zoomable: when text is
visibly small it appears only as a title. As the user zooms in, this
expands to include an abstract. Further zooming reveals first an
outline with short text descriptions, then finally the full text.

There are several options for where exactly to visually place
linked-to text. The text can appear in miniature either beneath the
lines of parent text or, alternatively, superimposed on the parent
text. The latter option requires zoom-dependent translucency. As
the user zooms in, text seen through hyperlinks “fades up” and the
visually larger text that references it simultaneously “fades out.”

Text can be visible simultaneously in any number of portals.
Each view must maintain a certain amount of state information. For
example, there needs to be a cursor for each view. This means that if
the mouse is over a particular portal, and the user types, the
insertion point is at the cursor of that view. Since portals can
contain ownership attributes, they can be used to restrict access to
parts of a document. Text visibility through any particular portal
depends upon the text’s ownership - public (shared by many users)
or private (seen by only one user). Public text can contain links to
private text. In general, the visibility attributes of text can vary,
depending upon whether the text is being viewed by its owner or by
someone else.

5.4 An Infinitely Scalable Painting Program

We have, together with Luis Velho, begun applying multiscale
principles to an infinitely detailable painting program [17].
Organizing an infinite multiscale canvas is straightforward,
requiring only a Quad-tree. Unfortunately, simulating the
application of a paint brush requires a compositing operation - an
alpha blending of the underlying image with the brush image.

Since this operation is non-commutative, it is easy to run into
problems. For example, let’s say the user zooms way in to paint a

scene at a fine scale, then pulls out to paint an atmospheric wash at
a coarse scale, and finally zooms back in to touch up fine scale
details. How should the system implement this? A straightforward
approach, used by Williams [26], is to immediately apply the coarse
scale operations to the finer level pixels. But this is computationally
prohibitive for highly scaled scenes, since the number of fine scale
pixels affected grows exponentially with the difference between
coarse and fine scale.

Clearly a pyramid of some kind is called for. But because of
non-commutativity, successive operations at different levels cannot
be separated into a traditional Laplacian or similar multilevel
pyramid (as they could be in, say, a strictly additive system). Our
solution is to use B-spline wavelets. We break the brush image into
its component wavelet basis, and apply independently at each level
of a wavelet basis pyramid. Then the B-spl ine wavelet
reconstruction will produce the correct result . We have
implemented this to a one-dimensional canvas, and are now
working on a two or more dimensional version.

5.5 Multiple Narrative Paths

Pad is a good way to store documents with hierarchy and multiple
narrative pathways. Side discussions in a textbook can be
embedded in situ. This allows for some interesting possibilities. For
example, a novel may be written with bifurcations, allowing its
reader to explore many interleaving stories - a sort of visual
Alexandria Quartet. For example, we have been creating a user
browseable novel literally shaped into a tree, as seen in figures 5, 6,
7.

5.6 Cooperative Pad Applications

With the onset of high bandwidth consumer information services,
Pad provides a viable look-and-feel for information browsing. As
the customer zooms in to an information service, the semantic zoom
level (and hence the information content) increases. Zoomed-down
browsing can be made freely available, and the customer can be
billed at successively higher rates for more specific data.

For example, the title and a brief synopsis of a video may be
accessible at low zoom levels. Higher zoom levels actually play the
movie . At the browsing level , the cus tomer might see
geographically arranged clusters of films that may be of related
interest (e.g. films by a particular director).

Similarly, our Pad Map project will provide a substantial user
community with access to a shared map of Manhattan, annotated
with information about cultural events. The users will be able to add
their own annotations, such as restaurant or movie reviews, or just
graffiti. As part of the Pad system, annotations could be at any
scale, and contain links to other annotations: though it is desirable
to keep all the reviews of a given film together, portals could make
them visible at each theatre which is showing that film. The project
will explore the mechanisms necessary manage user contributions
without any one user monopolizing or degrading the system for
others.

Our Shared Spreadsheet project re-casts the spreadsheet
application in a more hierarchical and sharable form. For example,
hierarchy can be imposed by placing spreadsheet A in a cell of
spreadsheet B, and designating a particular cell of A to be the value
that appears in B’s cell when the magnification of A is low. The
value of sharing such a spreadsheet among users comes from
immediate access to the latest data, and the elimination of the need
to merge copies of the spreadsheet which have been updated
independently, etc.

Eventually, as display and communication technology
improves, pieces of display surface scattered around a work
environment will become more common - on walls, desks,
electronic PostIt™ notes[24]. Pad is well suited to such a
distributed environment, since it places the user at a floating
location in an information geography. The Windows/Icon/Menu/
Pointer model is less well suited to this, since it is motivated by the
desire to create a “desktop” metaphor on a single display screen.

6 Conclusions

We have described a new kind of graphical space that has a number
of advantages over traditional window systems. Its key advantage is
that it allows a user or a group of users to share and view multiple
applications in a manner that assigns them various levels of

TITLE: noname.ps

CREATOR: pnmtops

CR DATE:

TITLE: noname.ps

CREATOR: pnmtops

CR DATE:

Figure 6: One level of zoom into branching tree story. At this scale
the narrative contains one or two paragraphs of detail.

Figure 5: Overview of branching tree story. The story begins with a
single sentence. The branches of the tree represent story paths - as
the reader zooms into different branches, different stories unfold.

[7] Matthew Fuchs, unpublished Ph.D. dissertation in progress.
[8] George Furnas, Generalized Fisheye Views, Human Factors &

Computer Systems, CHI 89 Conference proceedings, pp. 16-
23.

[9] Ralph Hill, et. al., The Rendezvous Language and Architecture,
CACM Vol. 36, 1993, No. 1., pp. 62-67.

[10] Hypertext on Hypertext, Macintosh Version: Disk #1 and #2.
ACM Press, New York, 1988.

[11] I. Lu et. al., Idea management in a shared drawing tool.
Proceedings of the Second European Conference on
Computer-Supported Cooperative Work-ECSCW ‘91,
Amsterdam, Holland, 1991.

[12] J. Mackinlay et. al., Rapid Controlled Movement Through a
Virtual 3D Workspace. ACM SIGGRAPH 1990 Conference
Proceedings.

[13] Nelson Max, ACM SIGGRAPH 1975 Film show.
[14] Minneman, S. and Bly, S.A. Managing a trois: A study of a

multi-user drawing tool in distributed design work,
Proceedings of the CHI’91 Conference on Human Factors in
Computer Systems., New Orleans, La., 1991.

[15] Ted Nelson, Literary Machines. Swarthmore, PA, 1981.
[16] Jakob Nielsen, Non-command User Interfaces, CACM, Vol.

36 No. 4, (April 1993), pp. 83-99.
[17] Ken Perlin and Luis Velho, A Wavelet Representation for

Unbounded Resolution Painting, NYU Technical Report.
[18] Franco P. Preparata, Michael Ian Shamos, Computational

Geometry: An Introduction, Springer Verlag, New York,
1989.

[19] David Small, Masters Thesis, MIT Media Laboratory, 1989.
[20] Randall B. Smith, Tim O’Shea, Claire O’Malley, Eileen

Scanlon, and Josie Taylor. Preliminary Experiments with a
distributed, multi-media, problem solving environment. In
Proceedings of the First European Conference on Computer
Supported Cooperative Work (Gatwick, UK) 1989, pages 19-
34.

[21] J.C. Tang and S.L. Minneman, Videodraw: A video interface
for collaborative drawing. Proceedings of the CHI ’90
Conference on Human Factors in Computing Systems, Seattle,
Wash., 1990.

[22] S. L. Tanimoto, and T. Pavlidis, A hierarchical data structure
for picture processing. Computer Graphics and Image
Processing, Vol. 4, 1975, pp. 104-119.

[23] Edward Tufte, The Visual Display of Quantitative Information,
Graphics Press, 1983.

[24] M. Weiser, The Computer for the 21st Century, Sci. Am. 265,3
(September 1991), pp. 94-104.

[25] Lance Williams, Pyramidal Parametrics. ACM SIGGRAPH
1982 Conference Proceedings.

[26] Lance Williams, personal communication.

importance, with easy visual nesting and zooming of documents as
they move from peripheral to primary working attention.

As compared to standard current window models, this system
makes it easier for the user to exploit visual memory of places to
organize informationally large workspaces.

We believe that this approach enriches the workstation/
window paradigm in a fundamental way.

6.1 Acknowledgments

This research was funded by a grant from the NYNEX Corporation
and by NSF grant number IRI-9015445. We would like to thank
Nathan Felde at NYNEX for the initial discussions leading to this
work, and Jack Schwartz, Lorie Loeb, Raj Raichoudhury, Allison
Druin, and Gene Miller, all of whom contributed valuable ideas and
time, as well as the Apple corporation for their generous equipment
donation. Particular credit goes to Matthew Fuchs, who is
developing the Distributed Pad/Scheme system DREME.

References

[1] Sara Bly et. al., Media Spaces: Bringing People Together in a
Video, Audio, and Computing Environment, CACM, Vol. 36,
1993, No. 1., pp. 28-47.

[2] Peter Burt, A multiresolution spline with applications to image
mosaics, ACM Transactions on Graphics, Vol. 2, No. 4, Oct.
1983, pp. 217-236.

[3] James H. Clark. Hierarichical geometric models for visible
surface algorithms. ACM Communications, Vol. 19, No. 10,
Oct. 1976, pages 547-554.

[4] William C. Donelson, Spatial Management of Information,
ACM SIGGRAPH 1978 Conference Proceedings.

[5] H. Edelsbrunner, A new approach to rectangle intersections,
Part II, Int’l Journal of Computational Mathematics, No. 13,
pp. 221-229, 1983.

[6] S. Feiner and C. Beshers, Worlds within worlds: Metaphors for
exploring n-dimensional virtual worlds. Proc. UIST ’90
(ACM Symp. on User Interface Software and Technology),
Snowbird, UT, Oct. 3-5, 1990, pp. 76-83.

TITLE: noname.ps

CREATOR: pnmtops

CR DATE:

Figure 7: Two levels of zoom into branching tree story. Here we can
see the story beginning to take a definite shape - in one possible
narrative path.

