
I

b
HUMAN-COMPUTER INTERACTION, 1985, Volume 1, pp. 311-338

,T . Copyright 0 1985, Lawrence Erlbaum Associates, Inc. 4

Direct Manipulation Interfaces

Edwin L. Hutchins, James D. Hollan, and
Donald A. Norman

University of California, San Diego

ABSTRACT

Direct manipulation has been lauded as a good form of interface design, and
some interfaces that have this property have been well received by users. In this
article we seek a cognitive account of both the advantages and disadvantages of
direct manipulation interfaces. We identify two underlying phenomena that
give rise to the feeling of directness. One deals with the information processing
distance between the user’s intentions and the facilities provided by the ma-
chine. Reduction of this distance makes the interface feel direct by reducing
the effort required of the user to accomplish goals. The second phenomenon
concerns the relation between the input and output vocabularies of the inter-
face language. In particular, direct manipulation requires that the system pro-
vide representations of objects that behave as if they are the objects themselves.
This provides the feeling of directness of manipulation.

A version of this paper also appears as a chapter in the book, User Centered System De-
sign: New Perspectives on Human-Computer Interaction (Norman & Draper, 1986).

Authors’present address: Edwin L. Hutchins, James D. Hollan, and Donald A. Nor-
man, Institute for Cognitive Science, University of California at San Diego, La Jolla,
CA 92093.

312 HUTCHINS, HOLLAN, NORMAN

CONTENTS

1. DIRECT MANIPULATION
1.1. Early Examples of Direct Manipulation
1.2. The Goal: A Cognitive Account of Direct Manipulation

2.1. Distance
2.2. Direct Engagement

3.1. Semantic Distance
3.2. Semantic Distance in the Gulfs of Execution and Evaluation

2. TWO ASPECTS OF DIRECTNESS: DISTANCE AND ENGAGEMENT

3. TWO FORMS OF DISTANCE: SEMANTIC AND ARTICULATORY

The Gulf of Execution
The Gulf of Evaluation

3.3. Reducing the Semantic Distance That Must Be Spanned
Higher-Level Languages
Make the Output Show Semantic Concepts Directly
Automated Behavior Does Not Reduce Semantic Distance
The User Can Adapt to the System Representation
Virtuosity and Semantic Distance

3.4. Articulatory Distance
3.5. Articulatory Distance in the Gulfs of Execution and Evaluation

4. DIRECT ENGAGEMENT
5 . A SPACE OF INTERFACES
6. PROBLEMS WITH DIRECT MANIPULATION

1. DIRECT MANIPULATION

The best way to describe a direct manipulation interface is by example. Sup-
pose we have a set of data to be analyzed with the numbers stored in matrix
form. Their source and meaning are not important for this example. The num-
bers could be the output of a spreadsheet, a matrix of numerical values from
the computations of a conventional programming language, or the results of
an experiment. Our goal is to analyze the numbers, to see what relations exist
among the rows and columns of the matrix. The matrix of numbers is repre-
sented on a computer display screen by an icon. To plot one column against
another, simply get a copy of a graph icon, then draw a line from the output of
one column to the x-axis input of the graph icon and another line from the out-
put of the second column to the y-axis input (see Figure 1). Not what was
wanted? Erase the lines and reconnect them. Want to see other graphs? Make
more copies of the graph icons and connect them. Need a logarithmic transfor-
mation of one of the axes? Move up a function icon, type in the algebraic func-
tion that is desired 0, = log x, in this case) and connect it in the desired data
stream. Want the analysis of variance of the logarithm of the data? Connect the
matrix to the appropriate statistical icons. These examples are illustrated in
Figure 1B.

4

Figure 1. An elementary example of doing simple statistical computations by di-
rect manipulation. (A) The basic components: The data are contained in the ma-
trix, represented by the icon in the upper left corner of the screen. At the bottom of
the screen are basic icons that represent possible functions. To use one, a copy of the
desired icon is moved to the screen and connected up, as is shown for the graph. (B)
More complex interconnections, including the use of a logarithmic transformation
of the data, a basic statistical package (for means and standard deviations), and an
Analysis of Variance Package (ANOVA).

A

B

A
D

T
A
M
A
T
R
1
X

.. ..
- - - - . .

. a - . . e .

- .:.*.
L 4

MENU

D
A
T
A
M
A
T
R
I
X

. .. j
. I . I

I- I

t ANOVA

313

314 HUTCHINS, HOLLAN, NORMAN

Now consider how we could partition the data. Suppose one result of our
analysis was the scatter diagram shown in Figure 2 . The straight line that has
been fitted through the points is clearly inappropriate. The data fall into two
quite different clusters and it would best to analyze each cluster separately. In
the actual data matrix, the points that form the two clusters might be scattered
randomly throughout the data set. The regularities are apparent only when we
plot them. How do we pull out the clusters? Suppose we could simply circle the
points of interest in the scatter plot and use each circled set as if it were a new
matrix of values, each of which could be analyzed in standard ways, as shown
in Figure 2B.

The examples of Figures 1 and 2 illustrate a powerful manipulation medium
for computation. The promise of direct manipulation is that instead of an ab-
stract computational medium, all the “programming” is done graphically, in a
form that matches the way one thinks about the problem. The desired opera-
tions are performed simply by moving the appropriate icons onto the screen
and connecting them together. Connecting the icons is the equivalent of writ-
ing a program or calling on a set of statistical subroutines, but with the advan-
tage of being able to directly manipulate and interact with the data and the
connections. There are no hidden operations, no syntax or command names to
learn. What you see is what you get. Some classes of syntax errors are elimi-
nated. For example, you can’t point at a nonexistent object. The system re-
quires expertise in the task domain, but only minimal knowledge of the com-
puter or of computing.

The term direct manipulation was coined by Shneiderman (1974, 1982, 1983)
to refer to systems having the following properties:

1. Continuous representation of the object of interest.
2. Physical actions or labeled button presses instead of complex syntax.
3. Rapid incremental reversible operations whose impact on the object of

interest is immediately visible. (Shneiderman, 1982, p. 251)

Direct manipulation interfaces seem remarkably powerful. Shneiderman
(1982) has suggested that direct manipulation systems have the following
virtues:

1. Novices can learn basic functionality quickly, usually through a demon-

2. Experts can work extremely rapidly to carry out a wide range of tasks,

3 . Knowledgeable intermittent users can retain operational concepts.
4. Error messages are rarely needed.
5. Users can see immediately if their actions are furthering their goals, and

stration by a more experienced user.

even defining new functions and features.

if not, they can simply change the direction of their activity.

L DIRECT MANIPULATION INTERFACES 315

Figure 2. (A) The scatter plot formed in Figure 1, along with the best fitting re-
gression line to the data. It is clear that the data really fall into two quite distinct
clusters and that it would be best to look at each independently. (B) The clusters are
analyzed by circling the desired data, then treating the group of circled data as if
they were a new matrix of values, which can be treated as a data source and ana-
lyzed in standard ways.

A

I I

B roT .. .:.e. *

. .

6. Users have reduced anxiety because the system is comprehensible and
because actions are so easily reversible. (Shneiderman, 1982, p. 251)

Can this really be true? Certainly there must be problems as well as benefits.
It turns out that the concept of direct manipulation is complex. Moreover, al-
though there are important benefits there are also costs. Like everything else,
direct manipulation systems trade off one set of virtues and vices against an-
other. It is important that we understand these trade-offs. A checklist of surface
features is unlikely to capture the real sources of power in direct manipulation
interfaces.

1.1. Early Examples of Direct Manipulation

Hints of direct manipulation programming environments have been around
for quite some time. The first major landmark is Sutherland’s Sketchpad, a
graphical design program (Sutherland, 1963). Sutherland’s goal was to devise
a program that would make it possible for a person and a computer “to converse
rapidly through the medium of line drawings.” Sutherland’s work is a land-

316 HUTCHINS, HOLLAN, NORMAN

mark not only because of historical priority but because of the ideas that he
helped develop: H e was one of the first to discuss the power of graphical inter-
faces, the conception of a display as “sheets of paper,” the use of pointing de-
vices, the virtues of constraint representations, and the importance of de-
picting abstractions graphically.

Sutherland’s ideas took 20 years to have widespread impact. The lag is per-
haps due more to hardware limitations than anything else. Highly interactive,
graphical programming requires the ready availability of considerable
computational power, and it is only recently that machines capable of sup-
porting this type of computational environment have become inexpensive
enough to be generally available. Now we see these ideas in many of the
computer-aided design and manufacturing systems, many of which can trace
their heritage directly to Sutherland’s work. Borning‘s T h i n g L a b program
(1979) explored a general programming environment, building upon many of
Sutherland’s ideas within the Smalltalk programming environment. More re-
cently direct manipulation systems have been appearing with reasonable fre-
quency. For example, Bill Budge’s Pinball Construction Set (Budge, 1983) permits
a user to construct an infinite variety of electronic pinball games by directly
manipulating graphical objects that represent the components of the game sur-
face. Other examples exist in the area of intelligent training systems (e.g., the
Steamer system of Hollan, Hutchins, & Weitzman, 1984; Hollan, Stevens, &
Williams, 1980). Steamer makes use of similar techniques and also provides
tools for the construction of interactive graphical interfaces. Finally, spread-
sheet programs incorporate many of the essential features of direct manipula-
tion. In the lead article of Scientific American’s special issue on computer soft-
ware, Kay (1984) claims that the development of dynamic spreadsheet systems
gives strong hints that programming styles are in the offing that will make pro-
gramming as it has been done for the past 40 years - that is, by composing text
that represents instructions - obsolete.

1.2. The Goal: A Cognitive Account of Direct Manipulation

We see promise in the notion of direct manipulation, but as yet we see no ex-
planation of it. There are systems with attractive features, and claims for the
benefits of systems that give the user a certain sort of feeling, and even lists of
properties that seem to be shared by systems that provide that feeling, but no
account of how particular properties might produce the feeling of directness.
The purpose of this article is to examine the underlying basis for direct manip-
ulation systems. O n the one hand, what is it that provides the feeling of“direct-
ness?” Why do direct manipulation systems feel so natural? What is so
compelling about the notion? O n the other hand, why can using such systems
sometimes seem so tedious?

DIRECT MANIPULATION INTERFACES 317

For us, the notion of“direct manipulation” is not a unitary concept, nor even
something that can be quantified in itself. It is an orienting notion. “Direct-
ness” is an impression or a feeling about an interface. What we seek to do here
is to characterize the space of interfaces and see where within that picture the
range of phenomena that contribute to the feeling of directness might reside.
The goal is to give cognitive accounts of these phenomena. At the root of our
approach is the assumption that the feeling of directness results from the com-
mitment of fewer cognitive resources. Or , put the other way around, the need
to commit additional cognitive resources in the use of an interface leads to the
feeling of indirectness. As we shall see, some of the production of the feeling of
directness is due to adaptation by the user, so that the designer can neither
completely control the process, nor take full credit for the feeling of directness
that may be experienced by the user.

We will not attempt to set down hard and fast criteria under which an inter-
face can be classified as direct or not direct. The sensation of directness is al-
ways relative; it is often due to the interaction of a number of factors. There are
costs associated with every factor that increases the sensation of directness. At
present we know of no way to measure the trade-off values, but we will attempt
to provide a framework within which one can say what is being traded off
against what.

2. TWO ASPECTS OF DIRECTNESS: DISTANCE AND
ENGAGEMENT

There are two distinct aspects of the feeling of directness. One involves a no-
tion of the distance between one’s thoughts and the physical requirements of
the system under use. A short distance means that the translation is simple and
straightforward, that thoughts are readily translated into the physical actions
required by the system and that the system output is in a form readily inter-
preted in terms of the goals of interest to the user. We will use the term directness
to refer to the feeling that results from interaction with an interface. The term
distance will be used to describe factors which underlie the generation of the
feeling of directness.

The second aspect of directness concerns the qualitative feeling of engage-
ment, the feeling that one is directly manipulating the objects of interest.
There are two major metaphors for the nature of human-computer interaction,
a conversation metaphor and a model-world metaphor. In a system built on
the conversation metaphor, the interface is a language medium in which the
user and system have a conversation about an assumed, but not explicitly rep-
resented world. In this case, the interface is an implied intermediary between
the user and the world about which things are said. In a system built on the
model-world metaphor, the interface is itself a world where the user can act,

318 HUTCHINS, HOLLAN, NORMAN

and which changes state in response to user actions. The world of interest is ex-
plicitly represented and there is no intermediary between user and world. Ap-
propriate use of the model-world metaphor can create the sensation in the user
of acting upon the objects of the task domain themselves. We call this aspect of
directness direct engagement.

2.1. Distance

We call one underlying aspect of directness distance to emphasize the fact that
directness is never a property of the interface alone, but involves a relationship
between the task the user has in mind and the way that task can be accom-
plished via the interface. Here the critical issues involve minimizing the effort
required to bridge the gulf between the user’s goals and the way they must be
specified to the system.

An interface introduces distance to the extent there are gulfs between a per-
son’s goals and knowledge and the level of description provided by the systems
with which the person must deal. These are referred to as theguCfofexecution and
the guyo f evaluation (Figure 3). The gulf of execution is bridged by making the
commands and mechanisms of the system match the thoughts and goals of the
user. The gulf of evaluation is bridged by making the output displays present a
good conceptual model of the system that is readily perceived, interpreted, and
evaluated. The goal in both cases is to minimize cognitive effort.

We suggest that the feeling of directness is inversely proportional to the
amount of cognitive effort it takes to manipulate and evaluate a system and,
moreover, that cognitive effort is a direct result of the gulfs of execution and
evaluation. The better the interface to a system helps bridge the gulfs, the less
cognitive effort needed and the more direct the resulting feeling of interaction.

2.2. Direct Engagement

The description of the nature of interaction to this point begins to suggest
how to make a system less difficult to use, but it misses an important point, a
point that is the essence of direct manipulation. The analysis of the execution
and evaluation process explains why there is difficulty in using a system, and it
says something about what must be done to minimize the mental effort re-
quired to use a system. But there is more to it than that. The systems that best
exemplify direct manipulation all give the qualitative feeling that one is directly
engaged with control of the objects- not with the programs, not with the com-
puter, but with the semantic objects of our goals and intentions. This is the
feeling that Laurel (1986) discusses: a feeling of first-personness, of direct
engagement with the objects that concern us. Are we analyzing data? Then we
should be manipulating the data themselves; or if we are designing an analysis
of data, we should be manipulating the analytic structures themselves. Are we

L

DIRECT MANIPULATION INTERFACES 319

Figure 3. The gulfs of execution and evaluation. Each gulf is unidirectional: The
gulf of execution goes from goals to system state; the gulf of evaluation goes from
system state to goals.

playing a game? Then we should be manipulating directly the game world,
touching and controlling the objects in that world, with the output of the sys-
tem responding directly to our actions, and in a form compatible with them.

Historically, most interfaces have been built on the conversation metaphor.
There is power in the abstractions that language provides (we discuss some of
this later), but the implicit role of interface as an intermediary to a hidden
world denies the user direct engagement with the objects of interest. Instead,
the user is in direct contact with linguistic structures, structures that can be in-
terpreted as referring to the objects of interest, but that are not those objects
themselves. Making the central metaphor of the interface that of the model
world supports the feeling of directness. Instead of describing the actions of in-
terest, the user performs those actions. In a conventional interface, the system
describes the results of the actions. In a model world the system directly pres-
ents the actions taken upon the objects. This change in central metaphor is
made possible by relatively recent advances in technology. One of the exciting
prospects for the study of direct manipulation is the exploration of the proper-
ties of systems that provide for direct engagement.

Building interfaces based on the model-world metaphor requires a special
sort of relationship between the input interface language and the output inter-
face language. In particular, the output language must represent its subject of
discourse in a way that natural language does not normally do. The expres-
sions of a direct manipulation output language must behave in such a way that
the user can assume that they, in some sense, are the things they refer to.
DiSessa (1985) calls this “naive realism.” Furthermore, the nature of the rela-
tionship between input and output language must be such that an output ex-
pression can serve as a component of an input expression. Draper (1986) has
coined the term inter-referential 1 / 0 to refer to relationships between input and
output in which an expression in one can refer to an expression in the other.
When these conditions are met, it is as if we are directly manipulating the
things that the system represents.

Thus, consider a system in which a file is represented by an image on the
screen and actions are done by pointing to and manipulating the image. In this

320 HUTCHINS, HOLLAN, NORMAN

case, if we can specify a file by pointing at the screen representation, we have
met the goal that an expression in the output language (in this case, an image)
be allowed as a component of the input expression (in this case, by pointing at
the screen representation). If we ask for a listing of files, we would want the re-
sult to be a representation that can, in turn, be used directly to specify the fur-
ther operations to be done. Notice that this is not how a conversation works. In
conversation, one may refer to what has been said previously, but one cannot
operate upon what has been said. This requirement does not necessarily imply
an interface of pictures, diagrams, or icons. It can be done with words and de-
scriptions. The key properties are that the objects, whatever their form, have
behaviors and can be referred to by other objects, and that referring to an object
causes it to behave. In the file-listing example, we must be able to use the out-
put expression that represents the file in question as a part of the input expres-
sion calling for whatever operation we desire upon that file, and the output ex-
pression that represents the file must change as a result of being referred to in
this way. The goal is to permit the user to act as if the representation is the
thing itself.

These conditions are met in many screen editors when the task is the ar-
rangement of strings of characters. The characters appear as they are typed.
They are then available for further operations. We treat them as though they
are the things we are manipulating. These conditions are also met in the statis-
tics example with which we opened this article (Figure l), and in Steamer. The
special conditions are not met in file-listing commands on most systems, the
commands that allow one to display the names and attributes of file structure.
The issue is that the outputs of these commands are simply “names” of the ob-
jects, and operating on the names does nothing to the objects to which the
names refer. In a direct manipulation situation, we would feel that we had the
files in front of us, that the program that “listed” the files actually placed the
files before us. Any further operation on the files would take place upon the
very objects delivered by the directory-listing command. This would provide
the feeling of directly manipulating the objects that were returned.

The point is that when an interface presents a world of behaving objects
rather than a language of description, manipulating a representation can have
the same effects and the same feel as manipulating the thing being represented.
The members of the audience of a well-staged play willfully suspend their be-
liefs that the players are actors and become directly engaged in the content of
the drama. In a similar way, the user of a well-designed model-world interface
can willfully suspend belief that the objects depicted are artifacts of some pro-
gram and can thereby directly engage the world of the objects. This is the es-
sence of the “first-personness” feeling of direct engagement. Let us now return
to the issue of distance and explore the ways that an interface can be direct or
indirect with respect to a particular task.

DIRECT MANIPULATION INTERFACES

3. TWO FORMS OF DISTANCE: SEMANTIC AND
ARTICULATORY

32 1

Whenever we interact with a device, we are using an interface language.
That is, we must use a language to describe to the device the nature of the ac-
tions we wish to have performed. This is true regardless ofwhether we are deal-
ing with an interface based on the conversation metaphor or on the model-
world metaphor, although the properties of the language in the two cases are
different. A description of desired actions is an expression in the interface
language.

The notion of an interface language is not confined to the everyday meaning
of language. Setting a switch or turning a steering wheel can be expressions in
an interface language if switch setting or wheel turning are how one specifies
the operations that are to be done. After an action has been performed, evalua-
tion of the outcome requires that the device make available some indication of
what has happened: that output is an expression in the output interface lan-
guage. Output interface languages are often impoverished. Frequently the
output interface language does not share vocabulary with the input interface
language. Two forms of interface language- two dialects, if you will-must
exist to span the gulfs between user and device: the input interface language
and the output interface language.

Both the languages people speak and computer programming languages are
almost entirely symbolic in the sense that there is an arbitrary relationship be-
tween the form of a vocabulary item and its meaning. The reference relation-
ship is established by convention and must be learned. There is no way to infer
meaning from form for most vocabulary items. Because of the relative inde-
pendence of meaning and form we describe separately two properties of inter-
face languages: semantic distance and articulatory distance. Figure 4 summa-
rizes the relationship between semantic and articulatory distance. In the
following sections we treat each of these distances separately and discuss them
in relation to the gulfs of execution and evaluation.

3.1. Semantic Distance

Semantic distance concerns the relation of the meaning of an expression in
the interface language to what the user wants to say. Two important questions
about semantic distance are (1) Is i t possible to say what one wants to say in this lan-
guage? That is, does the language support the user’s conception of the task do-
main? Does it encode the concepts and distinctions in the domain in the same
way that the user thinks about them? (2) Can the thing1 of interest be said concisely?
Can the user say what is wanted in a straightforward fashion, or must the user

322 HUTCHINS, HOLLAN, NORMAN

Figure 4. Every expression in the interface language has a meaning and a form.
Semantic distance reflects the relationship between the user intentions and the
meaning of expressions in the interface languages both for input and output. Artic-
ulatory distance reflects the relationship between the physical form of an expres-
sion in the interaction language and its meaning, again, both for input and output.
The easier it is to go from the form or appearance of the input or output to meaning,
the smaller the articulatory distance.

1

INTERFACE LANGUAGE

Goals 4-b Meaning of
Expresslon

Form of
Expresslon

construct a complicated expression to do what appears in the user’s thoughts as
a conceptually simple piece of work?

Semantic distance is an issue with all languages. Natural languages gener-
ally evolve such that they have rich vocabularies for domains that are of impor-
tance to their speakers. When a person learns a new language- especially
when the language is from a different culture - the new language may seem in-
direct, requiring complicated constructs to describe things the learner thinks
should be easy to say. But the differences in apparent directness reflect differ-
ences in what things are thought important in the two cultures. Natural lan-
guages can and do change as the need arises. This occurs through the introduc-
tion of new vocabulary or by changing the meaning of existing terms. The
result is to make the language semantically more direct with respect to the
topic of interest.

3.2. Semantic Distance in the Gulfs of Execution and Evaluation

Beware the Turing tar-pit in which everything is possible but nothing of
interest is easy (Perlis, 1982, p. 10).

The Gulf of Execution

At the highest level of description, a task may be described by the user’s in-
tention: “compose this piece” or “format this paper.” At the lowest level of de-
scription, the performance of the task consists of the shuffling of bits inside the
machine. Between the interface and the low-level operations of the machine is

DIRECT MANIPULATION INTERFACES 323

the system-provided task-support structure that implements the expressions in
the interface language. The situation that Perlis (1982) called the “Turing tar-
pit” is one in which the interface language lies near or at the level of bit shuf-
fling of a very simple abstract machine. In this case, the entire burden of
spanning the gulf from user intention to bit manipulation is carried by the
user. The relationship between the user’s intention and the organization of the
instructions given to the machine is distant, complicated, and hard to follow.
Where the machine is of minimal complexity, as is the case with the Turing
machine example, the wide gulf between user intention and machine instruc-
tions must be filled by the user’s extensive planning and translation activities.
These activities are difficult and rife with opportunities for error.

Semantic directness requires matching the level of description required by
the interface language to the level at which the person thinks of the task. It is al-
ways the case that the user must generate some information-processing struc-
ture to span the gulf. Semantic distance in the gulf of execution reflects how
much of the required structure is provided by the system and how much by the
user. The more that the user must provide, the greater the distance to be
bridged.

The Gulf of Evaluation

O n the evaluation side, semantic distance refers to the amount of processing
structure that is required for the user to determine whether the goal has been
achieved. If the terms of the output are not those of the user’s intention, the user
will be required to translate the output into terms that are compatible with the
intention in order to make the evaluation. For example, suppose a user’s intent
is to control how fast the water level in a tank rises. The user does some
controlling action and observes the output. But if the output only shows the
current value, the user has to observe the value over time and mentally com-
pare the values at different times to see what the rate of change is (see Figure 5).
The information needed for the evaluation is in the output, but it is not there in
a form that directly fits the terms of the evaluation. The burden is on the user to
perform the required transformations, and that requires effort. Suppose the
rate of change were directly displayed, as in Figure 5B. This indication re-
duces the mental workload, making the semantic distance between intentions
and output language much shorter.

3.3. Reducing the Semantic Distance That Must Be Spanned

Figure 5 provides one illustration of how semantic distance can be changed.
In general, there are only two basic ways to reduce the distance, one from the
system side (requiring effort on the part of the system designer), the other from
the user side (requiring effort on the part of the user). Each direction of bridge
building has several components. Here let us consider the following possibili-

324 HUTCHINS, HOLLAN, NORMAN

Figure 5. Matching user’s intentions by appropriate output language. The user at-
tempts to control the rate at which the water level in the tank is rising. In (A), the
only indication is a meter that shows the current level. This requires the user to ob-
serve the meter over time and to do a mental computation on the observations. (B)
shows a display that is more semantically direct: The rate of change is graphically
indicated. (These illustrations are from the working Steamer system of Hollan,
Hutchins, & Weitzman, 1984.)

ties: (1) The designer can construct higher-level and specialized languages that
move toward the user, making the semantics of the input and output languages
match that of the user. (2) The user can develop competence by building new
mental structures to bridge the gulfs. In particular, this requires the user to au-
tomate the response sequence and to learn to think in the same language as that
required by the system.

Higher-Level Languages

One way to bridge the gulf between the intentions of the user and the specifi-
cations required by the computer is well known: Provide the user with a
higher-level language, one that directly expresses frequently encountered
structures of problem decomposition. Instead of requiring the complete de-
composition of the task to low-level operations, let the task be described in the
same language used within the task domain itself. Although the computer still
requires low-level specification, the job of translating from the domain lan-
guage to the programming language can be taken over by the machine itself.

This implies that designers ofhigher-level languages should consider how to
develop interface languages for which it will be easy for the user to create the
mediating structure between intentions and expressions in the language. One
way to facilitate this process is to provide consistency across the interface sur-

DIRECT MANIPULATION INTERFACES 325

face. That is, if the user builds a structure to make contact with some part of the
interface surface, a savings in effort can be realized if it is possible to use all or
part of that same structure to make contact with other areas.

The result of matching a language to the task domain brings both good news
and bad news. The good news is that tasks are easier to specify. Even if consid-
erable planning is still required to express a task in a high-level language, the
amount of planning and translation that can be avoided by the user and passed
off to the machine can be enormous. The bad news is that the language has lost
generality. Tasks that do not easily decompose into the terms of the language
may be difficult or impossible to represent. In the extreme case, what can be
done is easy to do, but outside that specialized domain, nothing can be done.

The power of a specialized language system derives from carefully specified
primitive operations, selected to match the predicted needs of the user, thus
capturing frequently occurring structures of problem decomposition. The
trouble is that there is a conflict between generality and matching to any spe-
cific problem domain. Some high-level languages and operating systems have
attempted to close the gap between user intention and the interaction language
while preserving freedom and ease of general expression by allowing for exten-
sibility of the language or operating system. Such systems allow the users to
move the interface closer to their conception of the task.

The Lisp language and the UNIX operating system serve as examples of this
phenomenon. Lisp is a general-purpose language, but one that has extended it-
self to match a number of special high-level domains. As a result, Lisp can be
thought of as having numerous levels on top of the underlying language ker-
nel. There is a cost to this method. As more and more specialized domain lev-
els get added, the language system gets larger and larger, becoming more
clumsy to use, more expensive to support, and more difficult to learn. Just look
at any of the manuals for the large Lisp systems (Interlisp, Zetalisp) to get a
feel for the complexity involved. The same is true for the UNIX operating sys-
tem, which started out with a number of low-level, general primitive opera-
tions. Users were allowed (and encouraged) to add their own, more specialized
operations, or to package the primitives into higher-level operations. The re-
sults in all these cases are massive systems that are hard to learn and that re-
quire a large amount of support facilities. The documentation becomes huge,
and not even system experts know all that is present. Moreover, the difficulty
of maintaining such a large system increases the burden on everyone, and the
possibility of having standard interfaces to each specialized function has long
been given up.

The point is that as the interface approaches the user’s intention end of the
gulf, functions become more complicated and more specialized in purpose.
Because of the incredible variety of human intentions, the lexicon of a lan-
guage that aspires to both generality of coverage and domain-specific functions
can grow very large. In any of the modern dialects of Lisp one sees a microcosm

326 HUTCHINS, HOLLAN, NORMAN

of the argument about high-level languages in general. The fundamentals of
the language are simple, but a great deal of effort is required to do anything
useful at the low level of the language itself. Higher-level functions written in
terms of lower-level ones make the system easier to use when the functions
match intentions, but in doing so they may restrict possibilities, proliferate vo-
cabulary, and require that a user know an increasing amount about the lan-
guage of interaction rather than the domain of action.

Make the Output Show Semantic Concepts Directly

An example of reducing semantic distance on the output side is provided by
the scenario of controlling the rate of filling a water tank, described in Figure
5 . In that situation, the output display was modified to show rate of flow di-
rectly, something normally not displayed but instead left to the user to com-
pute mentally.

In similar fashion, the change from line-oriented text editors to screen-
oriented text editors, where the effects of editing commands can be seen in-
stantly, is another example of matching the display to the user’s semantics. In
general, the development of WYSIWYG (“What You See Is What You Get”)
systems provides other examples. And finally, spreadsheet programs have
been valuable, in part because their output format continually shows the state
of the system as values are changed.

The attempt to develop good semantic matches with the system output con-
fronts the same conflict between generality and power faced in the design of in-
put languages. If the system is too specific and specialized, the output displays
lack generality. If the system is too rich, the user has trouble learning and se-
lecting among the possibilities. One solution for both the output and input
problem is to abandon hope of maintaining general computing and output
ability and to develop special-purpose systems for particular domains or tasks.
In such a world, the location of the interface in semantic space is pushed closer
to the domain language description. Here, things of interest are made simple
because the lexicon of the interface language maps well into the lexicon of do-
main description. Considerable planning may still go on in the conception of
the domain itself, but little or no planning or translation is required to get from
the language of domain description to the language of the interface. The price
paid for these advantages is a loss of generality: Many things are unnatural or
even impossible.

Automated Behavior Does Not Reduce Semantic Distance

Cognitive effort is required to plan a sequence of actions to satisfy some in-
tent. Generally, the more structure required of the user, the more effort use of
the system will entail. However, this gap can be overcome if the users become
familiar enough with the system. Structures that are used frequently need not

. DIRECT MANIPULATION INTERFACES 327

be rebuilt every time they are needed if they have been remembered. Thus, a
user may remember how to do something rather than having to rederive how to
do it. It is well known that when tasks are practiced sufficiently often, they be-
come automated, requiring little or no conscious attention. As a result, over
time the use of an interface to solve a particular set of problems will feel less
difficult and more direct. Experienced users will sometimes argue that the in-
terface they use directly satisfies their intentions, even when less skilled users
complain of the complexity of the structures. T o skilled users, the interface
feels direct because the invocation of mediating structure has been automated.
They have learned how to transform frequently arising intentions into action
specifications. The result is a feeling of directness as compelling as that which
results from semantic directness. As far as such users are concerned, the inten-
tion comes to mind and the action gets executed. There are no conscious
intervening stages. (For example, a user of the vi text editor expressed this as
follows: “I am an expert user of vi, and when I wish to delete a word, all I do is
think ‘delete that word,’ my fingers automatically type ‘dw,’ and the word dis-
appears from the screen. How could anything be more direct?”)

The frequent use of even a poorly designed interface can sometimes result in
a feeling of directness like that produced by a semantically direct interface. A
user can compensate for the deficiencies of the interface through continual use
and practice so that the ability to use it becomes automatic, requiring little
conscious activity. While automatism is one factor which can contribute to a
feeling of directness, it is essential for an interface designer to distinguish it
from semantic distance. Automatization does not reduce the semantic distance
that must be spanned; the gulfs between a user’s intentions and the interface
must still be bridged by the user. Although practice and the resulting expertise
can make the crossing less difficult, it does not reduce the magnitude of the
gulfs. Planning activity may be replaced by a single memory retrieval so that
instead of figuring out what to do, the user remembers what to do. Automati-
zation may feel like direct control, but it comes about for completely different
reasons than semantic directness. Automatization is useful, for it improves the
interaction of the user with the system, but the feeling of directness it produces
depends only on how much practice a particular user has with the system and
thus gives the system credit for the work the user has done. Although we need to
remember that this happens, that users may adjust themselves to the interface
and, with sufficient practice, may view it as directly supporting their inten-
tions, we need to distinguish between the cases in which the feeling of direct-
ness originates from a close semantic coupling between intentions and the in-
terface language and that which originates from practice. The resultant feeling
of directness might be the same in the two cases, but there are crucial differ-
ences between how the feeling is acquired and what one needs to do as an inter-
face designer to generate it.

328 HUTCHINS, HOLLAN, NORMAN

The User Can Adapt to the System Representation

Another way to span the gulf is for the users to change their own conceptual-
ization of the problem so that they come to think of it in the same terms as the
system. In some sense, this means that the gulf is bridged by moving the user
closer to the system. Because of their experience with the system, the users
change both their understanding of the task and the language with which they
think about issues. This is related to the notion of linguistic determinism. If it
is true that the way we think about something is shaped by the vocabulary we
have for talking about it, then it is important for the designer of a system to pro-
vide the user with a good representation ofthe task domain in question. The in-
terface language should provide a powerful, productive way of thinking about
the domain.

This form of the users adapting to the system representation takes place at a
more fundamental level than the other ways of reducing semantic distance.
While moving the interface closer to the users’ intentions may make it difficult
to realize some intentions, changing the users’ conception of the domain may
prevent some intentions from arising at all. So while a well-designed special-
purpose language may give the users a powerful way of thinking about the do-
main, it may also restrict the users’ flexibility to think about the domain in dif-
ferent ways.

The assumption that a user may change conceptual structure to match the
interface language follows from the notion that every interface language
implies a representation of the tasks it is applied to. The representation im-
plied by an interface is not always a coherent one. Some interfaces provide a
collection of partially overlapping views of a task domain. If a user is to move
toward the model implied by the interface, and thus reduce the semantic dis-
tance, that model should be coherent and consistent over some conception of
the domain. There is, of course, a trade-off here between the costs to the user of
learning a new way to think about a domain and the potential added power of
thinking about it in the new way.

Virtuosity and Semantic Distance

Sometimes users have a conception of a task and of a system that is broader
and more powerful than that provided by an interface. The structures they
build to make contact with the interface go beyond it. This is how we character-
ize virtuoso performances in which the user may “misuse” limited interface
tools to satisfy intentions that even the system designer never anticipated. In
such cases of virtuosity the notion of semantic distance becomes more compli-
cated and we need to look very carefully at the task that is being accomplished.
Semantic directness always involves the relationship between the task one
wishes to accomplish and the ways the interface provides for accomplishing it.

.

DIRECT MANIPULATION INTERFACES 329

If the task changes, then the semantic directness of the interface may also
change.

Consider a musical example: Take the task of producing a middle-C note on
two musical instruments, a piano and a violin. For this simple task, the piano
provides the more direct interface because all one need do is find the key for
middle-C and depress it, whereas on the violin, one must place the bow on the
G string, place a choice of fingers in precisely the right location on that string,
and draw the bow. A piano’s keyboard is more semantically direct than the vio-
lin’s strings and bow for the simple task of producing notes. The piano has a
single well-defined vocabulary item for each of the notes within its range,
while the violin has an infinity of vocabulary items, many of which do not pro-
duce proper notes at all. However, when the task is playing a musical piece
well rather than simply producing notes, the directness of the interfaces can
change. In this case, one might complain that a piano has a very indirect inter-
face because it is a machine with which the performer “throws hammers at
strings.” The performer has no direct contact with the components that actu-
ally produce the sound, and so the production of desired nuances in sound is
more difficult. Here, as musical virtuosity develops, the task that is to be ac-
complished also changes from just the production of notes to concern for how to
control more subtle characteristics of the sounds like vibrato, the slight
changes in pitch used to add expressiveness. For this task the violin provides a
semantically more direct interface than the piano. Thus, as we have argued
earlier, an analysis of the nature of the task being performed is essential in
determining the semantic directness of an interface.

3.4. Articulatory Distance

In addition to its meaning, every vocabulary item in every language has a
physical form and that form has an internal structure. Words in natural lan-
guages, for example, have phonetic structure when spoken and typographic
structure when printed. Similarly, the vocabulary items that constitute an in-
terface language have a physical structure. Where semantic distance has to do
with the relationship between user’s intentions and meanings of expressions,
articulatol-y distance has to do with the relationship between the meanings of ex-
pressions and their physical form. O n the input side, the form may be a se-
quence of character-selecting key presses for a command language interface,
the movement of a mouse and the associated “mouse clicks” in a pointingdevice
interface, or a phonetic string in a speech interface. O n the output side, the
form might be a string of characters, a change in an iconic representation, or
variation in an auditory signal.

There are ways to design languages such that the relationships between the
forms of the vocabulary items and their meanings are not arbitrary. One tech-

330 HUTCHINS, HOLLAN, NORMAN

nique is to make the physical form of the vocabulary items structurally similar
to their meanings. In spoken language this relationship is called onomato-
poeia. Onomatopoetic words in spoken language refer to their meanings by
imitating the sound they refer to. Thus we talk about the “boom” of explosions
or the “cock-a-doodle-doo” of roosters. There is an economy here in that the
user’s knowledge of the structure of the surface acoustical form has a non-
arbitrary relation to meaning. There is a directness of reference in this
imitation; an intervening level of arbitrary symbolic relations is eliminated.
Other uses of language exploit this effect partially. Thus, although the word
“ long is arbitrarily associated with its meaning, sentences like “She stayed a
looooooooooong time” exploit a structural similarity between the surface form
of “long” (whether written or spoken) and the intended meaning. The same
sorts of things can be done in the design of interface languages.

In many ways, the interface languages should have an easier time of
exploiting articulatory similarity than do natural languages because of the rich
technological base available to them. Thus, if the intent is to draw a diagram,
the interface might accept as input drawing motions. In turn, it could present
as output diagrams, graphs, and images. If one is talking about sound patterns
in the input interface language, the output could be the sounds themselves.
The computer has the potential to exploit articulatory similarities through
technological innovation in the varieties of dimensions upon which it can op-
erate. This potential has not been exploited, in part because of economic con-
straints. The restriction to simple keyboard input limits the form and structure
of the input languages and the restriction to simple, alphanumeric terminals
with small, low-resolution screens, limits the form and structure of the output
languages.

3.5. Articulatory Distance in the Gulfs of Execution and
Evaluation

The relationships among semantic distance, articulatory distance, and the
gulfs of execution and evaluation are illustrated in Figure 6.

Take the simple, commonplace activity of moving a cursor on the screen. If
we do this by moving a mouse, pointing with a finger or a light pen at the
screen, or otherwise mimicking the desired motion, then at the level of action
execution, these interactions all exhibit articulatory directness. The meaning
of the intention is cursor movement and the action is specified by means of a
similar movement. One way to achieve articulatory directness at the input side
is to provide an interface that permits specification of an action by mimicking
it, thus supporting an articulatory similarity between the vocabulary item and
its meaning. Any nonarbitrary relationship between the form of an item and
its meaning can be a basis for articulatory directness. While structural rela-
tionships of form to meaning may be desirable, it is sometimes necessary to re-

33 1

332 HUTCHINS, HOLLAN, NORMAN

sort to an arbitrary relationship of form to meaning. Still, some arbitrary rela-
tionships are easier to learn than others. It may be possible to exploit previous
user knowledge in creating this relationship. Much of the work on command
names in command language interfaces is an instance of trying to develop
memorable and discriminable relationships between the forms and the mean-
ings ofcommand names (Black & Moran, 1982; Black & Sebrechts, 1981; Car-
rol, 1985).

Articulatory directness on the output side is similar. If the user is following
the changes in some variable, a moving graphical display can provide articula-
tory directness. A table of numbers, although containing the same semantic in-
formation, does not provide articulatory directness. Thus, the graphical
display and the table of numbers might be equal in semantic directness, but
unequal in articulatory directness. The goal of designing for articulatory di-
rectness is to couple the perceived form of action and meaning so naturally that
the relationships between intentions and actions and between actions and out-
put seem straightforward and obvious.

In general, articulatory directness is highly dependent upon I /O technol-
ogy. Increasing the articulatory directness of actions and displays requires a
much richer set of input/output devices than most systems currently have. In
addition to keyboards and bit-mapped screens, we see the need for various
forms of pointing devices. Such pointing devices have important spatio-mimetic
properties and thus support the articulatory directness of input for tasks that
can be represented spatially. The mouse is useful for a wide variety of tasks not
because of any properties inherent in itself, but because we map so many kinds
of relationships (even ones that are not intrinsically spatial) on to spatial meta-
phors. In addition, there are often needs for sound and speech, certainly as out-
puts, and possibly as inputs. Precise control of timing will be necessary for
those applications where the domain of interest is time sensitive. Perhaps it is
stretching the imagination beyond its willing limits, but Galton (1894) sug-
gested and carried out a set of experiments on doing arithmetic by sense of
smell. Less fancifully conceived, input might be sensitive not only to touch,
place, and timing, but also to pressure or to torque (see Buxton, 1986; Minsky,
1984).

4. DIRECT ENGAGEMENT

Direct engagement occurs when a user experiences direct interaction with
the objects in a domain. Here there is a feeling of involvement directly with a
world of objects rather than of communication with an intermediary. The in-
teractions are much like interacting with objects in the physical world. Actions
apply to the objects, observations are made directly upon those objects, and the
interface and the computer become invisible. Although we believe this feeling
of direct engagement to be of critical importance, in fact, we know little about

7

DIRECT MANIPULATION INTERFACES 333

the actual requirements for producing it. Laurel (1986) discusses some of the
requirements. At a minimum, to allow a feeling of direct engagement the sys-
tem requires the following:

Execution and evaluation should exhibit both semantic and articulatory
directness.

Input and output languages of the interface should be inter-referential,
allowing an input expression to incorporate or make use of a previous
output expression. This is crucial for creating the illusion that one is di-
rectly manipulating the objects of concern.

The system should be responsive, with no delays between execution and
the results, except where those delays are appropriate for the knowledge
domain itself.

The interface should be unobtrusive, not interfering or intruding. If the
interface itself is noticed, then it stands in a third-person relationship to
the objects of interest, and detracts from the directness of the engage-
ment.

In order to have a feeling of direct engagement, the interface must provide
the user with a world in which to interact. The objects of that world must feel
like they are the objects of interest, that one is doing things with them and
watching how they react. In order for this to be the case, the output language
must present representations of objects in forms that behave in the way that the
user thinks of the objects behaving. Whatever changes are caused in the objects
by the set of operations must be depicted in the representation of the objects.
This use of the same object as both an input and output entity is essential to
providing objects that behave as if they are the real thing. It is because an input
expression can contain a previous output expression that the user feels the out-
put expression is the thing itself and that the operation is applied directly to the
thing itself.

In addition, all of the discussions of semantic and articulatory directness ap-
ply here too, because the designer of the interface must be concerned with what
is to be done and how one articulates that in the languages of interaction. But
the designer must also be concerned with creating and supporting an illusion.
The specification of what needs to be done and evidence that it has been done
must not violate the illusion, else the feeling of direct engagement will be lost.

One factor that seems especially relevant to maintaining this illusion is the
form and speed of feedback. Rapid feedback in terms of changes in the behav-
ior of objects not only allows for the modification of actions even as they are be-
ing executed, but also supports the feeling of acting directly on the objects

334 HUTCHINS, HOLLAN, NORMAN

themselves. It removes the perception of the computer as an intermediary by
providing continual representation of system state. In addition, rapidity of
feedback and continual representation of state allows one to make use of per-
ceptual faculties in evaluating the outcome of actions. We can watch the ac-
tions take place, monitoring them much like we monitor our interactions with
the physical world. The reduction in the cognitive load of mentally main-
taining relevant information and the form of the interaction contribute to the
feeling of engagement.

5. A SPACE OF INTERFACES

Distance and engagement are depicted in Figure 7 as two major dimensions
in a space of interface designs. The dimension of engagement has two land-
mark values: One is the metaphor of interface as conversation; the other is the
metaphor of interface as model world. The dimension of distance actually con-
tains two distances to be spanned: semantic and articulatory distances, the two
kinds of gulfs that lie between the user’s conception of the task and the interface
language.

The least direct interface is often one that provides a low-level language in-
terface, for this is apt to provide the weakest semantic match between inten-
tions and the language of the interface. In this case, the interface is an interme-
diary between the user and the task. Even worse, it is an intermediary that does
not understand actions at the level of description in which the user likes to
think of them. Here the user must translate intentions into complex or lengthy
expressions in the language that the interface intermediary can understand.

A more direct situation arises when the central metaphor of the interface is a
world. Then the user can be directly engaged with the objects in a world; but
still, if the actions in that world do not match those that the user wishes to per-
form within the task domain, getting the task done may be a difficult process.
The user may believe that things are getting done and may even experience a
sense of engagement with the world, yet still be doing things at too low a level.
This is the state of some of the recently introduced direct manipulation sys-
tems: They produce an immediate sense of engagement, but as the user devel-
ops experience with the system, the interface appears clumsy, to interfere too
much, and to demand too many actions and decisions at the wrong level of
specification. These interfaces appear on the surface to be direct manipulation
interfaces, but they fail to produce the proper feelings of direct engagement
with the task world.

Closing the distance between the user’s intentions and the level of specifica-
tion of the interface language allows the user to make efficient specifications of
intentions. Where this is done with a high-level language, quite efficient inter-
faces can be designed. This is the situation in most modern integrated pro-

DIRECT MANIPULATION INTERFACES 335

Figure 7. A space of interfaces. The dimensions of distance from user goals and de-
gree of engagement form a space of interfaces within which we can locate some fa-
miliar types of interfaces. Direct manipulation interfaces are those that minimize
the distances and maximize engagement. As always, the distance between user in-
tentions and the interface language depends on the nature of the task the user is
performing.

low-level
language

high-level
language

low-level
world

direct
manipulation

Interface as Interface as
conversation model world

-

Engagement

gramming environments. For some classes of tasks, such interfaces may be su-
perior to direct manipulation interfaces.

Finally, the most direct of the interfaces will lie where engagement is
maximized, where just the right semantic and articulatory matches are pro-
vided, and where all distances are minimized.

6. PROBLEMS WITH DIRECT MANIPULATION

Direct manipulation systems have both virtues and vices. For instance, the
immediacy of feedback and the natural translation of intentions to actions
make some tasks easy. The matching of levels of thought to the interface
language - semantic directness - increases the ease and power of performing
some activities at a potential cost of generality and flexibility. But not all
things should be done directly. For example, a repetitive operation is probably
best done via a script, that is, through a symbolic description of the tasks that

336 HUTCHINS, HOLLAN, NORMAN

are to be accomplished. Direct manipulation interfaces have difficulty han-
dling variables, or distinguishing the depiction of an individual element from
a representation of a set or class of elements. Direct manipulation interfaces
have problems with accuracy, for the notion of mimetic action puts the respon-
sibility on the user to control actions with precision, a responsibility that is
sometimes best handled through the intelligence of the system and sometimes
best communicated symbolically.

A more fundamental problem with direct manipulation interfaces arises
from the fact that much of the appeal and power of this form of interface comes
from its ability to directly support the way we normally think about a domain.
A direct manipulation interface amplifies our knowledge of the domain and al-
lows us to think in the familiar terms of the application domain rather than in
those of the medium of computation. But if we restrict ourselves to only build-
ing an interface that allows us to do things we can already do and to think in
ways we already think, we will miss the most exciting potential of new technol-
ogy: to provide new ways to think of and to interact with a domain. Providing
these new ways and creating conditions that will make them feel direct and nat-
ural is an important challenge to the interface designer.

Direct manipulation interfaces are not a panacea. Although with sufficient
practice by the user many interfaces can come to feel direct, a properly de-
signed interface, one which exploits semantic and articulatory directness,
should decrease the amount of learning required and provide a natural
mapping to the task. But interface design is subject to many tradeoffs. There
are surely instances when one might wisely trade off directness for generality,
or for more facile ways of saying abstract things. The articulatory directness
involved in pointing at objects might need to be traded off against the difficul-
ties of moving the hands between input devices or of problems in pointing with
great precision.

It is important not to equate directness with ease of use. Indeed, if the inter-
face is really invisible, then the difficulties within the task domain get trans-
ferred directly into difficulties for the user. Suppose the user struggles to for-
mulate an intention because of lack of knowledge of the task domain. The user
may complain that the system is difficult to use. But the difficulty is in the task
domain, not in the interface language. Direct manipulation interfaces do not
pretend to assist in overcoming problems that result from poor understanding
of the task domain.

What about the claims for direct manipulation? We believe that direct ma-
nipulation systems carry gains in ease of learning and ease of use. If the
mapping is done correctly, then both the form and the meaning of commands
should be easier to acquire and retain. Interpretation of the output should be
immediate and straightforward. If the interface is a model of the task domain,
then one could have the feeling of directly engaging the problem of interest it-
self. It is sometimes said that in such situations the interface disappears. It is

DIRECT MANIPULATION INTERFACES 337

probably more revealing to say that the interface is no longer recognized as an
interface.

But are these desirable features? Are the trade-offs too costly? As always, we
are sure that the answer will depend on the tasks to be accomplished. Certain
kinds of abstraction that are easy to deal with in language seem difficult in a
concrete model of a task domain. When we give up the conversation metaphor,
we also give up dealing in descriptions, and in some contexts, there is great
power in descriptions. As an interface to a programming task, direct manipu-
lation interfaces are problematic. We know of no really useful direct manipu-
lation programming environments. Issues such as controlling the scope of var-
iable bindings promise to be quite tricky in the direct manipulation environ-
ments. Will direct manipulation systems live up to their promise? Yes and no.
Basically, the systems will be good and powerful for some purposes, poor and
weak for others. In the end, many things done today will be replaced by direct
manipulation systems. But we will still have conventional programming
languages.

O n the surface, the fundamental idea of a direct manipulation interface to a
task flies in the face of two thousand years of development of abstract formal-
isms as a means of understanding and controlling the world. Until very re-
cently, the use of computers has been an activity squarely in that tradition. So
the exterior ofdirect manipulation, providing as it does for the direct control of
a specific task world, seems somehow atavistic, a return to concrete thinking.
O n the inside, of course, the implementation ofdirect manipulation systems is
yet another step in that long, formal tradition. The illusion of the absolutely
manipulable concrete world is made possible by the technology of abstraction.

Acknowledgments. We thank Ben Shneiderman for his helpful comments on an
earlier draft of the chapter, Eileen Conway for her aid with the illustrations, and Julie
Norman and Sondra Buffett for extensive editorial comments.

Support. The research reported here was conducted under Contract NOOOl4-85-C-
0133, NR 667-541 with the Personnel and Training Research Programs of the Office of
Naval Research and with the support of the Navy Personnel Research and Develop-
ment Center. The views and conclusions contained in this document are those ofthe au-
thors and should not be interpreted as necessarily representing the official policies, ei-
ther expressed or implied, of the sponsoring agency.

REFERENCES

Black, J . B . , & Moran, T. P. (1982). Learning and remembering command names. Pro-
ceedings ofthe Human Factors in Computer Systems Conference, 8-1 1. New York: ACM.

Black, J. B . , & Sebrechts, M. M. (1981). Facilitating human-computer communica-
tion. Applied Psycholinguistics, 2, 149-177.

Borning, A. (1979). ThingLab: A constraint-oriented simulation laboratory (Tech. Rep. No.
SSL-79-3). Palo Alto, CA: Xerox Palo Alto Research Center.

338 HUTCHINS, HOLLAN, NORMAN

Budge, B. (1983). Pinball construction set [Computer program]. San Mateo, CA: Elec-
tronic Arts.

Buxton, W. (1986). There’s more to interaction than meets the eye: Some issues in man-
ual input. In D. A. Norman & S. W. Draper (Eds.), Usercenteredsystem design; Newper-
spectives on human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc.

Carrol, J. M. (1985). What’s in a name? A n essay in thepsychology Ofreference. New York:
Freeman.

diSessa, A. A. (1985). A principles design for an integrated computational environ-
ment. Human-Computer Interaction, I, 1-47.

Draper, S. W. (1986). Display managers as the basis for user-machine communication.
In D. A. Norman & S. W. Draper (Eds.), User centeredsystem design: New perspectives on
human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Galton, F. (1894). Arithmetic by smell. Psychological Reuiew, I, 61-62.
Hollan, J . D., Hutchins, E., & Weitzman, L. (1984). Steamer: An interactive

inspectable simulation-based training system. AZMagarine, 5, 15-27.
Hollan, J. D., Stevens, A., & Williams, M. D. (1980). Steamer: An advanced

computer-assisted instruction system for propulsion engineering. Proceedings @Sum-
mer Computer Simulation Conference, 400-404. Arlington, VA: AFIPS Press.

Kay, A. (1984, September). Computer software. Scientific American, 52-59.
Laurel, B. K. (1986). Interface as mimesis. In D. A. Norman & S. W. Draper (Eds.),

User centered system design: New perspectives on human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc.

using a force and position sensitive screen. Computer Graphics, 195-203.
Minksy, M. R. (1984, July). Manipulating simulated objects with real-world gestures

Norman, D. A,, &Draper, S. W. (Eds.). (1986). Usercenteredrystemdesign: Newperspec-
tives on human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Perlis, A. J . (1982). Epigrams on programming. SZGPLANNotices, 17(9), 7-13.
Shneiderman, B. (1974). A computer graphics system for polynomials. TheMathematics

Teacher, 67(2), 111-113.

manipulation. Behavior and Information Technology, I , 237-256.

guages. IEEE Computer, 16(8), 57-69.
Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication sys-

tem. Proceedings Ofthe Spring Joint Computer Conference, 329-346. Baltimore, MD: Spar-
tan Books.

Shneiderman, B. (1982). The future of interactive systems and the emergence ofdirect

Shneiderman, B. (1983). Direct manipulation: A step beyond programming lan-

HCZEditorial Record. This is an invited paper based on a draft ofApril 1 , 1985. Fi-
nal manuscript received October 3 , 1985. -Editor

