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My problem is that I have been persecuted by an integer. For seven years this number has followed me
around, has intruded in my most private data, and has assaulted me from the pages of our most public
journals. This number assumes a variety of disguises, being sometimes a little larger and sometimes a
little smaller than usual, but never changing so much as to be unrecognizable. The persistence with which
this number plagues me is far more than a random accident. There is, to quote a famous senator, a design
behind it, some pattern governing its appearances. Either there really is something unusual about the
number or else I am suffering from delusions of persecution.

I shall begin my case history by telling you about some experiments that tested how accurately people
can assign numbers to the magnitudes of various aspects of a stimulus. In the traditional language of
psychology these would be called experiments in absolute judgment. Historical accident, however, has
decreed that they should have another name. We now call them experiments on the capacity of people to
transmit information. Since these experiments would not have been done without the appearance of
information theory on the psychological scene, and since the results are analyzed in terms of the concepts
of information theory, I shall have to preface my discussion with a few remarks about this theory.

Information Measurement

The "amount of information" is exactly the same concept that we have talked about for years under the
name of "variance." The equations are different, but if we hold tight to the idea that anything that
increases the variance also increases the amount of information we cannot go far astray.

The advantages of this new way of talking about variance are simple enough. Variance is always stated
in terms of the unit of measurement–inches, pounds, volts, etc.–whereas the amount of information is a
dimensionless quantity. Since the information in a discrete statistical distribution does not depend upon
the unit of measurement, we can extend the concept to situations where we have no metric and we would
not ordinarily think of using the variance. And it also enables us to compare results obtained in quite
different experimental situations where it would be meaningless to compare variances based on different
metrics. So there are some good reasons for adopting the newer concept.
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The similarity of variance and amount of information might be explained this way: When we have a
large variance, we are very ignorant about what is going to happen. If we are very ignorant, then when
we make the observation it gives us a lot of information. On the other hand, if the variance is very small,
we know in advance how our observation must come out, so we get little information from making the
observation.

If you will now imagine a communication system, you will realize that there is a great deal of variability
about what goes into the system and also a great deal of variability about what comes out. The input and
the output can therefore be described in terms of their variance (or their information). If it is a good
communication system, however, there must be some systematic relation between what goes in and what
comes out. That is to say, the output will depend upon the input, or will be correlated with the input. If
we measure this correlation, then we can say how much of the output variance is attributable to the input
and how much is due to random fluctuations or "noise" introduced by the system during transmission. So
we see that the measure of transmitted information is simply a measure of the input-output correlation.

There are two simple rules to follow. Whenever I refer to "amount of information," you will understand
"variance." And whenever I refer to "amount of transmitted information," you will understand
"covariance" or "correlation."

The situation can be described graphically by two partially overlapping circles. Then the left circle can
be taken to represent the variance of the input, the right circle the variance of the output, and the overlap
the covariance of input and output. I shall speak of the left circle as the amount of input information, the
right circle as the amount of output information, and the overlap as the amount of transmitted
information.

In the experiments on absolute judgment, the observer is considered to be a communication channel.
Then the left circle would represent the amount of information in the stimuli, the right circle the amount
of information in his responses, and the overlap the stimulus-response correlation as measured by the
amount of transmitted information. The experimental problem is to increase the amount of input
information and to measure the amount of transmitted information. If the observer's absolute judgments
are quite accurate, then nearly all of the input information will be transmitted and will be recoverable
from his responses. If he makes errors, then the transmitted information may be considerably less than
the input. We expect that, as we increase the amount of input information, the observer will begin to
make more and more errors: we can test the limits of accuracy of his absolute judgments. If the human
observer is a reasonable kind of communication system, then when we increase the amount of input
information the transmitted information will increase at first and will eventually level off at some
asymptotic value. This asymptotic value we take to be the channel capacity of the observer: it represents
the greatest amount of information that he can give us about the stimulus on the basis of an absolute
judgment. The channel capacity is the upper limit on the extent to which the observer can match his
responses to the stimuli we give him.

Now just a brief word about the bit and we can begin to look at some data. One bit of information is the
amount of information that we need to make a decision between two equally likely alternatives. If we
must decide whether a man is less than six feet tall or more than six feet tall and if we know that the
chances are 50—50, then we need one bit of information. Notice that this unit of information does not
refer in any way to the unit of length that we use–feet, inches, centimeters, etc. However you measure the
man's height, we still need just one bit of information.
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Two bits of information enable us to decide among four equally likely alternatives. Three bits of
information enable us to decide among eight equally likely alternatives. Four bits of information decide
among 16 alternatives, five among 32, and so on. That is to say, if there are 32 equally likely alternatives,
we must make five successive binary decisions, worth one bit each, before we know which alternative is
correct. So the general rule is simple: every time the number of alternatives is increased by a factor of
two, one bit of information is added.

There are two ways we might increase the amount of input information. We could increase the rate at
which we give information to the observer, so that the amount of information per unit time would
increase. Or we could ignore the time variable completely and increase the amount of input information
by increasing the number of alternative stimuli. In the absolute judgment experiment we are interested in
the second alternative. We give the observer as much time as he wants to make his response; we simply
increase the number of alternative stimuli among which he must discriminate and look to see where
confusions begin to occur. Confusions will appear near the point that we are calling his "channel
capacity."

Absolute Judgments of Unidimensional Stimuli

Now let us consider what happens when we make absolute judgments of tones. Pollack (17) asked
listeners to identify tones by assigning numerals to them. The tones were different with respect to
frequency, and covered the range from 100 to 8000 cps in equal logarithmic steps. A tone was sounded
and the listener responded by giving a numeral. After the listener had made his response he was told the
correct identification of the tone.

When only two or three tones were used the listeners never confused them. With four different tones
confusions were quite rare, but with five or more tones confusions were frequent. With fourteen different
tones the listeners made many mistakes.

These data are plotted in Fig. 1. Along the bottom is the amount of input information in bits per stimulus.
As the number of alternative tones was increased from 2 to 14, the input information increased from 1 to
3.8 bits. On the ordinate is plotted the amount of transmitted information. The amount of transmitted
information behaves in much the way we would expect a communication channel to behave; the
transmitted information increases linearly up to about 2 bits and then bends off toward an asymptote at
about 2.5 bits. This value, 2.5 bits, therefore, is what we are calling the channel capacity of the listener
for absolute judgments of pitch.

So now we have the number 2.5 bits. What does it mean? First, note that 2.5 bits corresponds to about six
equally likely alternatives. The result means that we cannot pick more than six different pitches that the
listener will never confuse. Or, stated slightly differently, no matter how many alternative tones we ask
him to judge, the best we can expect him to do is to assign them to about six different classes without
error. Or, again, if we know that there were N alternative stimuli, then his judgment enables us to narrow
down the particular stimulus to one out of N /6.

Most people are surprised that the number is as small as six. Of course, there is evidence that a musically
sophisticated person with absolute pitch can identify accurately any one of 50 or 60 different pitches.
Fortunately, I do not have time to discuss these remarkable exceptions. I say it is fortunate because I do
not know how to explain their superior performance. So I shall stick to the more pedestrian fact that most
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of us can identify about one out of only five or six pitches before we begin to get confused.

It is interesting to consider that psychologists have been using seven-point rating scales for a long time,
on the intuitive basis that trying to rate into finer categories does not really add much to the usefulness of
the ratings. Pollack's results indicate that, at least for pitches, this intuition is fairly sound.

Next you can ask how reproducible this result is. Does it depend on the spacing of the tones or the
various conditions of judgment? Pollack varied these conditions in a number of ways. The range of
frequencies can be changed by a factor of about 20 without changing the amount of information
transmutted more than a small percentage. Different groupings of the pitches decreased the transmission,
but the loss was small. For example, if you can discriminate five high-pitched tones in one series and five
low-pitched tones in another series, it is reasonable to expect that you could combine all ten into a single
series and still tell them all apart without error. When you try it, however, it does not work. The channel
capacity for pitch seems to be about six and that is the best you can do.

While we are on tones, let us look next at Garner's (7) work on loudness. Garner's data for loudness are
summarized in Fig. 2. Garner went to some trouble to get the best possible spacing of his tones over the
intensity range from 15 to 110 db. He used 4, 5, 6, 7, 10, and 20 different stimulus intensities. The results
shown in Fig. 2 take into account the differences among subjects and the sequential influence of the
immediately preceding judgment. Again we find that there seems to be a limit. The channel capacity for
absolute judgments of loudness is 2.3 bits, or about five perfectly discriminable alternatives.

Since these two studies were done in different laboratories with slightly different techniques and methods
of analysis, we are not in a good position to argue whether five loudnesses is significantly different from
six pitches. Probably the difference is in the right direction, and absolute judgments of pitch are slightly
more accurate than absolute judgments of loudness. The important point, however, is that the two
answers are of the same order of magnitude.

The experiment has also been done for taste intensities. In Fig. 3 are the results obtained by
Beebe-Center, Rogers, and O'Connell (1) for absolute judgments of the concentration of salt solutions.
The concentrations ranged from 0.3 to 34.7 gm. NaCl per 100 cc. tap water in equal subjective steps.
They used 3, 5, 9, and 17 different concentrations. The channel capacity is 1.9 bits, which is about four
distinct concentrations. Thus taste intensities seem a little less distinctive than auditory stimuli, but again
the order of magnitude is not far off.

On the other hand, the channel capacity for judgments of visual position seems to be significantly larger.
Hake and Garner (8) asked observers to interpolate visually between two scale markers. Their results are
shown in Fig. 4 . They did the experiment in two ways. In one version they let the observer use any
number between zero and 100 to describe the position, although they presented stimuli at only 5, 10, 20,
or 50 different positions. The results with this unlimited response technique are shown by the filled
circles on the graph. In the other version the observers were limited in their responses to reporting just
those stimulus values that were possible. That is to say, in the second version the number of different
responses that the observer could make was exactly the same as the number of different stimuli that the
experimenter might present. The results with this limited response technique are shown by the open
circles on the graph. The two functions are so similar that it seems fair to conclude that the number of
responses available to the observer had nothing to do with the channel capacity of 3.25 bits.
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The Hake-Garner experiment has been repeated by Coonan and Klemmer. Although they have not yet
published their results, they have given me permission to say that they obtained channel capacities
ranging from 3.2 bits for very short exposures of the pointer position to 3.9 bits for longer exposures.
These values are slightly higher than Hake and Garner's, so we must conclude that there are between 10
and 15 distinct positions along a linear interval. This is the largest channel capacity that has been
measured for any unidimensional variable.

At the present time these four experiments on absolute judgments of simple, unidimensional stimuli are
all that have appeared in the psychological journals. However, a great deal of work on other stimulus
variables has not yet appeared in the journals. For example, Eriksen and Hake (6) have found that the
channel capacity for judging the sizes of squares is 2.2 bits, or about five categories, under a wide range
of experimental conditions. In a separate experiment Eriksen (5) found 2.8 bits for size, 3.1 bits for hue,
and 2.3 bits for brightness. Geldard has measured the channel capacity for the skin by placing vibrators
on the chest region. A good observer can identify about four intensities, about five durations, and about
seven locations.

One of the most active groups in this area has been the Air Force Operational Applications Laboratory.
Pollack has been kind enough to furnish me with the results of their measurements for several aspects of
visual displays. They made measurements for area and for the curvature, length, and direction of lines. In
one set of experiments they used a very short exposure of the stimulus–1/40 second–and then they
repeated the measurements with a 5-second exposure. For area they got 2.6 bits with the short exposure
and 2.7 bits with the long exposure. For the length of a line they got about 2.6 bits with the short
exposure and about 3.0 bits with the long exposure. Direction, or angle of inclination, gave 2.8 bits for
the short exposure and 3.3 bits for the long exposure. Curvature was apparently harder to judge. When
the length of the arc was constant, the result at the short exposure duration was 2.2 bits, but when the
length of the chord was constant, the result was only 1.6 bits. This last value is the lowest that anyone has
measured to date. I should add, however, that these values are apt to be slightly too low because the data
from all subjects were pooled before the transmitted information was computed.

Now let us see where we are. First, the channel capacity does seem to be a valid notion for describing
human observers. Second, the channel capacities measured for these unidimensional variables range from
1.6 bits for curvature to 3.9 bits for positions in an interval. Although there is no question that the
differences among the variables are real and meaningful, the more impressive fact to me is their
considerable similarity. If I take the best estimates I can get of the channel capacities for all the stimulus
variables I have mentioned, the mean is 2.6 bits and the standard deviation is only 0.6 bit. In terms of
distinguishable alternatives, this mean corresponds to about 6.5 categories, one standard deviation
includes from 4 to 10 categories, and the total range is from 3 to 15 categories. Considering the wide
variety of different variables that have been studied, I find this to be a remarkably narrow range.

There seems to be some limitation built into us either by learning or by the design of our nervous
systems, a limit that keeps our channel capacities in this general range. On the basis of the present
evidence it seems safe to say that we possess a finite and rather small capacity for making such
unidimensional judgments and that this capacity does not vary a great deal from one simple sensory
attribute to another.
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Absolute Judgments of Multidimensional Stimuli

You may have noticed that I have been careful to say that this magical number seven applies to
one-dimensional judgments. Everyday experience teaches us that we can identify accurately any one of
several hundred faces, any one of several thousand words, any one of several thousand objects, etc. The
story certainly would not be complete if we stopped at this point. We must have some understanding of
why the one-dimensional variables we judge in the laboratory give results so far out of line with what we
do constantly in our behavior outside the laboratory. A possible explanation lies in the number of
independently variable attributes of the stimuli that are being judged. Objects, faces, words, and the like
differ from one another in many ways, whereas the simple stimuli we have considered thus far differ
from one another in only one respect.

Fortunately, there are a few data on what happens when we make absolute judgments of stimuli that
differ from one another in several ways. Let us look first at the results Klemmer and Frick (13) have
reported for the absolute judgment of the position of a dot in a square. In Fig. 5 we see their results. Now
the channel capacity seems to have increased to 4.6 bits, which means that people can identify accurately
any one of 24 positions in the square.

The position of a dot in a square is clearly a two-dimensional proposition. Both its horizontal and its
vertical position must be identified. Thus it seems natural to compare the 4.6-bit capacity for a square
with the 3.25-bit capacity for the position of a point in an interval. The point in the square requires two
judgments of the interval type. If we have a capacity of 3.25 bits for estimating intervals and we do this
twice, we should get 6.5 bits as our capacity for locating points in a square. Adding the second
independent dimension gives us an increase from 3.25 to 4.6, but it falls short of the perfect addition that
would give 6.5 bits.

Another example is provided by Beebe-Center, Rogers, and O'Connell. When they asked people to
identify both the saltiness and the sweetness of solutions containing various concentrations of salt and
sucrose, they found that the channel capacity was 2.3 bits. Since the capacity for salt alone was 1.9, we
might expect about 3.8 bits if the two aspects of the compound stimuli were judged independently. As
with spatial locations, the second dimension adds a little to the capacity but not as much as it conceivably
might.

A third example is provided by Pollack (18) , who asked listeners to judge both the loudness and the
pitch of pure tones. Since pitch gives 2.5 bits and loudness gives 2.3 bits, we might hope to get as much
as 4.8 bits for pitch and loudness together. Pollack obtained 3.1 bits, which again indicates that the
second dimension augments the channel capacity but not so much as it might.

A fourth example can be drawn from the work of Halsey and Chapanis (9) on confusions among colors
of equal luminance. Although they did not analyze their results in informational terms, they estimate that
there are about 11 to 15 identifiable colors, or, in our terms, about 3.6 bits. Since these colors varied in
both hue and saturation, it is probably correct to regard this as a two-dimensional judgment. If we
compare this with Eriksen's 3.1 bits for hue (which is a questionable comparison to draw), we again have
something less than perfect addition when a second dimension is added.

It is still a long way, however, from these two-dimensional examples to the multidimensional stimuli
provided by faces, words, etc. To fill this gap we have only one experiment, an auditory study done by
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Pollack and Ficks (19) . They managed to get six different acoustic variables that they could change:
frequency, intensity, rate of interruption, on-time fraction, total duration, and spatial location. Each one
of these six variables could assume any one of five different values, so altogether there were 5 6 , or
15,625 different tones that they could present. The listeners made a separate rating for each one of these
six dimensions. Under these conditions the transmitted information was 7.2 bits, which corresponds to
about 150 different categories that could be absolutely identified without error. Now we are beginning to
get up into the range that ordinary experience would lead us to expect.

Suppose that we plot these data, fragmentary as they are, and make a guess about how the channel
capacity changes with the dimensionality of the stimuli. The result is given in Fig. 6 . In a moment of
considerable daring I sketched the dotted line to indicate roughly the trend that the data seemed to be
taking.

Clearly, the addition of independently variable attributes to the stimulus increases the channel capacity,
but at a decreasing rate. It is interesting to note that the channel capacity is increased even when the
several variables are not independent. Eriksen (5) reports that, when size, brightness, and hue all vary
together in perfect correlation, the transmitted information is 4.1 bits as compared with an average of
about 2.7 bits when these attributes are varied one at a time. By confounding three attributes, Eriksen
increased the dimensionality of the input without increasing the amount of input information; the result
was an increase in channel capacity of about the amount that the dotted function in Fig. 6 would lead us
to expect.

The point seems to be that, as we add more variables to the display, we increase the total capacity, but we
decrease the accuracy for any particular variable. In other words, we can make relatively crude
judgments of several things simultaneously.

We might argue that in the course of evolution those organisms were most successful that were
responsive to the widest range of stimulus energies in their environment. In order to survive in a
constantly fluctuating world, it was better to have a little information about a lot of things than to have a
lot of information about a small segment of the environment. If a compromise was necessary, the one we
seem to have made is clearly the more adaptive.

Pollack and Ficks's results are very strongly suggestive of an argument that linguists and phoneticians
have been making for some time (11) . According to the linguistic analysis of the sounds of human
speech, there are about eight or ten dimensions–the linguists call them distinctive features –that
distinguish one phoneme from another. These distinctive features are usually binary, or at most ternary,
in nature. For example, a binary distinction is made between vowels and consonants, a binary decision is
made between oral and nasal consonants, a ternary decision is made among front, middle, and back
phonemes, etc. This approach gives us quite a different picture of speech perception than we might
otherwise obtain from our studies of the speech spectrum and of the ear's ability to discriminate relative
differences among pure tones. I am personally much interested in this new approach (15) , and I regret
that there is not time to discuss it here.

It was probably with this linguistic theory in mind that Pollack and Ficks conducted a test on a set of
tonal stimuli that varied in eight dimensions, but required only a binary decision on each dimension.
With these tones they measured the transmitted information at 6.9 bits, or about 120 recognizable kinds
of sounds. It is an intriguing question, as yet unexplored, whether one can go on adding dimensions
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indefinitely in this way.

In human speech there is clearly a limit to the number of dimensions that we use. In this instance,
however, it is not known whether the limit is imposed by the nature of the perceptual machinery that
must recognize the sounds or by the nature of the speech machinery that must produce them. Somebody
will have to do the experiment to find out. There is a limit, however, at about eight or nine distinctive
features in every language that has been studied, and so when we talk we must resort to still another trick
for increasing our channel capacity. Language uses sequences of phonemes, so we make several
judgments successively when we listen to words and sentences. That is to say, we use both simultaneous
and successive discriminations in order to expand the rather rigid limits imposed by the inaccuracy of our
absolute judgments of simple magnitudes.

These multidimensional judgments are strongly reminiscent of the abstraction experiment of Külpe (14) .
As you may remember, Külpe showed that observers report more accurately on an attribute for which
they are set than on attributes for which they are not set. For example, Chapman (4) used three different
attributes and compared the results obtained when the observers were instructed before the tachistoscopic
presentation with the results obtained when they were not told until after the presentation which one of
the three attributes was to be reported. When the instruction was given in advance, the judgments were
more accurate. When the instruction was given afterwards, the subjects presumably had to judge all three
attributes in order to report on any one of them and the accuracy was correspondingly lower. This is in
complete accord with the results we have just been considering, where the accuracy of judgment on each
attribute decreased as more dimensions were added. The point is probably obvious, but I shall make it
any-how, that the abstraction experiments did not demonstrate that people can judge only one attribute at
a time. They merely showed what seems quite reasonable, that people are less accurate if they must judge
more than one attribute simultaneously. . . .

The Span of Immediate Memory

Let me summarize the situation in this way. There is a clear and definite limit to the accuracy with which
we can identify absolutely the magnitude of a unidimensional stimulus variable. I would propose to call
this limit the span of absolute judgment, and I maintain that for unidimensional judgments this span is
usually somewhere in the neighborhood of seven. We are not completely at the mercy of this limited
span, however, because we have a variety of techniques for getting around it and increasing the accuracy
of our judgments. The three most important of these devices are ( a ) to make relative rather than
absolute judgments; or, if that is not possible, ( b ) to increase the number of dimensions along which the
stimuli can differ; or ( c ) to arrange the task in such a way that we make a sequence of several absolute
judgments in a row.

The study of relative judgments is one of the oldest topics in experimental psychology, and I will not
pause to review it now. The second device, increasing the dimensionality, we have just considered. It
seems that by adding more dimensions and requiring crude, binary, yes—no judgments on each attribute
we can extend the span of absolute judgment from seven to at least 150. Judging from our everyday
behavior, the limit is probably in the thousands, if indeed there is a limit. In my opinion, we cannot go on
compounding dimensions indefinitely. I suspect that there is also a span of perceptual dimensionality and
that this span is somewhere in the neighborhood of ten, but I must add at once that there is no objective
evidence to support this suspicion. This is a question sadly needing experimental exploration.
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Concerning the third device, the use of successive judgments, I have quite a bit to say because this device
introduces memory as the handmaiden of discrimination. And, since mnemonic processes are at least as
complex as are perceptual processes, we can anticipate that their interactions will not be easily
disentangled.

Suppose that we start by simply extending slightly the experimental procedure that we have been using.
Up to this point we have presented a single stimulus and asked the observer to name it immediately
thereafter. We can extend this procedure by requiring the observer to withhold his response until we have
given him several stimuli in succession. At the end of the sequence of stimuli he then makes his
response. We still have the same sort of input-output situation that is required for the measurement of
transmitted information. But now we have passed from an experiment on absolute judgment to what is
traditionally called an experiment on immediate memory.

Before we look at any data on this topic I feel I must give you a word of warning to help you avoid some
obvious associations that can be confusing. Everybody knows that there is a finite span of immediate
memory and that for a lot of different kinds of test materials this span is about seven items in length. I
have just shown you that there is a span of absolute judgment that can distinguish about seven categories
and that there is a span of attention that will encompass about six objects at a glance. What is more
natural than to think that all three of these spans are different aspects of a single underlying process? And
that is a fundamental mistake, as I shall be at some pains to demonstrate. This mistake is one of the
malicious persecutions that the magical number seven has subjected me to.

My mistake went something like this. We have seen that the invariant feature in the span of absolute
judgment is the amount of information that the observer can transmit. There is a real operational
similarity between the absolute judgment experiment and the immediate memory experiment. If
immediate memory is like absolute judgment, then it should follow that the invariant feature in the span
of immediate memory is also the amount of information that an observer can retain. If the amount of
information in the span of immediate memory is a constant, then the span should be short when the
individual items contain a lot of information and the span should be long when the items contain little
information. For example, decimal digits are worth 3.3 bits apiece. We can recall about seven of them,
for a total of 23 bits of information. Isolated English words are worth about 10 bits apiece. If the total
amount of information is to remain constant at 23 bits, then we should be able to remember only two or
three words chosen at random. In this way I generated a theory about how the span of immediate
memory should vary as a function of the amount of information per item in the test materials.

The measurements of memory span in the literature are suggestive on this question, but not definitive.
And so it was necessary to do the experiment to see. Hayes (10) tried it out with five different kinds of
test materials: binary digits, decimal digits, letters of the alphabet, letters plus decimal digits, and with
1,000 monosyllabic words. The lists were read aloud at the rate of one item per second and the subjects
had as much time as they needed to give their responses. A procedure described by Woodworth (20) was
used to score the responses.

The results are shown by the filled circles in Fig. 7 . Here the dotted line indicates what the span should
have been if the amount of information in the span were constant. The solid curves represent the data.
Hayes repeated the experiment using test vocabularies of different sizes but all containing only English
monosyllables (open circles in Fig. 7 ). This more homogeneous test material did not change the picture
significantly. With binary items the span is about nine and, although it drops to about five with
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monosyllabic English words, the difference is far less than the hypothesis of constant information would
require.

There is nothing wrong with Hayes's experiment, because Pollack (16) repeated it much more elaborately
and got essentially the same result. Pollack took pains to measure the amount of information transmitted
and did not rely on the traditional procedure for scoring the responses. His results are plotted in Fig. 8 .
Here it is clear that the amount of information transmitted is not a constant, but increases almost linearly
as the amount of information per item in the input is increased.

And so the outcome is perfectly clear. In spite of the coincidence that the magical number seven appears
in both places, the span of absolute judgment and the span of immediate memory are quite different kinds
of limitations that are imposed on our ability to process information. Absolute judgment is limited by the
amount of information. Immediate memory is limited by the number of items. In order to capture this
distinction in somewhat pictureque terms, I have fallen into the custom of distinguishing between bits of
information and chunks of information. Then I can say that the number of bits of information is constant
for absolute judgment and the number of chunks of information is constant for immediate memory. The
span of immediate memory seems to be almost independent of the number of bits per chunk, at least over
the range that has been examined to date.

The contrast of the terms bit and chunk also serves to highlight the fact that we are not very definite
about what constitutes a chunk of information. For example, the memory span of five words that Hayes
obtained when each word was drawn at random from a set of 1000 English monosyllables might just as
appropriately have been called a memory span of 15 phonemes, since each word had about three
phonemes in it. Intuitively, it is clear that the subjects were recalling five words, not 15 phonemes, but
the logical distinction is not immediately apparent. We are dealing here with a process of organizing or
grouping the input into familiar units or chunks, and a great deal of learning has gone into the formation
of these familiar units.

Recoding

In order to speak more precisely, therefore, we must recognize the importance of grouping or organizing
the input sequence into units or chunks. Since the memory span is a fixed number of chunks, we can
increase the number of bits of information that it contains simply by building larger and larger chunks,
each chunk containing more information than before.

A man just beginning to learn radiotelegraphic code hears each dit and dah as a separate chunk. Soon he
is able to organize these sounds into letters and then he can deal with the letters as chunks. Then the
letters organize themselves as words, which are still larger chunks, and he begins to hear whole phrases. I
do not mean that each step is a discrete process, or that plateaus must appear in his learning curve, for
surely the levels of organization are achieved at different rates and overlap each other during the learning
process. I am simply pointing to the obvious fact that the dits and dahs are organized by learning into
patterns and that as these larger chunks emerge the amount of message that the operator can remember
increases correspondingly. In the terms I am proposing to use, the operator learns to increase the bits per
chunk.

In the jargon of communication theory, this process would be called recoding. The input is given in a
code that contains many chunks with few bits per chunk. The operator recodes the input into another
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code that contains fewer chunks with more bits per chunk. There are many ways to do this recoding, but
probably the simplest is to group the input events, apply a new name to the group, and then remember the
new name rather than the original input events.

Since I am convinced that this process is a very general and important one for psychology, I want to tell
you about a demonstration experiment that should make perfectly explicit what I am talking about. This
experiment was conducted by Sidney Smith and was reported by him before the Eastern Psychological
Association in 1954.

Begin with the observed fact that people can repeat back eight decimal digits, but only nine binary digits.
Since there is a large discrepancy in the amount of information recalled in these two cases, we suspect at
once that a recoding procedure could be used to increase the span of immediate memory for binary digits.
In Table 1 a method for grouping and renaming is illustrated. Along the top is a sequence of 18 binary
digits, far more than any subject was able to recall after a single presentation. In the next line these same
binary digits are grouped by pairs. Four possible pairs can occur: 00 is renamed 0, 01 is renamed 1, 10 is
renamed 2, and 11 is renamed 3. That is to say, we recode from a base-two arithmetic to a base-four
arithmetic. In the recoded sequence there are now just nine digits to remember, and this is almost within
the span of immediate memory. In the next line the same sequence of binary digits is regrouped into
chunks of three. There are eight possible sequences of three, so we give each sequence a new name
between 0 and 7. Now we have recoded from a sequence of 18 binary digits into a sequence of 6 octal
digits, and this is well within the span of immediate memory. In the last two lines the binary digits are
grouped by fours and by fives and are given decimal-digit names from 0 to 15 and from 0 to 31.

It is reasonably obvious that this kind of recoding increases the bits per chunk, and packages the binary
sequence into a form that can be retained within the span of immediate memory. So Smith assembled 20
subjects and measured their spans for binary and octal digits. The spans were 9 for binaries and 7 for
octals. Then he gave each recoding scheme to five of the subjects. They studied the recoding until they
said they understood it–for about 5 or 10 minutes. Then he tested their span for binary digits again while
they tried to use the recoding schemes they had studied.

The recoding schemes increased their span for binary digits in every case. But the increase was not as
large as we had expected on the basis of their span for octal digits. Since the discrepancy increased as the
recoding ratio increased, we reasoned that the few minutes the subjects had spent learning the recoding
schemes had not been sufficient. Apparently the translation from one code to the other must be almost
automatic or the subject will lose part of the next group while he is trying to remember the translation of
the last group.

Since the 4:1 and 5:1 ratios require considerable study, Smith decided to imitate Ebbinghaus and do the
experiment on himself. With Germanic patience he drilled himself on each recoding successively, and
obtained the results shown in Fig. 9 . Here the data follow along rather nicely with the results you would
predict on the basis of his span for octal digits. He could remember 12 octal digits. With the 2:1 recoding,
these 12 chunks were worth 24 binary digits. With the 3:1 recoding they were worth 36 binary digits.
With the 4:1 and 5:1 recodings, they were worth about 40 binary digits.

It is a little dramatic to watch a person get 40 binary digits in a row and then repeat them back without
error. However, if you think of this merely as a mnemonic trick for extending the memory span, you will
miss the more important point that is implicit in nearly all such mnemonic devices. The point is that
recoding is an extremely powerful weapon for increasing the amount of information that we can deal
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with. In one form or another we use recoding constantly in our daily behavior.

In my opinion the most customary kind of recoding that we do all the time is to translate into a verbal
code. When there is a story or an argument or an idea that we want to remember, we usually try to
rephrase it "in our own words." When we witness some event we want to remember, we make a verbal
description of the event and then remember our verbalization. Upon recall we recreate by secondary
elaboration the details that seem consistent with the particular verbal recoding we happen to have made.
The well-known experiment by Carmichael, Hogan, and Walter (3) on the influence that names have on
the recall of visual figures is one demonstration of the process.

The inaccuracy of the testimony of eyewitnesses is well known in legal psychology, but the distortions of
testimony are not random–they follow naturally from the particular recoding that the witness used, and
the particular recoding he used depends upon his whole life history. Our language is tremendously useful
for repackaging material into a few chunks rich in information. I suspect that imagery is a form of
recoding, too, but images seem much harder to get at operationally and to study experimentally than the
more symbolic kinds of recoding.

It seems probable that even memorization can be studied in these terms. The process of memorizing may
be simply the formation of chunks, or groups of items that go together, until there are few enough chunks
so that we can recall all the items. The work by Bousfield and Cohen (2) on the occurrence of clustering
in the recall of words is especially interesting in this respect.

Summary

I have come to the end of the data that I wanted to present, so I would like now to make some
summarizing remarks.

First, the span of absolute judgment and the span of immediate memory impose severe limitations on the
amount of information that we are able to receive, process, and remember. By organizing the stimulus
input simultaneously into several dimensions and successively into a sequence of chunks, we manage to
break (or at least stretch) this informational bottleneck.

Second, the process of recoding is a very important one in human psychology and deserves much more
explicit attention than it has received. In particular, the kind of linguistic recoding that people do seems
to me to be the very lifeblood of the thought processes. Recoding procedures are a constant concern to
clinicians, social psychologists, linguists, and anthropologists and yet, probably because recoding is less
accessible to experimental manipulation than nonsense syllables or T mazes, the traditional experimental
psychologist has contributed little or nothing to their analysis. Nevertheless, experimental techniques can
be used, methods of recoding can be specified, behavioral indicants can be found. And I anticipate that
we will find a very orderly set of relations describing what now seems an uncharted wilderness of
individual differences.

Third, the concepts and measures provided by the theory of information provide a quantitative way of
getting at some of these questions. The theory provides us with a yardstick for calibrating our stimulus
materials and for measuring the performance of our subjects. In the interests of communication I have
suppressed the technical details of information measurement and have tried to express the ideas in more
familiar terms; I hope this paraphrase will not lead you to think they are not useful in research.
Informational concepts have already proved valuable in the study of discrimination and of language; they
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promise a great deal in the study of learning and memory; and it has even been proposed that they can be
useful in the study of concept formation. A lot of questions that seemed fruitless twenty or thirty years
ago may now be worth another look. In fact, I feel that my story here must stop just as it begins to get
really interesting.

And finally, what about the magical number seven? What about the seven wonders of the world, the
seven seas, the seven deadly sins, the seven daughters of Atlas in the Pleiades, the seven ages of man, the
seven levels of hell, the seven primary colors, the seven notes of the musical scale, and the seven days of
the week? What about the seven-point rating scale, the seven categories for absolute judgment, the seven
objects in the span of attention, and the seven digits in the span of immediate memory? For the present I
propose to withhold judgment. Perhaps there is something deep and profound behind all these sevens,
something just calling out for us to discover it. But I suspect that it is only a pernicious, Pythagorean
coincidence.
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Table 1.

Figure 1. Data from Pollack (17 , 18) on the amount of information that is transmitted by listeners who
make absolute judgments of auditory pitch. As the amount of input information is increased by
increasing from 2 to 14 the number of different pitches to be judged, the amount of transmitted
information approaches as its upper limit a channel capacity of about 2.5 bits per judgment.

Figure 2. Data from Garner (7) on the channel capacity for absolute judgments of auditory loudness.

Figure 3. Data from Beebe-Center, Rogers, and O'Connell (1) on the channel capacity for absolute
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judgments of saltiness.

Figure 4. Data from Hake and Garner (8) on the channel capacity for absolute judgments of the position
of a pointer in a linear interval.

Figure 5. Data from Klemmer and Frick (13) on the channel capacity for absolute judgments of the
position of a dot in a square.

Figure 6. The general form of the relation between channel capacity and the number of independently
variable attributes of the stimuli.
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Figure 7. Data from Hayes (10) on the span of immediate memory plotted as a function of the amount of
information per item in the test materials.

Figure 8. Data from Pollack (16) on the amount of information retained after one presentation plotted as
a function of the amount of information per item in the test materials.

Figure 9. The span of immediate memory for binary digits is plotted as a function of the recoding
procedure used. The predicted function is obtained by multiplying the span for octals by 2, 3 and 3.3 for
recoding into base 4, base 8, and base 10, respectively.

http://spider.apa.org/ftdocs/rev/1994/april/rev1012343.html (16 of 17) [10/10/2001 10:23:09 AM]

http://spider.apa.org/ftdocs/rev/1994/april/S_rev1012343fig6a.jpg
http://spider.apa.org/ftdocs/rev/1994/april/S_rev1012343fig7a.jpg
http://spider.apa.org/ftdocs/rev/1994/april/S_rev1012343fig8a.jpg


http://spider.apa.org/ftdocs/rev/1994/april/rev1012343.html (17 of 17) [10/10/2001 10:23:09 AM]

http://spider.apa.org/ftdocs/rev/1994/april/S_rev1012343fig9a.jpg

	apa.org
	http://spider.apa.org/ftdocs/rev/1994/april/rev1012343.html


