
Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 1	

Instrumental Interaction

Michel Beaudouin-Lafon
Laboratoire de Recherche en Informatique

Université Paris-Sud / CNRS
mbl@lri.fr

http://insitu.lri.fr

Overview

Analysis of WIMP applications

Power vs. Simplicity

Interaction model

Instrumental Interaction

Design Principles

Analysis of WIMP applications
#menus Menus in menu bar
#cmds Commands in menus
#dlogs Commands that lead to a dialog box
#smenus Sub-menus
#scmds Commands in sub-menus
#sdlogs Commands in sub-menus that lead to a dialog box

Tcmds Total commands: #cmds - #smenus + #scmds
Tdlogs Total dialog boxes: #dlogs + #sdlogs
Cmds/M Mean commands per menu: #cmds / #menus
Cmds/SM Mean commands per sub-menu: #scmds / #smenu

#palettes Palettes and toolbars
#tools Widgets in palettes and toolbars
#prefs Preference pages
#options Options in preference pages
macros Whether macros can be defined

Number of commands

Criteria	
 	
 W6	
 	
 E5	
 	
 Pe3	
 	
 P4	
 	
 X3	
 	
 C3	
 	
 Avg	
 	
 s	

#menus	
 	
 8	
 	
 8	
 	
 7	
 	
 8	
 	
 7	
 	
 8	
 	
 7.7	
 	
 0.5	

#cmds	
 	
 106	
 	
 84	
 	
 97	
 	
 111	
 	
 99	
 	
 74	
 	
 95.2	
 	
 13.8	

#dlog	
 	
 69	
 	
 44	
 	
 20	
 	
 27	
 	
 40	
 	
 21	
 	
 36.8	
 	
 18.6	

#smenu	
 	
 1	
 	
 15	
 	
 27	
 	
 26	
 	
 13	
 	
 22	
 	
 17.3	
 	
 9.8	

#scmds	
 	
 3	
 	
 58	
 	
 73	
 	
 82	
 	
 65	
 	
 121	
 	
 67.0	
 	
 38.4	

#sdlog	
 	
 0	
 	
 20	
 	
 20	
 	
 40	
 	
 10	
 	
 28	
 	
 19.7	
 	
 13.9	

Tcmds	
 	
 108	
 	
 127	
 	
 143	
 	
 167	
 	
 151	
 	
 173	
 	
 144.8	
 	
 24.5	

Tdlogs	
 	
 69	
 	
 64	
 	
 40	
 	
 67	
 	
 50	
 	
 49	
 	
 56.5	
 	
 11.8	

Cmds/M	
 	
 13.3	
 	
 10.5	
 	
 13.9	
 	
 13.9	
 	
 14.1	
 	
 9.3	
 	
 12.5	
 	
 2.1	

Cmds/SM	
 	
 3.0	
 	
 3.9	
 	
 2.7	
 	
 3.2	
 	
 5.0	
 	
 5.5	
 	
 3.9	
 	
 1.1	

#palettes	
 	
 9	
 	
 13	
 	
 5	
 	
 11	
 	
 6	
 	
 6	
 	
 8.3	
 	
 3.2	

#tools	
 	
 125	
 	
 106	
 	
 54	
 	
 77	
 	
 68	
 	
 60	
 	
 81.7	
 	
 28.0	

#prefs	
 	
 12	
 	
 10	
 	
 1	
 	
 8	
 	
 5	
 	
 11	
 	
 7.8	
 	
 4.2	

#options	
 	
 113	
 	
 76	
 	
 11	
 	
 51	
 	
 82	
 	
 27	
 	
 60.0	
 	
 37.7	

macros	
 	
 yes	
 	
 yes	
 	
 no	
 	
 yes	
 	
 no	
 	
 yes	

Word6 Excel5 Persuasion3 Photoshop4 Xpress3 Canvas3

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 2	

Successive versions

Criteria E4 E5 % W5 W6 % P2 P4 %
#menus 8 8 0% 8 8 0% 7 8 +14%
#cmds 93 84 -10% 107 106 -1% 78 111 +42%
#dlog 60 44 -27% 55 69 +25% 21 27 +29%
#smenu 0 15 + • 0 1 + • 19 26 +37%
#scmds 0 58 + • 0 3 + • 56 82 +46%
#sdlog 0 20 + • 0 0 + • 39 40 +3%
Tcmds 93 127 +37% 107 108 +1% 115 167 +45%
Tdlogs 60 64 +7% 55 69 +25% 60 67 +12%
Cmds/M 11.6 10.5 -10% 13.4 13.3 -1% 11.1 13.9 +25%
Cmds/SM 0 3.9 + • 0 3 + • 2.9 3.2 +7%
#palettes 8 13 +63% 3 9 +200% 6 11 +83%
#tools 108 106 -2% 63 125 +98% 49 77 +57%
#prefs 0 10 + • 10 12 +20% 9 8 -11%
#options 0 76 + • 52 113 +117% 58 51 -12%
macros yes yes no yes no yes

Excel 4->5 Word 5->6 Photoshop 2.5->4

Analysis of WIMP applications

Word 6

Excel 5

Persuasion 3

Photoshop 4

Xpress 3

Canvas 3

#commands #dialogs
#tools

Excel
4 -> 5

Word
5 -> 6

Photoshop
2.5 -> 4

0 50 100 150

250
200
150
100
50
0

Power vs. Simplicity

Simple things should be simple
Complex things should be possible
How to combine power & simplicity ?

power

simplicity

More is less: the illusion of power

Bloatware
Too many functions
More functions with each new version

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 3	

Marketing software : increased power?

Add features
More menu items - Each is harder to find
More commands - Each is harder to learn
More dialog boxes - More steps to the goal

Add programming

Macros
Scripting languages
Require users to understand

programming concepts

Marketing software : increased simplicity?

Add wizards
Hard to understand: What did the wizard do?
Lose control: Wizard may do the wrong thing
Waste time: Must fix the wizard’s mistakes

Add Customization:
Preferences menus

Hard to navigate
Hard to translate into user’s terms
Hard to choose relevant settings
Rarely sharable
Most users don’t bother

Costs vs. benefits

Simple things are harder
Complex things are not used

Cost of learning

Learned skills made obsolete
No path from novice to expert

Cost of making choices

Cognitive: more decisions
Sensory-motor: more steps

A better approach

Specializing software
Example: Apple Macintosh

power

simplicity

FinalCut Pro

iMovie
iPhoto

Aperture

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 4	

Another approach

Shifting the curve

power

simplicity

Going beyond WIMP

Bryce2
(Metatools)

Complexity can be simple

Bryce2
(Metatools)

Comparison: Bryce vs WIMP

Criteria Avg Bryce2 % of Avg
#menus 7.7 3 38.9%
#cmds 95.2 45 47.3%
#dlog 36.8 18 48.9%
#smenu 17.3 0 0.0%
#scmds 67.0 0 0.0%
#sdlog 19.7 0 0.0%
Tcmds 144.8 45 31.1%
Tdlogs 56.5 18 31.8%
Cmds/M 12.5 15.0 120.0%
Cmds/SM 3.9 0.0 0.0%
#palettes 8.3 9 108.4%
#tools 81.7 71 86.9%
#prefs 7.8 1 12.8%
#options 60.0 5 8.3%

No menus,
No windows,
No dialog boxess

Graphical design
Interaction design
Layered approach

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 5	

Case study: CPN 2000 Project

Redesign of Design/CPN
Current use world-wide: 600+ organizations

Purpose:

Edit and simulate coloured Petri Nets

Opportunity:

Explore research questions with
a real-world application

Beaudouin-Lafon
& Mackay, 2000 Two key design decisions

Support two-handed input
Dominant and non-dominant hands

Integrate four interaction techniques:

Toolglasses Floating palettes
Contextual menus Bi-manual interaction

Why these techniques?

User studies show context affects tool preference
Palettes: focus on command
Marking menus: focus on object
Toolglasses: mixed focus

cpn2000 Less is more: the power of simplicity

CPN2000 case study
New version has more power but

no menu bar
no title bars
no scrollbars
no dialog boxes
no selection

This required

Participatory design process
Interaction model
Implementation from scratch

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 6	

Interaction model

Definition
Set of principles, rules and properties

that guide the design of an interactive system
Helps combine interaction techniques

in a consistent way

Properties

Descriptive:
describes a range of existing interactive systems

Evaluative:
helps evaluate interactive systems

Generative:
helps create new interaction techniques

Need for a new interaction model

Direct manipulation
 … is often too indirect

Support more direct forms of interaction

Toto	
 OK	

Size	
 24	

Toto	
 Size	
 24	
 Toto	
 Toto	

Instrumental interaction

Inspiration
Interaction with our environment

is mediated by tools and instruments

Two categories of objects

Domain objects

Interaction instruments

Beaudouin-Lafon 97 Interaction instruments

Conceptual model

Two levels of interaction: mediation

feed-back

action

response

command

instrument

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 7	

Instruments and modes

An instrument turns a mode into an object

Activating a mode = activating an instrument

Spatial mode: pointing

Temporal mode: selection

Cost of activation

A

Describing current WIMP interfaces

WIMP interfaces are based on widgets

Instruments of (in)direct manipulation

Handles, Title bars

Menus, Toolbars

Scrollbars

Dialog and Property boxes

Describing novel interaction techniques

Dynamic Queries

Dropable Tools

Toolglasses

Ahlberg

Bederson et al.

Bier et al.

Describing novel interaction techniques

Tangible interfaces
More input devices and therefore

more instruments

Augmented/Mixed reality

Augmenting physical objects with
computational capabilities

Fitzmaurice
Ishii
Mackay
Rekimoto
Ullmer

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 8	

Evaluation : Properties of an instrument

Degree of indirection
Spatial offset
Temporal offset

time

space

drag’n’drop dialog
boxes

property
boxes

scrollbars

handles

OK	

Evaluation : Properties of an instrument

Degree of integration
How to use the degrees of freedom of the physical device
Integrality & separability of input devices (Jacob et al., 94)

2->1

2->3

Evaluation : Properties of an instrument

Degree of conformance
Similarity between physical action and effect on object

OK

Size 24 Toto	

Generative power : Three design principles

Reification
extends the notion of
what constitutes an object

Polymorphism

extends the power of commands
with respect to these objects

Reuse

provides a way of capturing and
reusing interaction patterns

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 9	

Example : text search instrument

Classic search:
 Sequential
 Modal

Search instrument:

 Show all occurences
 Allow replacing occurences
in any order

Augmented scrollbar

Reification

Turns concepts into (interface) objects

Interaction instrument

Reification of a command into an interface widget

Example :

 scrolling a document -> scrollbar

Examples

Guidelines: reification of alignment
Layers: reification of mode

Polymorphism

Extends commands to multiple object types
Common examples:

Cut, paste, delete, move

Context-dependent commands
Homogenous groups

If applicable to one object, then applicable to a group
of same-type objects

Heterogeneous groups
Applicable to a heterogeneous group if it has meaning

for individual object types

Reuse

Captures interaction patterns for later reuse

Output reuse

Reuse previously created objects
Example: duplicate, copy/paste

Input reuse

Reuse previous commands
Example: redo, history, macros

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 10	

Magnetic guidelines

Reification of the alignment command

Power and simplicity

Align command vs Align object:
Align (now) vs Align (and keep aligned)

Multiple shapes

Horizontal, vertical, diagonal, circular, rectangular
Distribute objects

Decomposition

Create / Move / Add object / Remove object

Layers

A mode defines:
Which objects are visible
Which commands are available

Layer = reification of mode

Turn layer on/off
Guidelines, simulation, annotations...

Increased power

Combine layers

Example in CPN2000: debug mode, simulation mode

Groups

Reification + Polymorphism

Group = reification of a selection
Polymorphism:

Apply a command to a group = apply it to each object in the group
Generic commands: Open, Edit, Cut-Copy-Paste

Examples in CPN2000
Folders = Groups of pages
Index = Hierarchy of documents and palettes
Magnetic guidelines = Groups of layout-constrained objects
Styles = Objects that share graphical attributes

Styles

Reification + Output reuse

Style object

Reification of a collection of attributes
Objects that share a style = group
Editing style affects all objects in group

Style picker

Copies any object's current attributes

Style dropper
Applies style to any object

Master Informatique - Université Paris-Sud	

(c) 2011, Michel Beaudouin-Lafon, mbl@lri.fr	
 11	

Macros

Input reuse + Reification + Polymorphism

Reuse

Record a sequence of commands as a macro

Polymorphism:

Apply macro as a command in new contexts

Reification:

Edit macro as first class object

Integrating the principles

Reification and polymorphism
More objects and fewer commands

Reification facilitates output reuse

More first-class objects can be reused

Polymorphism facilitates input reuse

Increases the scope of commands

Design principles

Increase simplicity
Reification: direct instruments not indirect commands
Polymorphism: fewer commands
Reuse: copy/redo rather than re-create from scratch

Increase power

Reification: commands as first-class objects
Polymorphism: same command works in multiple contexts
Reuse: path to programming/scripting

Conclusion

Instrumental Interaction makes explicit the artifacts involved
in the mediation between user and objects of interest

Descriptive, evaluative and generative model

Design principles help combine power and simplicity

