
Submitted to UIST 2001 - Do not cite

Novel Interaction Techniques for Overlapping Windows

Michel Beaudouin-Lafon
Laboratoire de Recherche en Informatique

Bâtiment 490 - Université Paris-Sud
91405 Orsay - France

mbl@lri.fr - http://www-ihm.lri.fr

ABSTRACT
This note presents several techniques to improve window
management with overlapping windows: tabbed windows,
turning and peeling back windows, and snapping and
zipping windows.

KEYWORDS: window management, interaction technique

INTRODUCTION
The dominant model for window management in desktop
interfaces is overlapping windows. As the number of
windows on the screen increases, the task of flipping
between windows becomes more and more tedious and time-
consuming. Previous work, e.g. [2,5], has addressed this
issue with tiled windows. This note presents techniques to
improve this situation with overlapping windows.

TABBED WINDOWS
Many commercial systems already use dialog boxes with
several pages accessible through tabs. We introduced the
concept of tabbed windows in the CPN2000 application [1].
It raises the tab technique to the level of document windows
and gives the user the additional flexibility of moving pages
from one window to another by dragging them via their
tabs (Fig. 1). A page can be dragged to an existing window,
which adds a tab to it, or to the background, which creates a
new window with a single page and tab. Dragging the last
page out of its window deletes the window.

Our experience with this technique in CPN2000 shows that
tabbed windows dramatically reduce the number of windows
on the screen while still providing quick access to a large
number of pages that would otherwise be separate windows.
Users thus control their working sets of pages and windows
without sacrificing efficiency.

Figure 1: A page in a tabbed window being dragged.

Figure 2: Tabbed window with a popped-up tab.

A well-known limitation of tabbed dialogs is the number of
tabs that can be displayed in a single dialog box, or, in our
case, window. Several strategies exist, including arranging
the tabs in several rows, adding a horizontal scrollbar or
adding a pull-down menu for hidden tabs. Unfortunately
each technique adds a significant overhead to the selection of
a tab. Our approach lays out all the tabs in a single row,
with the currently-active tab on top. Other tabs may
overlap, but pop-up when the mouse passes over them,
revealing their names (Fig. 2). The salient tab can then be
clicked or dragged as in the normal, non-overlapping, case.

In terms of interaction, this technique is more efficient than
others, even though it requires the user to mouse over the
tabs in order to find the target page. Leafing facilitates this
look-up phase: in addition to popping up the tabs while
mousing over them, the corresponding pages are also
displayed on top. This is enabled after a time-out that starts
when the mouse first appears over a tab in the window.
While leafing, the pages being displayed are dimmed as
feedback of the mode to the user. If the user leaves the tabs
region without clicking or dragging a tab, the display
reverts to its previous state, with the original page on top.

Our experience shows that the combination of spatial
memory to locate the tabs, leafing and other cues, such as
the colors of the tabs, make it easy to find the target page
quickly. Because of the tight coupling between action and
perception, this technique is very close to the way we leaf
and search through a physical Rolodex or file folder,
making it simple to learn.

ROTATING AND PEELING BACK WINDOWS
Windows in desktop environments are almost always
rectangular, with the sides parallel to the sides of the screen.
When two windows of the same size overlap, at most two
sides of the rear window can be seen. When many windows
of similar sizes overlap, many of them become invisible,
making them difficult to access.

By contrast, while physical books and sheets of paper on a
desk are also rectangular, they are rarely perfectly aligned.
This gives the user clues for locating them and an easy way
to access them even when they are stacked.



Figure 3: Rotated windows and a peeled-back window.

We have applied this metaphor to windows on a desktop by
supporting rotated windows: when a window is moved, a
simple kinematic model is applied so that it rotates as it
moves, like a sheet of paper being moved by a corner. The
rotation angle is computed so that when the point P of the
page under the cursor is moved to P’, the center of gravity
G of the window is moved to G’ so that G, G’ and P’ are
aligned and the distance between G’ and P’ is the same as
the distance between G and P (otherwise the window would
be distorted). In addition, the rotation angle is constrained
so that the window does not end up overly rotated, e.g.,
sideways or even upside down.

Given the resolution of current screens, rotating the
contents of the window can make it hard to read, especially
if it contains small text. We have experimented with two
approaches to solve this problem. The first automatically
rotates a window back to its upright position when it is
selected. This works well when the window does not need
to be rotated too much (up to 10º) and if it is rotated around
the cursor position (otherwise the user may miss the
selection). The other approach does not rotate the contents
of the window at all. This works well when the window is
rotated by less than 5º.

We have also extended the metaphor of sheets of papers on
a desk by experimenting with peeling back windows.
Clicking on a corner of a window and dragging towards the
inside of a window peels it back, revealing the window
underneath it. The window springs back to its original
position when the mouse button is released, with an
animation that lasts approximately one second. This is
enough to move the mouse pointer to a window that was
hidden and select or move it. Typically, a traditional
window manager would require moving windows around to
get to the hidden one, destroying any layout that the user
may have created.

Peeling back a window involves partitioning its rectangle
into two polygons: the polygon being peeled back and the
rest of the window. First we compute the perpendicular
bisector L of segment PP’ where P is the point where the
mouse was clicked to start the interaction and P’ the current
position of the mouse. We then split the rectangle into two
polygons using this line. The polygon being peeled up is
the reflection of the polygon that contains P about line L.
The other polygon is the rest of the window. This technique
makes it possible to turn the window completely over:
when line L does not intersect the rectangle, the whole
window is peeled back.

SNAPPING AND ZIPPING WINDOWS
Users often work with windows that are strongly related,
such as an outline and a page layout of the same document,
or a document window and some tool palettes. Some
applications support tiling, placing several panes together
inside a window: Microsoft Word can split a window to
display two views of a document, Netscape Mail can split a
window into a list of folders, a list of messages and the
current message. However the user has little flexibility in
organizing these panes.

Snapping windows allows the user to assemble several
windows into a single entity. When a window is moved so
that one of its sides is close to the side of another window,
the two windows are snapped together and stay snapped
unless the user moves the window away before releasing the
mouse button. The interaction is similar to snap dragging
[3] or magnetic guidelines [1]. Note that a window can be
snapped inside, overlapping the other window.

A snapped window is slaved to its master window: moving
the master window moves its slave, while moving the slave
unsnaps it from the master window. This works well when
the snapped window is small compared to the main one,
e.g. when it is a tool palette. When windows are of similar
sizes along the side being snapped, snapping becomes
zipping: the two windows are given the same size along
their common side, which becomes a divider line that can
be moved. The windows are then moved and resized
together, and they are unzipped by double-clicking the
divider. Finally, snapped windows can be collapsed and
reopened by clicking their tabs. MacOS 8.x/9.x has similar
pop-up windows except that they can only be at the bottom
of the screen.

CONCLUSION
We have presented several techniques that improve window
management by extending the metaphor of overlapping
windows. All these techniques have been implemented and
preliminary results are encouraging. Our future work will
create a full window manager based on these techniques and
we plan to conduct more formal usability studies.

1 . Beaudouin-Lafon, M. & Lassen, H.M., The architecture and
implementation of CPN2000, a post-WIMP graphical
application. in UIST 2000, ACM Symposium on User
Interface Software and Technology, CHI Letters 2(2):181-
190, 2000.

2 . Bell, B. & Feiner, S., Dynamic space management for user
interfaces. in UIST 2000, ACM Symposium on User
Interface Software and Technology, CHI Letters 2(2):239-
248, 2000.

3 . Bier, E. & Stone, M. Snap-dragging. In Proc. ACM
SIGGRAPH, 20(4):233-240, ACM Press, 1986.

4 . Bly, S. & Rosenberg, J., A comparison of tiled and
overlapping windows. in CHI ‘86, ACM Conference on
Human Factors in Computing Systems, p.101-106, 1986.

5 . Kandgan, E. & Shneiderman, B., Elastic windows:
evaluation of multi-window operations. in CHI ‘97, ACM
Conference on Human Factors in Computing Systems,
p.250-257, 1997.


