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ABSTRACT
This paper presents three design principles to support the
development of large-scale applications and take advantage of
recent research in new interaction techniques: Reification turns
concepts into first class objects, polymorphism  permits
commands to be applied to objects of different types, and reuse
makes both user input and system output accessible for later
use. We show that the power of these principles lies in their
combination. Reification creates new objects that can be acted
upon by a small set of polymorphic commands, creating more
opportunities for reuse. The result is a simpler yet more
powerful interface.

To validate these principles, we describe their application in
the redesign of a complex interface for editing and simulating
Coloured Petri Nets. The cpn2000 interface integrates floating
palettes, toolglasses and marking menus in a consistent
manner with a new metaphor for managing the workspace. It
challenges traditional ideas about user interfaces, getting rid of
pull-down menus, scrollbars, and even selection, while
providing the same or greater functionality. Preliminary tests
with users show that they find the new system both easier to use
and more efficient.
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1. INTRODUCTION
Today's visual interfaces suffer from an overabundance of
functionality: each successive version is marketed based on the
number of new functions, with little regard to the
corresponding increase in the cost of use. Simple things keep
getting harder, as users spend more and more time deciding
among an increasing variety of rarely or never-used options.
Some users are at a breaking point and are less and less able to
cope with new software releases [21]. Others have begun to

actively reject software upgrades and cling to older versions of
products such as Microsoft Word (survey of Microsoft users,
Business Week, 5 July, 1999).

New interaction techniques, such as toolglasses [4] and
marking menus [17], have been proposed to reduce this trade-
off between power and ease-of-use. Yet such interaction
techniques tend to be developed in isolation, as the focus of a
particular research project. While this is a critical first step, it
is also important to understand how these techniques scale
when combined with other techniques and are placed in the
context of complex real-world applications. We also need to
develop new interaction models that explain how these and
other techniques can increase the functionality available to
users without creating a corresponding increase in the cost of
use.

This paper describes how three design principles, reification,
polymorphism and reuse, have provided a framework for
redesigning a complex tool for editing and simulating Coloured
Petri Nets. Developed in the late 1980's, the Design/CPN tool
used a then state-of-the-art WIMP (windows, icons, menus,
pointing) user interface. The new tool, cpn2000, is the result
of a participatory design process, in which users and designers
have collaborated to recreate a tool that supports "Petri-Nets-
In-Use". The goal is to provide Coloured Petri Nets developers
with greater functionality through an interface that is more
intuitive, efficient and pleasant to use; one that allows them to
think in terms of Petri nets and not the mechanics of the
interface.

We begin by describing the principles of reification,
polymorphism and reuse and then describe the interface to
cpn2000. We explain how these principles have influenced the
design of the user interface and discuss how combining them
helps address the trade-off between power and ease-of-use. We
conclude with directions for future research.

2. DESIGN PRINCIPLES
Graphical user interfaces can be broadly defined as consisting
of graphical objects and commands. Graphical objects are
represented on the screen and commands can be applied to
create, edit and delete them. Visualization techniques describe
how to represent these objects while interaction techniques
describe how to apply commands to them. Over time, users
develop individual patterns of use that depend upon the
available objects and commands, the particular application
domain and the current context of use. The perceived "ease-of-
use" of an interface depends upon many factors, including the
effectiveness of the visual representation, the completeness of
the command set and the support for efficient patterns of use.
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We have developed three principles that address the issues
surrounding objects, commands and patterns of use:

• Reification extends the notion of what constitutes an
object;

• Polymorphism  extends the power of commands with
respect to these objects; and

• Reuse provides a way of capturing and reusing patterns of
use.

2.1 Reification
Reification is the process by which concepts are turned into
objects. For example, in a graphical editing tool, the concept
of a circle is represented as an image of a circle in a tool palette.
Reification creates new objects that can be manipulated by the
user, thus increasing the set of objects of interest.

Instrumental Interaction [1] extends the principles of Direct
Manipulation [26] by reifying commands into interaction
instruments. An interaction instrument is a mediator between
the user and objects of interest: the user acts on the instrument,
which in turn acts on the objects. This reflects the fact that, in
the physical world, our interaction with everyday objects is
mediated by tools and instruments such as pens, hammers or
handles. The menu items, tool buttons, manipulation handles
and scrollbars seen in today's user interfaces are examples of
interaction instruments. A scrollbar, for example, is both a
visible object on the screen that can be manipulated by the user
and also a command the user manipulates to scroll the
document.

Turning commands into objects provides potentially infinite
regression. Since instruments are objects, they can be operated
upon by (meta)-instruments, which are themselves objects, etc.
In real life, we see limited chains of regression, as we move our
focus from pencils, to pencil sharpeners that sharpen pencils to
screwdrivers that fix pencil sharpeners. In some user interfaces,
menus and toolbar buttons can be reconfigured to tailor the
interface: they become instrument objects that can be
manipulated by meta-instruments.

Another example of reification is the notion of style: In a text
editor such as Microsoft Word, a style is a collection of
attributes describing the look of a text in a paragraph, e.g., the
font and margins. The user can create and edit styles and apply
them to paragraphs. Styles thus become objects of interest for
the user.

Many graphical editors also reify a collection of objects into
the notion of a group. Since a group is itself an object, it can be
added to a group, giving way to arbitrarily large structures such
as trees and DAGs. These structuring mechanisms can be found
in a wide variety of interfaces.

2.2 Polymorphism
Polymorphism is the property that enables a single command
to be applicable to objects of different types. Polymorphism
allows us to maintain a small number of commands, even as
reification increases the number of object types. This property
is essential if we want to keep the interface simple while
increasing its power.

Most interfaces include the polymorphic commands cut, copy
and delete, which can be applied to a wide variety of object
types, such as text, graphics, files or spreadsheet cells. Undo
and redo can also be considered polymorphic to the extent that
they can be applied to different commands.

Applying a command to a group of objects involves
polymorphism at two levels. First, any command that can be
applied to an object can also be applied to a group of objects of
the same type by applying it to each object in the group.
Second, any command can be applied to a heterogeneous group
of objects, i.e. objects of different types, as long as the
command has meaning for each of the individual object types.

2.3 Reuse
Reuse can involve previous input, previous output or both.
Input reuse makes previously-provided user input available for
reuse in the current context. For example, the redo command
lets users repeat complex input strings without having to
retype them. Output reuse makes the results of previous user
commands available for reuse. For example, duplicate and copy-
paste let users avoid re-creating complex objects they have just
created.

Polymorphism facilitates input reuse because a sequence of
actions can be applied in a wider range of contexts if it
involves polymorphic commands. Prototyping environments
such as Self and its Morphic user interface framework [22],
which are based on cloning and delegation, support and even
encourage a high level of input reuse.

Reification facilitates output reuse by creating more first-class
objects in the interface which are then available for reuse. Thus,
for example a Microsoft Word user can create a new style object
by reifying the style of an existing paragraph or by duplicating
an existing style object, modifying the copy and reapplying it.
A more elaborate form of reuse obtains when new styles are
created through inheritance from an existing style, which
allows changes made in the reused object to be propagated to
the edited copies.

Macros, such as those found in Microsoft Excel, illustrate the
power of combining these three design principles. The user
begins by telling the system to "watch" as a sequence of
commands is performed. Reification enables the user to capture
the particular pattern of use as a sequence of commands that can
be applied as a single new command to a new set of objects. A
more advanced form of reification turns each component
command into an object that can itself be edited, thus changing
the pattern of use to accommodate different contexts.

The next section briefly describes the cpn2000  interface,
which provides a testbed for exploring these three principles.

3. THE CPN2000 INTERFACE
The current cpn2000 interface was created over a period of ten
months by a group of ten people. We followed a highly
participatory design process beginning with observation of
users of an existing system, Design/CPN, in various work
settings. We developed scenarios to capture and articulate their
work practices and engaged in a variety of video brainstorming
and video prototyping exercises to develop the new interface.
These activities involved a multidisciplinary group of user
interface researchers, programmers and Coloured Petri Nets
developers. The first version of cpn2000 was presented at the
CPN International Workshop in October 1999. We also took
advantage of the CPN Workshop and an earlier retreat for the
University of Aarhus CPN group to conduct more formal studies
using CPN developers who were not involved in the
development of the new tool.

The following sections introduce the basic concepts and
vocabulary of Coloured Petri Nets (CPN), the basic interaction
techniques we selected and the overall design of the interface.
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Fig. 1: A simple Petri net with three places, one
transition and four arcs. Two places have a token.

Fig. 2: The Petri net from Fig. 1 after the
transition has been fired.

Fig. 3: Design/CPN, the current tool used by CPN designers.3.1 Coloured Petri Nets
Both Design/CPN and its successor, cpn2000, address the
application domain of editing and simulating Coloured Petri
Nets [14]. Petri nets are a graphical formalism with a strong
underlying mathematical model that extends the power of
simple finite state automata. Petri nets are particularly suited
for the modeling and analysis of parallel systems such as
communication protocols and resource allocation systems.

The graphical representation of Petri nets (Fig. 1) is a bipartite
graph where the nodes are called places (depicted as circles or
ellipses) and transitions (depicted as rectangles). Edges of the
graph are called arcs and can only connect places to transitions
and transitions to places. Each place typically represents a
possible state or resource of the system. Places hold tokens,
which represent the fact that the system is in a given state or
the number of resources that can be allocated. The rules for
simulating the net are very simple: a transition is enabled if all
the places connected to it by an input arc have a token. Firing
an enabled transition consists of removing a token from each
input place and adding a token to each output place of the
transition (Fig. 2). Mathematically, a Petri net can be
represented by a matrix and simulation of the net is equivalent
to a set of linear algebra operations. Properties of the net can
be proven, such as the fact that the net has a bounded number of
tokens or that there are no deadlocks.

A number of higher-level Petri net formalisms have been
developed to model complex systems. Most of these
formalisms are equivalent in power to a simple Petri net, but are
much more concise. One such extension is Coloured Petri Nets
[14]. In this model, the tokens belong to a color set equivalent
to a data type in a conventional programming language. Arcs
are labeled with pattern-matching expressions that describe
which tokens are used when a transition is fired. Typically,
colors allow a conventional Petri net to be "folded" onto itself,
making models much smaller. In addition Coloured Petri Nets
can be hierarchical. A transition can be described by a subnet,
equivalent to macro-substitution in a textual language.
Hierarchical nets make it possible to structure a complex net
into smaller units that can be developed and tested separately.

Over the past decade, the CPN group at the University of Aarhus
has been developing an editor and simulator for Coloured Petri
Nets, called Design/CPN (Fig. 3). This tool is freely available
to the CPN community and is currently in use by over 600

organizations both in industry and academia. Design/CPN
users have created models with as many as 100 modules and
have run simulations lasting several days. The tool has been
used far beyond the expectations of the designers and has
reached its limits in terms of usability and complexity of
implementation. The goal of cpn2000 is to reimplement the
basic functionality of Design/CPN while improving the user
interface and adding new editing and simulation capabilities.
The project is a joint effort of the CPN, HCI and Beta groups at
the University of Aarhus and is funded by the Danish Center for
IT Research, Hewlett-Packard and Microsoft.

3.2 Interaction techniques
We began with two key decisions that have influenced many
aspects of the design. First, we decided to explicitly support
two-handed input, with a mouse for the dominant hand and a
trackball for the non-dominant hand. The keyboard is used only
to input text and to navigate within and across text objects. The
design of the bi-manual interaction follows Guiard's Kinematic
Chain theory [10] in which the non-dominant hand manipulates
the context (container objects such as windows and
toolglasses) while the dominant hand manipulates objects
within that context. The exception is direct interaction for
zooming and resizing, which, according to Casalta et al. [6],
should give both hands symmetrical roles.

Second, we decided to incorporate a combination of new
interaction techniques, rather than using a standard WIMP
interface. Our goal is to provide cpn2000 users with easier yet
more powerful tools and support more effective patterns of use.
Users should be able to spend more time on developing Petri
nets and less time on the mechanics of the interface.

The current version of cpn2000  incorporates four primary
interaction techniques: direct interaction, marking menus [17],
floating palettes, and toolglasses [4].

Direct interaction involves pointing directly at objects and
either clicking on or dragging them. A direct bi-manual
interaction, used for resizing and zooming, involves
depressing a trackball button with the non-dominant hand and
dragging the mouse with the dominant hand, as if stretching a
piece of rubber.
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Marking menus are radial, contextual menus that appear when
clicking the right button of the mouse. Marking menus offer
faster selection than traditional linear menus for two reasons.
First, it is easier for the human hand to move the cursor in a
given direction than to reach a target at a given distance.
Second, the menu does not appear when the selection gesture is
executed quickly, which supports a smooth transition between
novice and expert use. Kurtenbach and Buxton [17] have shown
that selection times can be more than three times faster than
with traditional menus. Hierarchical marking menus involve
more complex gestures but are still much more efficient than
their linear counterparts.

Floating palettes contain tools represented by buttons.
Clicking a tool with the mouse activates this tool, i.e. the user
conceptually holds the tool in his or her hand. Clicking on an
object with the tool in hand applies the tool to that object. In
many current interfaces, after a tool is used (especially a
creation tool), the system automatically activates a "select"
tool. This supports a frequent pattern of use in which the user
wants to move or resize an object immediately after it has been
created but causes problems when the user wants to create
additional objects of the same type. cpn2000 avoids this
automatic changing of the current tool by getting rid of the
notion of selection (see below) while ensuring that the user can
always move an object, even when a tool is active, with a long
click (200ms) of the mouse. This mimics the situation in which
one continues holding a physical pen while moving an object
out of the way in order to write.

Toolglasses , like floating palettes, contain a set of tools
represented by buttons. Unlike floating palettes, they are semi-
transparent and are moved with the non-dominant hand. A tool
is applied to an object with a click-through action: The tool is
positioned over the object of interest and the user clicks
through the tool onto the object. The toolglass disappears
when the tool requires a drag interaction, e.g., when creating an
arc. This prevents the toolglass from getting in the way and
makes it easier to pan the document with the non-dominant
hand when the target position is not visible. This is a case
where the two hands operate simultaneously but independently.

Since floating palettes and toolglasses both contain tools, it is
possible to turn a floating palette into a toolglass and vice
versa, using the right button of the trackball. Clicking this
button when a toolglass is active drops it, turning it into a
floating palette. Clicking this same button on a floating
palette picks it up, turning it into a toolglass.

None of the above interaction techniques requires the concept
of selection. All are contextual, i.e. the object of interest is
specified as part of the interaction. This greatly simplifies the
application's conceptual model and, one hopes, the users'
mental models. However, this also creates a problem.
Traditional interfaces use multiple selection to apply a
command to a set of objects. We solve the problem by reifying
multiple selection into objects called groups (see below).

We considered several other interaction techniques including
gesture input [25], zoomable interfaces [2] and dropable tools
[3]. We selected the above set partly due to the participatory
nature of our design process, which led us to select the
techniques most appealing and natural for our particular set of
users. However, the techniques we chose also cover each of the
different possible syntaxes for specifying commands:

• object-then-command: point at the object of interest, then
select the command from a contextual marking menu;

• command-then-object: select a command by clicking a tool
in a floating palette, then apply the tool to one or more
objects of interest;

• command-and-object: select the command and the object
simultaneously by clicking through a toolglass or moving
it directly.

Preliminary results from our user studies [13] make it clear that
none of these techniques is always better or worse. Rather, each
emphasizes a different, but common, pattern of use. Marking
menus work well when applying multiple commands to a single
object. Floating palettes work well when applying the same
command to different objects. Toolglasses work well when the
work is driven by the structure of the application objects, such
as working around a cycle in a Petri net.

3.3 Workspace manager
Coloured Petri Nets frequently contain a large number of
modules. In the existing Design/CPN tool, each module is
presented in a separate window and users spend time switching
among them. Early in the project, it became clear that we had to
design our own window manager to improve this situation: the
Workspace Manager.

The workspace occupies the whole screen (Fig. 4) and contains
window-like objects called folders. Folders contain pages, each
equivalent to a window in a traditional environment. Each page
has a tab similar to those found in tabbed dialogs. Clicking the
tab brings that page to the front of the folder. A page can be
dragged to a different folder with either hand by dragging its
tab. Dragging a page to the background creates a new folder for
it. Dragging the last page out of a folder removes the folder
from the screen. Folders reduce the number of windows on the
screen and the time spent organizing them. Folders also help
users organize their work by grouping related pages together
and reducing the time spent looking for hidden windows.

Cpn2000 also supports multiple views, allowing several pages
to contain a representation of the same data. For example, the
upper-left page in Fig. 4 shows a module with simulation
information, while the upper-right page shows the same module
without simulation information but at a larger scale.

The left part of the workspace is called the index and contains a
hierarchical list of objects that can be dragged into the
workspace with either hand. Objects in the index include
toolglasses, floating palettes and Petri net modules. Dragging
an entry out of the index creates a view on its contents, i.e. a
toolglass, a floating palette or a page holding a CPN module.

Pages and folders do not have scrollbars. If the contents of a
page is larger that its size, it can be panned with the left button
of the trackball, even while the dominant hand is using the
mouse to, for example, move an object or invoke a command
from a marking menu. Getting rid of scrollbars saves valuable
space but makes it harder to tell which part of the document is
currently visible. A future version will display relative position
information on the borders of the page during the panning
operation in a non-intrusive and space-saving way.

Resizing a folder and zooming the contents of a page involves
direct bi-manual interaction (as described above). Unlike
traditional window management techniques, using two hands
makes it possible to simultaneously resize and move a folder,
or pan and zoom the contents of a page at the same time.
Clicking the mouse on the page tab or on the folder pops up a
contextual marking menu with additional commands, such as
close, duplicate, collapse and expand.
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Fig. 4: The cpn2000 interface. The index appears in the left column. The upper-left folder contains a page with the simulation layer
active. The upper-right folder contains a view of the same page, at a different scale. The lower folder contains three pages: the top
page shows a horizontal and a vertical magnetic guideline. The VCR-like controls to the left belong to the simulation floating
palette. The toolglass in the center is positioned over objects on the page and is ready to apply any of the attributes shown. To the
right, a marking menu has been popped up on a folder and is ready to accept a gesture to invoke one of the commands displayed.

3.4 Creating and Laying out Objects
Creation tools are accessible via any of the three interaction
techniques. The user may select the appropriate object from the
floating palette, move to the desired position and click, or use
the non-dominant hand to move the toolglass to the desired
position and click-through with the dominant hand, or move to
the desired location and make the appropriate gesture from the
marking menu.

Users of the current Design/CPN spend a great deal of time
creating and maintaining the layout of their Petri net diagrams.
The primary technique is a set of align commands, similar to
those found in other drawing tools. The limitation is that they
align the objects at the time the command is invoked, but do
not remember that those objects have been aligned, unless the
user groups them together into a new object. Aligning groups
creates other problems, since the elements of the group cannot
be edited further without ungrouping them, which is
cumbersome and risks disturbing the alignment. Groups are
also strictly hierarchical: an object cannot be a member of two
independent groups. This makes it impossible to, for example,
place an object both in a horizontal and vertical alignment
group. We also observed that most current users use the same
pattern to move an aligned object: They manually select all

objects aligned to the object of interest and move them as a
group. This dramatically slows down the interaction.

Many of the ideas from our early brainstorming sessions
involved trying to make layout less cumbersome. We began by
reifying the alignment command into alignment objects called
guidelines. Graphic designers often use guidelines to define the
structure of the layout and to position objects relative to this
structure.

In the current version, we use horizontal and vertical
guidelines. Guidelines are first-class objects that are created in
the same way as the elements of the Petri net model, i.e. with
tools found in a palette/toolglass or in a marking menu.
Guidelines are displayed as dashed lines (Fig. 4) and are
magnetic. Moving an object near a guideline causes the object
to snap to the guideline. Objects can be removed from a
guideline by clicking and dragging them away from the
guideline. Moving the guideline moves all the objects that are
snapped to it, thus maintaining the alignment. An object can
be snapped to both a horizontal and a vertical guideline.

We have designed, but not yet incorporated, additional types of
guidelines. For example, circular or elliptical guidelines would
make it easier to layout the cycles commonly found in Petri
nets. We also plan to support spreading or distributing objects
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over an interval within a line segment, since this is a common
layout that current users must implement by hand. Adding these
new types of guidelines may create conflicts when an object is
snapped to several guidelines. One solution is to assign
weights to the guidelines and satisfy the alignment constraints
of the guidelines with heaviest weight first. Such conflicts do
not exist in the current system because only horizontal and
vertical guidelines are available.

3.5 Editing Attributes
The tools to edit the graphical attributes of the CPN elements
are grouped in a palette/toolglass that contains three rows: a
row of color swatches, a row of lines with different thicknesses,
and a row for user-defined styles (Fig. 4). The first two rows are
fairly standard and are not described further here.

Tools in the last row correspond to the reification of groups of
graphical attributes into styles. Initially, each tool in this row
is a style picker. Applying this tool to an object copies the
object's color and thickness into the tool and transforms the
tool into a style dropper. Applying a style dropper to an object
assigns the tool's color and thickness to that object. Applying
a style dropper to the background of the page empties it and
turns it into a style picker. If this is done by mistake, the undo
command restores its previous state. In practice, style pickers
and style droppers make it very easy and efficient for users to
define the styles they use most often and apply them to objects
in the diagram.

3.6 Simulation tools
Once a CPN model has been created, the developer runs
simulations to validate it. Simulations correspond to testing
traditional programs by running them on different data sets.
The simulation of a Petri net is visual: tokens are put into
places and go from place to place according to the rules
described in the text inscriptions. CPN developers debug Petri
nets by running simulations step-by-step or in larger chunks,
similar to debugging traditional programs.

Cpn2000 displays simulation information in a simulation layer
that can be added to any page via any of the three interaction
techniques. When the simulation layer is active (Fig. 4), the
background color of the page changes, the number of tokens are
displayed as small red disks, the value of the tokens are
displayed as yellow text annotations, and enabled transitions
are displayed with a green halo. Each of these types of feedback
can be toggled by the user using the tools in the simulation
palette or toolglass.

Cpn2000 uses a VCR metaphor to control the simulation. Next
f rame  lets the user select which transition to fire. P l a y
randomly fires enabled transitions until a deadlock is reached or
the user hits the stop button. Fast-forward runs the simulation
for a maximum number of steps set by the user. Rewind resets
the net to its initial state. The Next frame command is
polymorphic: If applied to an enabled transition, it fires that
transition. If applied to a page, it fires a randomly-selected
transition within the page. If applied to a folder or to the
workspace, it fires a randomly-selected transition within the
pages of the folder or the whole model, respectively.

Our user studies showed that users are either interested in the
results of the simulation, and thus do not want to change the
underlying diagram, or they are interested in editing the
diagram and usually do not need the results of the simulation.
Therefore, in our design, a diagram cannot be edited in a page
while the simulation layer is active, which makes it easier to

adjust the location of the simulation feedback. The user can
always edit the underlying diagram in a different page with the
simulation layer turned off (Fig. 4).

4. USING THE DESIGN PRINCIPLES
Many factors have influenced our design, including
observations of users, brainstorming ideas, selection of
interaction techniques, knowledge of other systems and, of
course, the three design principles. The design principles
played two key roles. First, they helped us find a way to
combine the interaction techniques, preserving and even
increasing ease-of-use. Second, they helped generate new ideas
that solved problems or increased the power of the system. The
design principles served to define a design space that helped us
both evaluate and generate potential solutions, which in turn
helped us manage the trade-off between power and simplicity.

4.1 Grouping
The concept of a group is very powerful, resulting from the
combination of reification and polymorphism. Groups
encourage reuse, since creating a group implies that the user
plans to work with that set of objects at a later time.

Several aspects of the cpn2000 interface take advantage of the
notion of group. Folders represent groups of pages, magnetic
guidelines represent groups of objects with layout constraints
and styles represent groups of objects that share graphical
attributes.

Through polymorphism, commands applied to the group
operate on its members, with semantics that depend upon the
command. Thus, activating the simulation layer on a folder
means activating the simulation layer in each page of the
folder, while firing a transition in a folder means firing one
transition picked from among the set of enabled transitions in
the pages of the folder, rather than firing a transition in each
page. Similarly, applying a style to a guideline applies it to
each object snapped to the guideline.

Groups allow users to work at a higher level of abstraction,
which increases the power of the interface. Yet using groups is
no more complex than using individual objects, since the same
interaction methods apply to both.

4.2 Decomposition
Commands in traditional user interfaces tend to be coarse
grained. In order to keep the number of commands reasonably
low, designers often use dialog boxes to specify the ever-
increasing number of arguments for each command. For
example, specifying an alignment or editing a style usually
requires a separate dialog box to specify the characteristics of
the alignment or style.

Our approach leads to a more fine-grained set of commands, as
illustrated by our solutions for alignments and styles. Instead
of an overall align command, the user creates a guideline, then
adds objects to it. Different types of alignment correspond to
different types of guidelines, e.g., horizontal or vertical.
Similarly, different parts of objects, e.g., object centers or
sides, can be snapped to the guideline.

This decomposition of the alignment command makes it
possible to dynamically add and remove objects to the
alignment, unlike traditional align commands. New types of
alignment, such as alignment around a circle or distribution
along a line segment, can be added easily, without increasing
the complexity of the interface.
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Instead of creating styles explicitly, with a set of dedicated
commands, styles are extracted from existing objects with the
style picker tool. Applying a style to an object involves the
same interaction as changing an object's attribute. Reification
results in an increase of power through the notion of style,
while polymorphism keeps the interface simple. In addition,
fine-grained commands encourage a wider variety of patterns of
use and therefore creates more opportunities for reuse and the
opportunity to better meet the specific needs of each user.

4.3 Layers
User interface modes are often criticized in the HCI literature,
since they make interfaces harder to use and less direct. At the
same time, modes appear necessary in complex systems,
helping to structure the interface according to the different
activities of users. For example, when working with Petri nets,
users make a clear distinction between editing the net and
simulating it. Yet, in the earlier Design/CPN  tool, users
complained about having to switch explicitly between the two
modes.

In order to address these issues, we reify the notion of mode
into layers: activating a layer in a page gives the user access to
the objects and commands relevant to a specific activity. For
example, activating the simulation layer displays tokens and
enabled transitions. Magnetic guidelines and text inscriptions
are also accessible via separate layers. Users have the ability to
define for themselves the complexity or simplicity of the
visual interface, based on the number of activities they want to
engage in simultaneously. Enabling several layers makes more
objects directly accessible but may clutter the display while
enabling a single layer allows the user to focus on a single
activity. Since most activities are naturally separated through
the context of the work, users are likely to display only the
layers that are directly relevant to the problem at hand. Users
thus control for themselves the trade-off between power for
simplicity.

5. RELATED WORK
The work presented in this paper builds upon previous work in
graphical user interfaces. The Xerox Star [15] and the Apple
Lisa [23] have led to the desktop metaphor and the now-
standard WIMP interfaces. Alternative models of the workspace
have been proposed, including Rooms [12], the Information
Visualizer [5], Translucent Patches [16] and Lifestreams [9]. Our
design clearly draws from existing techniques. For example, the
index is similar to the list of files and folders found in many file
managers; Dragging pages into and out of folders resembles the
manipulation of the palette tabs in Adobe Photoshop.

A number of systems have explored the reification of concepts
into user interface objects, including ARK, the Alternate
Reality Kit [27] and Self's Morphic user interface [22].
Dropable Tools [3] and the Raisamo and Räihä's Ruler [24] also
fit into this design approach. Interaction models such as Direct
Manipulation [26], Direct Combination [11] and Instrumental
Interaction [1] have also strongly influenced this work.

Some of the interaction techniques described here have been
applied to real-world applications. Marking menus and bi-
manual zooming and resizing are used in the T3 prototype and
in Alias|Wavefront's Studiopaint [18] and a variation of
toolglasses is used in Maya [19]. Layers have been used as an
architecture model [8] and in TicTacToon [7], a professional
animation system.

6. SUMMARY AND CONCLUSIONS
This paper articulates three design principles, reification,
polymorphism  and reuse , and demonstrates how they, in
conjunction with Instrumental Interaction [1], have affected the
re-design of cpn2000, a tool for editing and simulating
Coloured Petri Nets. One of our goals was to incorporate the
latest research in interaction techniques. The design principles
led us to the insight that we did not need the concept of
selection, which in turn enabled us to combine and integrate
four interaction techniques: direct interaction, marking menus,
floating palettes, and toolglasses. These specific interaction
techniques are of particular interest because they support each
of the different patterns of use we observed during our studies of
CPN developers at work. Marking menus emphasize the object
of interest, floating palettes emphasize the command and
toolglasses permit rapid switching between objects and
commands as the focus of interest changes, such as working
around a cycle in a Petri net.

Some users in our studies found that the new interaction
techniques, marking menus and toolglasses, took a little bit of
time to get used to. But everyone was able to successfully use
all three tools after ten minutes of practice and all were more
efficient than with the previous pull-down menus. Our approach
accommodates individual preferences, allowing users to adapt
the tools to their needs rather than having to adapt to the tool.
Our preliminary experimental results show that different work
contexts change the preferred patterns of use, even when the
tasks are identical, which produces a corresponding difference
in preference for tools.

Thinking about these design principles has also led us to re-
examine a number of existing interaction features, extending or
redefining them. The resulting interface has no menu bars, title
bars or scrollbars, dramatically reducing visual complexity and
allocating the extra space to users' objects of interest.

Reification is a property of Instrumental Interaction that allows
the creation of first-class objects from a variety of concepts.
When applied systematically, reification helps us to avoid
some annoying aspects of existing interfaces, such as dialog
boxes that seize control and block interaction with the rest of
the interface until the dialog is complete. Polymorphism,
which applies a single command to objects of different types,
helps avoid the potential proliferation of commands that result
from extensive use of reification. Explicitly considering
reification and polymorphism together enables us to make
specific design choices in the former that aid in the smooth
execution of the latter.

Reuse allows us to capture patterns of use in the form of objects
and commands and apply them in different settings. Simple
reuse of reified objects and polymorphic commands directly
improves the efficiency of the interface. More complex types
of reuse provide subtle ways for users to capture and reflect upon
their own work patterns, and subsequently tailor both the tool
and their future work practices to meet the changing needs of
the work and the work context. Tailoring choices need not
involve choosing from long lists of difficult-to-interpret
system options, but can be implicit records of work practices.
As suggested in Mackay [20], reified patterns of use can be
shared, enabling newcomers to quickly adopt the work style of
the group and innovators to share their new strategies for
accomplishing work.

Throughout our design process, these principles have helped us
achieve our most basic goal, which is to provide users with
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additional power and functionality, without simultaneously
increasing the cost of use.

We have just begun the development of the next version of
cpn2000, which will provide most of the functionality of the
earlier Design/CPN tool. We will need to incorporate many
more features, which will further test our claim that these
principles make it easier to scale a prototype into a full-scale
real-world application.
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