
Event Points:
Annotating XML Documents for Remote Sharing

Olivier Beaudoux
CER-ESEO

Angers, France

olivier.beaudoux@eseo.fr

ABSTRACT
Collaboration is heavily based on sharing documents. However,
most groupware toolkits do not directly support document sharing,
but rather focus on supporting mechanisms such as remote con-
current access to shared objects. We propose the notion of event
point as a single and unified concept for defining sharing capabili-
ties of XML documents and introduce four types of event points for
real-time groupware: replication, copy, echo, and synchronization.
These event points support such collaborative features as real-time
sharing, synchronization, telepointing, localization, and echo. The
paper presents the concept of event point, its implementation in
the DoPIdom toolkit, and some sample uses in our Sovigo drawing
tool.

Categories and Subject Descriptors
H5.3 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces—Computer-supported cooperative work; I.7.2
[Document and Text Processing]: Document Preparation—desk-
top publishing, markup languages, standards.

General Terms
Design, Standardization, Languages

Keywords
Real-time groupware, XML documents, CSCW toolkit

1. INTRODUCTION
From the Xerox Star to the World Wide Web, electronic docu-

ments have become the main artifact for computer-mediated col-
laboration. However, today’s groupware toolkits do not provide
sufficient support for document sharing and exchange. They rather
focus on extending single-user interface models and on allowing
remote and concurrent access to shared objects. As a consequence,
groupware applications must provide their own document or pre-
sentation sharing model.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’05, November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011 ...$5.00.

Scene graphs were originally introduced in 3D and VR environ-
ments in order to abstract the presentation of 3D worlds in a sim-
ple and powerful way. Recent work has shown that scene graphs
are also adapted to 2D drawing and may be broadly used by Web
browsers [5]. An advantage of using scene graphs to represent doc-
uments is that they smoothly integrate with XML. Our work builds
on this approach. It uses scene graphs as the document presenta-
tion model, links abstract documents with their presentations, and
allows the documents, and thus their presentations as well, to be
remotely shared.

This paper introduces the concept of event point as a single and
easy-to-use object that provides real-time sharing capabilities for
documents and/or presentations. It presents the various possible
uses of event points, explains the key aspects of their implementa-
tion, and illustrates how presentation sharing was carried out in our
Sovigo drawing tool.

2. THE DOPIDOM MODEL
The DoPIdom model and toolkit separates interactive systems

into three levels: the Document level holds the semantic data, the
Presentation level displays representations of the document, and
the Instrument level defines how users interact with documents
through their presentations [3]. This model is expressed as a DOM
extension that includes the definition of XML active transforma-
tions (eXAcT), and an interactive component model (iDOM) that
provides the remote sharing feature presented in this paper.

Figure 1: The DoPIdom model

Figure 1 illustrates the key principles of DoPIdom. The doc-
ument (D) is an XML document which is accessed through the
DOM. The presentation (P) is another DOM document displayed
in a view. Following the MVC pattern [4], target elements of the
presentation (1) are associated with source elements of the docu-
ment (2). The active transformation [2] creates and maintains this
association at runtime (3). An iDOM interactive component defines
the behavior of the element. It is executable code that is dynam-
ically linked to the source element. A user first interacts with the

159

document by handling an instrument (I). The instrument points to a
target element of the presentation (1), and consequently to a source
element linked to an interactive component (2). When a user inter-
action occurs, the instrument produces an action on the interactive
component, then the interactive component consumes the action by
modifying the state of the source element. Finally, the active trans-
formation updates the target element of the presentation.

Our sharing model is based on event flow agents, called event
points, that listen to this production / consumption cycle and replay
it on remote elements. The production / consumption cycle defines
the following new DOM event types: begin, do, end, undo, redo,
echo, and replication. Technically, event points do not strictly de-
pend on our DoPIdom model. They only rely on the DOM Event
recommendation [7] and these new event types.

3. REPLICATION AND COPY POINTS
A replicated architecture is often considered as the best choice

for real-time collaboration [6]. This is mainly motivated by the fact
that interactive systems require a short response time.

Figure 2: Replication of actions

The replication point is an event point dedicated to the replica-
tion of actions among remote DOM elements (figure 2):

1. An instrument produces an action for the source element S1
of document D1, by targeting (in the sense defined by DOM
Events [7]) the action event a on S1. The iDOM component
C1 linked to S1 consumes the action by modifying S1.

2. The replication point R1 is linked to the element E1 of D1,
such that E1 contains S1. It is uniquely identified by its IP
address and communication ports.

3. It listens to the begin, do, end, undo, or redo events that are
targeted to E1 or its descendant elements. This listening uses
the bubbling mechanism of DOM Events [7].

4. When R1 detects the action event a, it clones a into a’ and
encapsulates a’ in a replication event a”. The event a” con-
tains the action and the relative path p from E1 to S1.

5. The replication event a” is sent over the network to all re-
mote replication points R2...n paired with R1.

6. In turn, when a replication point Rk receives a”, it extracts
event a’ and targets it to Sk. The target element Sk is com-
puted by extracting the path p from a”, then by finding Sk
that matches p relatively to Ek.

7. The interactive component Ck linked to Sk finally consumes
the action by modifying Sk.

Another way to achieve replication consists in replicating each state
changes of shared elements by listening to mutation events (in the
sense defined by DOM Events [7]). The copy point achieves this
type of replication by directly modifying the shared element ac-
cording to the listened mutation events rather than by replaying ac-
tions. Note that since remote sharing features, such as echo, require

the replication of actions, copy points cannot be used for sharing
documents. However, they can be used to implement awareness
techniques at the presentation level.

4. APPLICATION TO REMOTE SHARING

4.1 Real-time sharing
We have developed the Sovigo SVG drawing tool in order to ex-

periment the use of iDOM interactive components and event points.
Sovigo’s workspace was created using the Inkscape1 native SVG
drawing tools. It is a single SVG document where event points
were statically defined2.

Figure 3: Window content sharing in Sovigo

The real-time sharing of elements is carried out by replication
points that implement basic concurrency control algorithms using
logical clock and undo-redo [6]. Figure 3 (left side) displays the
shared content of the Sovigo’s sharing window, which is defined
using Inkscape as follows:

<g id=’sharing-window’> ...
<g id=’window-shared-content’>

<dpi:event-point class= ’ReplicationPoint’>
<dpi:integer value=’4000’/>
<dpi:integer value=’4001’/>
<dpi:string value=’192.168.10.85 192.168.10.118’/ >

</dpi:event-point> ...
</g>

</g>

The replication point is defined with the <dpi:event-point> element as
an instance of the ReplicationPoint class, with three parameters: the
two port numbers used by the replication point, followed by a list
of the group members’ IP addresses3. The first group (<g>) defines
the sharing window while the second defines its shared content.
By linking the replication point to the second group, the window
content becomes shared.

4.2 Echo
The echo technique relaxes the strong temporal coupling of real-

time sharing by summarizing all intermediate steps of a long action
into a single echo action, which typically consists of an animation
[1]. For example, rather than replicating all intermediate transla-
tions when moving an object, an animated and straight translation
can be played on remote elements (figure 3, right). The echo point,
used in conjunction with a replication point, enables the echo tech-
nique. The following excerpt illustrates the use of an echo point
within the sharing window:

1http://www.inkscape.org
2However, DoPIdom allows the dynamic insertion of event points.
3This paper does not address how the addresses are collected.

160

<g id=’sharing-window>
<dpi:event-point class=’EchoPoint’/>
<g id=’window-shared-content’>

<dpi:event-point class=’ReplicationPoint’> ...
</dpi:event-point> ...

</g>
</g>

The echo point listens to replication events that are sent by the
replication point. Whenever a replication event is received, the ac-
tion event is extracted from it. If this event is a begin or do action
event, the event is saved in a buffer, then is captured (in the sense
defined by DOM Events [7]) so the action does not propagate to its
target element. If the event is an end action event, all previously
saved events are sent to the target element through one echo action
event that encapsulates the saved events. The component linked to
this target element consumes the echo action event by providing its
echo effect.

4.3 Synchronization
The synchronization point alters the synchronization of replica-

tion points: synchronization is only performed on demand, so that
a user may work temporally in a private context. The following ex-
cerpt illustrates how a synchronization point can be defined within
the sharing window:

<g id=’sharing-window>
...
<g id=’window-shared-content’>

<dpi:event-point class=’ReplicationPoint’> ...
</dpi:event-point>
<dpi:event-point class=’SynchronizationPoint’/>
...

</g>
</g>

The synchronization point listens to all action events. Whenever
a begin, do, end, undo, or redo action event is received, the event
is saved into a buffer that stores local actions. The event propaga-
tion is then stopped so that the event is not received by any other
replication point: the related action thus remains local. Whenever a
replication event is received, the event is saved into a second buffer
that stores remote actions, and is captured so that remote actions are
not consumed. Finally, when the user requests a synchronization,
the events saved in both the local and remote action buffers are sent
to their matching target so that they can consume the actions.

4.4 Awareness techniques
Awareness techniques such as localization [1] and telepointing

are fundamental in groupware environments. Figure 3 shows a
possible use of localization in the sharing window. Both remote
users access the shared contents through their own sharing win-
dow. Since their sizes and scrolling locations differ, the first user
may not be aware that the second user is also working on the same
shared content. The localization technique provides rectangles that
locally reflect the area viewed by remote users. The following ex-
cerpt illustrates how a copy point can handle localization rectangles
(here, a red one and a blue one):

<g id=’sharing-window’>
<dpi:component class=’SharingWindow’>

<dpi:node path=”g/g/rect[@stroke=’blue’]”/> ...
</dpi:component>
...
<g id=’window-shared-content’>

<dpi:event-point class=’ReplicationPoint’> ...
</dpi:event-point>
<g id=’localization-rectangles’>

<dpi:event-point class=’CopyPoint’>
<dpi:integer value=’4002’/>

<dpi:integer value=’4003’/>
<dpi:string value=’192.168.10.85 192.168.10.118’/ >

</dpi:event-point>
<rect stroke=’blue’ x=’...’ y=’...’ width=’...’ height=’...’/>
<rect stroke=’red’ x=’...’ y=’...’ width=’...’ height=’...’/>

</g> ...
</g>

</g>

The SharingWindow component maintains a link with its blue local-
ization rectangle, which is specified by the XPath expression pro-
vided by the <dpi:node> element. This component can thus adjust
the x, y, width and height attributes of its localization rectangle
whenever the component is resized or scrolled. Since the localiza-
tion rectangles of remote sharing windows are all located within
the copy point, all their attribute changes are remotely copied.

Telepointing is an other awareness technique used to remotely
point at objects in a shared workspace. Telepointers can also be
provided through copy points that replicate the location of remote
cursors, in a way similar to the localization rectangles.

5. CONCLUSION
This paper presented the concept of event point as a single ob-

ject dedicated to real-time collaboration, including features such as
echo, synchronization, localization, and telepointing. We have im-
plemented event points in the DoPIdom toolkit, and experimented
their uses in the Sovigo drawing tool. Since predefined event points
can be used directly in XML or DOM documents, flexible sharing
is easy to achieve. For example, the original version of Sovigo,
which did not provide any groupware feature, required only a few
changes to turn it into a groupware tool. In addition, event points
can be used independently of DoPIdom provided that the appli-
cation uses DOM documents and handles the required new DOM
event types.

The perspectives of this work follow two directions. We first
plan to explore other uses of event points for groupware and for
the Web, such as session management, and extend Sovigo so that it
becomes a real groupware authoring tool. The second direction is
to develop environments centered on XML documents by using the
DoPIdom model and toolkit. This will lead to an extension of the
DOM recommendation for supporting interaction and collaboration
on XML documents.

6. REFERENCES
[1] M. Beaudouin-Lafon and A. Karsenty. Transparency and

awareness in a real-time groupware system. In Proc. of
UIST’92, pages 171–180. ACM Press, 1992.

[2] O. Beaudoux. XML active transformation (eXAcT):
Transforming documents within interactive systems. In Proc.
of DocEng’05, page [in press]. ACM Press, 2005.

[3] O. Beaudoux and M. Beaudouin-Lafon. DPI: A conceptual
model based on documents and interaction instruments. In
Proc. of IHM-HCI’01, pages 247–263. Springer Verlag, 2001.

[4] G. E. Krasner and S. T. Pope. A cookbook for using the
Model-View-Controller user interface paradigm in
Smalltalk-80. Journal of OOP, pages 26–49, 1988.

[5] J. C. Mong and D. F. Brailsford. Using SVG as the rendering
model for structured and graphically complex Web material.
In Proc. of DocEng’03, pages 88–91. ACM Press, 2003.

[6] A. Prakash. Group editors. In M. Beaudouin-Lafon, editor,
Computer Supported Cooperative Work, volume 7 of Trends
in Software Series, pages 103–133. John Wiley & Sons, 1999.

[7] W3C. Document Object Model level 3 events specification.
Normative recommendation, W3C, 2003.

161

