
XML Active Transformation (eXAcT):
Transforming Documents within Interactive Systems

Olivier Beaudoux
CER-ESEO

Angers, France

olivier.beaudoux@eseo.fr

ABSTRACT
Stylesheets and batch transformations are the most widely used
techniques to transform “abstract” documents into target presen-
tation documents. Despite the recent introduction of incremen-
tal transformations, several important features required by interac-
tive systems are yet to be addressed, such as multiple sources (e.g.
preferences and resources), multiple targets (e.g. multiple views),
source-to-target linking (e.g. interacting with the source via the tar-
get), and bidirectional linking (e.g. interacting directly with the tar-
get). This paper proposes the use of XML Active Transformations
(eXAcT) in order to fulfil these requirements. The eXAcT spec-
ification is based on the definition of two new DOM node types,
active fragment and anchor, and on a transformation process in-
spired from XSLT. Our jaXAT implementation toolkit allows the
active transformation of any DOM document into (but not limited
to) SVG presentations.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
User interfaces; I.7 [Document and Text Processing]: Document
Preparation—Markup languages, Standards

General Terms
Design, Languages

Keywords
Active transformations, XML, authoring tools, SVG, GUI

1. INTRODUCTION
XML technologies, such as CSS, XSL, SVG and namespaces,

provide a wealth of capabilities for structured documents and au-
thoring tools. However, traditional methods for editing compound
documents are not sufficient to reap the benefits from these tech-
nologies [4]. An important challenge is to extend the process of
transforming documents into presentation documents within inter-
active systems, as exemplified by recent incremental extensions to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’05, November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011 ...$5.00.

XSLT [3, 5]. However, other features required by interactive sys-
tems, such as multi-source and multi-target transformation, source-
to-target linking, and bidirectional linking, are yet to be addressed.
We propose the use of XML active transformation (eXAcT) in order
to fulfil these requirements. eXAcT is defined as a DOM extension
that specifies how source DOM documents can be transformed into
target DOM documents. The jaXAT toolkit was developed in or-
der to implement and test the eXAcT transformation process: the
sources can be any DOM documents, the targets can be (e.g. SVG
documents) and the transformation rules are defined as Java classes.
The jaXAT toolkit1 was initially developed in order to implement
the document-presentation link of a more general model [1] that
can be seen as an application of the MVC design pattern [2] to
XML documents.

This paper presents eXAcT through a concrete example by ad-
dressing each feature of eXAcT (section 2), explaining the pro-
posed active fragment and anchor node types (section 3), and illus-
trating rule programming (section 4).

2. XML ACTIVE TRANSFORMATIONS
An XML active transformation defines how source DOM doc-

uments can be transformed into target DOM documents and has
the following features: incremental transformation, multi-sources,
multi-targets, target-to-source linking, and bidirectionality. The
eXAcT approach differs from incremental versions of XSLT [3,
5] in three ways. Firstly, the transformation process is based on ob-
serving the source and updating the target when needed by invoking
rule methods. In the case of a bidirectional transformation, the pro-
cess also observes the target document and updates the source by
invoking inverse rule methods. Secondly, eXAcT specification is a
DOM extension (it uses the IDL specification language) which can
be implemented by using various object programming languages.
Finally, fragments instantiated by transformations are created by
using external tools adapted to their format (e.g. a drawing tool for
SVG fragments).

Figure 1 illustrates a typical use of eXAcT. The eXAcT process
transforms DOM source documents (1) into a DOM target docu-
ment (e.g. a SVG document) (3). Multiple eXAcT transformations
can provide multiple views of a common source. A transformation
also refers to resource documents for the definition of fragments
and symbols it instantiates (2). The source differs from the resource
by its incremental capability: eXAcT updates the target only when
the source changes. Views (4) display targets and allow user inter-
action. Since eXAcT operates on DOM nodes, reverse links from
target nodes to source nodes can be easily provided (5). This allows
the selection of source nodes from the target views, so that users can

1http://www.eseo.fr/~obeaudoux/jaxat

146

Figure 1: XML Active Transformations

interact with the source document. In addition, this allows the im-
plementation of generic unidirectional and bidirectional rules that
can be used in many contexts, thus reducing the rule coding effort.

We developed the jaXAT toolkit that provides a full implemen-
tation of the eXAcT specification in Java. The implementation is
based on Apache libraries2: Xerces + Xalan (DOM), and Batik
(SVG). It also provides a faster viewing through our Simple Scene-
Graph (SSG) implementation. We are currently working on an
HTML and an X3D viewer.

3. DESIGNING ACTIVE FRAGMENTS
In order to explain eXAcT, we will use a simple example. The

main document source, called dirTree, represents a local directory
tree as follows:

<dir> <name>root dir</name>
<dir id=’dir1’> <name>dir 1</name>

<dir id=’dir2’> <name>dir 2</name>
<file> <name>file A</name> </file>
<file> <name>file B</name> </file>

</dir>
<file> <name>file C</name> </file>
<file> <name>file D</name> </file>

</dir>
<dir id=’dir3’> <name>dir 3</ name> </dir>
<file> <name>file E</name> </file>

</dir>

The eXAcT process consists of transforming this tree into an SVG
view (see figure 2). Users can expand or collapse <dir> elements of
the dirTree document through this view. A second source document,
called dirState, contains the expanded/collapsed information of <dir>

elements within the state attributes, as follows:

<dir ref=’dir1’ state=’expanded’/ >
<dir ref=’dir2’ state=’collapsed’/ >
<dir ref=’dir3’ state=’collapsed’/ >

The transformation is based on the combination of active frag-
ments and anchors (figure 2). The directory-frame active fragment
is first inserted as the root fragment of the target. It defines both
the graphical representation of the frame and two anchors. The
name anchor defines the location of the text that will display the
name of the viewed directory (here “root dir”), while the contents

anchor defines the location of the directory contents. For each an-
chor, eXAcT defines a context source node, an XPath expression,
a rule, and an optional reverse rule. For example, the name anchor
of the directory-frame fragment is managed by a GenericRule instance,
with a dir/name/text() XPath applied to the root of the dirTree docu-
ment. When the anchor is initially created, or each time the context

2http://xml.apache.org

Figure 2: Active fragment design

source node changes, the eXAcT process applies its XPath expres-
sion to the context source node. The rule instance is then called
on each node that matches the XPath. In the case of the name an-
chor, the GenericRule creates a child active fragment (see section 4)
containing a text node that holds the name of the root directory
(“root dir”). The DirectoryRule instance, associated with he contents

anchor, creates a directory-panel active fragment that defines two an-
chors holding a representation of the sub-directories and the files.
The sub-directories anchor manages the insertion of two children
sub-directory-symbols representing “dir 1” and “dir 2”. Respectively,
the files anchor manages one child file-symbol representing “file E”.
The transformation process then continues recursively. The second
dirState document comes into play at the ExpanderRule and Expand-

ContentsRule level: the state XPath expression is applied within the
dirState document (see section 4). The combination of active frag-
ments and anchors allows the definition of active transformations
through a recursive process in a way inspired from XSLT. How-
ever, the main difference is that generated fragments are located
within the DOM target tree, thus allowing their management by the
associated anchors. The third document, called svgRes, holds the
definition of these active fragments. They have been drawn using
Inkscape3 as <g> group elements. For example, the directory-frame

fragment is defined as follows:

<g id=’directory-frame’>
<g> <!– title bar –>

<rect fill=”gray” .../>
<text ...>

<xat:anchor name=’name’/>Dir name<xat:anchor/>
</text>

</g>
<g ...> <!– contents –>

<xat:anchor name=’contents’/><xat:anchor/>
</g>

</g>

The title bar is a group element (<g>) containing a gray rectan-
gle followed by a text. The text holds the name anchor (accessi-
ble through the xat prefix), and the next group element defines the
location of the directory contents.
3http://www.inkscape.org

147

4. PROGRAMMING RULES
The transformation is initiated by the following Java code:

dirTree = getDOMImpl().loadDocument(”dirTree.xml”);
dirState = getDOMImpl().loadDocument(”dirState.xml”);
svgRes = getSVGImpl().loadDocument(”svgRes.svg”);
target = getSVGImpl().createDocument();
root = target.createActiveFragment(dirTree,

svgRes, ”directory-frame”);
root.getAnchor(”name”).activate(dirTree, ”dir/name/text()”

new GenericRule(), new GenericInverseRule());
root.getAnchor(”contents”).activate(dirTree, ”dir”,

new DirectoryRule());
target.appendChild(root);
canvas = getSVGImpl().createCanvasView(target);
canvas.addInteractor(new ExpandInteractor());

The dirTree, dirState, and svgRes documents are loaded, and the target

is then created as an empty SVG document. Its root active frag-
ment is created from the directory-frame symbol of svgRes. Its name

and contents anchors are then retrieved and activated. The activa-
tion process consists in calling the anchor rule whenever needed, as
explained in the previous section. The active fragment is appended
to the target, and a canvas view is then created in order to display
the target document. A user can interact with the view by using
the ExpanderInteractor instance that expands or collapses any clicked
directory. Each rule (and inverse rule) is defined by implementing
the eXAcT Rule (respectively InverseRule) interface. For example,
the contents anchor of the root active fragment is handled by the ele-

mentInserted method of the DirectoryRule class, as follows:

public void elementInserted(Anchor anchor, Element dir) {
ActiveFragment f = target.createActiveFragment(

dir, svgRes, ”directory”);
f.getAnchor(”sub-directories”).activate(dir, ”dir”,

new SubDirectoryRule());
f.getAnchor(”files”).activate(dir, ”file”, new FileRule());
anchor.appendChild(f);

}

The anchor argument represents the “calling” anchor that requires
updating its child fragments as soon as the dir element is inserted
into the dirTree source document. The active fragment f is created
from the directory SVG symbol. It activates both anchors named
sub-directories and files (see figure 2), then is appended to the calling
anchor. Each rule coding follows a similar scheme: creating active
fragments, activating their anchors, then appending fragments to
the calling anchor. Moreover, the same xxxInserted method is used
for both the initial construction of the target and its subsequent up-
dating. Rather than implementing the Rule interface, eXAcT trans-
formations usually extend or directly use the GenericRule class that
provides useful generic features. For example, the name anchor
of the directory-frame fragment is managed by the generic rule. It
performs a “copy text” operation from the source text node to the
target text node, so they always remain equal. Moreover, Generi-

cRule provides an implementation of the “remove node” operation
by implementing the xxxRemoved methods. It consists in removing
an active fragment whenever the source node that created it has
been removed. The following code excerpt illustrates the Generi-

cRule implementation:

// generic “copy text”
public void textInserted(Anchor anchor, Text t) {

Document d = anchor.getOwnerDocument();
Node f = d.createActiveFragment(t, t.getNodeValue());
anchor.appendChild(f);

}
public void textChanged(Anchor anchor, Text t) {

Node f = anchor.getChildFragments().item(0);
f.getChildNodes().item(0).setNodeValue(t.getValue());

}

// generic element removal
public void elementRemoved(Anchor anchor, Element e) {

// search for the fragment linked to source e
NodeList children = anchor.getChildFragments();
for (int n = 0; n < children.getLength(); n++) {

ActiveFragment f = (ActiveFragment) children.item(n);
// and remove it from the anchor

if (f.getSourceNode() == element)
anchor.removeChild(f);

}
}

For example, SubDirectoryRule (see below) and FileRule inherit from
GenericRule and refine it by only updating the SVG location of each
node. Generic behaviors are also provided by the GenericInverseRule.
It defines inverse “copy text” and “remove node” operations (not
detailed here). The dirState document enters into action within the
SubDirectoryRule rule that creates a new branch, with dirState docu-
ment as context nodes, as follows:

public void elementInserted(Anchor a, Element dir) {
String id = dir.getAttribute("id");
Node refDir = dirState.getNodeByPath("// dir[@ref=’" + id + "’]");
ActiveFragment f = targetDoc.createActiveFragment(dir,

svgRes, "sub-directory-symbol");
f.getAnchor("sub-directory- expander").activate(refDir,

"@state", new ExpanderRule());
f.getAnchor("sub-directory- name").activate(dir,

"name/ text()", new GenericRule());
f.getAnchor("sub-directory- contents").activate(refDir,

"@state", new ExpandContentsRule());
a.appendChild(f);
updateLocations();

}

5. CONCLUSION
This paper proposes the use of XML Active Transformation (eX-

AcT) as a transformation process adapted to interactive systems.
The transformation model is defined as a DOM extension that com-
bines active fragment and anchor nodes in a recursive process in-
spired from XSLT. eXAcT offers mechanisms for incremental trans-
formation, multi-source and multi-target documents, target-to-source
linking, and bidirectional linking. Moreover, the proposed jaXAT
implementation toolkit allows the use of dedicated tools (e.g. a
SVG drawing tool) for designing active fragments, and the use of
an object programming language (Java) for coding rules and for de-
bugging. The next steps consist in using a faster XPath processor
(e.g. Jaxen), and in comparing the effectiveness and ease-of-use of
eXAcT with incremental XSLT. eXAcT and the jaXAT toolkit are a
subset of a general project [1] that aims at defining new foundations
for Web document interaction.

6. REFERENCES
[1] O. Beaudoux and M. Beaudouin-Lafon. DPI: A conceptual

model based on documents and interaction instruments. In
Proc. of IHM-HCI’01, pages 247–263. Springer Verlag, 2001.

[2] G. E. Krasner and S. T. Pope. A cookbook for using the
Model-View-Controller user interface paradigm in
Smalltalk-80. Journal of OOP, pages 26–49, 1988.

[3] M. Onizuka, F. Y. Chan, R. Michigami, and T. Honishi.
Incremental maintenance for materialized XPath/XSLT views.
In Proc. of WWW’05, pages 671–681. ACM Press, 2005.

[4] V. Quint and I. Vatton. Techniques for authoring complex
XML documents. In Proc. of DocEng’04, pages 115–123.
ACM Press, 2004.

[5] L. Villard and N. Layaïda. An incremental XSLT
transformation processor for XML document manipulation. In
Proc. of WWW’02, pages 474–485. ACM Press, 2002.

148

