DPI: A Conceptual Model Based on
Documents and Interaction Instruments

Olivier Beaudoux' & Michel Beaudouin-Lafon*

¥ Département Génie Informatique, Réseaux et Télécoms, Ecole
Supérieure d’Electronique de I’Ouest, 4 rue Merlet de la
Boulaye, 49009 Angers, France

Tel: +33 241866767
Fax: +33241879927

Email: olivier.beaudoux@eseo fr
URL: http://www.lri fr/~beaudoux

T Laboratoire de Recherche en Informatique, Université
Paris-Sud, Badtiment 490 - 91405 Orsay, France

Tel: +331691569 10

Fax: +33 169 1565 86
Email: mbl@Iri fr

URL: http://www.lri fr/~mbl

The DPI model (Documents, Presentations, Instruments) offers an
alternative to current application-centered environments by introducing
a conceptual model based on documents and interaction instruments.
DPI makes it possible to edit a document through multiple simultaneous
presentations. The same instrument can edit different types of content,
facilitating interaction and reducing the user’s cognitive load. DPI
includes a functional model, aimed at the user interface designer, that
describes implementation principles in terms of properties, services
and representations. The DPI model offers a first but essential stage
in designing and implementing a new generation of document-centered
environments based on a new interaction paradigm.

Keywords: conceptual model, document-centered interaction, instrumental
interaction, compound document, interactive workspace, desktop
environment, metaphor, action, perception.

1 Introduction

Most current desktop environments are based on applications, each dedicated to
handling a particular type of data, such as text, image or vector-based drawing.
Windows were introduced to facilitate switching among applications and techniques
such as copy-paste were created to enable the transfer of contents from one
application to another. Unfortunately, many tasks require multiple applications. A
user may be forced to juggle four or five applications in order to create a single
web page or technical document. Software vendors use three strategies to reduce the
resulting complexity and higher cognitive load.

The first creates “mini-applications” within a larger application. For example,
Microsoft Office has three applications (Word, PowerPoint and Excel) that each
include functions for vector-based drawing. Not only do these offer significantly
fewer functions than a full-scale vector-drawing application, which is still needed
for complex drawings, but the user interfaces are somewhat different and the data
formats are incompatible. This approaches duplicates functionality without solving
the problem.

Open architectures offer another approach, allowing third parties to develop
and market extensions called plug-ins. For example, Adobe Photoshop (Gray, 1997)
offers a wide variety of plug-ins to edit images, including creation of vector-based
drawings and simple 3D models. Other image-editing applications are compatible
with Adobe Photoshop’s plug-ins so software vendors who develop Photoshop plug-
ins have a larger market. The market of plug-ins for QuarkXPress (page layout) and
Macromedia Director (multimedia authoring) is also very active, and some plug-
ins are more expensive than the parent application. Users install plug-ins to extend
and specialise applications according to their needs, and can use the same plug-in
in different applications. However, the user interfaces of plug-ins are often poorly
integrated into the parent application and are accessible only through bulky dialog
boxes.

The third approach explicitly produces multiple applications with compatible
user interfaces. The best example is the Adobe suite: Photoshop (image edition),
Hlustrator (drawing), GoLive (Web site design) and InDesign (page layout) have the
same visual presentation of the interface and similar tool palettes. All support layered
documents, and layers created in one application can be imported into another
application. Sometimes the link can be “live”: the imported layer is automatically
updated when it is edited in its original application. However, this approach does not
relieve users from dealing with multiple documents for a single task: For a live link
to work, the document holding the imported layer must be kept on disk. In addition,
applications that do not belong to the suite cannot take advantage of the integration
of functions within the suite.

The goal of all these approaches is to put the document, rather than the
application, at the center of the interaction. Unfortunately they all fail because

Interactive workspace <———

User
ontology

Conceptual model
|

Functional model
Designer |

ontology
UI toolkit %’

Figure 1: The two levels of the DPI model.

DPI model

users must still juggle multiple applications and/or multiple documents for a single
task. They try to make applications less visible by blurring the boundaries between
applications, but the underlying logic is still application-centric. Historically, the
Xerox Star (Johnson et al., 1989) was the first major system to adopt a document-
centered approach. More recently, frameworks such as OpenDoc (Apple, 1994)
and OLE (Brockschmidt, 1995) have made applications less visible by supporting
compound documents: a document is not managed by an application dedicated to its
type, but each of its parts is handled by a specialised application or part editor. These
approaches do not discard applications but make them less visible. For example,
when a part of a document is clicked, menu bars and tool palettes are reconfigured to
allow editing its content. This is similar to switching between applications. The main
advantage is the in-place editing that saves copy-pasting between applications. But
the transition from one document part to the next creates a break in the interaction
since each part manages its own interface: there is no sharing of tools among part
editors.

In summary, even though systems are becoming more document-centric, the
user interfaces are still application-centric. The goal of this paper is to explore
the problem of document-centered interaction. We propose the Documents—
Presentations—Interactions (DPI) model, a conceptual model that separates document
contents from document interaction.

The DPI model combines a document model compatible with XML (W3C,
2000a) and an interaction model based on instrumental interaction (Beaudouin-
Lafon, 1997). We present two levels of the DPI model: the conceptual model that
matches a user ontology, and the functional model that matches a designer ontology
(Figure 1). A concrete implementation of the DPI model must define an interface
model that matches the conceptual model and a software architecture that supports
the functional model. Our longer term goal is to create a toolkit for building a new
generation of document-centered environments.

The next two sections describe the conceptual and functional models,
respectively. We then compare DPI with related work and conclude with a discussion
of future work.

"Pen" instrument \} ;/ "CD player" instrument

physical part

logical part

[AudioCD

player

"Paper" document D @ "Audio-CD" document

Figure 2: Instrument description

2 Conceptual Model

In a user ontology* the concepts of document and instrument are natural: the
document is a data repository and the instrument is a means for creating and
modifying documents. Therefore the DPI model is based on the document metaphor
and the instrument metaphor.

2.1 The Instrument Metaphor

In daily life, we often use tools or instruments to operate on physical objects. For
example, we use a pen to write on a sheet of paper. This observation forms the basis
of the instrumental interaction model (Beaudouin-Lafon, 1997; Beaudouin-Lafon,
2000). According to this model, an instrument mediates between a user and rarget
object (or object of interest).

An instrument has two facets: physical and logical. The physical facet exists
outside the system. It includes input-output transducers used by the instrument. Input
transducers capture the physical actions of the user and output transducers provide
feedback information. The logical facet exists inside the system and its state is made
perceivable outside the system. It includes methods for transforming user actions
onto the logical instrument (input), and the representation of the instrument itself
(output).

Instruments can be more or less direct. For example, using a pen to write on
paper is more direct than using a CD player to play a CD. A similar indirection occurs
when the pen or the CD player is simulated by an interactive system and is operated
with a mouse (Figure 2).

*The term ontology here means a description of the concepts and relationships that are meaningful to
a subject (in our case, the users and designers of interactive systems).

Most instruments modify existing objects. However instruments can also be
used to change the perception of an object, as with magnifying glasses (Perlin &
Fox, 1993) and Magic Lenses (Bier et al., 1993). Such instruments create alternate
presentations of documents (see next section). In general, these instruments are
direct but the manipulation affects the way the instrument operates rather than the
target object.

Interaction instruments can be organised into three categories:

o Direct instruments: The users acts directly on the document. For example,
clicking the mouse on an object and moving the hand moves the object. The
action of the hand on the instrument and its effect on the target object are
perceived as similar.

o [ndirect instruments: The user acts directly on the instrument but indirectly on
the document. For example, entering a number in a dialog box changes the
font size of the selected text. The action of the hand on the instrument and its
effect on the target object are perceived as related but different.

e Perception instruments: The user acts directly on the instrument but not on the
document. For example, moving the thumb of a scrollbar changes the part of
the document that is being viewed. The action of the hand on the instrument
affects the presentation of the target object, not its contents.

2.2 The Document Metaphor

In the physical world, documents such as books have two facets:

e Persistence: the document provides on-going support for its contents, e.g. the
paper absorbs the ink. When writing on a document, the user perceives the
persistent result of his actions. When reading a document, the user perceives
what has been made persistent and then interprets it.

e Presentation: the document has a concrete appearance. The appearance is
intrinsic to the document: a document has a single presentation which is a
direct result of the persistent information it contains.

Persistence and presentation are naturally coupled in physical documents.
However they are decoupled in electronic documents. The file system manages
persistence, and output devices, such as screens, manage presentation. This
decoupling is evident when a document that appears on the screen must be explicitly
saved onto a persistent storage medium.

An advantage of this decoupling is the ability to view several presentations of
a document at the same time, e.g. an outline or page layout presentation of a text
document, or a visual or audio presentation of a musical partition. While this is
useful from the user’s perspective, it breaks the physical document metaphor. In the
user ontology, we want to hide the decoupling between document and presentation
as much as possible.

2.3 Multiple Presentations Abstraction

If each document had only one presentation, the notion of presentation would be
unnecessary in a user ontology. However, the advantages of multiple presentations
are well-known (see the Zelig system, Celentano et al. (1992), for an example). So
our goal is to follow the physical document metaphor while supporting multiple
presentations: from the users’ point of view, any presentation of the document should
be the document itself.

We could introduce multiple presentations by using the cameras and monitors
metaphor from X7y (Beaudouin-Lafon et al., 1990): a document is filmed by
one or more cameras and can be visualised by the equivalent of video monitors.
This metaphor is easy to understand. Users may edit a document with its
natural presentation, and visualise it through alternate presentations provided by
the monitors. This approach preserves the initial document metaphor, but goes
against the principle of direct manipulation (Shneiderman, 1983) since the alternate
presentations are passive.

The DPI model extends this metaphor by making alternate presentations active,
i.e. the document can be edited through any presentation. This introduces a
fundamental requirement: editing results must be synchronous across presentations.
This ensures that the abstract idea of multiple presentations becomes concrete to
users. They observe that multiple presentations are updated synchronously and are
therefore the same document.

Multiple editable presentations also open the way to shared editing, i.e.
supporting simultaneous editing of the same document by multiple users from their
respective workstations. This groupware extension to DPI is beyond the scope of this
article.

24 Compatibility between Model Components

The DPI conceptual model describes how users manage documents by using
instruments on their presentations and how they perceive the results of their actions.
Based on Norman'’s action theory (Norman & Draper, 1986), the diagram in Figure 3
presents the model as an action and perception flow diagram with three levels: user,
instrument and document.

o The user level states that users specify their intentions through actions and
interpret the results using their senses.

o The instrument level describes how instruments transform user actions.
Instruments support three main functions: navigation, perception and editing.
Navigation can be carried out by an indirect instrument such as a search
instrument, by a direct instrument such as a scrollbar or by a perception
instrument such as a radar view. Editing can be carried out by an indirect
instrument such as a spell checker or by a direct instrument such as a pen.
Perception is carried out either directly by the natural document presentation,
or indirectly by perception instruments that provide alternate presentations,
such as a magnifying glass.

User level

|
H I
Action (motor system) ‘ Perception (sensory system) !

I
intention interpretation
i

Instrument level

i
I
i
! editing or navigation editing or navigation navigation perception
|
I
I
! |
|
! Indirect instrument Direct instrument Perception instrument .
I
I
! |
. Alternate !
! presentation |
|
|
,,, I
Documentlevel | ______________{] .

Figure 3: DPI conceptual model as an action-perception diagram. Thick lines represent
the action flow and thin lines represent the perception flow. For clarity, the perception of
instruments is omitted.

e The document level reveals the double role of documents: persistence of user
actions and presentation of contents.

According to the ecological theory of perception (Gibson, 1979), action and
perception are strongly coupled: the user must perceive before acting, e.g. by
locating an object before selecting it, and must act in order to perceive, e.g. by
navigating through a document in order to locate an object. This is supported in DPI
by the three functions of instruments, editing, navigation and perception. However
an effective coupling between action and perception requires additional compatibility
rules among the three levels of the model:

1. User <> instrument compatibility: interaction with an instrument should match
its function. For example, a brush-like instrument should be used to change
an object’s color. This relates to the concept of affordance (Gibson, 1977):
instruments must express their functions in a directly-perceivable way.

2. Instrument ¢ document compatibility: an instrument works with specific
types of documents. For example, a pen is adapted to a sheet of paper because
paper can receive ink. This compatibility defines the possible interactions
between instruments and documents.

3. Document <+ user compatibility: the natural presentation of a document
should be suited to our senses. For example, a sheet of paper is compatible
with visual perception, while a Braille display is compatible with tactile (and
possibly visual) perception.

User

document
action perception

instrument navigation
Instrument U perception action

Presentations

r

elected
representations

Representation
X repository

compatible
producer service

Y a

compatible
representations

non compatible
producer service

Service
repository

e

compatible
consumer service

non compatible
consumer services

Xy X
XX

= Document

—

Property repository

Figure 4: DPI functional model. Thick lines represent a sample instrument to presentation
interaction path. Thin lines represent other possible interaction paths.

We take compatibility in physical documents for granted; we are not aware of
compatibility per se but rather the lack of it. The goal of the DPI conceptual model is
to generate a comparable set of possible combinations among electronic documents,
instruments and presentations. By separating instruments from documents, the
DPI model supports instruments that can act on documents of different types,
increasing the number of possible combinations. These combinations should
simplify interaction and reduce the users’ cognitive load while offering a rich set
of functions. For example, the same instrument could be used to change the color of
a title in a text document and the color of an arrow in a drawing. Current desktop
environments do not support these kinds of facilities.

3 Functional Model

The functional model transcribes the conceptual model for the interface designer. We
express it in a designer ontology by reifying the conceptual model’s relationships into
primitives (Figure 4), described in sections Sections 3.1-3.3. We then combine these
into documents and presentations (Section 3.4) as well as devices and instruments
(Section 3.5).

3.1 Persistence Primitive: The Property

A document and its presentations are defined by their properties. A property
definition is a pair (name, type) and a property value is a pair (name, value). A
property can be atomic (it defines a single value), composite (it defines a value
composed of a predefined set of properties), or a ser (it defines a value composed
of an arbitrary set of properties).

Name-value associations are defined in documents and form their states. Name-
type associations define the properties’ schema. Document properties are visualised
through presentations and edited using instruments. Some properties cannot be
edited, such as a document’s creation date. This information, i.e. that it cannot be
edited, is stored in the schema.

The properties in the DPI document model provide fine-grained access to the
contents of a document. Interaction instruments can act on specific properties,
independently of document types. Moreover, the document format is open and
extensible because the properties’ schemas are available and extensible. For
example, the document format could be based on XML (W3C, 2000a) and the
property schemas on DTDs or XML schemas. In contrast, OpenDoc or OLE provide
coarse-grained access at the level of parts’, and parts are stored in a proprietary
format.

3.2 Action Primitive: The Service

All objects involved in the interaction process are connected through services.
A service is the means by which user actions are transmitted along the action-
perception chain. Producer services can activate consumer services in a chain from
input devices to document properties via instruments. The activation of a service
is based on the instrument — document compatibility described in the conceptual
model. Activation of consumer service S;, in consumer C by producer service S,
in producer P is defined as follows:

1. Pand C are likely to interact if P is a direct instrument geometrically pointing
at C, or if P is an indirect instrument targeting C.

2. If Pand C are likely to interact, a compatibility test is carried out between each
consumer service (Sou,i)i=1..n of P and each producer service (S, ;) j=1..p of
C. A connection Souj — Sin,j is made for each compatible pair (Sour,i,Sin,j)-

3. A connection S,u; — Sin,j is activated when the service S, ; is invoked.
The producer must choose the invoked service if there is an ambiguity. For
example, an instrument that can move and resize an object provides two
services. Once the two services are connected, this instrument provides the
user with a means of choosing which one to activate, for example by offering
two activation buttons.

4. Services remain connected as long as P and C are likely to interact.

The simplest compatibility test between services is the equality of their names.
However, it is useful to define more generic compatibility rules. For example,
services can be organised in a tree so that two services S and S, are compatible if and
only if §1 is an ancestor of S>. An instrument that provides the generic move service
would then be compatible with properties that provide specialised services such as
move_ icon or move note if move note and move icon were descendants
of move in the service tree.

A document is composed of parts, each with a specified data type such as formatted text or vector-
based drawing.

Services reify the traditional notion of a command: a service is a command that
an instrument can apply to a target document property. Generic (or polymorphic)
instruments directly result from the compatibility rule: the same instrument can
edit different kinds of properties as long as it is compatible with them. Thus,
the concept of service embodies the reification and polymorphism principles of
Beaudouin-Lafon & Mackay (2000). From an interaction point of view, instrument
services define a fine-grained interaction, at the instrument and property levels, while
OpenDoc part editors (Apple, 1994), for example, define a coarse-grained interaction
at the editor and part levels.

3.3 Perception Primitive: The Representation

Properties are perceived by users through representations, elected among those
compatible with the property. Some standard (or canonical) representations are
provided for simple types (e.g. integer, character string), composite types (e.g. date,
time) and set types (e.g. trees, lists, icons). Perception instruments can transform
properties of a document-specific schema into properties of a well-known schema
with standard representations.

Electing representations works like activating services: a representation
provided by a document is selected if it is compatible with the presentation medium.
In order to create a presentation, a representation is elected either automatically or
with user assistance. This election mechanism corresponds to the document — user
compatibility of the conceptual model.

As for services, the use of representations allows a fine-grained control of the
document presentation, at the property level, whereas in OpenDoc, part editors are
coarse-grained, at the part level.

3.4 Documents and Presentations

The DPI model does not make any assumption about the organisation of documents.
The model of Dourish et al. (1999) is a better candidate than a traditional hierarchical
file system because it uses collections and dynamic queries and it is based, like
DPI, on document properties (see Beaudoux (2000) for more details). Documents
can also be used to represent workspaces, collections, and even instruments. This
homogeneity should help users organise their environment. For example, documents
could be queried by specialised languages such as XPath (W3C, 1999) and XML
Query (W3C, 2000c).

A document is a tree of property values and a presentation is a tree of
representation property values. For graphical interaction, these representations
include geometric properties such as location and size. A direct instrument targets a
document property through its presentation, therefore representations must maintain
a link back to the properties they represent. Moreover, presentations may contain
properties that do not correspond to any document property. For example, in
a representation using icons, the positions of icons are unlikely to correspond
to properties of the underlying document. Thus, presentations must store their
own properties with their associated documents. This means that a style sheet
approach such as XSL (W3C, 2000b) cannot be used to transform a document into a
presentation: a more powerful mechanism is necessary.

Multiple presentations make it possible to edit a document according to several
perspectives. Consider a scenario involving the creation of material for a course,
composed of handouts for the students, slides for the presentation and notes for
the teacher. The natural presentation of the document is an outline that facilitates
navigation through the course hierarchy and editing at the semantic level. At the
layout level, each facet of the course (handouts, slides and notes) has a dedicated
alternate presentation with appropriate formatting of figures and text. These four
presentations make it easy to edit various aspects of the course in parallel.

Representations are defined in a repository that changes dynamically. When
a document is (down)loaded into the system, associated presentations may have
elected representations that are not defined in this repository. In this case, the
necessary representation definitions can be (down)loaded as well. This is similar
to loading plug-ins into a Web browser.

3.5 Devices and Instruments

3.5.1 Physical, Logical and Simulated Devices

Input devices provide producer services and are defined as a tree of sensors — see
Beaudoux (2000) for more details. For example, a one-button mouse has three
sensors: two potentiometers and one button, and produces three services: single-
click, double-click and drag-and-drop. In order to support a wide variety of platforms
and input devices, the DPI model defines physical, logical and simulated devices.

A physical device corresponds to a hardware peripheral such as the above one-
button mouse.

A logical device is built from one or more devices. For example, a logical
three-button mouse can be built by combining the physical one-button mouse with
two keyboard keys used as additional button sensors. This follows Myers (1989)
Interactors model.

A simulated device emulates a physical device. For example, the Xerox
Star (Johnson et al., 1989) displays soft keyboards on the screen to input special
characters such as mathematical formulas with the mouse. X7y (Beaudouin-Lafon
et al., 1990) supports the creation of arbitrary simulated devices. Metamouse
(Maulsby et al., 1989) uses a simulated mouse to demonstrate procedural actions.

3.5.2 Functional Model of Instruments

An instrument receives the user actions from an input device and transforms them
into commands sent to the target property of a document (Figure 5). The physical
part of the instrument defines its consumer services, i.e. what input it accepts. For
example, a move instrument may accept two services: drag-and-drop and
constrained drag-and-drop. The instrument may use an existing device
or create a dedicated logical device as described in the previous section. For
example, the instrument may create a logical device that combines the one-button
mouse with the keyboard’s shift key in order to provide both drag-and-drop and
constrained drag-and-drop services. When multiple devices are available,
the instrument may ask the user or use a document that specifies priorities and
preferences. Once the device is selected, the producer services of the elected input
device are connected to the consumer services of the instrument (1).

Tl

Elected input devices

:

Logical input device

S

Producer services

]

connection| (1)

Physical part

Required input

functionalities

Consumer services

|7

action
transformation

2

Logical part

connected service

Elected output devices

Logical output device

Required output functionalities

Representation
o ‘
| Workspace part

“@

Producer services

connection| (3)

Presentation II

Workspace

Figure 5: Functional model of an instrument

The logical part of the instrument defines its producer services. For example,
the move instrument provides the change-position service. When an
instrument’s consumer service is activated by a user action on a device, it is
transformed into a producer service (2), which in turn activates a consumer service
of the document (3). For example, a drag-and-drop action on the mouse is
transformed into a change-position command applied to the target property of
the document.

Instruments must themselves be represented on output devices. This
representation should include the function and state of the instrument (4). Perception
instruments must also manage the alternate representation of their target documents
(5), e.g. magnifying glasses must generate magnified presentations of the documents
underneath them.

The persistence of instrument properties is managed transparently by an
associated document. This document contains the instrument state, configuration
(logical device, behavior, representation), and online help. Sleeter (1996) discusses
the importance of online help in document-centered systems. Online help tends to
be centralised in traditional environments while document-centered systems must
provide help at different levels: workspace, documents and instruments.

The generic aspect of instruments with respect to documents results from
the generic aspect of services with respect to properties (Section 3.2). The same
instrument can be used in several contexts. For example, a pen can be used to
enter text in any writable document, to write annotations in any document, and to

edit the label of a workspace element, e.g. the name of a document. The service
compatibility between instruments and document properties results in the ability
to dynamically create contextual palettes of instruments. Traditional contextual
menus are predefined by the application and depend only on their target object.
The DPI model makes it possible to dynamically compute the palette of activatible
instruments for a given set of properties.

Finally, instruments can be chained together. For example, combining a
pen (direct instrument) with a magnifying glass (perception instrument) permits
precision drawing as the pen operates through the magnifying glass, as with Magic
Lenses (Bier et al., 1993). To our knowledge, no other general system supports such
facilities.

Instruments, like representations, are declared in a repository that changes
dynamically. When a document is (down)loaded into the workspace, related
instruments can also be (down)loaded. This offers greater flexibility than plug-ins.

4 Related Work
4.1 Document Models

OpenDoc (Apple, 1994) was the most advanced attempt at creating a document-
centered system, although it was developed in the context of an existing application-
centered environment (MacOS). Dykstra-Erickson & Curbow (1997) explain that
users do not have to interact with applications in order to edit documents: they
interact with the documents themselves. The document model is based on the
metaphors of paper and parts. A document is a set of parts, and each part can be
handled by a specialised editor. In our approach, documents are not the single most
important entity in the system: instruments are the main interaction component,
while documents handle persistence and are the targets of instruments. The main
differences between OpenDoc and DPI can be summarised as follows:

e OpenDoc editors have a finer grain than traditional applications, but a coarser
grain than DPI instruments. Similarly, OpenDoc parts have a coarser grain
than DPI document properties.

e OpenDoc editors do not separate interaction from display whereas DPI
instruments are decoupled from presentations.

e OpenDoc editors are specialised for a given part type while DPI instruments
can be generic and DPI presentations can be canonical.

DPI supports a more seamless style of interaction than OpenDoc: in OpenDoc,
the interactive environment, e.g. menu bars and palettes, changes when navigating
from part to part, whereas a single DPI instrument can be used across all documents
in the workspace.

The OLE framework (Brockschmidt, 1995) uses inter-application
communication to allow multiple applications to operate on the same document.
OLE is not a document-oriented system, but does make it possible to edit compound
documents. Within the Microsoft Office suite, applications have homogeneous

interfaces and the interaction through OLE is relatively seamless. However this
continuity breaks down when using other applications.

OOE (Backlund, 1997) is a NextStep system extension that manages composite
documents in a simple way: clicking a part invokes its creator application. The
display of compound documents takes advantage of display PostScript. Since in-
place part editing is not available, OOE is in fact application-centered.

HotDoc (Buchner, 2000) is a Smalltalk extension to the well-known MVC
design pattern. It supports compound documents by defining the PartApp,
PartView and PartController classes. Unlike OLE and OOE, HotDoc does
support multiple views (or presentations) of the same model (or document). HotDoc
is based on a part-based model similar to OpenDoc, with similar drawbacks.

4.2 Interaction Models

Myers (1989) Interactors encapsulate interaction in a small number (seven) of object
types. An interactor is not based on an input device type but on the nature of
the interaction, e.g. defining a point or selecting an item in a list. This approach
emphasises the separation between interaction and visualisation and the ability to
use various devices for the same task.

Our contribution consists of separating devices from instruments and supporting
physical, logical and simulated devices. Logical and simulated devices are
transparent to the user and appear only in the designer ontology. Also, DPI is
not limited to seven basic devices or instruments. In fact, instruments can be
strongly typed or highly generic, according to their function.

The instrumental interaction model is the foundation of the DPI model, but
does not constitute a conceptual model. By combining the concepts of interaction
instruments and compound documents, we have created general and homogeneous
conceptual and functional models. In particular, DPI services ensure independence
between documents and instruments.

4.3 Software Architecture Models

The model, view and controller components of the MVC design pattern (Krasner &
Pope, 1988) are similar to DPI’s document, presentation and instrument components.
However, MVC, like other architecture models, describe the synchronisation between
its components and not a conceptual model of interaction. In contrast, the design
of DPI is explicitly driven by the user ontology. The conceptual model is based
on the observation that physical instruments mediate interaction between users and
documents. The functional model obtains from this instrument metaphor.

5 Conclusion and Future Work

The Documents—Presentation—Instruments (DPI) conceptual model attempts to break
the complexity barrier of desktop environments. DPI is based on document-
centered interaction, using both a user ontology and a designer ontology. The user
ontology employs document and instrument metaphors and introduces the multiple
presentations abstraction. The designer ontology employs properties for persistence,
services for user actions and representations for perception, and the concept of
compatibility.

This article uses examples to illustrate the expressiveness of the DPI model, and
compares it with other systems. However, the DPI model is abstract and must be
validated through a concrete implementation. A partial validation has been carried
out with the design and implementation of CPN2000 (Beaudouin-Lafon & Mackay,
2000; Beaudouin-Lafon & Lassen, 2000). This application’s conceptual model
is a simplified version of DPI that addresses a single document type. CPN2000
has implemented and validated independence between documents and instruments,
generic instruments and instrument representations.

The next stage is to define a concrete interface model and test it with realistic
use cases. After this validation, we plan to implement the full DPI model and test
it by building documents and instruments in a real-world setting. We also plan to
extend the model to support groupware (shared document editing) and investigate
other environments such as mobile systems and augmented reality. In summary,
the DPI model offers a first but essential stage in designing and implementing a new
generation of document-centered environments based on a new interaction paradigm.

Acknowledgement

We thank Wendy Mackay and the anonymous reviewers for comments on earlier
drafts of this paper.

References
Apple (1994), OpenDoc Technical Summary, Technical documentation, Apple Computer.

Backlund, B. E. (1997), “OOE: A Compound Document Framework™, ACM SIGCHI Bulletin
29(1), 68-75.

Beaudouin-Lafon, M. (1997), Interaction Instrumentale : de la Manipulation Directe a la
Réalité Augmentée, in Actes des 9émes Journées IHM, Poitiers, Cépadues Editions
*##*SHOULD THE PUBLISHER BE Cépadues OR Cépadués BOTH OF THESE
HAVE BEEN USED BY FRENCH AUTHORS??7%#**,

Beaudouin-Lafon, M. (2000), Instrumental Interaction: An Interaction Model for Designing
Post-WIMP Interfaces, in T. Turner, G. Szwillus, M. Czerwinski & F. Paterno (eds.),
Proceedings of CHI’2000: Human Factors in Computing Systems, ACM Press, pp.446—
53.

Beaudouin-Lafon, M. & Lassen, H. M. (2000), The Architecture and Implementation
of CPN2000, A Post-WIMP Graphical Application, in ****EDITOR*** (ed.),
Proceedings of the 13th Annual ACM Symposium on User Interface Software and
Technology, UIST2000, ACM Press, pp.181-90.

Beaudouin-Lafon, M. & Mackay, W. (2000), Reification, Polymorphism and Reuse: Three
Principles for Designing Visual Interfaces, in ***EDITOR*** (ed.), Proceedings of the
Conference on Advanced Visual Interface (AVI2000), ACM Press, pp.102-9.

Beaudouin-Lafon, M., Berteaud, Y. & Chatty, S. (1990), Creating Direct Manipulation
Applications with XTV, in Proceedings of the European X Window System Conference
(EX’90).

Beaudoux, O. (2000), Paradigmes et Eléments Architecturaux d’une Boite 2 Outils Post-
WIMP, Rapport Technique, Computer Science Research Laboratory, Ecole Supérieure
d’Electronique de 1’Ouest and LRI, Université Paris-Sud (Orsay).

Bier, E. A., Stone, M. C., Pier, K., Buxton, W. & DeRose, T. D. (1993), Toolglass and
Magic Lenses: The See-through Interface, in ***EDITOR*** (ed.), Proceedings
of SIGGRAPH’93 20th Annual Conference on Computer Graphics and Interactive
Techniques, ACM Press, pp.73-80.

Brockschmidt, K. (1995), Inside OLE, second edition, Microsoft Press.

Buchner, J. (2000), “HotDoc: A Framework for Compound Documents”, ACM Computing
Surveys 32(1), 33-8.

Celentano, A., Pozzi, S. & Toppeta, D. (1992), A Multiple Presentation Document
Management System, in ***EDITOR*** (ed.), Proceedings of the 10th Annual
International Conference on Systems Documentation (SIGDOC’92), ACM Press,
pp.63-T71.

Dourish, P., Edwards, W. K., LaMarca, A. & Salisbury, M. (1999), Using Properties
for Uniform Interaction in the Presto Document System, in ****EDITOR*** (ed.),
Proceedings of the 12th Annual ACM Symposium on User Interface Software and
Technology, UIST’99, ACM Press, pp.55-64.

Dykstra-Erickson, E. & Curbow, D. (1997), The Role of User Studies in the Design of
OpenDoc, in G. C. van der Veer, A. Henderson & S. Coles (eds.), Proceedings of
the Symposium on Designing Interactive Systems: Processes, Practices, Methods and
Techniques (DIS’97), ACM Press, pp.111-20.

Gibson, J.J. (1977), The Theory of Affordances, in R. Shaw & J. Bransford (eds.), Perceiving,
Acting and Knowing, Lawrence Erlbaum Associates.

Gibson, J.J. (1979), The Ecological Approach to Visual Perception, Houghton Mifflin.

Gray, D. (1997), The PhotoShop Plug-ins Book: Category Listings, Instructions and
Examples, Ventana Communications Group, Incorporated.

Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby, C., Beard, M. & Mackey, K.
(1989), “The Xerox "Star": A Retrospective”, IEEE Computer 22(9), 11-29.

Krasner, G. E. & Pope, S. T. (1988), “A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80”, Journal of Object Oriented Programming
1(3),26-49.

Maulsby, D. L., Witten, 1. H. & Kittlitz, K. A. (1989), Metamouse: Specifying Graphical
Procedures by Example, in ***EDITOR*** (ed.), Proceedings of SIGGRAPH’89,
Computer Graphics 23(3), ACM Press, pp.127-36.

Myers, B. A. (1989), Encapsulating Interactive Behaviors, in K. Bice & C. H. Lewis (eds.),
Proceedings of CHI’89: Human Factors in Computing Systems, ACM Press, pp.319-24.

Norman, D. A. & Draper, S. W. (eds.) (1986), User Centered System Design: New
Perspectives on Human—Computer Interaction, Lawrence Erlbaum Associates.

Perlin, K. & Fox, D. (1993), Pad: An Alternative Approach to the Computer Interface,
in ***EDITOR*** (ed.), Proceedings of SIGGRAPH’93 20th Annual Conference on
Computer Graphics and Interactive Techniques, ACM Press, pp.57-64.

Shneiderman, B. (1983), “Direct Manipulation: A Step beyond Programming Languages”,
IEEE Computer 16(8), 57-69.

Sleeter, M. E. (1996), Building Online Help for a Component-Oriented Architecture,
in Proceedings of the I14th Annual International Conference on Marshaling new
Technological Forces: Building a Corporate, Academic, and User-oriented Triangle,
ACM Press, pp.87-94.

W3C (1999), XML Path Language (XPath) Version 1.0, W3C Recommendation, W3C.

W3C (2000a), Extensible Markup Language (XML) Version 1.0, W3C Recommendation,
W3C.

W3C (2000b), Extensible Stylesheet Language (XSL) Version 1.0, W3C Recommendation,
W3C.

W3C (2000c), XML Query Data Model, W3C Working Draft, W3C.

Author Index

Beaudouin-Lafon, Michel, 1 Beaudoux, Olivier, 1

Keyword Index

action, 1 instrumental interaction, 1

interactive workspace, 1
compound document, 1

conceptual model, 1 metaphor, 1

desktop environment, 1
document-centered interaction, 1 perception, 1

