
IEEE Interval Standard Working Group - P1788: Current Status

William Edmonson
Dept. of Electrical & Computer Eng.

NC State University
Raleigh, NC 27695

wwedmons@ncsu.edu

Guillaume Melquiond
INRIA Saclay–Île-de-France

Orsay, F-91893 France
guillaume.melquiond@inria.fr

Abstract

Late 2008, at SCAN 2008 in El Paso, TX, an effort
to standardize interval computations was started by
a working group of the IEEE Microprocessor Stan-
dards Committee, titled the Interval Arithmetic Work-
ing Group of the IEEE P1788 Standard. This paper
describes the goals of this effort, the history of the
working group, and how it relates to the IEEE 754
Standard. It gives a brief overview of the policies
and procedures for constructing the standard, and
its expected structure. It also presents some of the
questions the group may have to solve in the future.

1. Philosophy of Interval Computation

Interval computations [1], known as either Interval
Analysis or Interval Arithmetic (both abbreviated as
IA), are a way of extending the usual arithmetic
from real numbers to intervals, which typically are
closed convex sets of real numbers. The operations
on these sets are defined in such a way that the
inclusion property is respected: For x and y intervals,
for � ∈ {+,−,×,÷, . . .}, we have

∀x ∈ x, ∀y ∈ y, x � y ∈ x � y.

Here x�y is the mathematical exact result while x�y
is an interval possibly computed with finite-precision
arithmetic. This property ensures that an expression
evaluated by intervals returns an enclosure of the set
of all the possible real results, irrespective of the
imprecision on the inputs or of the inaccuracies during
intermediate computations. Thus interval computations
are one of the main components for reliable computa-
tions.

We enumerate a few applications here, while noting
that this illustrative list is in no way exhaustive:

• global optimization (e.g., finding optimal solu-
tions of multi-dimensional not-necessarily-convex
problems);

• accounting for rounding errors of floating-point
computations at run time;

• constraint propagation for solving satisfiability
problems;

• solving [systems of] [linear] [differential] equa-
tions using interval analysis;

• mathematical proofs (e.g., Hales’ recent cele-
brated proof of Kepler’s conjecture).

1.1. Goals of the Standards

The standard’s broad aim is to improve the avail-
ability of reliable computing in modern hardware and
software environments by defining the basic build-
ing blocks needed for performing interval arithmetic.
It will facilitate the incorporation of a conforming
interval data type in languages used for numerical
computing. Its specific purpose in support of the above
aim is to decide on a specific model, then define,
on interval datums, basic operations that are provably
consistent with the chosen model.

More precisely, a usable standard for interval arith-
metic can cover some of the following points at least:

• definition of the interval formats, including the
encoding of special interval values such as empty;

• interval constructor operations, including the ef-
fect of passing operands that do not define a valid
interval in the model;

• operations to return the lower and upper bounds of
an interval, and its midpoint and radius, including
the effect in special cases such as the empty
interval;

• basic arithmetic operations, including division by
an interval containing zero as well as square root;

• interval comparison operations that are deemed
important, such as interval containment;

• discontinuity flag or other appropriate mechanism
for marking discontinuity detection during com-
putation (needed by certain algorithms that rely
on fixed point theorems).

There are several well-developed IA systems based
on self-consistent but different philosophies and re-
sulting models. All widely used models agree on the
definition of arithmetic operations when (a) intervals
are closed and bounded and (b) the real operation is
defined for all the real values included in the input
intervals. The differences are at the “edges”, e.g.,
infinite bounds or division by an interval containing
zero. Not all widely used models will necessarily be
supported in the standard, but it is important that all
of them be straightforward to implement on top of the
standard, to encourage its widespread acceptance.

1.2. Current Implementation

Advances in computer arithmetic since Ramon E.
Moore published his book, Interval Analysis [1], have
resulted in numerical analysis being performed by
interval arithmetic operations to account for bounding
the errors in the data or model or taking into account
the uncertainties of the system or model. Today, in-
terval analysis has gained acceptance in many fields,
such as signal processing [4], robotics control [5],
and computer graphics [6], to name just a few. For
a more complete list of interval analysis applications
and associated references, we recommend that you visit
http://www.cs.utep.edu/interval-comp/.

To meet the above needs to perform interval arith-
metic and interval analysis, several software solutions
have been developed either as complete packages or as
libraries for typical programming languages. Several
widely used packages are listed in the following table,
with more packages listed at http://www.cs.utep.edu/
interval-comp/intsoft.html.

In addition, hardware prototypes that have been in-
vestigated by Kirchner and Kulisch [3] and Schulte [9],
[10] are floating-point architectures for implementing
interval arithmetic operations, where the later has been
extended to provide variable precision arithmetic. A
fixed-point interval arithmetic ALU was developed by
Edmonson and his students [11], [12]. In the work
of [12], the interval fixed-point arithmetic ALU was
extended to an interval block floating-point ALU for
an increased dynamic range. The major impetus for
architecting a fixed-point arithmetic version was to
develop an interval arithmetic computing engine that

Table 1. Interval Arithmetic Software Packages

Interval Packages
Program Definition URL
Profil/BIAS C++ class library http://www.ti3.

tu-harburg.de/
knueppel/profil/index
e.html

boost Interval C++ package http://www.boost.org/
filib++ Interval library http://www.math.

uni-wuppertal.de/∼xsc/
software/filib.html

Intlab Matlab toolbox http://www.ti3.
tu-harburg.de/rump/
intlab/index.html

Sun Studio C++/Fortran compiler http://www.sun.com/
software

can be used in embedded systems which require low
power, small area, and real time operations.

1.3. Relation to 754 Standards

The wide acceptance of the IEEE 754 Standard has
had a significant impact on the development of reli-
able environment for computing. It provides portable
formats, but the description of the operations and
modes do not leave much to imagination or luck.
More importantly for interval arithmetic, it mandates
the presence of directed rounding modes which apply
to all the basic floating-point operations.

The interval working group intends to build its
standard upon the foundations laid by the IEEE 754
Standard: Interval formats will be based on floating-
point formats, and interval operations will be defined
in terms of floating-point operations (while keeping a
mathematical model based on the real numbers). This
will greatly ease the development of a portable and
reliable interval arithmetic.

2. History of Working Group

Late 2007, the IEEE 754 revision committee re-
ceived a proposal from the IFIP Working Group 2.5
on Numerical Software that strongly supported the
inclusion of IA to the floating-point standard. Some
missing details and a scope vastly exceeding the one
of IEEE 754 prevented this proposal from passing.
Early 2008, at a Schloss Dagstuhl seminar where
members from both working groups met, decision was
taken to propose a new working group dedicated to
standardization of IA [13].

At the 13th GAMM-IMACS International Sympo-
sium on Scientific Computing, Computer Arithmetic
and Verified Numerical Computations (SCAN 2008)

in El Paso, TX, the initial organizational meeting for
the creation of the IEEE Interval Arithmetic Work-
ing Group was held. A presentation on developing a
standards group was given by Baker Kearfott followed
by several luncheon meetings. In these meetings, the
working group’s and IEEE’s policies and procedures
were discussed, along with obtaining the volunteers for
officer’s position. These meetings were well attended
with lively discussions. Those who volunteered sub-
sequently became the official officers of the working
group. These officers are listed in the following section.

2.1. Structure of Committee

The following officers were accepted on Novem-
ber 8, 2008, after being elected by the participants
registered to the working group:

Chair
Nathalie Revol

Vice chairs
Baker Kearfott and John Pryce

Vote tabulator
George Corliss

Technical editors
Christian Keil, David Lester, and John Pryce

Archivist
Guillaume Melquiond

Webmaster
Juergen Wolff von Gudenberg

A website tracking the active motions and archiving
some informational documents is available at http://
grouper.ieee.org/groups/1788/.

2.2. Structure for Constructing the Standard

To better facilitate the IEEE standardization process,
the technical editors of the P1788 Working Group have
prepared a document titled, “A proposed structure for
the process of constructing the P1788 Standard” (found
at http://grouper.ieee.org/groups/1788/ under position
papers). This structure represents a conceptual de-
sign by providing four specification levels and their
relationships. The structure mirrors the P754 levels.
Level 1 represents the mathematical model and offers a
framework for numerical experts to choose the number
system, i.e., real numbers R or extended reals R∗,
intervals IR containing these reals, interval arithmetic
operations, and standard interval functions. Level 2,
data level, defines the finite set IF (a subset of IR
consisting of machine-representable intervals) and how
to choose function results in this set. Level 3 de-
fines how pairs of floating-point datums are used to

represent machine intervals. Level 4 provides the bit
representation of the level 3 format.

This position paper also gives a list of questions at
each level for which the editors believe there is a need
for debate. A small sample follows.
• Level 1 debates

1) Should the numbering system be the set IR
or the extended set IR∗?

2) What support should be given to other inter-
val models, e.g., modal or Kaucher?

3) Do we follow the principles of the Vienna
model, see http://grouper.ieee.org/groups/
1788/?

• Level 2 debates
1) Should a ”Not an Interval” be defined?
2) What flags should interval operations set and

which P754 flags can be used?
3) How accurate should interval functions be?

• Level 3 debates
1) What should the standard say about invalid

interval objects?
2) How should nonempty intervals be repre-

sented as?
3) Should the standard provide a use for NaN

fields?
• Level 4 debates

1) Should the standard specify storage alloca-
tion?

2) Should it provide representations for modal
intervals?

2.3. Accomplishments to Date

The working group is still in its early stages and it
has not yet produced a draft of an interval standard.
The following three decisions have been voted and
agreed upon: policies and procedures of the group,
committee officers, and mathematical notations for
writing the draft. Motion 1 on Standard Notation has
been officially passed by the working group. At the
time this is written, voting on Motion 2 on Process
Structure is still in progress, but passage appears likely.
Motion 3 on Set of Reals is in discussion.

3. Controversies

As mentioned above, there is a wide consensus on
how an interval operation behaves when the input
intervals represent bounded sets and the corresponding
real operation is defined at each point of these sets.
The following paragraphs describe some of the less
consensual issues the group will have to work on.

3.1. Representation Issues

Intervals typically are represented by their lower and
upper bounds. In conjunction with directed floating-
point arithmetic, this representation allows for effi-
cient basic arithmetic operations. Another representa-
tion, however, can be encountered: intervals as pairs
midpoint-radius.

Basic operations then become more complicated to
design, but algorithms for interval linear algebra can
take advantage of this representation. It also breaks the
symmetry between the two components: The radius
can use a smaller floating-point precision than the
midpoint.

The working group must decide if this alternate
representation is out of the scope of a standard, if it
“should” be provided by compliant interval environ-
ment, or if it “shall” be provided.

3.2. Inverted Intervals

While typical intervals are just sets of real numbers,
some arithmetics give a meaning to interval objects
[a, b] with a > b (or negative radius). For instance,
they can be used for storing the complementary sets
of (interiors of) regular intervals.

Usually these inverted intervals are a way to extend
the set of intervals with an algebraic structure [2].
Both interval addition and multiplication admit inverse
operations, e.g., [a, b]+[−a,−b] = [0, 0]. This property
brings many classical algorithms to interval environ-
ments. In some cases, it also supports computation
of an under-approximation of the result, that is, a
guaranteed subset of the reachable points.

Again, the working group will have to take a po-
sition with respect to this extension. Depending on
how inverted intervals are handled (e.g., they could be
declared “invalid” and cause a Not-an-Interval datum
to propagate), some extensions may be incompatible
with an interval standard.

3.3. Partial Real Operations

Another issue arises when some intervals contain
values for which the real operation is not defined, e.g.,
computing the quotient [1, 1]/[0, 1]. If the divisor was
instead [ε, 1], the tightest result would indisputably be
[1, 1/ε]. Once ε reaches zero however, there are several
interpretations of the interval division.

If one is only interested in the set {z | z = x/y, x ∈
x, y ∈ y}, then [0, +∞) is the optimal result. If one
considers the division as the inverse operation of the
multiplication, then the result set becomes {z | x =

y × z, x ∈ x, y ∈ y} = R. This division could also be
considered as an error that should cause an exceptional
behavior instead of continuing silently with an interval
value.

The working group will have to decide which ver-
sions should be part of a standard (or all of them).
Since knowing if the input intervals contained out-of-
domain or discontinuity points is critical for interval
methods that rely on fixed-point theorems, the group
will also have to design a way to get this information
to the user.

Independently of the considerations above, fully-
fledged inverse versions of the arithmetic operations
are needed when propagating and solving interval
constraints. So the group will have to discuss the
opportunity of including them.

3.4. Comparisons

Comparing intervals is a last example of controver-
sial issues. Depending on the context, x smaller than
y may mean either “x y”, or “∀x ∈ x, ∀y ∈
y, x < y”, or “lower(x) < lower(y) ∧ upper(x) <
upper(y)”.

The working group will decide if any/some/all of
these comparison operators are worth standardizing
and they will have to be named.

4. Conclusion

The IEEE Interval Arithmetic Working Group P1788
was formulated to develop a set of standards that is
similar in structure and built on the philosophy of
the IEEE P754 floating-point standard. The result of
this standardization process for interval arithmetic is
to have a set of community accepted standards that
will increase the availability of reliable computing in
modern hardware and software environments. As of
March 2009, there are 62 officially registered voting
members. Information on the P1788 Standard can be
found at http://grouper.ieee.org/groups/1788/.

Acknowledgment

The authors would like to thank all of the P1788
committee for their assistance in the writing of the
status report and for putting the time and effort in
bringing interval arithmetic to the forefront.

References

[1] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood
Cliffs, NJ, 1966.

[2] E. Kaucher. “Interval Analysis in the Extended Interval
Space IR,” Computing, Suppl 2:33–49, 1980.

[3] R. Kirchner and U. Kulisch, “Hardware support for
interval arithmetic,” Reliable Computing, vol. 12, no. 3,
pp. 225–237, Jun 2006.

[4] S. Ocloo and W. Edmonson, “IIR Filter Adap-
tation using Branch-and-Bound: A Novel Approach,”
IEEE Trans. on Circuits & Systems, vol. 55, Issue 11,
pp. 3393–3403, 2008.

[5] L. Jaulin, et. al. Applied Interval Analysis. Springer,
2001.

[6] K. Suffern and E. Fackerell, “Interval methods in com-
puter graphics,” Computers & Graphics, vol. 15, no. 3,
pp. 331–340, 1991.

[7] R. Kearfott, Rigorous Global Search: Continuous Prob-
lems, Kluwer Academic, 1996.

[8] E. Hansen and W. Walster, Global Optimization using
Interval Analysis, 2nd Ed., M. Dekker, 2004.

[9] M. J. Schulte and J. E. E. Swartzlander, “A family of
variable precision interval arithmetic processors,” IEEE
Transactions on Computers, vol. 49, pp. 387–398, May
2000.

[10] J. E. Stine and M. J. Schulte, “A combined interval and
floating-point multiplier,” 8th Great Lakes Symposium on
VLSI, pp. 208–213, Feb 1998.

[11] R. Gupte, W. Edmonson, S. Ocloo, and W. Alexander,
“Pipelined ALU for signal processing to implement
interval arithmetic,” The IEEE 2006 Workshop on Sig-
nal Processing Systems (SiPS’06), Banff, AB, Canada,
pp. 95–100, 2006.

[12] S. Hattangady, W. Edmonson, and W. Alexander,
“Block Floating Point Interval ALU for Digital Signal
Processing”, 13th GAMM-IMACS Inter. Symposium on
Scientific Computing, Computer Arithmetic and Verified
Numerical Computations, El Paso, TX, Sep 2008.

[13] R.B. Kearfott, J. Pryce, and N. Revol, “Discussions
on an Interval Arithmetic Standard at Dagstuhl Seminar
08021”, Lecture Notes in Computer Science, vol. 5492,
2009.

