Program verification Formal arithmetic Decision procedures

Numerical Computations and Formal Methods

Guillaume Melquiond

Proval, Laboratoire de Recherche en Informatique
INRIA Saclay—IdF, Université Paris Sud, CNRS

October 28, 2009

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures

Numerical Computations and Formal Methods

@ Deductive program verification
© Computing in a formal system
© Decision procedures for arithmetic theories

@ Conclusion

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Deductive Program Verification

@ Deductive program verification
o Floyd-Hoare logic and weakest preconditions
o A framework for program verification: Why
o Gappa

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Hoare Triple

Definition (Hoare triple)

{precondition} code {postcondition}.

Meaning of correctness:
If the precondition holds just before the code is executed,
the postcondition holds just after it has been executed.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Hoare Triple

Definition (Hoare triple)

{precondition} code {postcondition}.

Meaning of correctness:
If the precondition holds just before the code is executed,
the postcondition holds just after it has been executed.

Note: the definition assumes the code terminates.
If it does not, any postcondition holds, including False.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Hoare Triple

>= 0 }
floor (sqrt(x))
y >= 0 and y*y <= x < (y+1)x*(y+1) }

w N =
A -
o

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Weakest Precondition

Definition (Weakest precondition)

R is the weakest precondition of a code C and a postcondition @
iff any correct triple {P} C {Q} satisfies P = R.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Weakest Precondition

Definition (Weakest precondition)

R is the weakest precondition of a code C and a postcondition @
iff any correct triple {P} C {Q} satisfies P = R.

A function behaves correctly (modulo termination)
if its specification can be expressed as a correct triple.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Weakest Precondition

Definition (Weakest precondition)

R is the weakest precondition of a code C and a postcondition @
iff any correct triple {P} C {Q} satisfies P = R.

A function behaves correctly (modulo termination)
if its specification can be expressed as a correct triple.

How to verify it?

e Compute the weakest precondition (Dijkstra, 1975)
from the function and its specified postcondition.

@ Prove that the specified precondition implies the weakest one.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

A Framework for Program Verification: Why

WHhy is a minimal system:
@ small ML-like programming language,

@ small specification language.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

A Framework for Program Verification: Why

WHhy is a minimal system:
@ small ML-like programming language,

@ small specification language.

WHY is an intermediate environment:
@ it computes weakest preconditions;

@ it generates VCs for provers, interactive or not.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

A Framework for Program Verification: Why

WHhy is a minimal system:
@ small ML-like programming language,

@ small specification language.

WHY is an intermediate environment:
@ it computes weakest preconditions;

@ it generates VCs for provers, interactive or not.

Various tools translate programing languages (C, Java)
to the ML language.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Environment

annotated annotated
Java/JML prog. C program —
ML program \ ¢ Frarya—C
Krakatoa Caduceus)
Jessie
Why

Automated provers
Alt-Ergo SMT-lib
Simplify | | (Yices, Z3, CVC3)

Interactive provers
Coq PVS

Isabelle Mizar

HOL4 | |HOL light

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Toy Example: Cosine Around Zero

1 /*@ requires \abs(x) <= Oxlp-5 ;

2 @ ensures \abs(\result - \cos(x)) <= 0xlp-23; */
3 float toy_cos(float x) {

4 //Q@assert \abs(1.0-x*x*0.5 - \cos(x)) <= 0xlp-24;
5 return 1.0f - x * x *x 0.5f;

6 }

“\result” is the value returned by the function, that is:
1 —0.5- x? with all the operations rounded to nearest binary32.

@ Safety: none of the operations overflow nor are invalid.

@ Correctness: the result is almost the mathematical cosine.

Guillaume Melquiond Numerical Computations and Formal Methods

I RNl VP Why Gappa
Frama-C/Jessie/Why + Gappa

W hy:lalve

Fle Configuration Proof

Alt-Ergo| Gappa rEsUCLsT ger T ioat ~
Proof obligations 0 0.11.3 Statistics | ¢ no_overflow(Single, nearest_even,

float_valueiresult) - float_value(result2)) and

Function toy cos sub_gen_float_post(Single, nearest_even, result, result2,
~ pefault behavior Q Q 2 result3) 1
| _retres: gen_tloat
Lo GEEEFELEH __retres = result3
A return: gen_float

return = _ retres

- Function toy_cos 5/5

Safety

1. check FP overflow gabs_real((flﬂat_value(return) - cos(float_value(x)})) <= ox1.p-23 [~

- check FP overflow :#pragma JessieFloatModel (strict)

. check FP overflow
/*@ requires \abs(x) == Ox1lp-5 ;

@ ensures HR7
float toy_cos(float x) {

//@ assert Yabs({1.0 - x*x*0.5 - ‘\cos(x)) <= Oxlp-24;

return 1.0f - x * x * 0.5f;

. check FP overflow

uonw N

. check FP overflow

00000
20000 &

¥

Timeout[10 2| pretty Printer | file: e.c VC: postcondition

Program verification Formal arithmetic Decision procedures WP Why Gappa

Verifying Arithmetic Properties

Kind of properties:
@ Precondition validity:
e no overflow: VX, f(X) € D;

Guillaume Melquiond

Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Verifying Arithmetic Properties

Kind of properties:
@ Precondition validity:

e no overflow: VX, f(X) € D;
e no domain error: VX, d(f(X),g(X),---) € D.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Verifying Arithmetic Properties

Kind of properties:
@ Precondition validity:

e no overflow: VX, f(X) € D;
e no domain error: VX, d(f(X),g(X),---) € D.

@ Accuracy of results:
e absolute error: VX, f(X) — g(X) € E;

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Verifying Arithmetic Properties

Kind of properties:
@ Precondition validity:

e no overflow: VX, f(X) € D;
e no domain error: VX, d(f(X),g(X),---) € D.

@ Accuracy of results:
e absolute error: VX, f(X) — g(X) € E;
o relative error: VX, Je, f(X) = g(X) x (1+¢).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Verifying Arithmetic Properties

Kind of properties:
@ Precondition validity:

e no overflow: VX, f(X) € D;
e no domain error: VX, d(f(X),g(X),---) € D.

@ Accuracy of results:
e absolute error: VX, f(X) — g(X) € E;
o relative error: VX, Je, f(X) = g(X) x (1+¢).

Language of formulas:
@ intervals with nonsymbolic bounds,

@ expressions with mathematical operators (e.g., x, tan) and
rounding operators (e.g., [-]).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Gappa

Input: logical formula about expressions on real numbers.
Output: “Yes" and a formal proof, or "I don't know".

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Gappa

Input: logical formula about expressions on real numbers.
Output: “Yes" and a formal proof, or "I don't know".

Method: saturation over a set of theorems.

@ Naive interval arithmetic:
vuelualAvelv,v]=u+velut+v,T+V]

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Gappa

Input: logical formula about expressions on real numbers.

Output: “Yes" and a formal proof, or "I don't know".

Method: saturation over a set of theorems.

@ Naive interval arithmetic:
vuelualAvelv,v]=u+velut+v,T+V]

e Floating-/fixed-point arithmetic properties:
ue2 0.7 = Je € [-2753,27%3], o(u) = u x (1 +¢).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures WP Why Gappa

Gappa

Input: logical formula about expressions on real numbers.
Output: “Yes" and a formal proof, or "I don't know".

Method: saturation over a set of theorems.

@ Naive interval arithmetic:
vuelualAvelv,v]=u+velut+v,T+V]

e Floating-/fixed-point arithmetic properties:
ue2 0.7 = Je € [-2753,27%3], o(u) = u x (1 +¢).

@ Forward error analysis:
UxvV—uxv=(O—u)xv+ux(V—v)+(0—u)x(V-v).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Computing in a Formal System

© Computing in a formal system
@ Type theory and proofs by reflection
@ Some formalizations of arithmetic in Coq

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Example: Peano’s Arithmetic

Inductive definition of natural numbers:

type nat = 0 | S of nat (x 5 = SSSSSO)

Axioms for addition:
add0: Vb, O+b=5»b
adds: Va b, (Sa)+b=a+ (S b)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Example: Peano’s Arithmetic

Deductive proof of 4 + (2 +3) =9
9=9 reflexivity

0+9=9 2%

: addS x 4
4+5=9

4+(0+5)=9

41114 =9

4v(2+3)=9

addO
adds
addsS

(9 steps)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Introducing Computations into Proofs

Recursive definition of addition:

let rec plus x y =
match x with
| 0 ->y
| S x> -> plus x’ (S y)

Lemma plus_xlate: Va b, a+ b=plus ab

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Introducing Computations into Proofs

Recursive definition of addition:

let rec plus x y =
match x with
| 0 ->y
| S x> -> plus x’ (S y)

Lemma plus_xlate: Va b, a+ b=plus ab

Proof of 4 +(243) = 9: (4 steps)
—— reflexivity
9=9
277
plus 4 (plus 23) =9 l lat
us_xlate
4+ (plus 23)=9 P

44+(243)=9

plus_xlate

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Type Theory and Conversion

Curry-Howard correspondence and type theory:
@ Proposition A holds if the type A is inhabited.

@ Convertible types have the same inhabitants.

p:A ,_
— A=3B
p:B p

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Type Theory and Conversion

Curry-Howard correspondence and type theory:

@ Proposition A holds if the type A is inhabited.

@ Convertible types have the same inhabitants.

p:A ,_
= A=4B
p:B p

Proof of 44 (2 +3) =9:
p:9=9
p:plus 4 (plus23)=9
44+ (plus23)=9
4+(2+3)=9

reflexivity

plus_xlate

(-reduction
plus_xlate

(4 steps)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Encoding Expressions

Inductive definition of expressions on natural numbers:

type expr = Nat of nat | Add of expr * expr
let rec interp_expr e =
match e with
| Nat n -> n
| Add (x, y) ->
(interp_expr x) "+" (interp_expr y)

Proof of 4+ (2+3) =9:

77
interp_expr (Add (Nat 4,Add (Nat 2,Nat 3))) =9 B-reduction
4+(2+3)=9

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Evaluating Expressions

Evaluating expressions on natural numbers:

let rec eval_expr e =
match e with
| Nat n -> n
| Add (x, y) ->
plus (eval_expr x) (eval_expr y)

Lemma expr_xlate: Ve interp_expr e = eval_expr e

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Evaluating Expressions

Evaluating expressions on natural numbers:

let rec eval_expr e =
match e with
| Nat n -> n
| Add (x, y) ->
plus (eval_expr x) (eval_expr y)

Lemma expr_xlate: Ve interp_expr e = eval_expr e

Proof of 44 (2 +3) =9:

9=9 reflexivity

eval_expr (Add (Nat 4,...)) =9
interp_expr (Add (Nat 4,...)) =9
4+(2+3)=9

(B-reduction
expr_xlate

(B-reduction

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Relational Operators

Equality is usually a native concept, while comparisons are not.

Comparing natural numbers:

let rec le x y =
match x, y with

| O , -> true
| s _ , 0 -> false
| S x>, Sy’ ->1le x’ y’

Lemma: Vavb leab=true< a<b

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Encoding Comparisons

Inductive definition of relations on natural expressions:

type prop = Le of expr * expr
let interp_prop p =
match p with
| Le (x, y) ->
(interp_expr x) "<=" (interp_expr y)
let eval_prop p =
match p with
| Le (x, y) -> le (eval_expr x) (eval_expr y)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Encoding Comparisons

Inductive definition of relations on natural expressions:

type prop = Le of expr * expr
let interp_prop p =
match p with
| Le (x, y) ->
(interp_expr x) "<=" (interp_expr y)
let eval_prop p =
match p with
| Le (x, y) -> le (eval_expr x) (eval_expr y)

Proof of 4+ (2+3) <5+ 6:

m refleX|V|ty
(B-reduction
eval_prop (Le (Add ...,Add ...)) = true
prop-xlate
interp prop (Le (Add ...,Add ...)) _
(B-reduction

44 (2+3)<5+6

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Some Formalizations of Arithmetic in Coq

@ Integers as lists of bits:
polynomial equality, semi-decision of (Z, +, =, <).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Some Formalizations of Arithmetic in Coq

@ Integers as lists of bits:
polynomial equality, semi-decision of (Z, +, =, <).

@ Rational numbers and Bernstein polynomials:
global optimization for Hales' inequalities.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Some Formalizations of Arithmetic in Coq

@ Integers as lists of bits:
polynomial equality, semi-decision of (Z, +, =, <).

@ Rational numbers and Bernstein polynomials:
global optimization for Hales' inequalities.

@ Dyadic numbers and intervals:
verification of Gappa certificates.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Some Formalizations of Arithmetic in Coq

@ Integers as lists of bits:
polynomial equality, semi-decision of (Z, +, =, <).

@ Rational numbers and Bernstein polynomials:
global optimization for Hales' inequalities.

@ Dyadic numbers and intervals:
verification of Gappa certificates.

@ Integers as binary trees of machine words:
verification of Pocklington primality certificates.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Some Formalizations of Arithmetic in Coq

@ Integers as lists of bits:
polynomial equality, semi-decision of (Z, +, =, <).

@ Rational numbers and Bernstein polynomials:
global optimization for Hales' inequalities.

@ Dyadic numbers and intervals:
verification of Gappa certificates.

@ Integers as binary trees of machine words:
verification of Pocklington primality certificates.

o Floating-point numbers and intervals:
enclosures for expressions of elementary functions.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Some Formalizations of Arithmetic in Coq

@ Integers as lists of bits:
polynomial equality, semi-decision of (Z, +, =, <).

@ Rational numbers and Bernstein polynomials:
global optimization for Hales' inequalities.

@ Dyadic numbers and intervals:
verification of Gappa certificates.

@ Integers as binary trees of machine words:
verification of Pocklington primality certificates.

o Floating-point numbers and intervals:
enclosures for expressions of elementary functions.

@ Real numbers as streams of integer words.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Enclosures for Expressions of Elementary Functions

Example:

x (1 —10473-2716. x2)
sin x

vx e [2720,1], |X —1| < 1022716,

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Enclosures for Expressions of Elementary Functions

Example:

x (1 —10473-2716. x2)
sin x

vx e [2720,1], |X —1| < 1022716,

Method: order-1 Taylor interval computations and bisection.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Interval Approaches: Relative Error of a Rounded Sine

Relative error between sin x and the binary32 Horner evaluation
of a degree-3 polynomial for x € [2720, 1]

1 Theorem rounded_sine

2 forall x vy,

3 y = rnd(x * rnd(1 - rnd(rnd(x*x) * (10473/65536)))) ->
4 1/1048576 <= x <= 1 ->

5 Rabs(y - sin x) <= 103 / 65536 * Rabs(sin x).

6 Proof.

7 intros.

s set (My := x * (1 - (x*x) * (10473/65536))).

9 assert (Rabs(My - sin x) <= 102 / 65536 * Rabs(sin x)).
10 (x method error x)

11 apply helper. admit.

12 unfold My.

13 abstract interval with

14 (i_bisect_diff x, i_depth 40, i_nocheck).

15 unfold My in H1.

16 gappa. (* global error x)

17 Qed.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Interval Approaches: Square Root

@ Fully computational approach:

f([u,d]) = { [V\f AV if0<u,

otherwise.
Correctness lemma: Vx € [u, 1], /x € f([u, 7]).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Interval Approaches: Square Root

@ Fully computational approach:

f([u,d]) = { [V\f AV if0<u,

otherwise.
Correctness lemma: Vx € [u, 1], /x € f([u, 7]).

@ Oracle-based approach:

O

<u ifv<O0

— - CAT < T2
f(lu,d],[v,V]) =0<VvAT<V /\{ v2 <g otherwise.

Correctness lemma:
Vx € [u, 1], f([u, 1], [v,V]) = true = V/x € [v,V].

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Computing with (Approximate) Reals: Issues

@ Decidability?

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Reflection Formalizations

Computing with (Approximate) Reals: Issues

@ Decidability?

o Semi-decidability?

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Decision Procedures for Arithmetic Theories

© Decision procedures for arithmetic theories
@ Quantifier elimination
@ Theory (C,+, x,=)
@ Theory (Q, +,=, <)
@ V-formulas, ideals, and cones

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C O Ideals

Quantifier Elimination

Definition (Quantifier elimination)

A theory T in a first-order language L admits QE if,
for any formula p € L, there is a quantifier-free formula g € L
such that T |= p < g and g has no other free variables than p.

Sufficient condition: any formula “dx, a3 A--- A «," admits QE.

Property
A formula is decidable in a theory QE if it has no free variables.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C O Ideals

Quantifier Elimination

Definition (Quantifier elimination)

A theory T in a first-order language L admits QE if,
for any formula p € L, there is a quantifier-free formula g € L
such that T |= p < g and g has no other free variables than p.

Sufficient condition: any formula “dx, a3 A--- A «," admits QE.

Property
A formula is decidable in a theory QE if it has no free variables.

Example on N: Vx, 1 <x=4dy, y <x.
o —~(Ix, 1 <xA-(Jy, y <x))
e ~(3x, 1 <xA—(0<x))
e —(1<0)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C O Ideals

Arithmetic Theories and Quantifier Elimination

Decidable theories:
° (C> +a X, :) Tarski

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C O Ideals

Arithmetic Theories and Quantifier Elimination

Decidable theories:
° (C> +a X, :) Tarski
o (R,+,x,=,<) Collins, Hormander

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C O Ideals

Arithmetic Theories and Quantifier Elimination

Decidable theories:

° (C>+a X7:) Tarski
o (R,+,x,=,<) Collins, Hormander
o (Q,+,=,<) Fourier, Motzkin

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures

Quantifier elimination € © Ideals

Arithmetic Theories and Quantifier Elimination

Decidable theories:

Guillaume Melquiond

Tarski
Collins, Hormander
Fourier, Motzkin

Presburger, Cooper

Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures

Quantifier elimination € © Ideals

Arithmetic Theories and Quantifier Elimination

Decidable theories:

Guillaume Melquiond

Tarski

Collins, Hormander
Fourier, Motzkin
Presburger, Cooper

Weispfenning

Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C O Ideals

Arithmetic Theories and Quantifier Elimination

Decidable theories:

o (C,+,x,=) Tarski

o (R, +,x,=,<) Collins, Hormander

o (Q+,=,<) Fourier, Motzkin

o (Z,+,=,<) Presburger, Cooper

° (Q+,[],=,<) Weispfenning
Undecidable theory:

o (Z,+,%,=,<) Tarski, Godel

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (C, +, x, =)

Given 3x, pi(x) =0A---Apm(x) =0Aqi(x) ZOA---Agn(x)#0.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (C, +, x, =)

Given 3x, pi(x) =0A---Apm(x) =0Aqi(x) ZOA---Agn(x)#0.

@ Reducing to Ix, P(x) =0A Q(x) # 0:
o qu(x) £ON A Go(x) 05 qr(x) X -+ X Gufx) 0.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (C, +, x, =)

Given 3x, pi(x) =0A---Apm(x) =0Aqi(x) ZOA---Agn(x)#0.
@ Reducing to Ix, P(x) =0A Q(x) # 0:
o Gu(x) ZOA A gn(x) £0 & Gr(x) X -+ X Gu(x) £ 0.

o ¢ x pi(x) = pj(x) x q(x) + r(x), so
r(x)=0Apj(x)=0 ifc#0
p;(x)—OApj(X)—Oﬁ{ pf()Z):O/\ppj(’-‘(z()zo ifzzo

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (C, +, x, =)

Given 3x, pi(x) =0A---Apm(x) =0Aqi(x) ZOA---Agn(x)#0.

@ Reducing to Ix, P(x) =0A Q(x) # 0:
o Gi(x) £ 0N -+ A Galx) # 0 Ga(x) X -+ X Ga(x) # 0.
o ¢ x pilx) = py(x) x (x) + r(x), 50
r(x) =0Apj(x)=0 ifc#0
pi(x) =0Apj(x) =0« { pi(x) =0 /\ppjf(x) =0 if z =0
Q Cases:

o (Ix, Q(x) # 0) & —(coefs of Q are zero).
o (Ix, P(x)=0)& —(...)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (C, +, x, =)

Given 3x, pi(x) =0A---Apm(x) =0Aqi(x) ZOA---Agn(x)#0.

@ Reducing to Ix, P(x) =0A Q(x) # 0:
o Gu(x) £ 0N+ A Gu(x) 05 qu(x) X -+ X Go(x) £0.
o ¢k x pi(x) = pj(x) x q(x) + r(x), so
r(x)=0Apj(x)=0 ifc#0
pi(x) =0Api(x) =0« { pf()Z) =0 /\ppj(f‘(z() =0 if i =0
@ Cases:
o (Ix, Q(x) # 0) & —(coefs of Q are zero).
o (Ix, P(x)=0)& —(...)
o (Ix, P(x) #0= Q(x) #0) & ~(P|,Q").

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (Q, +, =, <)

Quantifier elimination of linear constraints:

e (Ix, x=3-yAP[x,y]) & Pla-y,y].

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (Q, +, =, <)

Quantifier elimination of linear constraints:

e (Ix, x=3-yAP[x,y]) & Pla-y,y].

o (Ix, \ix <3 - FANx>bi-7) e N\ ,;0<(3—b) 7.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

Theory (Q, +, =, <)

Quantifier elimination of linear constraints:

e (Ix, x=3-yAP[x,y]) & Pla-y,y].

o (Ix, \ix <3 - FANx>bi-7) e N\ ,;0<(3—b) 7.

Special case: closed 3-formulas of conjunctions.
Methods: simplex, interior point.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures

V-Formulas, ldeals, and Cones

Quantifier elimination C Q Ideals

e On C: VX, V,; pi(X) #0V V,; q(X) =0.

Guillaume Melquiond

Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

V-Formulas, ldeals, and Cones

e On C: VX, V,; pi(X) #0V V,; q(X) =0. (F)
F o VxZ, - (/\,.p,-(z) —0ANZ X q(R) —1= o)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

V-Formulas, ldeals, and Cones

e On C: VX, V,; pi(X) #0V V,; q(X) =0. (F)
F o V&2, ﬁ(/\,p,-(z):ow\jzj % qi(%) — 1 :o)
& leldeal(---,pi,---,zpxq—1,---).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

V-Formulas, ldeals, and Cones

e On C: VX, V,; pi(X) #0V V,; q(X) =0. (F)
F o V&2, ﬁ(/\,p,-(z):ow\jzj % qi(%) — 1 :o)
& leldeal(---,pi,---,zpxq—1,---).

o On R: W%, = (A pil®) = 04 A; (%) > 0). (F)

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

V-Formulas, ldeals, and Cones

e On C: VX, V,; pi(X) #0V V,; q(X) =0. (F)
F o V&2, ﬁ(/\,p,-(z):ow\jzj % qi(%) — 1 :o)
& leldeal(---,pi,---,zpxq—1,---).

o On R: VX, - (/\,. pi(R) = 0A N, q(X) = o). (F)
F < —1 € ldeal(py,-- -, pm) + Cone(qr, - ,qn).

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures Quantifier elimination C Q Ideals

V-Formulas, ldeals, and Cones

e On C: VX, V,; pi(X) #0V V,; q(X) =0. (F)
F o V&2, ﬁ(/\,p,-(z):ow\jzj % qi(%) — 1 :o)
& leldeal(---,pi,---,zpxq—1,---).

o On R: VX, - (/\,. pi(R) = 0A N, q(X) = o). (F)
F < —1 € ldeal(py,-- -, pm) + Cone(qr, - ,qn).

Methods: Grobner bases, semi-definite programming, . ..

Suitable for oracles: verifying ideal membership (<) is just
a single polynomial equality.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures

Conclusion

@ Deductive verification allows to certify arbitrary programs.

But proof obligations lack structure,
making it difficult for automated provers.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures

Conclusion

@ Deductive verification allows to certify arbitrary programs.

But proof obligations lack structure,
making it difficult for automated provers.

@ Numerical computations are not incompatible

with formal systems.
They can be used to prove mathematical theorems.

Guillaume Melquiond Numerical Computations and Formal Methods

Program verification Formal arithmetic Decision procedures

Conclusion

@ Deductive verification allows to certify arbitrary programs.

But proof obligations lack structure,
making it difficult for automated provers.

@ Numerical computations are not incompatible
with formal systems.

They can be used to prove mathematical theorems.

@ There are powerful but slow methods for proving
some large sets of proof obligations.

Oracle-based approaches can dramatically increase
performances on specific subsets.

Guillaume Melquiond Numerical Computations and Formal Methods

	Deductive program verification
	Floyd-Hoare logic and weakest preconditions
	A framework for program verification: Why
	Gappa

	Computing in a formal system
	Type theory and proofs by reflection
	Some formalizations of arithmetic in Coq

	Decision procedures for arithmetic theories
	Quantifier elimination
	Theory (C,+,,=)
	Theory (Q,+,=,<)
	-formulas, ideals, and cones

	Conclusion

