Numerical Computations and Formal Methods

Guillaume Melquiond

Proval, Laboratoire de Recherche en Informatique INRIA Saclay-IdF, Université Paris Sud, CNRS

October 28, 2009

Numerical Computations and Formal Methods

- Deductive program verification
- Computing in a formal system
- 3 Decision procedures for arithmetic theories
- 4 Conclusion

Deductive Program Verification

- Deductive program verification
 - Floyd-Hoare logic and weakest preconditions
 - A framework for program verification: Why
 - Gappa
- 2 Computing in a formal system
- 3 Decision procedures for arithmetic theories
- 4 Conclusion

Hoare Triple

Definition (Hoare triple)

{precondition} code {postcondition}.

Meaning of correctness:

If the precondition holds just before the code is executed, the postcondition holds just after it has been executed.

Hoare Triple

Definition (Hoare triple)

```
{precondition} code {postcondition}.
```

Meaning of correctness:

If the precondition holds just before the code is executed, the postcondition holds just after it has been executed.

Note: the definition assumes the code terminates. If it does not, any postcondition holds, including False.

Hoare Triple

```
1 { x >= 0 }
2 y = floor(sqrt(x))
3 { y >= 0 and y*y <= x < (y+1)*(y+1) }</pre>
```

Weakest Precondition

Definition (Weakest precondition)

R is the weakest precondition of a code C and a postcondition Q iff any correct triple $\{P\}$ C $\{Q\}$ satisfies $P \Rightarrow R$.

Weakest Precondition

Definition (Weakest precondition)

R is the weakest precondition of a code C and a postcondition Q iff any correct triple $\{P\}$ C $\{Q\}$ satisfies $P \Rightarrow R$.

A function behaves correctly (modulo termination) if its specification can be expressed as a correct triple.

Weakest Precondition

Definition (Weakest precondition)

R is the weakest precondition of a code C and a postcondition Q iff any correct triple $\{P\}$ C $\{Q\}$ satisfies $P \Rightarrow R$.

A function behaves correctly (modulo termination) if its specification can be expressed as a correct triple.

How to verify it?

- Compute the weakest precondition (Dijkstra, 1975) from the function and its specified postcondition.
- Prove that the specified precondition implies the weakest one.

A Framework for Program Verification: Why

WHY is a minimal system:

- small ML-like programming language,
- small specification language.

A Framework for Program Verification: Why

WHY is a minimal system:

- small ML-like programming language,
- small specification language.

WHY is an intermediate environment:

- it computes weakest preconditions;
- it generates VCs for provers, interactive or not.

A Framework for Program Verification: Why

WHY is a minimal system:

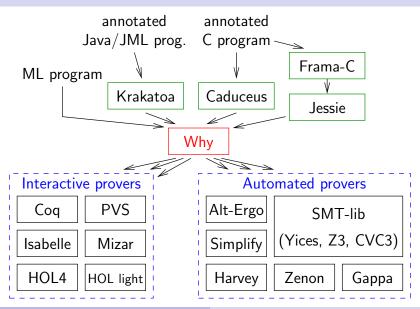
- small ML-like programming language,
- small specification language.

WHY is an intermediate environment:

- it computes weakest preconditions;
- it generates VCs for provers, interactive or not.

Various tools translate programing languages (C, Java) to the ML language.

Environment

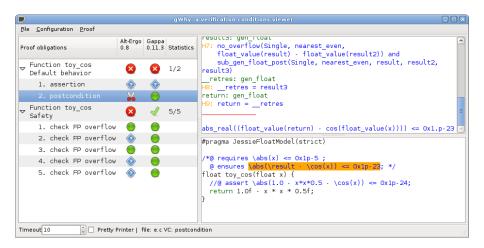


```
/*@ requires \abs(x) <= 0x1p-5;
@ ensures \abs(\result - \cos(x)) <= 0x1p-23; */
float toy_cos(float x) {
    //@assert \abs(1.0-x*x*0.5 - \cos(x)) <= 0x1p-24;
    return 1.0f - x * x * 0.5f;
}</pre>
```

"\result" is the value returned by the function, that is: $1 - 0.5 \cdot x^2$ with all the operations rounded to nearest binary32.

- Safety: none of the operations overflow nor are invalid.
- Correctness: the result is almost the mathematical cosine.

Frama-C/Jessie/Why + Gappa



- Precondition validity:
 - no overflow: $\forall \vec{x}, \ f(\vec{x}) \in D$;

- Precondition validity:
 - no overflow: $\forall \vec{x}, \ f(\vec{x}) \in D$;
 - no domain error: $\forall \vec{x}, \ d(f(\vec{x}), g(\vec{x}), \cdots) \in D$.

- Precondition validity:
 - no overflow: $\forall \vec{x}, \ f(\vec{x}) \in D$;
 - no domain error: $\forall \vec{x}, \ d(f(\vec{x}), g(\vec{x}), \cdots) \in D$.
- Accuracy of results:
 - absolute error: $\forall \vec{x}, \ f(\vec{x}) g(\vec{x}) \in E$;

- Precondition validity:
 - no overflow: $\forall \vec{x}, \ f(\vec{x}) \in D$;
 - no domain error: $\forall \vec{x}, d(f(\vec{x}), g(\vec{x}), \dots) \in D$.
- Accuracy of results:
 - absolute error: $\forall \vec{x}, \ f(\vec{x}) g(\vec{x}) \in E$;
 - relative error: $\forall \vec{x}, \ \exists \varepsilon, \ f(\vec{x}) = g(\vec{x}) \times (1 + \varepsilon)$.

Kind of properties:

- Precondition validity:
 - no overflow: $\forall \vec{x}, f(\vec{x}) \in D$;
 - no domain error: $\forall \vec{x}, \ d(f(\vec{x}), g(\vec{x}), \cdots) \in D$.
- Accuracy of results:
 - absolute error: $\forall \vec{x}, \ f(\vec{x}) g(\vec{x}) \in E$;
 - relative error: $\forall \vec{x}, \ \exists \varepsilon, \ f(\vec{x}) = g(\vec{x}) \times (1 + \varepsilon)$.

Language of formulas:

- intervals with nonsymbolic bounds,
- expressions with mathematical operators (e.g., \times , tan) and rounding operators (e.g., $|\cdot|$).

Input: logical formula about expressions on real numbers. Output: "Yes" and a formal proof, or "I don't know".

Input: logical formula about expressions on real numbers. Output: "Yes" and a formal proof, or "I don't know".

Method: saturation over a set of theorems.

Naive interval arithmetic:

$$u \in [\underline{u}, \overline{u}] \land v \in [\underline{v}, \overline{v}] \Rightarrow u + v \in [\underline{u} + \underline{v}, \overline{u} + \overline{v}].$$

Gappa

Input: logical formula about expressions on real numbers. Output: "Yes" and a formal proof, or "I don't know".

Method: saturation over a set of theorems.

- Naive interval arithmetic: $u \in [\underline{u}, \overline{u}] \land v \in [\underline{v}, \overline{v}] \Rightarrow u + v \in [\underline{u} + \underline{v}, \overline{u} + \overline{v}].$
- Floating-/fixed-point arithmetic properties: $u \in 2^{-1074} \cdot \mathbb{Z} \Rightarrow \exists \varepsilon \in [-2^{-53}, 2^{-53}], \ \circ(u) = u \times (1 + \varepsilon).$

Input: logical formula about expressions on real numbers. Output: "Yes" and a formal proof, or "I don't know".

Method: saturation over a set of theorems.

- Naive interval arithmetic: $u \in [\underline{u}, \overline{u}] \land v \in [\underline{v}, \overline{v}] \Rightarrow u + v \in [\underline{u} + \underline{v}, \overline{u} + \overline{v}].$
- Floating-/fixed-point arithmetic properties: $u \in 2^{-1074} \cdot \mathbb{Z} \Rightarrow \exists \varepsilon \in [-2^{-53}, 2^{-53}], \ \circ(u) = u \times (1 + \varepsilon).$
- Forward error analysis: $\tilde{u} \times \tilde{v} u \times v = (\tilde{u} u) \times v + u \times (\tilde{v} v) + (\tilde{u} u) \times (\tilde{v} v).$
- . . .

Computing in a Formal System

- Deductive program verification
- Computing in a formal system
 - Type theory and proofs by reflection
 - Some formalizations of arithmetic in Coq
- 3 Decision procedures for arithmetic theories
- 4 Conclusion

Example: Peano's Arithmetic

Inductive definition of natural numbers:

```
type nat = 0 \mid S \text{ of nat} (* 5 = SSSSSO *)
```

Axioms for addition:

add0:
$$\forall b$$
, $O + b = b$
addS: $\forall a \ b$, $(S \ a) + b = a + (S \ b)$

Example: Peano's Arithmetic

Deductive proof of
$$4 + (2+3) = 9$$
: (9 steps)
$$\frac{\overline{9=9}}{0+9=9} \operatorname{reflexivity}$$

$$0+9=9 \operatorname{add0}$$

$$\vdots \operatorname{addS} \times 4$$

$$\frac{4+5=9}{4+(0+5)=9} \operatorname{add0}$$

$$\frac{4+(1+4)=9}{4+(2+3)=9} \operatorname{addS}$$

Introducing Computations into Proofs

Recursive definition of addition:

```
let rec plus x y =
  match x with
  | 0 -> y
   | S x' -> plus x' (S y)
```

Lemma plus_xlate: $\forall a \ b, \ a+b = \text{plus} \ a \ b$

Introducing Computations into Proofs

Recursive definition of addition:

```
let rec plus x y =
  match x with
  | 0 -> y
   | S x' -> plus x' (S y)
```

Lemma plus_xlate: $\forall a \ b, \ a+b = \text{plus} \ a \ b$

Proof of
$$4 + (2 + 3) = 9$$
: (4 steps)
$$\frac{9 = 9 \text{ reflexivity}}{\frac{\text{plus 4 (plus 2 3)} = 9}{4 + (\text{plus 2 3}) = 9}} \text{ plus_xlate}$$

$$\frac{4 + (\text{plus 2 3}) = 9}{4 + (2 + 3) = 9} \text{ plus_xlate}$$

Type Theory and Conversion

Curry-Howard correspondence and type theory:

- Proposition A holds if the type A is inhabited.
- Convertible types have the same inhabitants.

$$\frac{p:A}{p:B} A \equiv_{\beta} B$$

Type Theory and Conversion

Curry-Howard correspondence and type theory:

- Proposition A holds if the type A is inhabited.
- Convertible types have the same inhabitants.

$$\frac{p:A}{p:B} A \equiv_{\beta} B$$

Proof of
$$4 + (2 + 3) = 9$$
:
$$\frac{\overline{p:9=9} \text{ reflexivity}}{\frac{p:\text{plus 4 (plus 2 3)} = 9}{4 + (\text{plus 2 3}) = 9}} \frac{\beta\text{-reduction}}{\text{plus_xlate}}$$

$$\frac{4 + (\text{plus 2 3}) = 9}{4 + (2 + 3) = 9} \text{ plus_xlate}$$

Encoding Expressions

Inductive definition of expressions on natural numbers:

```
type expr = Nat of nat | Add of expr * expr
let rec interp_expr e =
  match e with
  | Nat n -> n
  | Add (x, y) ->
      (interp_expr x) "+" (interp_expr y)
```

Proof of
$$4 + (2 + 3) = 9$$
:

???

$$\frac{\text{interp_expr (Add (Nat 4, Add (Nat 2, Nat 3)))} = 9}{4 + (2 + 3) = 9} \beta\text{-reduction}$$

Evaluating Expressions

Evaluating expressions on natural numbers:

```
let rec eval_expr e =
  match e with
  | Nat n -> n
  | Add (x, y) ->
    plus (eval_expr x) (eval_expr y)
```

Lemma expr_xlate: $\forall e$ interp_expr $e = \text{eval_expr } e$

Evaluating Expressions

Evaluating expressions on natural numbers:

```
let rec eval_expr e =
         match e with
         | Nat n -> n
         | Add (x, y) ->
            plus (eval_expr x) (eval_expr v)
Lemma expr_xlate: \forall e interp_expr e = \text{eval\_expr } e
Proof of 4 + (2 + 3) = 9:
            \frac{\overline{9=9} \text{ reflexivity}}{\underline{\text{eval\_expr (Add (Nat } 4, \ldots)) = 9}} \beta\text{-reduction} \\ \underline{\text{interp\_expr (Add (Nat } 4, \ldots)) = 9} \\ \beta\text{-reduction}
                            4 + (2 + 3) = 9
```

Relational Operators

Equality is usually a native concept, while comparisons are not.

Comparing natural numbers:

Lemma: $\forall a \forall b$ le $a \ b = true \Leftrightarrow a \leq b$

Encoding Comparisons

Inductive definition of relations on natural expressions:

```
type prop = Le of expr * expr
let interp_prop p =
  match p with
  | Le (x, y) ->
      (interp_expr x) "<=" (interp_expr y)
let eval_prop p =
  match p with
  | Le (x, y) -> le (eval_expr x) (eval_expr y)
```

Encoding Comparisons

Inductive definition of relations on natural expressions:

```
type prop = Le of expr * expr
   let interp_prop p =
       match p with
       | Le (x, y) \rightarrow
           (interp_expr x) "<=" (interp_expr y)</pre>
    let eval_prop p =
       match p with
        | Le (x, y) \rightarrow le (eval_expr x) (eval_expr y)
Proof of 4 + (2 + 3) < 5 + 6:
      \frac{\frac{}{true = true} \text{ reflexivity}}{\frac{\text{eval\_prop (Le (Add ..., Add ...))} = true}{\frac{\text{interp\_prop (Le (Add ..., Add ...))}}{\beta}} \frac{\beta\text{-reduction}}{\beta\text{-reduction}}
                      4+(2+3)<5+6
```

Integers as lists of bits: polynomial equality, semi-decision of $(\mathbb{Z}, +, =, <)$.

- Integers as lists of bits: polynomial equality, semi-decision of $(\mathbb{Z},+,=,<)$.
- Rational numbers and Bernstein polynomials: global optimization for Hales' inequalities.

- Integers as lists of bits: polynomial equality, semi-decision of $(\mathbb{Z}, +, =, <)$.
- Rational numbers and Bernstein polynomials: global optimization for Hales' inequalities.
- Dyadic numbers and intervals: verification of Gappa certificates.

- Integers as lists of bits: polynomial equality, semi-decision of $(\mathbb{Z},+,=,<)$.
- Rational numbers and Bernstein polynomials: global optimization for Hales' inequalities.
- Dyadic numbers and intervals: verification of Gappa certificates.
- Integers as binary trees of machine words: verification of Pocklington primality certificates.

- Integers as lists of bits: polynomial equality, semi-decision of $(\mathbb{Z}, +, =, <)$.
- Rational numbers and Bernstein polynomials: global optimization for Hales' inequalities.
- Dyadic numbers and intervals: verification of Gappa certificates.
- Integers as binary trees of machine words: verification of Pocklington primality certificates.
- Floating-point numbers and intervals: enclosures for expressions of elementary functions.

- Integers as lists of bits: polynomial equality, semi-decision of $(\mathbb{Z},+,=,<)$.
- Rational numbers and Bernstein polynomials: global optimization for Hales' inequalities.
- Dyadic numbers and intervals: verification of Gappa certificates.
- Integers as binary trees of machine words: verification of Pocklington primality certificates.
- Floating-point numbers and intervals: enclosures for expressions of elementary functions.
- Real numbers as streams of integer words.

Example:

$$\forall x \in [2^{-20}, 1], \ \left| \frac{x \times (1 - 10473 \cdot 2^{-16} \cdot x^2)}{\sin x} - 1 \right| \le 102 \cdot 2^{-16}.$$

Enclosures for Expressions of Elementary Functions

Example:

$$\forall x \in [2^{-20}, 1], \ \left| \frac{x \times (1 - 10473 \cdot 2^{-16} \cdot x^2)}{\sin x} - 1 \right| \le 102 \cdot 2^{-16}.$$

Method: order-1 Taylor interval computations and bisection.

Interval Approaches: Relative Error of a Rounded Sine

Relative error between $\sin x$ and the binary32 Horner evaluation of a degree-3 polynomial for $x \in [2^{-20}, 1]$:

```
1 Theorem rounded_sine :
 forall x v,
  y = rnd(x * rnd(1 - rnd(rnd(x*x) * (10473/65536)))) ->
  1/1048576 \le x \le 1 ->
  Rabs(y - sin x) \le 103 / 65536 * Rabs(sin x).
6 Proof.
  intros.
  set (My := x * (1 - (x*x) * (10473/65536))).
  assert (Rabs(My - \sin x) <= 102 / 65536 * Rabs(\sin x)).
  (* method error *)
10
11 apply helper. admit.
12 unfold My.
13 abstract interval with
   (i_bisect_diff x, i_depth 40, i_nocheck).
14
  unfold My in H1.
15
  gappa. (* global error *)
  Qed.
17
```

Interval Approaches: Square Root

• Fully computational approach:

$$f([\underline{u}, \overline{u}]) = \begin{cases} [\nabla \sqrt{\underline{u}}, \triangle \sqrt{\overline{u}}] & \text{if } 0 \leq u, \\ \bot & \text{otherwise.} \end{cases}$$
Correctness lemma: $\forall x \in [\underline{u}, \overline{u}], \ \sqrt{x} \in f([\underline{u}, \overline{u}]).$

Interval Approaches: Square Root

Fully computational approach:

$$f([\underline{u}, \overline{u}]) = \begin{cases} [\nabla \sqrt{\underline{u}}, \triangle \sqrt{\overline{u}}] & \text{if } 0 \leq u, \\ \bot & \text{otherwise.} \end{cases}$$
Correctness lemma: $\forall x \in [\underline{u}, \overline{u}], \ \sqrt{x} \in f([\underline{u}, \overline{u}]).$

Oracle-based approach:

$$f([\underline{u}, \overline{u}], [\underline{v}, \overline{v}]) = 0 \le \overline{v} \wedge \overline{u} \le \overline{v}^2 \wedge \begin{cases} 0 \le \underline{u} & \text{if } \underline{v} \le 0 \\ \underline{v}^2 \le \underline{u} & \text{otherwise.} \end{cases}$$

Correctness lemma:

$$\forall x \in [\underline{u}, \overline{u}], \ f([\underline{u}, \overline{u}], [\underline{v}, \overline{v}]) = true \Rightarrow \sqrt{x} \in [\underline{v}, \overline{v}].$$

Computing with (Approximate) Reals: Issues

Decidability?

Computing with (Approximate) Reals: Issues

- Decidability?
- Semi-decidability?

Decision Procedures for Arithmetic Theories

- Decision procedures for arithmetic theories
 - Quantifier elimination
 - Theory $(\mathbb{C}, +, \times, =)$
 - Theory $(\mathbb{Q}, +, =, <)$
 - ∀-formulas, ideals, and cones

Quantifier Elimination

Definition (Quantifier elimination)

A theory T in a first-order language L admits QE if, for any formula $p \in L$, there is a quantifier-free formula $q \in L$ such that $T \models p \Leftrightarrow q$ and q has no other free variables than p.

Sufficient condition: any formula " $\exists x, \alpha_1 \land \cdots \land \alpha_n$ " admits QE.

Property

A formula is decidable in a theory QE if it has no free variables.

Quantifier Elimination

Definition (Quantifier elimination)

A theory T in a first-order language L admits QE if, for any formula $p \in L$, there is a quantifier-free formula $q \in L$ such that $T \models p \Leftrightarrow q$ and q has no other free variables than p.

Sufficient condition: any formula " $\exists x, \alpha_1 \land \cdots \land \alpha_n$ " admits QE.

Property

A formula is decidable in a theory QE if it has no free variables.

Example on \mathbb{N} : $\forall x, \ 1 \leq x \Rightarrow \exists y, \ y < x$.

- $\neg(\exists x, \ 1 \leq x \land \neg(\exists y, \ y < x))$
- $\bullet \neg (\exists x, 1 \leq x \land \neg (0 < x))$
- $\neg (1 < 0)$

Decidable theories:

•
$$(\mathbb{C}, +, \times, =)$$

Tarski

Decidable theories:

- $(\mathbb{C}, +, \times, =)$
- $(\mathbb{R}, +, \times, =, <)$

Tarski

Collins, Hörmander

Decidable theories:

- \bullet ($\mathbb{C}, +, \times, =$)
- $(\mathbb{R}, +, \times, =, <)$
- $(\mathbb{Q}, +, =, <)$

Tarski Collins, Hörmander Fourier, Motzkin

Decidable theories:

- \bullet ($\mathbb{C}, +, \times, =$)
- $(\mathbb{R}, +, \times, =, <)$
- $(\mathbb{Q}, +, =, <)$
- $(\mathbb{Z}, +, =, <)$

Tarski Collins, Hörmander Fourier, Motzkin Presburger, Cooper

Decidable theories:

- $(\mathbb{C}, +, \times, =)$
- $(\mathbb{R}, +, \times, =, <)$
- $(\mathbb{Q}, +, =, <)$
- $(\mathbb{Z}, +, =, <)$
- $(\mathbb{Q}, +, |\cdot|, =, <)$

Tarski Collins. Hörmander Fourier, Motzkin Presburger, Cooper Weispfenning

Decidable theories:

- \bullet ($\mathbb{C}, +, \times, =$)
- $(\mathbb{R}, +, \times, =, <)$
- $(\mathbb{Q}, +, =, <)$
- $(\mathbb{Z}, +, =, <)$
- $(\mathbb{Q}, +, |\cdot|, =, <)$

Undecidable theory:

 \bullet ($\mathbb{Z}, +, \times, =, <$)

Tarski Collins. Hörmander Fourier, Motzkin Presburger, Cooper Weispfenning

Tarski. Gödel

Given
$$\exists x, \ p_1(x) = 0 \land \cdots \land p_m(x) = 0 \land q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0$$
.

Theory $(\mathbb{C}, +, \times, =)$

Given
$$\exists x, \ p_1(x) = 0 \land \cdots \land p_m(x) = 0 \land q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0.$$

- **1** Reducing to $\exists x$, $P(x) = 0 \land Q(x) \neq 0$:
 - $q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0 \Leftrightarrow q_1(x) \times \cdots \times q_n(x) \neq 0$.

Theory $(\mathbb{C}, +, \times, =)$

Given
$$\exists x, \ p_1(x) = 0 \land \cdots \land p_m(x) = 0 \land q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0.$$

- **1** Reducing to $\exists x$, $P(x) = 0 \land Q(x) \neq 0$:
 - $a_1(x) \neq 0 \land \cdots \land a_n(x) \neq 0 \Leftrightarrow a_1(x) \times \cdots \times a_n(x) \neq 0$.
 - $c^k \times p_i(x) = p_i(x) \times q(x) + r(x)$, so $p_i(x) = 0 \land p_j(x) = 0 \Leftrightarrow \begin{cases} r(x) = 0 \land p_j(x) = 0 & \text{if } c \neq 0 \\ p_i(x) = 0 \land p_i^*(x) = 0 & \text{if } c = 0 \end{cases}$

Theory $(\mathbb{C},+,\times,=)$

Given
$$\exists x, \ p_1(x) = 0 \land \cdots \land p_m(x) = 0 \land q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0.$$

- Reducing to $\exists x, P(x) = 0 \land Q(x) \neq 0$:
 - $q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0 \Leftrightarrow q_1(x) \times \cdots \times q_n(x) \neq 0$.
 - $c^k \times p_i(x) = p_j(x) \times q(x) + r(x)$, so $p_i(x) = 0 \land p_j(x) = 0 \Leftrightarrow \begin{cases} r(x) = 0 \land p_j(x) = 0 & \text{if } c \neq 0 \\ p_i(x) = 0 \land p_i^*(x) = 0 & \text{if } c = 0 \end{cases}$
- Cases:
 - $(\exists x, \ Q(x) \neq 0) \Leftrightarrow \neg (\text{coefs of } Q \text{ are zero}).$
 - $(\exists x, P(x) = 0) \Leftrightarrow \neg(\ldots)$

Theory $(\mathbb{C}, +, \times, =)$

Given
$$\exists x, \ p_1(x) = 0 \land \cdots \land p_m(x) = 0 \land q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0.$$

- Reducing to $\exists x, P(x) = 0 \land Q(x) \neq 0$:
 - $q_1(x) \neq 0 \land \cdots \land q_n(x) \neq 0 \Leftrightarrow q_1(x) \times \cdots \times q_n(x) \neq 0$.
 - $c^k \times p_i(x) = p_j(x) \times q(x) + r(x)$, so $p_i(x) = 0 \land p_j(x) = 0 \Leftrightarrow \begin{cases} r(x) = 0 \land p_j(x) = 0 & \text{if } c \neq 0 \\ p_i(x) = 0 \land p_i^*(x) = 0 & \text{if } c = 0 \end{cases}$
- Cases:
 - $(\exists x, \ Q(x) \neq 0) \Leftrightarrow \neg (\text{coefs of } Q \text{ are zero}).$
 - $(\exists x, P(x) = 0) \Leftrightarrow \neg(\ldots)$
 - $(\exists x, P(x) \neq 0 \Rightarrow Q(x) \neq 0) \Leftrightarrow \neg (P|_x Q^n).$

Theory $(\mathbb{Q}, +, =, <)$

Quantifier elimination of linear constraints:

•
$$(\exists x, \ x = \vec{a} \cdot \vec{y} \land P[x, \vec{y}]) \Leftrightarrow P[\vec{a} \cdot \vec{y}, \vec{y}].$$

Theory $(\mathbb{Q}, +, =, <)$

Quantifier elimination of linear constraints:

- $(\exists x, \ x = \vec{a} \cdot \vec{y} \land P[x, \vec{y}]) \Leftrightarrow P[\vec{a} \cdot \vec{y}, \vec{y}].$
- $(\exists x, \ \bigwedge_i x < \vec{a}_i \cdot \vec{y} \land \bigwedge_i x > \vec{b}_j \cdot \vec{y}) \Leftrightarrow \bigwedge_{i,j} 0 < (\vec{a}_i \vec{b}_i) \cdot \vec{y}.$

Theory $(\mathbb{Q}, +, =, <)$

Quantifier elimination of linear constraints:

•
$$(\exists x, \ x = \vec{a} \cdot \vec{y} \land P[x, \vec{y}]) \Leftrightarrow P[\vec{a} \cdot \vec{y}, \vec{y}].$$

•
$$(\exists x, \ \bigwedge_i x < \vec{a}_i \cdot \vec{y} \land \bigwedge_j x > \vec{b}_j \cdot \vec{y}) \Leftrightarrow \bigwedge_{i,j} 0 < (\vec{a}_i - \vec{b}_j) \cdot \vec{y}.$$

Special case: closed ∃-formulas of conjunctions.

Methods: simplex, interior point.

• On
$$\mathbb{C}$$
: $\forall \vec{x}$, $\bigvee_{i} p_{i}(\vec{x}) \neq 0 \lor \bigvee_{j} q_{j}(\vec{x}) = 0$. (F)

• On
$$\mathbb{C}$$
: $\forall \vec{x}$, $\bigvee_i p_i(\vec{x}) \neq 0 \lor \bigvee_j q_j(\vec{x}) = 0$. (F)

$$F \Leftrightarrow \forall \vec{x}\vec{z}, \ \neg \left(\bigwedge_i p_i(\vec{x}) = 0 \land \bigwedge_j z_j \times q_j(\vec{x}) - 1 = 0 \right)$$

• On
$$\mathbb{C}$$
: $\forall \vec{x}$, $\bigvee_i p_i(\vec{x}) \neq 0 \lor \bigvee_j q_j(\vec{x}) = 0$. (F)

$$F \Leftrightarrow \forall \vec{x} \vec{z}, \ \neg \left(\bigwedge_i p_i(\vec{x}) = 0 \land \bigwedge_j z_j \times q_j(\vec{x}) - 1 = 0 \right)$$

$$\Leftrightarrow 1 \in \mathsf{Ideal}(\dots, p_i, \dots, z_j \times q_i - 1, \dots).$$

• On
$$\mathbb{C}$$
: $\forall \vec{x}$, $\bigvee_{i} p_{i}(\vec{x}) \neq 0 \lor \bigvee_{j} q_{j}(\vec{x}) = 0$. (F)

$$F \Leftrightarrow \forall \vec{x}\vec{z}, \ \neg \left(\bigwedge_{i} p_{i}(\vec{x}) = 0 \land \bigwedge_{j} z_{j} \times q_{j}(\vec{x}) - 1 = 0 \right)$$

$$\Leftrightarrow 1 \in \mathsf{Ideal}(\cdots, p_{i}, \cdots, z_{j} \times q_{j} - 1, \cdots).$$

• On
$$\mathbb{R}$$
: $\forall \vec{x}, \ \neg \left(\bigwedge_{i} \rho_{i}(\vec{x}) = 0 \land \bigwedge_{j} q_{j}(\vec{x}) \ge 0 \right)$. (F)

• On
$$\mathbb{C}$$
: $\forall \vec{x}$, $\bigvee_{i} p_{i}(\vec{x}) \neq 0 \lor \bigvee_{j} q_{j}(\vec{x}) = 0$. (F)

$$F \Leftrightarrow \forall \vec{x}\vec{z}, \ \neg \left(\bigwedge_{i} p_{i}(\vec{x}) = 0 \land \bigwedge_{j} z_{j} \times q_{j}(\vec{x}) - 1 = 0 \right)$$

$$\Leftrightarrow 1 \in \mathsf{Ideal}(\cdots, p_{i}, \cdots, z_{j} \times q_{j} - 1, \cdots).$$

• On
$$\mathbb{R}$$
: $\forall \vec{x}$, $\neg \left(\bigwedge_{i} p_{i}(\vec{x}) = 0 \land \bigwedge_{j} q_{j}(\vec{x}) \ge 0 \right)$. (F)
 $F \Leftrightarrow -1 \in \mathsf{Ideal}(p_{1}, \cdots, p_{m}) + \mathsf{Cone}(q_{1}, \cdots, q_{n})$.

• On
$$\mathbb{C}$$
: $\forall \vec{x}$, $\bigvee_i p_i(\vec{x}) \neq 0 \lor \bigvee_j q_j(\vec{x}) = 0$. (F)
 $F \Leftrightarrow \forall \vec{x}\vec{z}$, $\neg \left(\bigwedge_i p_i(\vec{x}) = 0 \land \bigwedge_j z_j \times q_j(\vec{x}) - 1 = 0 \right)$
 $\Leftrightarrow 1 \in \mathsf{Ideal}(\dots, p_i, \dots, z_j \times q_i - 1, \dots)$.

• On
$$\mathbb{R}$$
: $\forall \vec{x}, \ \neg \left(\bigwedge_{i} p_{i}(\vec{x}) = 0 \land \bigwedge_{j} q_{j}(\vec{x}) \ge 0 \right)$. (F)
 $F \Leftrightarrow -1 \in \mathsf{Ideal}(p_{1}, \cdots, p_{m}) + \mathsf{Cone}(q_{1}, \cdots, q_{n})$.

Methods: Gröbner bases, semi-definite programming, ... Suitable for oracles: verifying ideal membership (\Leftarrow) is just a single polynomial equality.

Conclusion

Deductive verification allows to certify arbitrary programs.
 But proof obligations lack structure,
 making it difficult for automated provers.

Conclusion

- Deductive verification allows to certify arbitrary programs.
 But proof obligations lack structure,
 making it difficult for automated provers.
- Numerical computations are not incompatible with formal systems.
 - They can be used to prove mathematical theorems.

Conclusion

- Deductive verification allows to certify arbitrary programs.
 But proof obligations lack structure,
 making it difficult for automated provers.
- Numerical computations are not incompatible with formal systems.
 - They can be used to prove mathematical theorems.
- There are powerful but slow methods for proving some large sets of proof obligations.
 - Oracle-based approaches can dramatically increase performances on specific subsets.

Questions?