
Introduction CompCert Flocq CompCert+Flocq Conclusion

A Formally-Verified C Compiler Supporting
Floating-Point Arithmetic

Sylvie Boldo Jacques-Henri Jourdan
Xavier Leroy Guillaume Melquiond

Inria Saclay–̂Ile-de-France & LRI, Université Paris Sud, CNRS
Inria Paris–Rocquencourt

ANR-11-INSE-003 VERASCO

2013-04-09

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Optimizations

Example (FastTwoSum)

double y, z;

y = 0x1p -53 + 0x1p -78; // y = 2−53 + 2−78 > 1
2
ulp(1)

z = ((1. + y) - 1.) - y;

printf("%a\n", z); // Dekker says: z = 2−53 − 2−78

GCC 4.6.3 on x86 architecture

Optimization level Program result

-O0 (x86-32) -0x1p-78

-O0 (x86-64) 0x1.ffffffp-54

-O1, -O2, -O3 0x1.ffffffp-54

-Ofast 0x0p+0

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Optimizations

Example (FastTwoSum)

double y, z;

y = 0x1p -53 + 0x1p -78; // y = 2−53 + 2−78 > 1
2
ulp(1)

z = ((1. + y) - 1.) - y;

printf("%a\n", z); // Dekker says: z = 2−53 − 2−78

GCC 4.6.3 on x86 architecture

Optimization level Program result

-O0 (x86-32) -0x1p-78

-O0 (x86-64) 0x1.ffffffp-54

-O1, -O2, -O3 0x1.ffffffp-54

-Ofast 0x0p+0

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Optimizations

Example (FastTwoSum)

double y, z;

y = 0x1p -53 + 0x1p -78; // y = 2−53 + 2−78 > 1
2
ulp(1)

z = ((1. + y) - 1.) - y;

printf("%a\n", z); // Dekker says: z = 2−53 − 2−78

GCC 4.6.3 on x86 architecture

Optimization level Program result

-O0 (x86-32) -0x1p-78

-O0 (x86-64) 0x1.ffffffp-54

-O1, -O2, -O3 0x1.ffffffp-54

-Ofast 0x0p+0

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

General opinion

From a practical perspective, preserving the “floating
point” semantics is only interesting if not doing so will
result in an execution error. That is, from a
programmer’s perspective, playing “fast and loose” with
floating semantics is generally OK if the resulting
executable does what you want and runs fast.

— Reviewer

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

General opinion

From a practical perspective, preserving the “floating
point” semantics is only interesting if not doing so will
result in an execution error. That is, from a
programmer’s perspective, playing “fast and loose” with
floating semantics is generally OK if the resulting
executable does what you want and runs fast.

— Reviewer

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

General opinion

From a practical perspective, preserving the “floating
point” semantics is only interesting if not doing so will
result in an execution error. That is, from a
programmer’s perspective, playing “fast and loose” with
floating semantics is generally OK if the resulting
executable does what you want and runs fast.

— Reviewer

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

Trivia

What is the oldest wrong-code bug-report still open for GCC?

Answer

Bug #323: “optimized code gives strange floating point results”.

Some people call this a bug in the x87 series. Other call
it a bug in gcc. Regardless of where one wishes to put
the blame, this problem will not be fixed. Period.

— GCC developer, 2005

Answer continued

109 duplicate bug-reports!
Bug #55939: “gcc miscompiles gmp-5.0.5 on m68k-linux”.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

Trivia

What is the oldest wrong-code bug-report still open for GCC?

Answer

Bug #323: “optimized code gives strange floating point results”.

Some people call this a bug in the x87 series. Other call
it a bug in gcc. Regardless of where one wishes to put
the blame, this problem will not be fixed. Period.

— GCC developer, 2005

Answer continued

109 duplicate bug-reports!
Bug #55939: “gcc miscompiles gmp-5.0.5 on m68k-linux”.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

Trivia

What is the oldest wrong-code bug-report still open for GCC?

Answer

Bug #323: “optimized code gives strange floating point results”.

Some people call this a bug in the x87 series. Other call
it a bug in gcc. Regardless of where one wishes to put
the blame, this problem will not be fixed. Period.

— GCC developer, 2005

Answer continued

109 duplicate bug-reports!
Bug #55939: “gcc miscompiles gmp-5.0.5 on m68k-linux”.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

Trivia

What is the oldest wrong-code bug-report still open for GCC?

Answer

Bug #323: “optimized code gives strange floating point results”.

Some people call this a bug in the x87 series. Other call
it a bug in gcc. Regardless of where one wishes to put
the blame, this problem will not be fixed. Period.

— GCC developer, 2005

Answer continued

109 duplicate bug-reports!

Bug #55939: “gcc miscompiles gmp-5.0.5 on m68k-linux”.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Compilers

Trivia

What is the oldest wrong-code bug-report still open for GCC?

Answer

Bug #323: “optimized code gives strange floating point results”.

Some people call this a bug in the x87 series. Other call
it a bug in gcc. Regardless of where one wishes to put
the blame, this problem will not be fixed. Period.

— GCC developer, 2005

Answer continued

109 duplicate bug-reports!
Bug #55939: “gcc miscompiles gmp-5.0.5 on m68k-linux”.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Floating-Point Arithmetic and Users

What Can Users Expect From FP Arithmetic?

Rounding takes a number regarded as infinitely precise
and, if necessary, modifies it to fit in the destination’s
format [...]. Every operation shall be performed as if it
first produced an intermediate result correct to infinite
precision and with unbounded range, and then rounded
that result [...].

— IEEE-754 2008

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

What Languages Say About FP Arithmetic

Java SE 7 (15.4 FP-strict expressions)

Within an expression that is not FP-strict, some leeway is granted
for an implementation to use an extended exponent range to
represent intermediate results.

C99 (5.2.4.2.2 Characteristics of floating types)

The values of operations with floating operands [...] are evaluated
to a format whose range and precision may be greater than
required by the type.

Fortran 2008 (7.1.5.2.4 Eval of numeric intrinsic operations)

Two expressions of a numeric type are mathematically equivalent
if, for all possible values of their primaries, their mathematical
values are equal.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

What Languages Say About FP Arithmetic

Java SE 7 (15.4 FP-strict expressions)

Within an expression that is not FP-strict, some leeway is granted
for an implementation to use an extended exponent range to
represent intermediate results.

C99 (5.2.4.2.2 Characteristics of floating types)

The values of operations with floating operands [...] are evaluated
to a format whose range and precision may be greater than
required by the type.

Fortran 2008 (7.1.5.2.4 Eval of numeric intrinsic operations)

Two expressions of a numeric type are mathematically equivalent
if, for all possible values of their primaries, their mathematical
values are equal.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

What Languages Say About FP Arithmetic

Java SE 7 (15.4 FP-strict expressions)

Within an expression that is not FP-strict, some leeway is granted
for an implementation to use an extended exponent range to
represent intermediate results.

C99 (5.2.4.2.2 Characteristics of floating types)

The values of operations with floating operands [...] are evaluated
to a format whose range and precision may be greater than
required by the type.

Fortran 2008 (7.1.5.2.4 Eval of numeric intrinsic operations)

Two expressions of a numeric type are mathematically equivalent
if, for all possible values of their primaries, their mathematical
values are equal.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

What Languages Say About FP Arithmetic

Java SE 7 (15.4 FP-strict expressions)

Within an expression that is not FP-strict, some leeway is granted
for an implementation to use an extended exponent range to
represent intermediate results.

C99 (5.2.4.2.2 Characteristics of floating types)

The values of operations with floating operands [...] are evaluated
to a format whose range and precision may be greater than
required by the type.

Fortran 2008 (7.1.5.2.4 Eval of numeric intrinsic operations)

Two expressions of a numeric type are mathematically equivalent
if, for all possible values of their primaries, their mathematical
values are equal.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

On Compilers and Trust

Trivia

How do avionics developers explain to a certification authority
that their C programs are airworthy? (E.g. DO-178 regulations.)

Answer

They disable compiler optimizations.

They read the assembly code generated by the C compiler.

Trust in the compilers? Absolutely none.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

On Compilers and Trust

Trivia

How do avionics developers explain to a certification authority
that their C programs are airworthy? (E.g. DO-178 regulations.)

Answer

They disable compiler optimizations.

They read the assembly code generated by the C compiler.

Trust in the compilers? Absolutely none.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

On Compilers and Trust

Trivia

How do avionics developers explain to a certification authority
that their C programs are airworthy? (E.g. DO-178 regulations.)

Answer

They disable compiler optimizations.

They read the assembly code generated by the C compiler.

Trust in the compilers? Absolutely none.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

How to Improve the Situation

Proposal

Build a C compiler that can be trusted and does not mess with
floating-point code.

Components

CompCert: a C compiler targeting ARM, PowerPC, x86-SSE2

mathematical specification of the semantics of C and target,

formal proof that compilation preserves semantics.

Flocq: a Coq formalization of FP arithmetic

multi-radix, multi-format, multi-precision arithmetic,

comprehensive library, including computable operations.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

How to Improve the Situation

Proposal

Build a C compiler that can be trusted and does not mess with
floating-point code.

Components

CompCert: a C compiler targeting ARM, PowerPC, x86-SSE2

mathematical specification of the semantics of C and target,

formal proof that compilation preserves semantics.

Flocq: a Coq formalization of FP arithmetic

multi-radix, multi-format, multi-precision arithmetic,

comprehensive library, including computable operations.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

How to Improve the Situation

Proposal

Build a C compiler that can be trusted and does not mess with
floating-point code.

Components

CompCert: a C compiler targeting ARM, PowerPC, x86-SSE2

mathematical specification of the semantics of C and target,

formal proof that compilation preserves semantics.

Flocq: a Coq formalization of FP arithmetic

multi-radix, multi-format, multi-precision arithmetic,

comprehensive library, including computable operations.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Example Compilers Languages Goal

Outline

1 Introduction

2 CompCert, a formally-verified compiler

3 Flocq, a Coq formalization of FP arithmetic

4 CompCert with floating-point support

5 Conclusion

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Outline

1 Introduction

2 CompCert, a formally-verified compiler
Semantics preservation
Floating-point arithmetic in the earlier days

3 Flocq, a Coq formalization of FP arithmetic

4 CompCert with floating-point support

5 Conclusion

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Theorem

Let S be a source C program free of undefined behaviors.
Assume that the CompCert compiler, invoked on S, does not report
a compile-time error, but instead produces executable code E .
Then, any observable behavior B of E is one of the possible
observable behaviors of S.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Theorem

Let S be a source C program free of undefined behaviors.
Assume that the CompCert compiler, invoked on S, does not report
a compile-time error, but instead produces executable code E .
Then, any observable behavior B of E is one of the possible
observable behaviors of S.

Corollary

You do not need to know how the compiler works,
nor how the target environment behaves,
in order to know what the produced executable will compute.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Theorem

Let S be a source C program free of undefined behaviors.
Assume that the CompCert compiler, invoked on S, does not report
a compile-time error, but instead produces executable code E .
Then, any observable behavior B of E is one of the possible
observable behaviors of S.

Implicit assumptions

The compiler behaves as proved.

The target environment is correctly formalized.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Theorem

Let S be a source C program free of undefined behaviors.
Assume that the CompCert compiler, invoked on S, does not report
a compile-time error, but instead produces executable code E .
Then, any observable behavior B of E is one of the possible
observable behaviors of S.

Implicit assumptions

The compiler behaves as proved.

The target environment is correctly formalized.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Theorem

Let S be a source C program free of undefined behaviors.
Assume that the CompCert compiler, invoked on S, does not report
a compile-time error, but instead produces executable code E .
Then, any observable behavior B of E is one of the possible
observable behaviors of S.

Implicit assumptions

The compiler behaves as proved.

The target environment is correctly formalized.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Semantics preservation guarantees that reading the semantics of
the input language of the compiler is sufficient to understand
how the programmer’s code will end up.

Example (Clight semantics)

Inductive step: state -> trace -> state -> Prop :=
...
| step_seq: forall f s1 s2 k e le m,

step (State f (Ssequence s1 s2) k e le m)
E0 (State f s1 (Kseq s2 k) e le m)

...

Disclaimer: it is painful (about 1000 lines of Coq),

but not as painful as reading the code of a whole compiler,

or as reading every generated assembly code.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Semantics preservation guarantees that reading the semantics of
the input language of the compiler is sufficient to understand
how the programmer’s code will end up.

Example (Clight semantics)

Inductive step: state -> trace -> state -> Prop :=
...
| step_seq: forall f s1 s2 k e le m,

step (State f (Ssequence s1 s2) k e le m)
E0 (State f s1 (Kseq s2 k) e le m)

...

Disclaimer: it is painful (about 1000 lines of Coq),

but not as painful as reading the code of a whole compiler,

or as reading every generated assembly code.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Semantics preservation guarantees that reading the semantics of
the input language of the compiler is sufficient to understand
how the programmer’s code will end up.

Example (Clight semantics)

Inductive step: state -> trace -> state -> Prop :=
...
| step_seq: forall f s1 s2 k e le m,

step (State f (Ssequence s1 s2) k e le m)
E0 (State f s1 (Kseq s2 k) e le m)

...

Disclaimer: it is painful (about 1000 lines of Coq),

but not as painful as reading the code of a whole compiler,

or as reading every generated assembly code.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

Semantics Preservation

Semantics preservation guarantees that reading the semantics of
the input language of the compiler is sufficient to understand
how the programmer’s code will end up.

Example (Clight semantics)

Inductive step: state -> trace -> state -> Prop :=
...
| step_seq: forall f s1 s2 k e le m,

step (State f (Ssequence s1 s2) k e le m)
E0 (State f s1 (Kseq s2 k) e le m)

...

Disclaimer: it is painful (about 1000 lines of Coq),

but not as painful as reading the code of a whole compiler,

or as reading every generated assembly code.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

What a Compiler Does with FP Code

1 Parse literal constants from the source code.

2 Perform some optimizations, e.g. constant propagation.

3 Emulate primitive operations missing from the target,
e.g. integer ↔ float conversions.

4 Output constants to the assembly code.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

How CompCert Handled FP Arithmetic Before

Earlier CompCert: axiomatized floating-point arithmetic.

Consequences

Parsing done through external functions, e.g. strtod.
⇒ “rounding error for values very close to half-way points”.

FP constant propagation performed by the host system.
⇒ double-rounding issues.

No proof of semantics preservation.
⇒ possibly incorrect code transformations.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

How CompCert Handled FP Arithmetic Before

Earlier CompCert: axiomatized floating-point arithmetic.

Consequences

Parsing done through external functions, e.g. strtod.
⇒ “rounding error for values very close to half-way points”.

FP constant propagation performed by the host system.
⇒ double-rounding issues.

No proof of semantics preservation.
⇒ possibly incorrect code transformations.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

How CompCert Handled FP Arithmetic Before

Earlier CompCert: axiomatized floating-point arithmetic.

Consequences

Parsing done through external functions, e.g. strtod.
⇒ “rounding error for values very close to half-way points”.

FP constant propagation performed by the host system.
⇒ double-rounding issues.

No proof of semantics preservation.
⇒ possibly incorrect code transformations.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Semantics preservation FP arithmetic before

How CompCert Handled FP Arithmetic Before

Earlier CompCert: axiomatized floating-point arithmetic.

Consequences

Parsing done through external functions, e.g. strtod.
⇒ “rounding error for values very close to half-way points”.

FP constant propagation performed by the host system.
⇒ double-rounding issues.

No proof of semantics preservation.
⇒ possibly incorrect code transformations.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Numbers Operations

Outline

1 Introduction

2 CompCert, a formally-verified compiler

3 Flocq, a Coq formalization of FP arithmetic
Floating-point formats
Operations and specification

4 CompCert with floating-point support

5 Conclusion

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Numbers Operations

Flocq’s Binary FP Numbers

Definition (Floating-point numbers as a sum type)

Inductive binary_float :=
| B754_zero : bool -> binary_float
| B754_infinity : bool -> binary_float
| B754_nan : binary_float
| B754_finite : forall (s : bool) (m : positive)

(e : Z), bounded m e = true -> binary_float.

parametrized by precision and range of exponent,

supports signed zeros, infinities, (sub)normal numbers,

ignores NaN payload (and sign).

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Numbers Operations

Floating-point Operators

Supported operations:

addition, multiplication, division, square root,

conversion from/to standard binary representation.

Critical feature: these are computable functions.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Numbers Operations

Floating-point Operators

Supported operations:

addition, multiplication, division, square root,

conversion from/to standard binary representation.

Critical feature: these are computable functions.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Numbers Operations

Floating-point Operators

Supported operations:

addition, multiplication, division, square root,

conversion from/to standard binary representation.

Critical feature: these are computable functions.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Numbers Operations

IEEE-754 Compliance

Theorem (Bmult correct)

Given x and y two binary float numbers, m a rounding mode,
if z = round(m, B2R(x)× B2R(y)), we have

B2R(Bmult(m, x , y)) = z if |z | < 2E ,
Bmult(m, x , y) =
overflow(m, Bsign(x)× Bsign(y)) otherwise.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Outline

1 Introduction

2 CompCert, a formally-verified compiler

3 Flocq, a Coq formalization of FP arithmetic

4 CompCert with floating-point support
Parsing and output of numeric literals
Constant propagation
Conversions from/to Integers

5 Conclusion

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Parsing and Output of Numeric Literals

How to parse 0.314e1 in the C input code?

1 Parse integers 314 and 1.

2 Normalize into 314 · 10−2.

3 Perform a FP division with Flocq: round(NE, 314/100).

How to pass it to the assembler?

1 Ask Flocq for the bit-level representation.

2 Output it as an integer: .quad 0x40091eb851eb851f

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Parsing and Output of Numeric Literals

How to parse 0.314e1 in the C input code?

1 Parse integers 314 and 1.

2 Normalize into 314 · 10−2.

3 Perform a FP division with Flocq: round(NE, 314/100).

How to pass it to the assembler?

1 Ask Flocq for the bit-level representation.

2 Output it as an integer: .quad 0x40091eb851eb851f

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Constant Propagation

Source code

inline double f(double x) {
if (x < 1.0) return 1.0; else return 1.0 / x;

}
double g(void) {

return f(3.0);
}

After inlining and constant propagation

double g(void) {
return 0x1 .5555555555555p-2;

}

Note: rounding to nearest was assumed.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Constant Propagation

Source code

inline double f(double x) {
if (x < 1.0) return 1.0; else return 1.0 / x;

}
double g(void) {

return f(3.0);
}

After inlining and constant propagation

double g(void) {
return 0x1 .5555555555555p-2;

}

Note: rounding to nearest was assumed.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Emulation: Conversion from/to Integers

Some conversions are not supported by target architectures,

so we emulate them with some sequences of operations,

and we have formally proved the semantics preservation.

Example (From unsigned to double)

x86-SSE2 converts to binary64 only from signed 32-bit integers.

n < 0x80000000 ? (double)((int) n)
: (double)((int)(n - 0x80000000)) + 0x1.p31

PowerPC does not support conversion from integers to binary64.

fmake(0x43000000 , n ^ 0x80000000)
- fmake(0x43000000 , 0x80000000)

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Emulation: Conversion from/to Integers

Some conversions are not supported by target architectures,

so we emulate them with some sequences of operations,

and we have formally proved the semantics preservation.

Example (From unsigned to double)

x86-SSE2 converts to binary64 only from signed 32-bit integers.

n < 0x80000000 ? (double)((int) n)
: (double)((int)(n - 0x80000000)) + 0x1.p31

PowerPC does not support conversion from integers to binary64.

fmake(0x43000000 , n ^ 0x80000000)
- fmake(0x43000000 , 0x80000000)

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Parsing Constant propagation Conversions

Emulation: Conversion from/to Integers

Some conversions are not supported by target architectures,

so we emulate them with some sequences of operations,

and we have formally proved the semantics preservation.

Example (From unsigned to double)

x86-SSE2 converts to binary64 only from signed 32-bit integers.

n < 0x80000000 ? (double)((int) n)
: (double)((int)(n - 0x80000000)) + 0x1.p31

PowerPC does not support conversion from integers to binary64.

fmake(0x43000000 , n ^ 0x80000000)
- fmake(0x43000000 , 0x80000000)

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Outline

1 Introduction

2 CompCert, a formally-verified compiler

3 Flocq, a Coq formalization of FP arithmetic

4 CompCert with floating-point support

5 Conclusion
Inconsistencies with the environment
Performances
Conclusion

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Inconsistencies with the Environment

Assumption: the target environment is correctly formalized.

Broken assumptions

Nobody messed with the control flags of the processor.

NaNs have a single representation (no payload nor sign).

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Inconsistencies with the Environment

Assumption: the target environment is correctly formalized.

Broken assumptions

Nobody messed with the control flags of the processor.

NaNs have a single representation (no payload nor sign).

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Inconsistencies with the Environment

Assumption: the target environment is correctly formalized.

Broken assumptions

Nobody messed with the control flags of the processor.

NaNs have a single representation (no payload nor sign).

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Performances: FFTW Pseudo-Benchmark

Example (Fastest Fourier Transform in the West)

/* Generated by: ../../../ genfft/gen_r2r.native -compact -variables 4 -pipeline -
latency 4 -redft01 -n 8 -name e01_8 -include r2r.h */
void e01_8(const R *I, R *O, stride is, stride os, INT v, INT ivs , INT ovs)
{
const E KP1_662939224 = ((E) +1.662939224605090474157576755235811513477121624);
const E KP1_111140466 = ((E) +1.111140466039204449485661627897065748749874382);
const E KP390180644 = ((E) +0.390180644032256535696569736954044481855383236);
const E KP1_961570560 = ((E) +1.961570560806460898252364472268478073947867462);

. . .
for (i = v; i > 0; i = i - 1, I = I + ivs , O = O + ovs) {

E T7, Tl, T4, Tk , Td , To, Tg, Tn;
{

E T5, T6, T1, T3 , T2;
T5 = I[(is[2])];
T6 = I[(is[6])];
T7 = (((KP1_847759065) * (T5)) + (KP765366864 * T6));
Tl = ((KP765366864 * T5) - ((KP1_847759065) * (T6)));

. . .

Target: x86-32 with SSE2 arithmetic (everything fits in L1 cache).
Compilers: GCC 4.6.3 (-O3) vs CompCert 1.13.
Results: CompCert’s compiled code is 25% slower than GCC’s,
but 160% faster than GCC’s at -O0.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Performances: FFTW Pseudo-Benchmark

Example (Fastest Fourier Transform in the West)

/* Generated by: ../../../ genfft/gen_r2r.native -compact -variables 4 -pipeline -
latency 4 -redft01 -n 8 -name e01_8 -include r2r.h */
void e01_8(const R *I, R *O, stride is, stride os, INT v, INT ivs , INT ovs)
{
const E KP1_662939224 = ((E) +1.662939224605090474157576755235811513477121624);
const E KP1_111140466 = ((E) +1.111140466039204449485661627897065748749874382);
const E KP390180644 = ((E) +0.390180644032256535696569736954044481855383236);
const E KP1_961570560 = ((E) +1.961570560806460898252364472268478073947867462);

. . .
for (i = v; i > 0; i = i - 1, I = I + ivs , O = O + ovs) {

E T7, Tl, T4, Tk , Td , To, Tg, Tn;
{

E T5, T6, T1, T3 , T2;
T5 = I[(is[2])];
T6 = I[(is[6])];
T7 = (((KP1_847759065) * (T5)) + (KP765366864 * T6));
Tl = ((KP765366864 * T5) - ((KP1_847759065) * (T6)));

. . .

Target: x86-32 with SSE2 arithmetic (everything fits in L1 cache).
Compilers: GCC 4.6.3 (-O3) vs CompCert 1.13.
Results: CompCert’s compiled code is 25% slower than GCC’s,

but 160% faster than GCC’s at -O0.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Performances: FFTW Pseudo-Benchmark

Example (Fastest Fourier Transform in the West)

/* Generated by: ../../../ genfft/gen_r2r.native -compact -variables 4 -pipeline -
latency 4 -redft01 -n 8 -name e01_8 -include r2r.h */
void e01_8(const R *I, R *O, stride is, stride os, INT v, INT ivs , INT ovs)
{
const E KP1_662939224 = ((E) +1.662939224605090474157576755235811513477121624);
const E KP1_111140466 = ((E) +1.111140466039204449485661627897065748749874382);
const E KP390180644 = ((E) +0.390180644032256535696569736954044481855383236);
const E KP1_961570560 = ((E) +1.961570560806460898252364472268478073947867462);

. . .
for (i = v; i > 0; i = i - 1, I = I + ivs , O = O + ovs) {

E T7, Tl, T4, Tk , Td , To, Tg, Tn;
{

E T5, T6, T1, T3 , T2;
T5 = I[(is[2])];
T6 = I[(is[6])];
T7 = (((KP1_847759065) * (T5)) + (KP765366864 * T6));
Tl = ((KP765366864 * T5) - ((KP1_847759065) * (T6)));

. . .

Target: x86-32 with SSE2 arithmetic (everything fits in L1 cache).
Compilers: GCC 4.6.3 (-O3) vs CompCert 1.13.
Results: CompCert’s compiled code is 25% slower than GCC’s,
but 160% faster than GCC’s at -O0.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Conclusion

Features

simple yet useful semantics for FP numbers (IEEE-754!),

no dependencies on the host system during compilation,

a complete formal proof of semantics preservation
(about 3000 new lines of Coq proofs).

Current limitations

rounding to nearest is assumed,

“float” computations are done in binary64,

few optimizations (missing some range information),

incorrect assumption about the binary representation of NaNs.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Conclusion

Features

simple yet useful semantics for FP numbers (IEEE-754!),

no dependencies on the host system during compilation,

a complete formal proof of semantics preservation
(about 3000 new lines of Coq proofs).

Current limitations

rounding to nearest is assumed,

“float” computations are done in binary64,

few optimizations (missing some range information),

incorrect assumption about the binary representation of NaNs.

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

Introduction CompCert Flocq CompCert+Flocq Conclusion Inconsistencies Performances Conclusion

Questions?

CompCert: http://compcert.inria.fr/

Flocq: http://flocq.gforge.inria.fr/

Verasco: http://verasco.imag.fr/

S. Boldo, J-H. Jourdan, X. Leroy, G. Melquiond A Formally-Verified C Compiler Supporting FP Arithmetic

http://compcert.inria.fr/
http://flocq.gforge.inria.fr/
http://verasco.imag.fr/

	Introduction
	Example
	Compilers
	Languages
	Goal

	CompCert, a formally-verified compiler
	Semantics preservation
	Floating-point arithmetic in the earlier days

	Flocq, a Coq formalization of FP arithmetic
	Floating-point formats
	Operations and specification

	CompCert with floating-point support
	Parsing and output of numeric literals
	Constant propagation
	Conversions from/to Integers

	Conclusion
	Inconsistencies with the environment
	Performances
	Conclusion

