
Noname manuscript No.
(will be inserted by the editor)

Formally Verified Approximations of Definite Integrals

Assia Mahboubi · Guillaume Melquiond ·
Thomas Sibut-Pinote

the date of receipt and acceptance should be inserted later

Abstract Finding an elementary form for an antiderivative is often a difficult
task, so numerical integration has become a common tool when it comes to making
sense of a definite integral. Some of the numerical integration methods can even be
made rigorous: not only do they compute an approximation of the integral value
but they also bound its inaccuracy. Yet numerical integration is still missing from
the toolbox when performing formal proofs in analysis.

This paper presents an efficient method for automatically computing and prov-
ing bounds on some definite integrals inside the Coq formal system. Our approach
is not based on traditional quadrature methods such as Newton-Cotes formulas.
Instead, it relies on computing and evaluating antiderivatives of rigorous polyno-
mial approximations, combined with an adaptive domain splitting. Our approach
also handles improper integrals, provided that a factor of the integrand belongs to
a catalog of identified integrable functions. This work has been integrated to the
CoqInterval library.

Keywords Formal proof · Numeric computations · Definite integrals · Improper
integrals · Decision procedure · Interval arithmetic · Polynomial approximations ·
Real analysis

This work was supported in part by the project FastRelax ANR-14-CE25-0018-01.

A. Mahboubi
Inria, LS2N, Université de Nantes
LS2N, 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3, France
E-mail: assia.mahboubi@inria.fr

G. Melquiond
Inria, Université Paris-Saclay
PCRI, Bât. 650, Université Paris-Sud, 91405 Orsay cedex, France
E-mail: guillaume.melquiond@inria.fr

T. Sibut-Pinote
École Polytechnique, Inria, Université Paris-Saclay
1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France
E-mail: thomas.sibut-pinote@inria.fr

2 Assia Mahboubi et al.

1 Introduction

Computing the value of definite integrals is the modern and generalized take on the
ancient problem of computing the area of a figure. Quadrature methods hence refer
to the numerical methods for estimating such integrals. Numerical integration is
often the preferred way of obtaining such estimations as symbolic approaches may
be too difficult or even just impossible. These quadrature methods usually consist
in interpolating the integrand function by a degree-n polynomial, integrating the
polynomial and then bounding the error using a bound on the n+1-th derivative
of the integrand function. Most often though, these methods are used in a non-
rigorous way, for instance without bounding the error, or worse on functions with
unbounded derivatives. Open formulas of quadrature can also be used to approxi-
mate improper integrals with removable singularities, like

∫ 1

0
sin t
t dt, but their use

in practice is even less rigorous.

Yet estimating the value of integrals is a crucial part of some mathematical
proofs, making numerical integration an invaluable ally. Examples of such proofs
occur in various areas of mathematics, such as number theory (e.g. Helfgott’s
proof of the ternary Goldbach conjecture [7]) or geometry (e.g. the first proof
of the double bubble conjecture [6]). This motivates developing high-confidence
methods for computing reliable yet accurate and fast estimations of integrals.

The present article describes a formal-proof producing procedure to obtain
numerical enclosures of definite integrals

∫ v
u
f , where f is a real-valued function.

It extends a previous publication by the same authors [9], devoted to the case
of a bounded integration domain, for an integrand function f which is Riemann-
integrable on [u; v]. This extended version includes a generalization of the enclosure
method to the case of improper integrals. Improper integrals are limits of definite
integrals: for instance,

∫+∞
u

f is the limit of
∫ v
u
f when v → +∞, and

∫ v
a+ f , with

a a singular point for f , denotes the limit of
∫ v
u
f when u → a+. Estimating an

improper integral amounts to combining two enclosures: one for a proper integral
and one for a remainder.

Our procedure can deal with any proper integral of a function f for which
we have an interval extension and/or a polynomial approximation. Regarding im-
proper integrals, the current procedure can only deal with a limited class of inte-
grals: their limit bounds should be either 0+ or +∞, and the syntactic shape of
the integrand f should make manifest its domination by a suitable element of the
scale xα lnβ x or of the scale eγx. Enclosures are computed inside the Coq proof
assistant and the computations are correct by construction. Interestingly, the for-
mal proof that the integral exists comes as a by-product of these computations,
even in the case of improper integrals.

Our approach is based on interval methods, in the spirit of Moore et al. [13],
and combines the computation of a numerical enclosure of the integrand with an
adaptive dichotomy process. It is based on the CoqInterval library for computing
interval extensions of elementary mathematical functions and is implemented as
an improvement of the interval Coq tactic [11]. We use the theory of the Riemann
integral from the Coquelicot library [3]. The latter is a conservative extension of
the theory shipped with the standard distribution of the Coq system: based on the
same axiomatic definition of real numbers, the Coquelicot library provides a more
comprehensive and user-friendly formal library of real analysis. Note that, for the

Formally Verified Approximations of Definite Integrals 3

purpose of the present work, we had to significantly extend the Coquelicot library
to improve its support for improper integrals.

The paper is organized as follows: Section 2 introduces some definitions and
notations used throughout the paper, and briefly describes the Coq libraries we
build on. Section 3 describes the algorithms used to estimate proper integrals
while Section 4 focuses on estimating the remainder of improper integrals. Sec-
tion 5 describes the design of the proof-producing Coq tactic. In Section 6 we
provide cross-software benchmarks highlighting issues with both our and others’
algorithms. In Section 7, we discuss the limitations and perspectives of this work.

2 Preliminaries

In this section we introduce some vocabulary and notations used throughout the
paper and we summarize the existing Coq libraries the present work builds on.

2.1 Notations and first definitions

In this paper, an interval is a closed connected subset of the set of real numbers.
We use I to denote the set of intervals: {[a; b] | a, b ∈ R∪ {±∞}}. A point interval
is an interval of the shape [a; a] where a ∈ R. Any interval variable will be denoted
using a bold font. For any interval x ∈ I, inf x (resp. sup x) denotes its left (resp.
right) bound, with inf x ∈ R ∪ {−∞} (resp. sup x ∈ R ∪ {+∞}). An enclosure of
x ∈ R is an interval x ∈ I such that x ∈ x.

Interval arithmetic is concerned with providing operators on intervals that
respect the inclusion property. Given a binary operator � on real numbers, naive
interval arithmetic provides a binary operator 3 on intervals such that

∀x, y ∈ R, ∀x,y ∈ I, x ∈ x ∧ y ∈ y⇒ x � y ∈ x3y.

In the following, we will not denote interval operators in any distinguishing way.
In particular, whenever an arithmetic operator takes interval inputs, it should
be understood as any interval extension of the corresponding operator on real
numbers. Moreover, whenever a real number appears as an input of an interval
operator, it should be understood as any interval that encloses this number. For
instance, the expression (v − u) · x denotes the interval product of the interval x
with any (hopefully tight) interval enclosing the real v − u.

2.2 Elementary real analysis in Coq

Coq’s standard library Reals
1 axiomatizes real arithmetic, with a classical fla-

vor [12]. It provides some notions of elementary real analysis, including the defini-
tion of continuity, differentiability, and Riemann integrability. It also comes with a
formalization of the properties of usual mathematical functions like sin, cos, exp,
and so on.

1 https://coq.inria.fr/distrib/current/stdlib/

https://coq.inria.fr/distrib/current/stdlib/

4 Assia Mahboubi et al.

The Coquelicot library is a conservative extension of this library [3]. Given V
a complete normed R-vector space, i.e. an instance of (CompleteNormedModule R), it
provides a total operator that outputs a value in V from a function f : R→ V and
two bounds u, v ∈ R:

Definition RInt {V : CompleteNormedModule R} (f : R -> V) (u : R) (v : R) : V.

When the function f is Riemann-integrable on [u; v], the value (RInt f u v) is
equal to

∫ v
u
f(t) dt. Otherwise it is left unspecified. Thus, most properties about

the actual value of (RInt f u v) hold only if f is integrable on [u; v].
The library also provides a total operator that generalizes the notion of integral

by replacing the bounds by filters, which are collections of neighborhoods of the
intended finite or infinite bound. The resulting generalized definition of integral
can be used to represent improper integrals such as

∫+∞
0+ lnx/(1 + x2)dx.

Definition RInt_gen {V : ... } (f : R -> V) (u v : (R -> Prop) -> Prop) : V.

The aim of this work is to provide a procedure that computes a numerical and
formally proved enclosure of an expression (RInt f u v) or (RInt_gen f u v) —and
justifies that this integral is well-defined. This procedure is used in an automated
tactic that proves inequalities like |

∫ 1

0

√
1− x2 dx− π

4 | ≤
1

100 , stated as:

Goal Rabs (RInt (fun x => sqrt(1 - x * x)) 0 1 - PI / 4) <= 1/100.

2.3 Numerical computations in Coq

CoqInterval is a Coq library for computing numerical enclosures of real-valued
expressions [11]. These expressions belong to a class E built from constants, vari-
ables, arithmetic operations, and some elementary functions. It also provides a
tactic interval to automatically deduce certain goals from these enclosures.

The tactic typically takes a goal A ≤ e ≤ B where e is an expression in E ,
and A and B are constants. Using the paradigm of interval arithmetic, it builds a
set e such that e ∈ e holds by construction and such that e reduces to an interval
[inf e; sup e] by computation. Then it checks that A ≤ inf e and sup e ≤ B, again
by computation, from which it proves A ≤ e ≤ B. All the computations on interval
bounds are performed using a rigorous yet efficient formalization of multi-precision
floating-point arithmetic.

The inclusion property of interval arithmetic is easily transported from oper-
ators to whole expressions by induction on these expressions. This gives a way to
obtain the property e ∈ e above when e is built using interval operators. This
approach, however, cannot keep track of correlations between subexpressions and
might compute overestimated enclosures which are thus useless for proving some
goals. For instance, assume that x ∈ [3; 4], so −x ∈ [−4;−3] using the interval
extension of the negation, so x + (−x) ∈ [3 + (−4); 4 + (−3)] using the interval
extension of the addition. If one wants to prove that x−x is always 0, the interval
[−1; 1] obtained by naive interval arithmetic is useless. This is why the CoqInterval
library also comes with refinements of naive interval arithmetic, such as automatic
differentiation and rigorous polynomial approximations using Taylor models, so as
to reduce this loss of correlations.

The goal of this work is to extend the class E of supported expressions with
integrals whose bodies are in E .

Formally Verified Approximations of Definite Integrals 5

3 Interval methods to approximate a proper integral

In this section, we describe how to compute a numerical enclosure of the real
number

∫ v
u
f from enclosures of the finite bounds u and v and of the integrand

function f . We describe two basic methods based respectively on the evaluation
of a simple interval extension and on a polynomial approximation of f . They can
be combined and improved by a dichotomy process.

3.1 Naive integral enclosure

Our first approach uses an interval extension of the integrand.

Definition 1 For any function f : Rn → R, a function F : In → I is an interval
extension of f on R if

∀x1, . . . ,xn, {f(x1, . . . , xn) | ∀i, xi ∈ xi} ⊆ F (x1, . . . ,xn).

In the rest of the section we suppose that F : I → I is an interval extension
of the univariate function f , and we want to compute an enclosure of

∫ v
u
f , with

u, v ∈ R, and f integrable on [u; v].

Definition 2 The closed convex hull of a set A ⊆ R is the smallest interval con-
taining A, denoted here hull(A). Moreover, the interval hull(a,b) denotes the con-
vex hull of (the union of) two intervals a and b. Finally, hull(a,+∞) designates
the interval [inf a; +∞).

Lemma 1 (Naive integral enclosure)∫ v

u

f ∈ (v − u) · hull{f(t) | t ∈ [u; v] ∨ t ∈ [v;u]}. (1)

Proof Let us first suppose that u ≤ v. Denote f([u; v]) := {f(t) | t ∈ [u; v]}. As-
sume without loss of generality that f([u; v]) is bounded. If [m;M] := hull(f([u; v])),
then for any t ∈ [u; v], we have m ≤ f(t) ≤ M . So (v − u)m ≤

∫ v
u
f ≤ (v − u)M ,

hence (1). The case v ≤ u is symmetrical.

In practice we do not compute with f but only its interval extension F . More-
over, we want the computations to operate using only enclosures of the bounds.
So we adapt Formula (1) accordingly.

Lemma 2 (Interval naive integral enclosure) For any intervals u,v such
that u ∈ u and v ∈ v, we have∫ v

u

f ∈ (v − u) · F (hull(u,v)). (2)

Note that if u and v are point intervals and if F is the optimal interval extension
of f , then (2) reduces to (1).

6 Assia Mahboubi et al.

Proof If u ∈ u and v ∈ v, then by (1) and reusing notations from the proof,
we have

∫ v
u
f ∈ (v − u) · hull(f([u; v])). Since (v − u) ∈ (v − u), we only have

to show that hull(f([u; v])) ⊆ F (hull(u,v)). Since [u; v] ⊆ hull(u,v) and F is an
interval extension of f , we have f([u; v]) ⊆ f(hull(u,v)) ⊆ F (hull(u,v)). Therefore
hull(f([u; v])) is included in the interval F (hull(u,v)), by definition of the closed
convex hull.

The naive_integral Coq function implements (2). Given u,v ∈ I and F a
function of type I → I, (naive_integral prec F u v) computes an interval i us-
ing floating-point arithmetic at precision prec. If F is an interval extension of f , if
u ∈ u and v ∈ v, and if f is integrable on [u; v], then

∫ v
u
f ∈ i.

Definition naive_integral prec F u v :=
I.mul prec (F (I.join u v)) (I.sub prec v u).

3.2 Polynomial approximation

The enclosure method described in Section 3.1 is crude. Better knowledge of the
integrated function allows for a more efficient approach.

The CoqInterval library defines a rigorous polynomial approximation (RPA)
of f : R → R on the interval x as a pair (p,∆), with p ∈ I[X], such that
there exists a polynomial p ∈ R[X] enclosed2 in p for which f(x) − p(x) ∈ ∆
for all x ∈ x. CoqInterval computes these RPAs by composing and performing
arithmetic operations on Taylor expansions of elementary functions [11]. Thanks
to these polynomial approximations, we can make use of the following lemma.

Lemma 3 (Polynomial approximation) Suppose f is approximated on [u; v]
by p ∈ R[X] and ∆ ∈ I in the sense that ∀x ∈ [u; v], f(x) − p(x) ∈ ∆. Then for
any primitive P of p, we have

∫ v
u
f ∈ P (v)− P (u) + (v − u) ·∆.

Proof We have
∫ v
u
f − (P (v) − P (u)) =

∫ v
u

(f(t) − p(t)) dt. By hypothesis, the
constant function ∆ is an interval extension of t 7→ f(t) − p(t) on [u; v], hence
Lemma 1 applies (notice that hull(∆) = ∆).

Note that our method and proofs do not depend on the way RPAs are obtained.
In particular, we are not taking advantage of the fact that p is computed with
respect to the center of [u; v], which would make it possible to skip half of the
computations [4].

3.3 Quality of the integral enclosures

Both methods described in Sections 3.1 and 3.2 use a single approximation of
the integrand on the integration interval. A decomposition of this interval into
smaller pieces may increase the accuracy of the enclosure, if tighter approximations
are obtained on each subinterval. In this section we give an intuition of how the

2 We say that p ∈ I[X] is an enclosure of p ∈ R[X] if, for all i ∈ N, the i-th coefficient pi of
p is an enclosure of the i-th coefficient pi of p, where we take the convention that for i > degp,
pi = {0} and for i > deg p, pi = 0.

Formally Verified Approximations of Definite Integrals 7

naive and polynomial approaches compare, from a time complexity point of view.
The naive (resp. polynomial) approach here consists in using a simple interval
approximation (resp. a valid polynomial approximation) to estimate the integral on
each subinterval. Let us suppose that we split the initial integration interval, using
the interval additivity property of integrals, before computing integral enclosures:

∫ v

u

f =

∫ x1

x0

f + . . .+

∫ xn

xn−1

f with xi = u+ i
n (v − u).

Let w(x) = sup x− inf x denote the width of an interval. The smaller w(x) is,
the more accurately any real x ∈ x is approximated by x. Any sensible interval
arithmetic respects w(x + y) ' w(x) + w(y) and w(k · x) ' k · w(x).

We consider the case of the naive approach first. We assume that F is an
optimal interval extension of f and that f has a Lipschitz constant equal to k0, that
is, w(F (x)) ' k0 ·w(x). Since w(naive([xi;xi+1])) ' (xi+1−xi) ·w(F ([xi;xi+1])),
we get the following accuracy when computing the integral:

w

(∑
i

naive([xi;xi+1])

)
' k0 · (v − u)2/n.

To gain one bit of accuracy, we need to go from n to 2n integrals, which means
multiplying the computation time by two, hence an exponential complexity.

Now for the polynomial enclosure. Let us assume we can compute a polynomial
approximation of f on any interval x with an error ∆(x). We can expect this
error to satisfy w(∆(x)) ' kd · w(x)d+1 with d the degree of the polynomial
approximation and kd depending on f . Since w(poly([xi;xi+1])) ' (xi+1 − xi) ·
w(∆([xi, xi+1])), the accuracy is now

w

(∑
i

poly([xi;xi+1])

)
' kd · (v − u)d+2/nd+1.

For a fixed d, one still has to increase n exponentially with respect to the target ac-
curacy. The power coefficient, however, is much smaller than for the naive method.
By doubling the computation time, one gets d+ 1 additional bits of accuracy.

In order to improve the accuracy of the result, one can increase d instead
of n. If f behaves similarly to exp or sin, Taylor-Lagrange formula tells us that
kd decreases as fast as (d!)−1. Moreover, the time complexity of computing a
polynomial approximation usually grows like d3. So, if n ' v − u, doubling the
computation time by increasing d gives about 25% more bits of accuracy.

As can be seen from the considerations above, striking the proper balance
between n and d for reaching a target accuracy in a minimal amount of time
is difficult, so we have made the decision of letting the user control d (see Sec-
tion 5.3) while the implementation adaptively splits the integration interval. Had
we not been constrained by Coq’s logic, we could have accessed a clock so as to
dynamically balance between n and d [4].

8 Assia Mahboubi et al.

3.4 Dichotomy and adaptivity

Both methods presented in Sections 3.1 and 3.2 can compute an interval enclosing∫ v
u
f when u and v are proper bounds. Polynomial approximations usually give

tighter enclosures of the integral, but not always, so we combine both methods by
taking the intersection of their result.

This may still not be sufficient for getting a tight enough enclosure, in which
case we recursively split the integration domain in two parts, using the interval
additivity property of integral. The function integral_interval_absolute performs
this dichotomy and the integration on each subdomain. It takes an absolute error
parameter ε; it stops splitting as soon as the width of the computed integral
enclosure is smaller than ε. The function also takes a depth parameter, which
means that the initial domain is split into at most 2depth+1 subdomains. Note
that, because the depth is bounded, there is no guarantee that the target width
will be reached.

Let us detail more precisely how the function behaves. It starts by splitting
[u; v] into [u;m] and [m; v] where m = u+v

2 . It then computes some enclosures
i1 of

∫m
u
f and i2 of

∫ v
m
f . If depth = 0, the function returns i1 + i2. Otherwise,

several cases can occur:

– If w(i1) ≤ ε
2 and w(i2) ≤ ε

2 , the function simply returns i1 + i2.
– If w(i1) ≤ ε

2 and w(i2) > ε
2 , the first enclosure is sufficient but the second

is not. So the function calls itself recursively on [m; v] with depth − 1 as the
new maximal depth and ε−w(i1) as the new target accuracy, yielding i′2. The
function then returns i1 + i′2.

– If w(i1) > ε
2 and w(i2) ≤ ε

2 , we proceed symmetrically.
– Otherwise, the function calls itself on both [u;m] and [m; v] with depth − 1 as

the new maximal depth and ε
2 as the new target accuracy, yielding i′1 and i′2.

It then returns i′1 + i′2.

This adaptive algorithm was chosen for its simplicity. One disadvantage is
that it only has some local knowledge of how the integrand behaves. It would be
interesting to compare it to more complicated algorithms, e.g. one that maintains
a priority queue of all the subdomains and their associated integral so that it can
split the subdomain with the widest integral overall [4].

4 Interval methods to approximate an improper integral

Improper integrals are computed by splitting the interval into two parts, a proper
part which is treated with the previous methods, and the remainder which is
handled in a specific way. The splitting is automatically performed by a variant
of the adaptive method presented in Section 3.4 where the splitting point m for
[u; +∞) is chosen to be 2u when u > 0.

In this section, we describe how we bound the remainder. We consider improper
integrals of the shape

∫ v
u
fg where either u = 0+ or v = +∞, and f is bounded.

Function g belongs to a catalog of functions with known enclosures of their integral,
such as xα lnβ x. Section 4.1 presents the general theorem for integrals of the shape∫+∞
u

fg, while Section 4.2 lists the functions g contained in our catalog. Finally,
Section 4.3 focuses on integrals of the shape

∫ v
0+ fg.

Formally Verified Approximations of Definite Integrals 9

4.1 Improper integral of a product

To determine that
∫+∞
u

h exists, we have added to Coquelicot a proof of the
following Cauchy criterion: this integral exists if and only if for any v ≥ u,

∫ v
u
h

exists and for all ε > 0, there exists M > 0 such that for all u, v ≥M , |
∫ v
u
h| ≤ ε.

We use this criterion to show the following lemma.

Lemma 4 Let f, g : R → R. Suppose that, on [u; +∞), f is bounded, f and g

are continuous, and g has a constant sign. Moreover, suppose
∫+∞
u

g exists. Then∫+∞
u

fg exists, and ∫ +∞

u

fg ∈ hull{f(t) | t ≥ u} ·
∫ +∞

u

g.

Proof Since f is bounded on [u; +∞), let [m;M] := hull{f(t) | t ≥ u}. Suppose
without loss of generality that g ≥ 0 on [u; +∞). Let v ≥ u. For u ≤ t ≤ v, we
have m · g(t) ≤ f(t) · g(t) ≤M · g(t), hence m ·

∫ v
u
g ≤

∫ v
u
fg ≤M ·

∫ v
u
g. Let ε > 0.

Since g is integrable, the Cauchy criterion gives some neighborhood P of +∞ such
that ∀u, v ∈ P, |

∫ v
u
g| < ε

1+max(|m|,|M|) . But |
∫ v
u
fg| ≤ max(|m|, |M |) ·

∫+∞
u

g < ε;

hence fg is integrable. Moreover m
∫+∞
u

g ≤
∫+∞
u

fg ≤M
∫+∞
u

g. Thus
∫+∞
u

fg ∈
[m;M] ·

∫+∞
u

g. If g ≤ 0, the proof is similar.

We provide an effective version of the previous lemma, in the same spirit as
Lemma 2, with a similar proof:

Lemma 5 Let F, Ig : I→ I be interval extensions respectively of f and x 7→
∫+∞
x

g.
For any interval u such that u ∈ u,∫ +∞

u

fg ∈ F (hull(u,+∞)) · Ig(u).

4.2 Catalog of supported integrable functions

In order to use Lemma 5, we need to be able to find a suitable extension Ig for the
remainder of the integral of g. In that spirit, we look at two classes of well-known
integrable functions.

4.2.1 Bertrand integrals

We consider functions g(x) = xα lnβ x with α ∈ R, β ∈ R. These functions are of
constant positive sign on [1; +∞). They are integrable at +∞ only when α < −1,
or when α = −1 and β < −1. Now we focus on how to compute them. If α < −1,
β = 0 and u > 0,

∫ +∞

u

xα dx = − u
α+1

α+ 1
. (3)

10 Assia Mahboubi et al.

When β ≥ 1, integrating by parts shows that∫ +∞

u

xα lnβ x dx = −
(
uα+1 lnβ u

α+ 1

)
− β

α+ 1

∫ +∞

u

xα lnβ−1 x dx. (4)

Note that in order to prove this identity, we had to extend Coquelicot with a proof
of the general formula for integration by parts.

When α < −1 and β < 0, there is no closed form, but by moving lnβ x into the
bounded part of Lemma 4, we can nevertheless compute bounds on the integral.

When α = −1 and β < −1, we have a closed form:∫ +∞

u

lnβ x

x
dx = − lnβ+1 u

β + 1
.

When α < −1 and β ≥ 0, and when moreover β is a natural number, we also
have a closed form, obtained by recurrence on β using Equations (3) and (4). For
instance, using (4) then (3), we get:∫ +∞

1

lnx

x2
dx = −

(
1−1 ln 1

−1

)
− 1

−1

∫ +∞

1

dx

x2
= 0 + (−)

1−1

−1
= 1.

4.2.2 Exponential

We also handle the case of the positive function g(x) = eγx with γ < 0, using the
fact that ∫ +∞

u

eγx dx = −e
γu

γ
.

4.3 Case of 0+

When the singular bound is 0+ instead of +∞, we use a variant of Lemma 4.

Lemma 6 Let f, g : R → R. Suppose that, on (0; v], f is bounded, f and g are
continuous, and g has a constant sign. Moreover, suppose that

∫ v
0+ g exists. Then∫ v

0+ fg exists, and ∫ v

0+

fg ∈ hull{f(t) | 0 ≤ t ≤ v} ·
∫ v

0+

g.

As in the case of +∞, we have a catalog of supported functions. Consider
g(t) = tα(− ln t)β with α ∈ R, β ∈ R. This function is of constant sign on (0; v],
where v < 1. Observe that using the substitution t = 1

x , we get∫ v

0+

tα(− ln(t))βdt =

∫ ∞
1/v

x−2−αlnβ x dx.

The right-hand-side integral has the shape treated in Section 4.2.1, so we have
a way to bound the left-hand-side integral. To do so, we added a proof of the
substitution lemma to Coquelicot.

Formally Verified Approximations of Definite Integrals 11

5 Automating the proof process

In this section we explain how to compute the approximations of the integrand
(or of its bounded factor in the case of an improper integral) required by the
theorems of Sections 3 and 4, and how to automate the proof of its integrability.
We conclude by describing how all the ingredients combine into the implementation
of a parameterized Coq tactic.

5.1 Straight-line programs and enclosures

As described in Section 2.3, enclosures and interval extensions are computed from
expressions that appear as bounds or as the body of an integral, like for instance
ln 2, 3, and (t+π)

√
t− (t+π), in

∫ 3

ln 2
((t+π)

√
t− (t+π)) dt. The tactic represents

these expressions symbolically, as straight-line programs. Such a program is a
standard way of encoding directed acyclic graphs and thus of explicitly sharing
common subexpressions. It is just a list of statements indicating what the operation
is and where its inputs can be found. The place where the output is stored is left
implicit: the result of an operation is always put at the top of the evaluation stack.
Note that our evaluation model is simple: the stack grows linearly with the size of
the expression since no element of the stack is ever removed. The stack is initially
filled with values corresponding to the constants of the program. The result of
evaluating a straight-line program is at the top of the stack.

Below is an example of a straight-line program corresponding to the expression
(t+π)

√
t− (t+π). It is a list containing the operations to be performed. Each list

item first indicates the arity of the operation, then the operation itself, and finally
the depth at which the inputs of the operation can be found in the evaluation
stack. Note that, in this example, t and π are seen as constants, so the initial stack
contains values that correspond to these subterms. The only thing that will later
distinguish the integration variable t from an actual constant such as π is that the
value of t is initially at the top of the evaluation stack. The comments in the term
below indicate the content of the stack before evaluating each statement.

(* initial stack: [t, pi] *) Binary Add 0 1
(* current stack: [t+pi, t, pi] *) :: Unary Sqrt 1
(* current stack: [sqrt t, t+pi, t, pi] *) :: Binary Mul 1 0
(* current stack: [(t+pi)*sqrt t, sqrt t, ...] *) :: Binary Sub 0 2
(* current stack: [(t+pi)*sqrt t - (t+pi), ...] *) :: nil

The evaluation of a straight-line program depends on the interpretation of the
arithmetic operations and on the values stored in the initial stack. For instance,
if the arithmetic operations are the operations from the Reals library (e.g. Rplus)
and if the stack contains the symbolic value of the constants, then the result is the
actual expression over real numbers.

Let us denote JpKR(~x) the result of evaluating the straight-line program p with
operators from Reals over an initial stack ~x of real numbers. Similarly, JpKI(~x)
denotes the result of evaluating p with interval operations over a stack of intervals.
Then, thanks to the inclusion property of interval arithmetic, we can prove the
following formula once and for all:

∀p, ∀~x ∈ Rn, ∀~x ∈ In, (∀i ≤ n, xi ∈ xi)⇒ JpKR(~x) ∈ JpKI(~x). (5)

12 Assia Mahboubi et al.

Formula (5) is the basic block used by the interval tactic for proving enclosures
of expressions [11]. Given a goal A ≤ e ≤ B, the tactic first looks for a program p
and a stack ~x of real numbers such that JpKR(~x) = e. Note that this reification
process is not proved to be correct, so Coq checks that both sides of the equality are
convertible. More precisely, the goal A ≤ e ≤ B is convertible to JpKR(~x) ∈ [A;B] if
A and B are floating-point numbers and if the tactic successfully reified the term.

The tactic then looks in the context for hypotheses of the form Ai ≤ xi ≤ Bi
so that it can build a stack ~x of intervals such that ∀i, xi ∈ xi. If there is no
such hypothesis, the tactic just uses (−∞; +∞) for xi. The tactic can now apply
Formula (5) to replace the goal by JpKI(~x) ⊆ [A;B]. It then attempts to prove this
new goal entirely by computation. Note that even if the original goal holds, this
attempt may fail due to loss of correlation inherent to interval arithmetic.

Formula (5) also implies that if a function f can be reified as t 7→ JpKR(t, ~x),
then t 7→ JpKI(t, ~x) is an interval extension of f if ∀i, xi ∈ xi. This way, we obtain
the interval extensions of the integrand that we need for Sections 3 and 4.

There is also an evaluation scheme for computing RPAs for f . The program p
is the same, but the initial evaluation stack now contains RPAs: a degree-1 polyno-
mial for representing the domain of t, and constant polynomials for the constants.
The result is an RPA of t 7→ JpKR(t, ~x). By computing the image of this resulting
polynomial approximation, one gets an enclosure of the expression that is usually
better than the one computed by t 7→ JpKI(t, ~x).

5.2 Checking integrability

When computing the enclosure of an integral, the tactic should first obtain a
formal proof that the integrand is integrable on the integration domain, as this is
a prerequisite to all the theorems in Section 3. In fact we can be more clever by
proving that, if we succeed in numerically computing an informative enclosure of
the integral, the function was actually integrable. This way, the tactic does not
have to prove anything beforehand about the integrand.

This trick requires to explain the inner workings of the CoqInterval library in
more detail. In particular, the library provides evaluation schemes that use bottom
values. In all that follows, R denotes the set R ∪ {⊥R} of extended reals, that is
the set of real numbers completed with the extra point ⊥R. The alternate scheme
JpKR produces the value ⊥R as soon as an operation is applied to inputs that are
outside the usual definition domain of the operator. For instance, the result of
dividing one by zero in R is ⊥R, while it is unspecified in R. This ⊥R element
is then propagated along the subsequent operations. Thus, the following equality
holds, using the trivial embedding from R into R:

∀p, ∀~x ∈ Rn, JpKR(~x) 6= ⊥R ⇒ JpKR(~x) = JpKR(~x). (6)

Moreover, the implementation of interval arithmetic uses not only pairs of
floating-point numbers [inf x; sup x] but also a special interval ⊥I, which is prop-
agated along computations. An interval operator produces the value ⊥I whenever
the input intervals are not fully included in the definition domain of the correspond-
ing real operator. In other words, an interval operator produces ⊥I whenever the
corresponding operator on R would have produced ⊥R for at least one value in one

Formally Verified Approximations of Definite Integrals 13

of the input intervals. Thus, by extending the definition of an enclosure so that
⊥R ∈ ⊥I holds, we can prove a variant of Formula (5):

∀p, ∀~x ∈ Rn, ∀~x ∈ In, (∀i ≤ n, xi ∈ xi)⇒ JpKR(~x) ∈ JpKI(~x). (7)

In CoqInterval, Formula (5) is actually just a consequence of both Formulas (6)
and (7). This is due to two other properties of ⊥I. First, (−∞; +∞) ⊆ ⊥I holds,
so the conclusion of Formula (7) trivially holds whenever JpKI(~x) evaluates to ⊥I.
Second, ⊥I is the only interval containing ⊥R. As a consequence, whenever JpKI(~x)
does not evaluate to ⊥I, the premise of Formula (6) holds.

Let us go back to the issue of proving integrability. By definition, whenever
JpKR(~x) does not evaluate to ⊥R, the inputs ~x are part of the definition domain of
the expression represented by p. But we can actually prove a stronger property:
not only is ~x part of the definition domain, it is also part of the continuity domain.
More precisely, we can prove the following property:

∀p, ∀t0 ∈ R, ∀~x ∈ Rn, JpKR(t0, ~x) 6= ⊥R ⇒
t 7→ JpKR(t, ~x) is continuous at point t0. (8)

Note that this property intrinsically depends on the operations that can appear
inside p, i.e. the operations belonging to the class E of Section 2.3. Therefore, its
proof has to be extended as soon as a new operator is supported in E . In particular,
it would become incorrect as such, if the integer part function was ever supported.

By combining Formulas (5) and (8), we obtain a numeric/symbolic method to
prove that a function is continuous on a domain. Indeed, we just have to compute
an enclosure of the function on that domain, and to check that it is not ⊥I. A
closer look at the way naive integral enclosures are computed provides the following
corollary: whenever the enclosure of the integral is not ⊥I, the function is actually
continuous and thus integrable on any compact of the input domain. This solves
the issue for proper integrals.

For improper integrals, the function has to be not only continuous but also
bounded, i.e. its enclosure should have finite bounds in addition of being different
from ⊥I. This constraint incurs a usability issue in the case of an integration
domain extending to +∞. Indeed, the input domain ~x is no longer bounded in
that case, which means that RPAs become useless and one has to revert to a more
naive interval evaluation. Let us illustrate the issue with the following integral for
some lower bound u > 0: ∫ +∞

u

x+ 1

x+ 2
e−x dx.

The quotient is bounded on [u; +∞). Yet using naive interval arithmetic gives
[u+1; +∞)/[u+2; +∞) = [0; +∞), which is not bounded. Thus the tactic is unable
to prove integrability and to compute an enclosure of the integral. To circumvent
this issue, the user has to massage the bounded part of the integrand into a form
suitable for naive interval arithmetic, e.g. 1 − (x + 2)−1. This time, the tactic
obtains [1− (u+ 2)−1; 1], which is bounded. However, this kind of transformation
of the integrand is not always possible.

14 Assia Mahboubi et al.

5.3 Integration into a tactic

The interval tactic is primarily dedicated to computing/verifying the enclosure of
an expression. For this purpose, the expression is first turned into a straight-line
program, as described in Section 5.1. There is however no integral operator in the
grammar E of programs: from the point of view of the reification process, integrals
are just constants, and thus part of the initial stack used when evaluating the
program.

The tactic supports constants for which it can get a formally-proved enclosure.
In previous releases of CoqInterval, the only supported constants were floating-
point numbers and π. Floating-point numbers are enclosed by the corresponding
point interval, which is trivially correct. An interval function and its correctness
proof provide enclosures of the constant π, at the required precision.

The tactic now supports constants expressed as integrals
∫ v
u
e dt. First, it reifies

the bounds u and v into programs and it evaluates them over I to get hopefully
tight enclosures of them. In the case of an improper integral, only one of the bounds
is reified; the other has to syntactically match either 0+ or +∞. Second, the tactic
reifies e into a program p with t at the top of the initial evaluation stack. The
tactic uses p to instantiate various evaluation methods, so that interval extensions
and RPAs of e can be computed on all the integration subdomains, as described
in Section 5.1. For improper integrals, the expression e has to be a product fg;
the tactic then produces a program for f too, while g should syntactically match
one of the functions of Section 4.2. Third, using the formulas of Sections 3 and 4,
the tactic creates a term of type I that, once reduced by Coq’s kernel, has actual
floating-point bounds. The tactic also proves that this term is an enclosure of the
integral, using the theorems of Sections 3, 4, and 5.2.

Regarding improper intervals, since the tactic only recognizes integrand of the
form fg with g one of the functions of Section 4.2, it is up to the user to rewrite
the integrand that way if it is not so already. Moreover, while g can in theory be
of the shape tα lnβ t, with α and β arbitrary exponents in the integrability range,
the current implementation only supports integer exponents.

5.4 Controlling the tactic

The interval tactic features four options that supply the user with some control
over how it computes integral enclosures. First, the user can indicate the target
accuracy for the integral, expressed as a power-of-two upper bound on the width
of the resulting enclosure. While an absolute bound is useful for benchmarks and
in some degenerate cases, the user might prefer to specify a relative bound on the
target accuracy. So another option makes it possible for the user to indicate how
many bits of the result should be significant (by default, 10 bits, so about three
decimal digits). It is an a priori bound, since the implementation first performs a
coarse estimation of the integral value and uses it to turn the relative bound into
an absolute one. It then performs computations using only this absolute bound.

The user can also indicate the degree of the RPAs used for approximating the
integrand (default is 10). This value empirically provides a good compromise be-
tween bisecting too deeply and computing costly RPAs when targeting the default
accuracy of 10 bits. For poorly approximated integrands, choosing a smaller degree

Formally Verified Approximations of Definite Integrals 15

can improve timings significantly, while for highly regular integrands and a high
target accuracy, choosing a larger degree might be worth a try.

Finally, the user can limit the maximal depth of bisection (default is 3). If the
target absolute error is reached on each interval of the subdivision, then increasing
the maximal depth does not affect timings. There might, however, be some points
of the integration domain around which the target error is never reached. This
setting prevents the computations from splitting the domain indefinitely, while
the computed enclosure is already accurate enough to prove the goal.

Note that as in previous CoqInterval releases, the user can adjust the precision
of floating-point computations used for interval computations, which has an impact
on how integrals are computed. The default value is 30 bits, which is sufficient in
practice for getting the default 10 bits of integral accuracy.

There are three reasons why the user-specified target accuracy might not be
reached. When specifying a relative bound, if the initial estimate of the integral is
too coarse, the absolute bound used by the adaptive algorithm will be too large
and the final result might be less accurate than desired. An insufficient bisection
depth might also lead the result to be less accurate. This is also true with an
insufficient precision of intermediate computations.

The following script shows how to prove in Coq that the surface of a quarter
unit disk is equal to π/4, at least up to 10−6. The target accuracy is set to 20
bits, so that we can hope to reach the 10−6 bound. Since the integrand is poorly
approximated near 1 (due to the square root), the integration domain has to be
split into small pieces around 1. So we significantly increase the bisection depth
to 15. Finally, since the RPAs behave poorly here, decreasing their degree to 5
shaves a few tenths of second off the time needed to check the result. In the end,
it takes under a second for Coq to formally check the proof.

Goal Rabs (RInt (fun t => sqrt (1 - t*t)) 0 1 - PI/4) <= 1/1000000.
interval with (i_integral_prec 20, i_integral_depth 15, i_integral_deg 5).
Qed.

6 Benchmarks

This section presents the behavior of the tactic on several integration problems,
each given as a symbolic integral, its value (approximate if no closed form exists),
and a set of absolute error bounds that must be reached by the tactic. Each
problem is translated into a set of Coq scripts as follows, one for each bound:

Goal Rabs (RInt[_gen] function domain - value) <= error.
interval with options.
Qed.

The tactic options have been set using the following experimental protocol.
The floating-point precision is set at about 10 more bits than the target accuracy,
so that round-off errors do not worsen interval enclosures when summing integrals.
The maximal depth is initially set to a large enough value. Then, various degrees
of RPAs are tested and the one that leads to the fastest execution is kept. Finally,
the maximal depth is reduced as long as the tactic succeeds in proving the bounds,
so that we get an idea of how deep splitting has to be performed to compute an
accurate enclosure of the integral. Note that reducing the maximal depth might

16 Assia Mahboubi et al.

improve timings in case the adaptive algorithm had been overly conservative and
did too much domain splitting. Reducing the target accuracy could also improve
timings (again by preventing some domain splitting), but this was not done.

The tables below indicate, for each error bound, the time needed and the tac-
tic settings. Timings are in seconds and are obtained on a run-of-the-mill laptop
from 2012 using Coq 8.7. All the timings below are obtained using the vm_compute

machinery to perform computations. The tactic also supports the native_compute

machinery [2], but its long startup time makes it useful only for the longest com-
putations. So that the asymptotic complexity of our algorithms is more apparent,
we chose to use only vm_compute in the benchmarks. But the reader should keep
in mind that native_compute makes the tactic about twice as fast, e.g. the slowest
benchmark below goes from 365 seconds down to 186 seconds.

6.1 Proper integrals

For each proper integral, we also ran several quadrature methods from Octave [5]:
quad, quadv, quadgk, quadl, quadcc. We also used IntLab [16]; it provides verify-
quad, an interval arithmetic procedure that computes integral enclosures using a
verified Romberg method. For each method, we ask for an absolute accuracy of
10−15. We only comment when the answer is off, or when the execution time
exceeds 1 second. Finally, we also tested VNODE-LP [14] on each example by
representing the integral as the value of the solution of a differential equation.

The first problem is the integral of the derivative of arctan, a highly regular
function. As expected, the tactic behaves well on it, since it takes about 3 seconds
to compute 18 decimal digits of π by integration. Note that the time needed for
reifying the goal and performing the initial computations is incompressible, so
there is not much difference between 10−3 and 10−6.

∫ 1

0

dx

1 + x2
=
π

4

Error Time Width Deg Depth Prec

10−3 0.2 2−10 5 1 30
10−6 0.2 2−20 6 2 30
10−9 0.4 2−30 7 3 40
10−12 0.7 2−40 10 3 50
10−15 1.0 2−50 12 3 60
10−18 1.7 2−60 15 3 70

The second problem is Ahmed’s integral [1]. It is a bit less regular and uses
more operators than the previous problem, but the tactic still behaves well enough:
adding ten bits of accuracy doubles the computation time.

∫ 1

0

arctan
√
x2 + 2√

x2 + 2 (x2 + 1)
dx =

5π2

96

Error Time Width Deg Depth Prec

10−3 0.4 2−10 3 2 30
10−6 0.8 2−20 7 2 30
10−9 2.5 2−30 11 2 40
10−12 5.2 2−40 11 3 50
10−15 8.6 2−50 13 3 60

The third problem involves a function that is harder to approximate using
RPAs, so the tactic performs more domain splitting, degrading performances.

Formally Verified Approximations of Definite Integrals 17

∫ π

0

x sinx

1 + cos2 x
dx =

π2

4

Error Time Width Deg Depth Prec

10−3 0.7 2−10 5 3 30
10−6 1.7 2−20 7 4 30
10−9 4.8 2−30 11 4 40
10−12 8.3 2−40 13 4 50
10−15 17.7 2−50 17 4 60

The fourth problem is an example from Helfgott3 in the spirit of [7]. The
polynomial part crosses zero, so there is a point where the integrand is not differ-
entiable because of the absolute value. Thus only degenerate Taylor models can
be computed around that point. Although the tactic has to perform a lot of do-
main splitting to isolate that point, it still computes an enclosure of the integral
quickly. Note that the approximate value of the integral was computed using the
interval_intro tactic.∫ 1

0

∣∣∣(x4 + 10x3 + 19x2 − 6x− 6
)
ex
∣∣∣ dx ' 11.14731055005714

On this example, quadrature methods have some troubles: quad gives only 10
correct digits; verifyquad gives a false answer (a tight interval not containing the
value of the integral) without warning; quadgk gives only 9 correct digits. VNODE-
LP cannot be used because of the absolute value. The bug of verify_quad lies in
an incorrect implementation of Taylor models for absolute value; it has since then
been fixed by removing support for absolute values.

Error Time Width Degree Depth Precision

10−3 0.6 2−10 5 8 30
10−6 0.9 2−20 7 13 40
10−9 1.3 2−30 9 18 50
10−12 1.9 2−40 11 22 60
10−15 2.6 2−50 13 28 70

The last two problems are inherently hard to numerically integrate. The first
one is the 12-th coefficient of a Chebyshev expansion. As with the previous prob-
lem, there are some points where no RPAs can be computed. The approximate
value was again obtained using the interval_intro tactic.∫ 1

−1

(
2048x12 − 6144x10 + 6912x8 − 3584x6 + 840x4 − 72x2 + 1

)
exp

(
−
(
x− 3

4

)2)√
1− x2 dx ' −3.2555895745 · 10−6

The quad, quadl, and quadcc procedures give completely off but consistent
answers without warning; quadv gives an answer which is off the mark as well, but
it gives a warning “maximum iteration count reached”; verifyquad works only for
functions that are four times differentiable, hence its failure here; quadgk gives
yet another off answer with no warning. Finally, VNODE-LP fails here because of
computational errors such as divisions by 0.

3 http://mathoverflow.net/questions/123677/rigorous-numerical-integration

http://mathoverflow.net/questions/123677/rigorous-numerical-integration

18 Assia Mahboubi et al.

Error Time Width Degree Depth Precision

10−6 10.0 2−20 8 16 40
10−9 21.0 2−30 10 21 50
10−12 43.1 2−40 13 28 60
10−15 94.2 2−50 13 35 70

The last problem is an example taken from Tucker’s book [17] and originally
suggested by Rump [16, page 372]. This integral is often incorrectly approximated
by computer algebra systems, because of the large number of oscillations (about
950 sign changes) and the large value of the n-th derivatives of the function. While
the maximal depth is not too large, the tactic reaches it for numerous subdomains,
hence the large computation time.

The quad, quadcc, and quadgk procedures give off values without any warning;
quadv gives an off value with a warning; verifyquad takes 1.7 seconds to give a
correct answer; quadl takes 9 seconds to return a correct answer.

∫ 8

0

sin(x+ ex) dx ' 0.3474

Error Time Width Deg Depth Prec

10−1 66.8 2−3 6 12 30
10−2 102.9 2−6 5 13 30
10−3 143.5 2−10 6 13 30
10−4 171.7 2−13 7 13 30

6.2 Improper integrals

Few tools are able to handle unbounded integration domains and even fewer can
give reliable bounds on the integral value. So this section is mostly about CoqIn-
terval. The first example shows a simple integrand with an exponential bound:

∫ +∞

1

e−x√
x
dx =

√
π · erfc(1)

Error Time Width Deg Depth Prec

10−3 0.4 2−10 7 3 30
10−6 1.2 2−20 7 5 30
10−9 4.2 2−30 9 7 40
10−12 7.7 2−40 13 7 50
10−15 17.1 2−50 13 8 60

The second example is similar to the integral from Tucker’s book, in the sense
that the oscillations of the integrand make it hard to accurately approximate the
remainder. For instance, Maple 18 forfeits after 10 seconds of computations. The
tactic does not perform much better since it is not able to compute more than two
digits in a reasonable amount of time. This is partly due to the adaptive splitting
algorithm, which is built upon the assumption that splitting an integration domain
into two parts eventually improves the accuracy by more than one bit on each part;
this is not the case for the remainder in this example.

∫ +∞

1

cosx
lnx

x2
dx ' −0.1595

Error Time Width Deg Depth Prec

10−1 2.1 2−3 12 10 30
10−2 22.6 2−6 14 16 30
10−3 364.7 2−10 19 23 30

Formally Verified Approximations of Definite Integrals 19

The last example comes from Helfgott’s proof of the ternary Goldbach conjec-
ture [7, page 35]: ∫ ∞

−∞

(0.5 · ln(τ2 + 2.25) + 4.1396 + lnπ)2

0.25 + τ2
dτ

The tactic cannot handle this integral fully automatically since the integrand
is not syntactically a product with a term xα lnβ x. It is up to the user to split
the integral into two parts: one proper part between −100,000 and 100,000 (as
was done in the original paper) and one improper part between 100,000 and +∞
(counted twice, since the integrand is an even function). The proper part is handled
in the same way as all the previous examples. It takes about 30 seconds to get the
relative accuracy of 10−6 needed by the original paper. For the improper part, the
integrand first has to be transformed into the following form, which was proved to
be equal to the original integrand in a few lines of Coq:

∫ +∞

100,000

1 +
(

0.5·ln(1+2.25/τ2)+4.1396+lnπ
ln τ

)2
1 + 0.25/τ2

· ln2 τ

τ2
dτ ' 3.17742 · 10−3.

Error Time Width Degree Depth Precision

10−3 1.1 2−10 3 1 30
10−4 1.6 2−13 5 5 30
10−5 2.8 2−16 7 9 30
10−6 5.5 2−20 10 12 30
10−7 9.8 2−23 12 16 30
10−8 17.6 2−26 15 18 30

Bounding the remainder with a low accuracy is sufficient to prove that the
integral on the whole domain is included in [226.849; 226.850] and thus that the
upper bound 226.844 used in [7] is incorrect.

7 Conclusion

We have presented a method for computing and formally verifying numerical enclo-
sures of univariate definite integrals using the Coq proof assistant. This method has
been integrated into the interval tactic. It provides formal proofs of the existence
of integrals, in both proper and improper cases, and computes formally verified
enclosures thereof. These proofs rely on the formal theory of Riemann integrals
provided by our extension to the Coquelicot library. Note that our algorithms do
not use anything specific to Riemann integrability and could be transposed to
Lebesgue or gauge theories.

In the proper case, the enclosure method just requires that there exist rigorous
polynomial approximations of the elementary functions in the integrand, so it is
only limited by the underlying CoqInterval library. At the time of writing, the
supported functions are

√
·, cos, sin, tan, exp, ln, arctan, and the integer power

function. Any new function added to the library would be supported almost im-
mediately by the integration module.

20 Assia Mahboubi et al.

The current treatment of improper integrals is less automated. In particular,
the syntactic expression of the integrand has to make explicit the scale element
that models its asymptotic behavior near the singularity. The tactic currently
supports two scales: eγx and xα lnβ x. We could provide more scales to users, or
at least merge these two into the more common scale eγxxα lnβ x. More impor-
tantly, a more satisfactory tool for the improper case would require some support
for the symbolic computation of expansions of the integrand along a given scale.
This would both make the method more general and reduce the preparatory work
required from the user.

Nested integrals are not supported by our method. The naive approach could
easily be adapted to support them, but performances would be even worse due to
the curse of dimensionality. As for the polynomial-based approach, it is not suitable
for nested integrals, since there exists no general method for integrating multivari-
ate polynomials. In fact, any 3-SAT instance can be reduced to approximating the
integral of a multivariate polynomial.

While our adaptive bisection algorithm and our rigorous quadrature based on
primitives of polynomial might seem crude, they proved effective in practice. They
produce accurate approximations of non-pathological integrals in a few seconds,
and thus they are usable in an interactive setting. Moreover, they can handle func-
tions with unbounded second derivatives in a rigorous way, as well as unbounded
integration domains. Another contribution of this paper is the way we are able to
infer that a function is integrable from a successful computation of its integral.

For proper integrals, we could also have tried rigorous quadrature methods such
as Newton-Cotes formulas. Rather than a degree-n approximation, the algorithm
would integrate a degree-n polynomial interpolant of the integrand, which gives
a much tighter enclosure of the integral at a fraction of the cost. The increased
accuracy comes from the ability to compute a tight enclosure of the n+1-th deriva-
tive of the integrand. Unfortunately, CoqInterval only knows how to bound the
first derivative. Note that a very simplified version of this approach has already
been implemented in Coq in the setting of exact real arithmetic by O’Connor and
Spitters [15]. Since it does not even involve the first derivative, it is akin to our

naive approach and thus the performances are dreadful: computing
∫ 1

0
sin(x) dx

up to three decimals takes 7 seconds. Comparatively, our tool computes 400 dec-
imal digits in that same time, using degree-170 Taylor models and 1400 bits of
precision. Note that such an accuracy is unattainable using Simpson’s rule, even
outside Coq, since it would require about 1099 point evaluations.

We could also have tried a much more general method, that is, solving a differ-
ential equation built from the integrand, as we did when using VNODE-LP. Again,
there has been some work done for Coq in the setting of exact real arithmetic [10],
but the performances are not good enough in practice. Much closer to actual nu-
merical methods is Immler’s work in Isabelle/HOL [8], which uses an arithmetic
on affine forms. This approach is akin to computing with degree-1 RPAs.

Acknowledgements We would like to thank Érik Martin-Dorel for his improvements to the
Coq framework for computing rigorous polynomial approximations and Philippe Dumas for
stimulating discussions and suggestions.

Formally Verified Approximations of Definite Integrals 21

References

1. Ahmed, Z.: Ahmed’s integral: the maiden solution. Mathematical Spectrum 48(1), 11–12
(2015)

2. Boespflug, M., Dénès, M., Grégoire, B.: Full reduction at full throttle. In: J.P. Jouannaud,
Z. Shao (eds.) Certified Programs and Proofs, LNCS, vol. 7086, pp. 362–377. Springer,
Kenting, Taiwan (2011). DOI 10.1007/978-3-642-25379-9 26

3. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real anal-
ysis for Coq. Mathematics in Computer Science 9(1), 41–62 (2015). DOI 10.1007/
s11786-014-0181-1

4. Corliss, G.F., Rall, L.B.: Adaptive, self-validating numerical quadrature. SIAM Journal
on Scientific and Statistical Computing 8(5), 831–847 (1987). DOI 10.1137/0908069

5. Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave version 3.8.1 manual:
a high-level interactive language for numerical computations (2014). URL http://www.
gnu.org/software/octave/doc/interpreter

6. Hass, J., Schlafly, R.: Double bubbles minimize. Annals of Mathematics. Second Series
151(2), 459–515 (2000). DOI 10.2307/121042

7. Helfgott, H.A.: Major arcs for Goldbach’s problem (2014). URL http://arxiv.org/abs/
1305.2897

8. Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential
equations. In: J.M. Badger, K.Y. Rozier (eds.) NASA Formal Methods (NFM), LNCS,
vol. 8430, pp. 113–127. Springer (2014). DOI 10.1007/978-3-319-06200-6 9

9. Mahboubi, A., Melquiond, G., Sibut-Pinote, T.: Formally verified approximations of
definite integrals. In: J.C. Blanchette, S. Merz (eds.) 7th Conference on Interac-
tive Theorem Proving, LNCS, vol. 9807, pp. 274–289. Nancy, France (2016). DOI
10.1007/978-3-319-43144-4 17

10. Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equations in
Coq. In: S. Blazy, C. Paulin-Mohring, D. Pichardie (eds.) 4th International Conference
on Interactive Theorem Proving, LNCS, vol. 7998, pp. 463–468. Springer, Rennes, France
(2013). DOI 10.1007/978-3-642-39634-2 34

11. Martin-Dorel, É., Melquiond, G.: Proving tight bounds on univariate expressions with
elementary functions in Coq. Journal of Automated Reasoning pp. 1–31 (2015). DOI
10.1007/s10817-015-9350-4

12. Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et numérique.
Ph.D. thesis, Université Paris VI (2001)

13. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia, PA, USA (2009). DOI 10.1137/1.9780898717716

14. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: Scientific Computing, Computer
Arithmetic and Validated Numerics (SCAN) (2006). DOI 10.1109/SCAN.2006.28. URL
http://www.cas.mcmaster.ca/~nedialk/vnodelp/

15. O’Connor, R., Spitters, B.: A computer verified, monadic, functional implementation of
the integral. Theoretical Computer Science 411(37), 3386–3402 (2010)

16. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic. Acta
Numerica 19, 287–449 (2010). DOI 10.1017/S096249291000005X. URL http://www.ti3.
tu-harburg.de/rump/intlab/

17. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Prince-
ton University Press, Princeton, NJ, USA (2011)

http://www.gnu.org/software/octave/doc/interpreter
http://www.gnu.org/software/octave/doc/interpreter
http://arxiv.org/abs/1305.2897
http://arxiv.org/abs/1305.2897
http://www.cas.mcmaster.ca/~nedialk/vnodelp/
http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/

	Introduction
	Preliminaries
	Notations and first definitions
	Elementary real analysis in Coq
	Numerical computations in Coq

	Interval methods to approximate a proper integral
	Naive integral enclosure
	Polynomial approximation
	Quality of the integral enclosures
	Dichotomy and adaptivity

	Interval methods to approximate an improper integral
	Improper integral of a product
	Catalog of supported integrable functions
	Case of 0+

	Automating the proof process
	Straight-line programs and enclosures
	Checking integrability
	Integration into a tactic
	Controlling the tactic

	Benchmarks
	Proper integrals
	Improper integrals

	Conclusion

