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Abstract

To study the assembly, the movements and the dissociation of large numbers of molecules in a 
virtual cell, a simulation program, HSIM, has been developed. The simulator is driven using a 
description of the model system written in a language we have also developed that does not 
limit the simulation program to a particular model. We present here the simulation of two 
completely different models: the growth of actin-like filaments in a prokaryotic cell, and the 
association and dissociation of proteins into large assemblies.
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Short Title

HSIM: a simulator to study assemblies of proteins

1.  Introduction

The program simulates a virtual cell  as a  three dimensional space bounded by a spherical 
membrane. This virtual cell is initially filled with a population of molecules of various types. 
When the simulation begins, these molecules diffuse and interact according to the reaction rules 
described in the model. Periodically, the simulator shows the content of the cell with a 3D 
OpenGL user interface. During the simulation, the user can rotate the cell, focus on and zoom a 
particular  area.  A  histogram showing  the  distribution  of  the  lengths  of  the  assemblies  is 



 

displayed. The program can also display curves showing the number of molecules of each 
species during the simulation.

2.  Simulator description

The simulator is  a  stochastic automaton driven by reaction rules between molecules. Each 
molecule is represented by a record that includes its type, its position, a list of links to certain 
other molecules and other internal data. The simulator keeps track of each assembly in real time 
from the computer point of view.

Although the technical details of the simulator program are a bit tricky, the basic principle is 
simple: the time is sliced in consecutive steps, each step (called a generation) processes all the 
molecules by applying the rules to each one. These rules mimic the chemical reactions between 
molecules in the real system. The generation simulated time slice is set to 100 micro-seconds, 
which corresponds to the average time for a protein to move a distance of 10 nanometres 
(approximately its diameter).

More precisely  a  step of  simulation is  done by  applying the following process to  all  the 
molecules:

· Choose the source molecule S (randomly, in order to avoid artefacts).
· Check if close enough to S, in a location randomly chosen L, there is another molecule 

T, the target. The target T is found by searching in a sphere of radius 10nm centred on S 
along a random direction (two angles in the 3D space) if another molecule intersect this 
line.

· If so, and if a reaction rule is given between a molecule of the type of S and a molecule 
of the type of T, this rule is applied, according to a probability representing the reaction 
kinetics.

· Else,  molecule  S may  move  to  the  empty  location  L,  according  to  a  probability 
representing the diffusion speed.

When all the molecules involved in the cell have been processed, the current generation is 
completed and a new one can begin. One important point is that, unlike a cellular automaton, 
this is the molecules which are examined and not the space that contains them; so the computer 
time is only related (in fact proportional) to the total number of molecules and not to the size of 
the simulated space.

The simulator implements four kinds of interaction rules between two molecules: the source S 
and the target T:

· Reaction: S reacts with T to produce two other types of molecules S' and T'. 
· Association: S binds to T to produce the complex S-T. 
· Dissociation: the complex S-T can break and leave individual molecules S and T.
· Catalysis: the complex S-T can be transformed to S'-T'.

As in the reaction and catalysis rules, the association and dissociation rules can change the type 
of the molecules. Each rule is given a probability of execution that, on the long run, corresponds 
to a reaction kinetics. For the association rule, a maximum number of links can be specified. 
Each molecule in the left part of a rule can have a context (called an environment) associated 
with. This environment specify to which type of molecule the source or target molecule has to 
be (or not) already linked in order to trigger the rule (see section 3.1).



 

To keep memory usage low, the simulated space is managed with a technique called a  hash 
table.  With  this  technique  the  computer  memory used  is  proportional  to  the  number  of 
molecules in the simulation, and not to the size of the simulated space. The extra computer time 
used by the hash table is less than twice the time used to access a standard array. The proportion 
of this access time to the total time being less than one quarter, this extra cost is acceptable 
compared with the possibility of having a potentially infinite simulated space. In  HSIM, the 
space is continuous i.e. there is no discrete 3D grid like in cellular automata. The molecules 
have floating point coordinates, and the hash table mentioned above is only used to quickly find 
if there is a target molecule in the neighbourhood of the source molecule, which could interact 
with it.

A way to reduce the computer time used in HSIM is to maintain two lists of molecules. The first 
one is the list of the active molecules, which can be sources of interaction. The second one is 
the list of inactive molecules, which can only be target of interaction. The simulator processes 
only the list of active molecules which can be much smaller than the total number of molecules. 
During the processing of a couple of molecules, the programme automatically changes the 
status of these molecules. In the actin example shown hereafter, the main constituent of an actin 
strand is the F-actin molecule, which can be inactive, since only the ends can polymerise and 
depolymerise.

2.2   The language

The simulator uses a configuration file to describe the model the user wants to simulate. This 
file contains four sections. The first section describes the molecules involved in the model. The 
second specifies the diffusion rate of each molecule. The third section describes all the reaction 
rules that will be applied during the simulation. The last section describes the initial population 
and location for each kind of molecules. Here is the syntax of the language we have developed 
to describe a model: (the keywords are typed in boldface characters)

First section:
 
The molecule keyword declares the set of molecules involved in the model. The  r,g,b values 
define the colour used to show the molecule on the display. The optional  inactive keyword 
indicates if the molecule is or not a possible source of interaction.

molecule <mol_name1> (r, g, b [inactive]),
<mol_name2> (r, g, b [inactive]),
...
<mol_nameN> (r, g, b [inactive]);

The membrane keyword declares a set of molecules confined to the cell membrane. The same 
syntax is used, only the keyword changes.

membrane <mol_name> (r, g, b [inactive]), ... ;

Second section:



 

The speed keyword defines the diffusion speed of the molecule in terms of the probability to 
move to a distance of 10nm.

speed (mol_name) = probability;

Third section:

The reaction rules use the following syntax:

Source <op1> Target  ->  NewSource(lt) <op2> NewTarget(ls) [p];

On the left part of a rule, Source and Target specify each a molecule type and its 
environment:

{M}S means a molecule of type S already linked to a molecule of type M
{~M}S means a molecule of type S not linked to a molecule of type M
S means a molecule of type S linked or not to any type of molecule

<op1> describes the operator involved between Source and Target:

+ means that Source and Target are not linked together (reaction or 
association rule)

* means that Source and Target are linked together (catalysis or
dissociation rule)

On the right part of a rule, NewSource and  NewTarget are the new types of the source and 
target molecules. lt specifies the maximum number of links a molecule of type NewSource
is allowed to have to a molecule of type NewTarget (ls is the same for NewTarget).

<op2> describes whether or not the source and target molecules become linked together:

+ means that either the two molecules remains not linked together 
(reaction) or the link between them is broken (dissociation)

* or = means that either the two molecules remains linked together (catalysis) or 
become linked (association). The = operator adds an alignment constraint 
(see section 3)

The last part of the rule [p] specifies the probability for the reaction to be triggered when the 
preconditions are set. This probability defines the reaction kinetics.
Fourth section:
The virtual cell is initially populated using the following statements:

cube (x, y, z, l, mol_name);

A cube located at the point <x, y, z> is filled with l3 molecules of type mol_name. As this 
cube is compact, it leads to a very high local concentration of molecules. To avoid generating 
artefacts, the simulator is first started in  diffusion only mode for a few thousand generations, 
then it is switched back to reaction mode so the molecules diffuse and react according to the 
rules.

 surface (25, mol_name);



 

One pole of  the spherical membrane bounding the cell  is  populated with 25 copies of the 
membrane protein mol_name.

3.   Growth of actin filaments

This first example shows how we can simulate the growth of actin-like filaments using HSIM. 
Here is the description of the molecules involved in the model.

molecule
P (200, 0, 0), // filamentous actin 'plus' end.
M (0, 200, 0), // filamentous actin 'minus' end.
AF (200, 200, 0, inactive), // inactive F-actin.
AG (200, 100, 0); // phosphorylated globular actin.

With these definitions, the plus end (P) will be displayed in red, the minus end (M) in green, the 
filament itself (AF) in yellow and the free globular actin (AG) in orange.

In this example only the free G-actin  molecules can diffuse. The filaments themselves  are 
frozen:

speed (AF) = 0.0; // diffusion speed is zero
speed (P) = 0.0; // for the filaments.
speed (M) = 0.0;

speed (AG) = 1.0; // high diffusion speed.

The following rules show the formation of the polarised dimers from two free phosphorylated 
free G-actin molecules: 

AG  +  AG  ->   M(1) * P(1) [0.05];
M   *  P   ->   AG   + AG [0.5];

The right part of the first rule states that a minus end M can be bound to only one plus end P, 
and conversely, a plus end P can be bound to only one minus end M. The second rule is the 
reverse reaction, the depolymerisation of the complex, giving two free G-actin molecules. 
The next rules show the growth of a filament from the plus end:

AG  +  P  ->   P(1)  =  AF(1) [0.8];
P   *  AF ->   AG    +  P [0.001];

The first rule shows how a free G-actin molecule can be bound to the plus end of an already 
existing filament. The equals sign in the right part of the rule means that the link must be 
aligned with the filament. The second rule shows the reverse reaction, the depolymerisation 
from the plus end giving one free G-actin molecule. 

The next two rules show the growth of a filament from the minus end. One can notice that the 
polymerisation kinetics is lower than for the plus end which may lead to a linear movement of 
the filament towards the plus end equivalent to tread-milling.



 

AG  +  M   ->   M(1)  =  AF(1) [0.3];
M   *  AF  ->   AG    +  M [0.005];

The simulation is initialised by the statement: 

cube (0, 0, 0, 12, AG);

A cube of length 12 located at the centre of the cell (0, 0, 0) is filled with 123 = 1728 molecules 
of free globular actin. First, polarised dimers assemble and then the filaments grow until one 
end touches the membrane or an equilibrium state is reached (see Fig. 1).

Figure 1:  A view of the virtual cell filled with dynamic actin filaments. On the bottom left corner of the 
screenshot a histogram of the lengths of the filaments is displayed.

4.  Simulation of hyperstructures

In addition to the rules used in the previous example, the simulation language has some specific 
features that allow the user to study a large number of different model systems. Hyperstructures 
are large assemblies of molecules such as enzymes within cells. In this section we show how to 
model a hyperstructure in the form of a metabolic pathway in which the product of one enzyme 
is the substrate of the next one in the pathway. The simulation shows how hyperstructures can, 
on demand, assemble, work and disassemble when the simulation only specifies an increase of 



 

affinity between two enzymes in the presence of their substrate. Finally, we show how to 
confine an object to the cell membrane so allowing the creation of membrane receptors which 
can only diffuse in two dimensions in the membrane (see Fig. 2).
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Figure 2: Formation  of  a  non-equilibrium hyperstructure  due to  changes in the affinity  of  its  constituent 
enzymes for one another.  Enzymes E1 can only diffuse in the plane of the membrane whilst the other enzymes, 
E2 to E7 diffuse in the cytoplasm.  The binding of a substrate, such as a sugar, to the E1 enzymes leads to an 
increase their affinity for one another and their assembly into an E1 domain.  On binding its substrate,  each 
enzyme in the pathway acquires an increased affinity for the following enzyme.  This results in the assembly of 
metabolons  E1  to  E7  and  the  assembly  of  the  hyperstructure  (here,  a  group  of  metabolons).   Note  that 
transcription  of  the genes encoding  E1 to E7 and the simultaneous  translation  of  the  mRNA may help  the 
assembly of the hyperstructure.

As in the previous example,  the initial state of the simulation is obtained by switching the 
simulator to a  diffusion only mode and then running it for a few thousand generations. This 
disperses the cytoplasmic enzymes throughout the cytoplasm. As the diffusion speed of the 
membrane receptors (Enzyme 1) is  very slow, they stay in  roughly the same place in  the 
membrane during this first phase of simulation. The main simulation phase begins when the 
simulator is switched to the reaction mode.

With the current implementation of the programme it is not yet possible to have molecules 
outside the cell membrane. To simulate the fact that the initial substrate is translocated by the 
membrane receptor, we put this substrate directly into the cytoplasm. To keep this example as 
simple as possible we only use one kind of membrane receptor and a pathway of four enzymes.

4.1.   Configuration

In  the first  section of  the configuration  file we declare  all  the  molecules  involved in  this 
simulation: the membrane receptor E1, the enzymes E2 to  E4 and the substrates S1 to  S5. The 
membrane receptor E1 is declared with the membrane keyword:

membrane E1 (0, 0, 250);



 

The other enzymes and the substrates are  declared using the  molecule keyword as  in  the 
previous example. The reaction rules are divided into four almost identical groups, one for each 
enzyme in the pathway.

The group of rules for enzyme En indicates that:

· enzyme En can fix its substrate Sn

· when En has bound its substrate, En has its affinity for enzyme En+1 increased so it can be 
bound by it

· conversely, when enzyme En does not have its substrate Sn bound to it, En loses its 
affinity for En+1

· enzyme En transforms its substrate Sn to its product Sn+1  ,  which is the substrate for 
enzyme En+1

· when enzymes En and En+1 are bound together, the product Sn+1 is transferred to En+1 (and 
this new product is then freed from En and linked to En+1)

Here are the rules for the beginning of the pathway, the membrane receptor E1:

S1 + E1 -> S1(1) * E1(1) [0.6];

This rule means that when the substrate S1 is close enough to the membrane receptor E1, it is 
captured with probability 0.6. The number between the parentheses in the right part of the rule 
means that the enzyme can bind only one copy of its substrate.

{S1}E1 + E2 -> E1 (1) * E2 (1) [0.9];

This second rule shows how the environment of a molecule can be important in the application 
of a rule. The left part of the rule means that if enzyme E2 is close enough to a membrane 
receptor E1 that is already bound to its substrate S1 (and only if E1 is bound), then enzyme E2 

will bind to  E1 to form a complex. This is done with a high probability to model the high 
affinity for the two enzymes in presence of the substrate.

{~S1}E1 * E2 -> E1 + E2 [0.001];

Finally the third rule shows how enzyme  E1 loses its affinity for enzyme  E2 when  E1 is not 
bound to its substrate. The left part of the rule means that if  E1 is bound to  E2 but  E1 is not 
bound to its substrate S1, the link between the two enzymes is broken. One can notice that the 
probability is very low; this is because the two molecules being linked are very close and the 
program gives a greater chance for this event to occur.

The two last rules of the group are used for transform S1 to S2 and to transfer it from enzyme E1 

to enzyme E2.

{E1}S1 + {E1}E2 -> S2(1) * E2(1) [1.0];

here S1 which is bound to E1 also binds to E2 and at the same time is transformed to the product 
S2. Each time the initial conditions are set (the left part of the rule) the rule will be statistically 
applied because the probability is set to one.



 

{E2}E1 * {E2}S2 -> E1 + S2 [1.0];

this rule is used to break the link between the product S2 and the enzyme E1 to complete the 
transfer.

With this set of five rules repeated three times (for each of the different enzymes E2, E3 and E4) 
in the configuration file, plus a last rule to release the final product S5 we have finished with the 
rule section. The initialisation section fills the cell with 36 copies of the membrane receptor, 64 
copies of enzymes E2, E3 and E4, and 729 copies of substrate S1.

surface (36, E1);
cube (0, 6, 8, 4, E2);
cube (6, 0, 8, 4, E3);
cube (0, 0, 0, 4, E4);
cube (0, 0, -6, 9, S1);

4.2.   Simulation results

After the first phase of diffusion to get a homogenous distribution of all the molecules in the 
cytoplasm, the membrane receptors bind their substrate. Then after a short period of time, we 
can see the first assemblies appear and quickly transform the intermediate substrates to the final 
product like an assembly line in a factory (see Fig. 3). Before all the copies of substrate S1 have 
been transformed to the final product S5, the assemblies begin to break up and finally disappear. 
Since these assemblies are attached to the membrane, even if the total concentration of enzymes 
is low, the local concentration is high enough to produce S5 at high rate.

Figure 3:  The virtual  cell  with  the hyperstructures  linked to the membrane receptors.  The  curves  in the 
bottom part show the decrease in the concentration of substrate S1 along with the increase in concentration of 
product S5. The horizontal axis is graduated in seconds of simulated time (the real time is approximately 3 times 
slower on a standard PC). The vertical axis shows the number of copies of each kind of molecules.

5.   Conclusion

With these two examples one can see that this simulation programme is very versatile. The 
efficiency of the implementation in terms of computer time is high enough to include in a future 
release some real time controls. These controls may include the ability to modify the reaction 



 

kinetics (the probability part of the rules) or the number of copies of each kind of molecules, 
etc.

Another improvement, which is in progress, is to replace the spherical membrane of the 
cell with a simulated membrane made with lipid molecules. The number of molecules used to 
make the membrane is very high, but they can be inactive, and so they do not use computer 
time. The next step is to allow deformations of this membrane, because of the pressure of the 
actin filaments for example.
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