

HSIM: a simulation programme to study large assemblies of
proteins

Patrick Amar1,2, Gilles Bernot2, Victor Norris3

1Laboratoire de Recherches en Informatique, Université Paris Sud & CNRS UMR 8623, 15 avenue
George Clémenceau, F91405 Orsay Cedex
2La.M.I. Université d’Évry Val d’Essonne & CNRS UMR 8042, Tour Évry 2, 523 Place des terrasses
de l’agora, F91000 Évry
3Laboratoire des Processus Intégratifs Cellulaires, CNRS UMR 6037, Faculté des Sciences et Tech
niques, Université de Rouen, F76821, MontSaintAignan Cedex

Author for correspondence: Patrick Amar, email: pa@lri.fr

Abstract

To study the assembly, the movements and the dissociation of large numbers of molecules in a
virtual cell, a simulation program, HSIM, has been developed. The simulator is driven using a
description of the model system written in a language we have also developed that does not
limit the simulation program to a particular model. We present here the simulation of two
completely different models: the growth of actin-like filaments in a prokaryotic cell, and the
association and dissociation of proteins into large assemblies.

Keywords

Simulation, modelling, protein-protein interactions, virtual cell, hyperstructures.

Short Title

HSIM: a simulator to study assemblies of proteins

1. Introduction

The program simulates a virtual cell as a three dimensional space bounded by a spherical
membrane. This virtual cell is initially filled with a population of molecules of various types.
When the simulation begins, these molecules diffuse and interact according to the reaction rules
described in the model. Periodically, the simulator shows the content of the cell with a 3D
OpenGL user interface. During the simulation, the user can rotate the cell, focus on and zoom a
particular area. A histogram showing the distribution of the lengths of the assemblies is

displayed. The program can also display curves showing the number of molecules of each
species during the simulation.

2. Simulator description

The simulator is a stochastic automaton driven by reaction rules between molecules. Each
molecule is represented by a record that includes its type, its position, a list of links to certain
other molecules and other internal data. The simulator keeps track of each assembly in real time
from the computer point of view.

Although the technical details of the simulator program are a bit tricky, the basic principle is
simple: the time is sliced in consecutive steps, each step (called a generation) processes all the
molecules by applying the rules to each one. These rules mimic the chemical reactions between
molecules in the real system. The generation simulated time slice is set to 100 micro-seconds,
which corresponds to the average time for a protein to move a distance of 10 nanometres
(approximately its diameter).

More precisely a step of simulation is done by applying the following process to all the
molecules:

· Choose the source molecule S (randomly, in order to avoid artefacts).
· Check if close enough to S, in a location randomly chosen L, there is another molecule

T, the target. The target T is found by searching in a sphere of radius 10nm centred on S
along a random direction (two angles in the 3D space) if another molecule intersect this
line.

· If so, and if a reaction rule is given between a molecule of the type of S and a molecule
of the type of T, this rule is applied, according to a probability representing the reaction
kinetics.

· Else, molecule S may move to the empty location L, according to a probability
representing the diffusion speed.

When all the molecules involved in the cell have been processed, the current generation is
completed and a new one can begin. One important point is that, unlike a cellular automaton,
this is the molecules which are examined and not the space that contains them; so the computer
time is only related (in fact proportional) to the total number of molecules and not to the size of
the simulated space.

The simulator implements four kinds of interaction rules between two molecules: the source S
and the target T:

· Reaction: S reacts with T to produce two other types of molecules S' and T'.
· Association: S binds to T to produce the complex S-T.
· Dissociation: the complex S-T can break and leave individual molecules S and T.
· Catalysis: the complex S-T can be transformed to S'-T'.

As in the reaction and catalysis rules, the association and dissociation rules can change the type
of the molecules. Each rule is given a probability of execution that, on the long run, corresponds
to a reaction kinetics. For the association rule, a maximum number of links can be specified.
Each molecule in the left part of a rule can have a context (called an environment) associated
with. This environment specify to which type of molecule the source or target molecule has to
be (or not) already linked in order to trigger the rule (see section 3.1).

To keep memory usage low, the simulated space is managed with a technique called a hash
table. With this technique the computer memory used is proportional to the number of
molecules in the simulation, and not to the size of the simulated space. The extra computer time
used by the hash table is less than twice the time used to access a standard array. The proportion
of this access time to the total time being less than one quarter, this extra cost is acceptable
compared with the possibility of having a potentially infinite simulated space. In HSIM, the
space is continuous i.e. there is no discrete 3D grid like in cellular automata. The molecules
have floating point coordinates, and the hash table mentioned above is only used to quickly find
if there is a target molecule in the neighbourhood of the source molecule, which could interact
with it.

A way to reduce the computer time used in HSIM is to maintain two lists of molecules. The first
one is the list of the active molecules, which can be sources of interaction. The second one is
the list of inactive molecules, which can only be target of interaction. The simulator processes
only the list of active molecules which can be much smaller than the total number of molecules.
During the processing of a couple of molecules, the programme automatically changes the
status of these molecules. In the actin example shown hereafter, the main constituent of an actin
strand is the F-actin molecule, which can be inactive, since only the ends can polymerise and
depolymerise.

2.2 The language

The simulator uses a configuration file to describe the model the user wants to simulate. This
file contains four sections. The first section describes the molecules involved in the model. The
second specifies the diffusion rate of each molecule. The third section describes all the reaction
rules that will be applied during the simulation. The last section describes the initial population
and location for each kind of molecules. Here is the syntax of the language we have developed
to describe a model: (the keywords are typed in boldface characters)

First section:

The molecule keyword declares the set of molecules involved in the model. The r,g,b values
define the colour used to show the molecule on the display. The optional inactive keyword
indicates if the molecule is or not a possible source of interaction.

molecule <mol_name1> (r, g, b [inactive]),
<mol_name2> (r, g, b [inactive]),
...
<mol_nameN> (r, g, b [inactive]);

The membrane keyword declares a set of molecules confined to the cell membrane. The same
syntax is used, only the keyword changes.

membrane <mol_name> (r, g, b [inactive]), ... ;

Second section:

The speed keyword defines the diffusion speed of the molecule in terms of the probability to
move to a distance of 10nm.

speed (mol_name) = probability;

Third section:

The reaction rules use the following syntax:

Source <op1> Target -> NewSource(lt) <op2> NewTarget(ls) [p];

On the left part of a rule, Source and Target specify each a molecule type and its
environment:

{M}S means a molecule of type S already linked to a molecule of type M
{~M}S means a molecule of type S not linked to a molecule of type M
S means a molecule of type S linked or not to any type of molecule

<op1> describes the operator involved between Source and Target:

+ means that Source and Target are not linked together (reaction or
association rule)

* means that Source and Target are linked together (catalysis or
dissociation rule)

On the right part of a rule, NewSource and NewTarget are the new types of the source and
target molecules. lt specifies the maximum number of links a molecule of type NewSource
is allowed to have to a molecule of type NewTarget (ls is the same for NewTarget).

<op2> describes whether or not the source and target molecules become linked together:

+ means that either the two molecules remains not linked together
(reaction) or the link between them is broken (dissociation)

* or = means that either the two molecules remains linked together (catalysis) or
become linked (association). The = operator adds an alignment constraint
(see section 3)

The last part of the rule [p] specifies the probability for the reaction to be triggered when the
preconditions are set. This probability defines the reaction kinetics.
Fourth section:
The virtual cell is initially populated using the following statements:

cube (x, y, z, l, mol_name);

A cube located at the point <x, y, z> is filled with l3 molecules of type mol_name. As this
cube is compact, it leads to a very high local concentration of molecules. To avoid generating
artefacts, the simulator is first started in diffusion only mode for a few thousand generations,
then it is switched back to reaction mode so the molecules diffuse and react according to the
rules.

 surface (25, mol_name);

One pole of the spherical membrane bounding the cell is populated with 25 copies of the
membrane protein mol_name.

3. Growth of actin filaments

This first example shows how we can simulate the growth of actin-like filaments using HSIM.
Here is the description of the molecules involved in the model.

molecule
P (200, 0, 0), // filamentous actin 'plus' end.
M (0, 200, 0), // filamentous actin 'minus' end.
AF (200, 200, 0, inactive), // inactive F-actin.
AG (200, 100, 0); // phosphorylated globular actin.

With these definitions, the plus end (P) will be displayed in red, the minus end (M) in green, the
filament itself (AF) in yellow and the free globular actin (AG) in orange.

In this example only the free G-actin molecules can diffuse. The filaments themselves are
frozen:

speed (AF) = 0.0; // diffusion speed is zero
speed (P) = 0.0; // for the filaments.
speed (M) = 0.0;

speed (AG) = 1.0; // high diffusion speed.

The following rules show the formation of the polarised dimers from two free phosphorylated
free G-actin molecules:

AG + AG -> M(1) * P(1) [0.05];
M * P -> AG + AG [0.5];

The right part of the first rule states that a minus end M can be bound to only one plus end P,
and conversely, a plus end P can be bound to only one minus end M. The second rule is the
reverse reaction, the depolymerisation of the complex, giving two free G-actin molecules.
The next rules show the growth of a filament from the plus end:

AG + P -> P(1) = AF(1) [0.8];
P * AF -> AG + P [0.001];

The first rule shows how a free G-actin molecule can be bound to the plus end of an already
existing filament. The equals sign in the right part of the rule means that the link must be
aligned with the filament. The second rule shows the reverse reaction, the depolymerisation
from the plus end giving one free G-actin molecule.

The next two rules show the growth of a filament from the minus end. One can notice that the
polymerisation kinetics is lower than for the plus end which may lead to a linear movement of
the filament towards the plus end equivalent to tread-milling.

AG + M -> M(1) = AF(1) [0.3];
M * AF -> AG + M [0.005];

The simulation is initialised by the statement:

cube (0, 0, 0, 12, AG);

A cube of length 12 located at the centre of the cell (0, 0, 0) is filled with 123 = 1728 molecules
of free globular actin. First, polarised dimers assemble and then the filaments grow until one
end touches the membrane or an equilibrium state is reached (see Fig. 1).

Figure 1: A view of the virtual cell filled with dynamic actin filaments. On the bottom left corner of the
screenshot a histogram of the lengths of the filaments is displayed.

4. Simulation of hyperstructures

In addition to the rules used in the previous example, the simulation language has some specific
features that allow the user to study a large number of different model systems. Hyperstructures
are large assemblies of molecules such as enzymes within cells. In this section we show how to
model a hyperstructure in the form of a metabolic pathway in which the product of one enzyme
is the substrate of the next one in the pathway. The simulation shows how hyperstructures can,
on demand, assemble, work and disassemble when the simulation only specifies an increase of

affinity between two enzymes in the presence of their substrate. Finally, we show how to
confine an object to the cell membrane so allowing the creation of membrane receptors which
can only diffuse in two dimensions in the membrane (see Fig. 2).

E1 E1 E1 E1

E2 E2 E2E2

E3 E3 E3E3

E4 E4 E4

E5 E5 E5

E6 E6

E7 E7

E1 E1 E1 E1

substrate

membrane
domain

DNA
encoding

E1-E7

metabolites

Figure 2: Formation of a non-equilibrium hyperstructure due to changes in the affinity of its constituent
enzymes for one another. Enzymes E1 can only diffuse in the plane of the membrane whilst the other enzymes,
E2 to E7 diffuse in the cytoplasm. The binding of a substrate, such as a sugar, to the E1 enzymes leads to an
increase their affinity for one another and their assembly into an E1 domain. On binding its substrate, each
enzyme in the pathway acquires an increased affinity for the following enzyme. This results in the assembly of
metabolons E1 to E7 and the assembly of the hyperstructure (here, a group of metabolons). Note that
transcription of the genes encoding E1 to E7 and the simultaneous translation of the mRNA may help the
assembly of the hyperstructure.

As in the previous example, the initial state of the simulation is obtained by switching the
simulator to a diffusion only mode and then running it for a few thousand generations. This
disperses the cytoplasmic enzymes throughout the cytoplasm. As the diffusion speed of the
membrane receptors (Enzyme 1) is very slow, they stay in roughly the same place in the
membrane during this first phase of simulation. The main simulation phase begins when the
simulator is switched to the reaction mode.

With the current implementation of the programme it is not yet possible to have molecules
outside the cell membrane. To simulate the fact that the initial substrate is translocated by the
membrane receptor, we put this substrate directly into the cytoplasm. To keep this example as
simple as possible we only use one kind of membrane receptor and a pathway of four enzymes.

4.1. Configuration

In the first section of the configuration file we declare all the molecules involved in this
simulation: the membrane receptor E1, the enzymes E2 to E4 and the substrates S1 to S5. The
membrane receptor E1 is declared with the membrane keyword:

membrane E1 (0, 0, 250);

The other enzymes and the substrates are declared using the molecule keyword as in the
previous example. The reaction rules are divided into four almost identical groups, one for each
enzyme in the pathway.

The group of rules for enzyme En indicates that:

· enzyme En can fix its substrate Sn

· when En has bound its substrate, En has its affinity for enzyme En+1 increased so it can be
bound by it

· conversely, when enzyme En does not have its substrate Sn bound to it, En loses its
affinity for En+1

· enzyme En transforms its substrate Sn to its product Sn+1 , which is the substrate for
enzyme En+1

· when enzymes En and En+1 are bound together, the product Sn+1 is transferred to En+1 (and
this new product is then freed from En and linked to En+1)

Here are the rules for the beginning of the pathway, the membrane receptor E1:

S1 + E1 -> S1(1) * E1(1) [0.6];

This rule means that when the substrate S1 is close enough to the membrane receptor E1, it is
captured with probability 0.6. The number between the parentheses in the right part of the rule
means that the enzyme can bind only one copy of its substrate.

{S1}E1 + E2 -> E1 (1) * E2 (1) [0.9];

This second rule shows how the environment of a molecule can be important in the application
of a rule. The left part of the rule means that if enzyme E2 is close enough to a membrane
receptor E1 that is already bound to its substrate S1 (and only if E1 is bound), then enzyme E2

will bind to E1 to form a complex. This is done with a high probability to model the high
affinity for the two enzymes in presence of the substrate.

{~S1}E1 * E2 -> E1 + E2 [0.001];

Finally the third rule shows how enzyme E1 loses its affinity for enzyme E2 when E1 is not
bound to its substrate. The left part of the rule means that if E1 is bound to E2 but E1 is not
bound to its substrate S1, the link between the two enzymes is broken. One can notice that the
probability is very low; this is because the two molecules being linked are very close and the
program gives a greater chance for this event to occur.

The two last rules of the group are used for transform S1 to S2 and to transfer it from enzyme E1

to enzyme E2.

{E1}S1 + {E1}E2 -> S2(1) * E2(1) [1.0];

here S1 which is bound to E1 also binds to E2 and at the same time is transformed to the product
S2. Each time the initial conditions are set (the left part of the rule) the rule will be statistically
applied because the probability is set to one.

{E2}E1 * {E2}S2 -> E1 + S2 [1.0];

this rule is used to break the link between the product S2 and the enzyme E1 to complete the
transfer.

With this set of five rules repeated three times (for each of the different enzymes E2, E3 and E4)
in the configuration file, plus a last rule to release the final product S5 we have finished with the
rule section. The initialisation section fills the cell with 36 copies of the membrane receptor, 64
copies of enzymes E2, E3 and E4, and 729 copies of substrate S1.

surface (36, E1);
cube (0, 6, 8, 4, E2);
cube (6, 0, 8, 4, E3);
cube (0, 0, 0, 4, E4);
cube (0, 0, -6, 9, S1);

4.2. Simulation results

After the first phase of diffusion to get a homogenous distribution of all the molecules in the
cytoplasm, the membrane receptors bind their substrate. Then after a short period of time, we
can see the first assemblies appear and quickly transform the intermediate substrates to the final
product like an assembly line in a factory (see Fig. 3). Before all the copies of substrate S1 have
been transformed to the final product S5, the assemblies begin to break up and finally disappear.
Since these assemblies are attached to the membrane, even if the total concentration of enzymes
is low, the local concentration is high enough to produce S5 at high rate.

Figure 3: The virtual cell with the hyperstructures linked to the membrane receptors. The curves in the
bottom part show the decrease in the concentration of substrate S1 along with the increase in concentration of
product S5. The horizontal axis is graduated in seconds of simulated time (the real time is approximately 3 times
slower on a standard PC). The vertical axis shows the number of copies of each kind of molecules.

5. Conclusion

With these two examples one can see that this simulation programme is very versatile. The
efficiency of the implementation in terms of computer time is high enough to include in a future
release some real time controls. These controls may include the ability to modify the reaction

kinetics (the probability part of the rules) or the number of copies of each kind of molecules,
etc.

Another improvement, which is in progress, is to replace the spherical membrane of the
cell with a simulated membrane made with lipid molecules. The number of molecules used to
make the membrane is very high, but they can be inactive, and so they do not use computer
time. The next step is to allow deformations of this membrane, because of the pressure of the
actin filaments for example.

References

1. Amar, P., Ballet, P., Barlovatz-Meimon, G., Benecke, A., Bernot, G., Bouligand, Y.,
Bourgine, P., Delaplace, F., Delosme, J.-M., Demarty, M., Fishov, I., Fourmentin-Guilbert, J.,
Fralick, J., Giavitto, J.-L., Gleyse, B., Godin, C., Incitti, R., Képès, F., Lange, C., Le Sceller, L.,
Loutellier, C., Michel, O., Molina, F., Monnier, C., Natowicz, R., Norris, V., Orange, N.,
Pollard, H., Raine, D., Ripoll, C., Rouviere-Yaniv, J., Saier jnr., M., Soler, P. Tambourin, P.,
Thellier, M., Tracqui, P., Ussery, D., Vannier, J.-P. Vincent, J.-C., Wiggins P. & Zemirline, A.
Hyperstructures, genome analysis and I-cell. Acta Biotheoretica. 50 (2002) 357-373.

2. Borisy, G.G. & Svitkina, T.M.
Actin machinery: push-pull the envelope, Curr. Opin. Cell Biol. 12 (2000) 104-112.

3. Geigant E., Ladizhansky K. & Mogilner, A.
An integrodifferential model for orientational distribution of F-actin in cells. SIAM J. Appl.
Math. 59 (1998) 787-809.

4. Kier, LB, Cheng, CK & Seybold, PG.
Cellular automata models of chemical systems. SAR QSAR Environ Res. 11(2) (2000) 79-102.

5. Kier, LB, Cheng, CK, Testa, B & Carrupt, PA.
A cellular automata model of enzyme kinetics. J Mol Graph. 14(4) (1996) 227-31, 226.

6. Le Sceller L., C. Ripoll, M. Demarty, A. Cabin-Flaman, T. Nyström, M. Saier Jnr. and V.
Norris (2000).
Modelling bacterial hyperstructures with cellular automata. Interjournal Paper
http://www.interjournal.org. (2000) 366

7. Wurthner, JU, Mukhopadhyay, AK & Peimann, CJ.
A cellular automaton model of cellular signal transduction. Comput Biol Med. 30(1) (2000) 1-
21.

