
Proofs of randomized algorithms in Coq

Philippe Audebaud1 and Christine Paulin-Mohring2

1 ENS Lyon and INRIA Sophia-Antipolis
2 Université Paris Sud, LRI and INRIA Futurs?

Abstract. Randomized algorithms are widely used either for finding
efficiently approximated solutions to complex problems, for instance pri-
mality testing, or for obtaining good average behavior, for instance in
distributed computing. Proving properties of such algorithms requires
subtle reasoning both on algorithmic and probabilistic aspects of the pro-
grams. Providing tools for the mechanization of reasoning is consequently
an important issue. Our paper presents a new method for proving proper-
ties of randomized algorithms in a proof assistant based on higher-order
logic. It is based on the monadic interpretation of randomized programs
as probabilistic distribution [18]. It does not require the definition of an
operational semantics for the language nor the development of a complex
formalization of measure theory, but only use functionals and algebraic
properties of the unit interval. Using this model, we show the validity of
general rules for estimating the probability for a randomized algorithm
to satisfy certain properties, in particular in the case of general recursive
functions.

We apply this theory for formally proving a program implementing a
Bernoulli distribution from a coin flip and the termination of a random
walk. All the theories and results presented in this paper have been fully
formalized and proved in the Coq proof assistant [19].

1 Introduction

Randomized algorithms are widely used either for finding efficiently approxi-
mated solutions to complex problems such as the primality test, or in order to
obtain good average behavior, for instance in distributed computing. Proving
properties of such algorithms requires subtle reasoning both on algorithmic and
probabilistic aspects of the programs. Providing tools for the mechanization of
reasoning is consequently an important issue.

Models. The first problem is to find an appropriate mathematical represen-
tation of a randomized algorithm. Methods for modeling randomized programs
go back to the early work of D. Kozen [9, 10] which proposes to interpret ran-
domized imperative programs as measure transformers. This approach has been

? Projet ProVal (http://proval.lri.fr), Pôle Commun de Recherche en Informatique du
plateau de Saclay CNRS, Ecole Polytechnique, INRIA, Université Paris-Sud

studied further by A. McIver and C. Morgan [14] which extend the interpreta-
tion to non-deterministic as well as probabilistic choices and define a refinement
relation. Using an extension of weakest-precondition computation to randomized
programs, they propose a method to analyze the probability for the result of the
program to satisfy a given properties by simple rules on the structure of the
program and algebraic properties.

Studying the semantical foundations of probabilistic languages has been the
concern of many works. There are at least two different approaches.

The first one is an operational view using access to an arbitrary number of
independent random variables following a given distribution (which can be a
coin flip or a uniform distribution as in [15]). This interpretation is a monadic
transformation. If Ω denotes the type of infinite sequences of independent ran-
dom values, then a computation of type A will be interpreted as a function of
type Ω → A × Ω: it computes a value of type A and modifies the global state
of type Ω after consuming a finite prefix of the sequence of random values. Rea-
soning on randomized programs using this approach requires to model the base
probability distribution on Ω.

The second approach is to use directly the monadic structure of probability
distributions in order to interpret directly a randomized program of type A as
a distribution over the set of possible values in A. This is also a monadic inter-
pretation but with a different space: a probability distribution can essentially be
seen as a function from a set of subsets of A into the interval [0, 1], an alterna-
tive [18] is to use the monad corresponding to expectations which is a functional
which maps functions of type A → R to R.

Proofs. The second problem is to reason about probabilistic programs. There
are few works on actually mechanizing the proofs in this area.

J. Hurd, A. McIver and C. Morgan designed a mechanization of the quantita-
tive logic for probabilistic guarded commands using the proof assistant HOL [6].

In the domain of distributed protocols, the group of M. Kwiatkowska in
Birmingham has designed a probabilistic model-checker PRISM [11], which uses
Markov’s chains as the underlying model and a probabilistic temporal logic for
queries. Reasoning in this framework requires complex computations.

In the domain of algorithms, J. Hurd [4, 5] showed how to model and prove
properties of randomized programs in the HOL proof assistant using a monadic
transformation of programs, where he assumes access to an infinite sequence of
independent coin flips.

Our work has the same goals as J. Hurd’s development, to provide tools for
interactive reasoning on probabilistic programs. We choose a different monadic
transformation of probabilistic programs, interpreting directly programs as mea-
sures. One good thing about this method is that it does not require a complicated
development within probability theory: the measure can be treated abstractly
as a function with algebraic properties. Also the framework does not rely on a
particular choice of a primitive randomized function, both discrete and uniform
distributions can be manipulated. We propose an axiomatic semantics in the

spirit of the work of C. Morgan et al. and prove the validity of rules with respect
to our semantics.

Outline. The paper is organized as follows. In section 2, we introduce the
input language and its semantics: an interpretation of programs as measures
using a monadic transformation. We analyze our monadic interpretation from
the functional point of view. In section 3 we introduce the basic Coq theories for
representing measures. In section 4, we show the derived rules for estimating the
probability for a randomized program to satisfy a given property. In section 5,
we apply our method to proofs of simple probabilistic properties of programs.

Remark. The possible interpretation of random functional programs as prob-
abilistic distributions using a monadic interpretation is not new, it appears in
many theoretical works on semantics, or more concretely for representing ran-
dom programs in Haskell in [18]. To our knowledge, however, the approach of
mechanizing reasoning on random functional expressions is new. In [18], the
interpretation does not cover general recursive programs and its inefficiency is
criticized, the authors propose instead an alternative method which only cover
discrete distributions. The possibility to cover recursion was however studied
in [7] and we shall take the same approach in this paper. That the interpreta-
tion can lead to inefficient or even unfeasible computations in practice will be
illustrated in section 2.6. Our work advocates that operational behavior is not
relevant, as our model allows anyway for abstract reasoning on programs, using
the general rules presented in section 4 and illustrated on examples in section 5.
This is to be related to Hoare rules for axiomatic semantics, which do not rely
on computations per se, but to denotational semantics. From this point of view,
we compare with Kozen second semantics in [9].

2 Monadic interpretation of randomized algorithms

2.1 Randomized programs as measure transformers

In works by D. Kozen [9, 10], G. Plotkin & C. Jones [8, 7], C. Morgan & A.
McIver [12] and others, the basic idea is to interpret randomized programs as
measure transformers instead of the usual interpretation of programs as state
transformers.

The intuitive idea is that a randomized algorithm is non-deterministic and
consequently, for a given input state, it may produce different output states.
One is interested in the distribution of these output states. If this distribution is
known, given a property P on the state, we can compute the probability for the
result of the program to satisfy P . A randomized program uses basic randomized
primitives such as a random function which, given a natural number n, produces
a number between 0 and n with uniform probability 1

n+1 , or a more basic flip

function which produces true (resp. false) with probability 1
2 . Another classical

operator is probabilistic choice P p+ Q which behaves like the program P with
probability p and as Q with probability 1− p.

The implicit assumption is that any access to a random operator in the
program is independent of the others.

In this work, we start from a functional language. We do not have to consider
a global state: programs are functions which are computing values, and we want
to estimate the distribution of these values.

2.2 Representation of distributions

In this section, we explain our choice for a mathematical representation of prob-
ability distributions. We introduce the notation [0, 1] for the set of real numbers
between 0 and 1.

The probability point of view. From the mathematical point of view, a
probability distribution on a set A is defined by a set of events E which is a set
of subsets of A with good closure properties, and a function Pr from E to [0, 1]
such that the following properties hold:

Pr(A) = 1
Pr(

⋃
i Ei) = ΣiPr(Ei) when (Ei)i is a denumerable set of disjoint sets

The measure point of view A (positive) measure on a set A, is a linear
functional µ which given a (measurable) function f from A to R+, computes a
non-negative real number, its integral

∫
fdµ. In the following, we shall use the

notation µ(f) instead of
∫

fdµ.

Characteristic functions. If X is a subset of A, IX ∈ A → [0, 1] will denote the
characteristic function of X such that ∀x ∈ A, IX(x) = 0 ⇔ x 6∈ X ∧ IX(x) =
1 ⇔ x ∈ X. We write simply I for the function which is 1 everywhere. If P (x)
is a formula with a free variable x, we write IP (.) for the characteristic function
of the set X such that x ∈ X ⇔ P (x). For instance, I.=k is the characteristic
function of the singleton {k}.

Measure and probability. There is a well-known correspondence between mea-
sures and probability.

Given a probability Pr on a set A, the functional which, given a function
f : A → R+, computes its expectation defines a measure.

For instance, if A is a finite set, the set of events can be generated by the
singletons {x} for x ∈ A. The expectation of a function f is defined by:

µ(f) = Σx∈Af(x)× Pr({x})

In the other direction, given a measure µ on a set A such that µ(I) = 1, one can
define an associated probability Pr. The events are subsets X of A, such that IX

is measurable and Pr(X) = µ(IX).

Our abstract notion of measure In this development, probability distribu-
tions are represented as positive bounded measures.

In order to define a probability distribution, it is sufficient to be able to
measure functions which take values in the unit interval [0, 1]. We can remark
that if ∀x.f(x) ∈ [0, 1] then µ(f) ∈ [0, 1] because a probability distribution is
bounded by one. Hence, a measure µ can be interpreted as a function of type
(X → [0, 1]) → [0, 1] satisfying some extra algebraic properties, to be precised
in section 3.2.

2.3 Basic language for randomized programs

In the following, we shall be interested in a simple functional language with the
following constructions:

– Primitive constants and functions: c
– Conditional: if b then e1 else e2

– Local binding: let x = a in b
– Abstraction: fun (x : τ) ⇒ e
– Application: (e1 e2)

The term τ in the abstraction denotes a type. We assume given a simple (non-
polymorphic) type system on this language, containing (at least) the base types
bool for boolean values and int for integer as well as function types τ1 → τ2.

In order to deal with probabilistic programs, we add primitive functions to
this language, such as the random function which given a positive integer n,
computes with uniform distribution an integer k such that 0 ≤ k ≤ n. We
shall also use the flip function which computes a boolean which is true with
probability 1

2 .
In the following, we use the same language for expressions representing ran-

domized computations and terms representing their functional interpretation
instead to introduce a monadic meta-language as in [13] or [17]. There will be
in general no possible confusion.

For the sake of simplification, this paper assumes that abstraction and ap-
plication in programs are only done on objects in base (non-functional) types;
in a local binding as well, the introduced variable has a base type. In the meta-
theory and in the interpretation, however, we shall use the same notations for
higher-order functions, in particular when writing fixpoints.

2.4 Interpretation of random expressions

A (random) expression e in a base type τ actually represents a set of values of
type τ , as different evaluations of the expression will lead to different values in
general.

As pointed out above, for analyzing the distribution of these values, we in-
terpret e : τ as a measure on τ , i.e. a function of type (τ → [0, 1]) → [0, 1].

We write [e] to represent the measure associated to the expression e. If we
know [e], given a property Q on τ , it is possible to compute the probability

for the evaluation of e to satisfy Q, it is just [e](IQ), namely the application of
the measure associated to the expression p to the characteristic function of the
predicate Q, interpreted as a subset of τ .

2.5 Monadic transformation

The computation of the measure [e] is defined by case analysis on the structure
of the expression e, following a monadic transformation.

We extend the interpretation to expressions denoting functions and not just
expressions in base types. Each random expression representing a computation
of type τ is interpreted as a purely functional expression of type [τ].

For a base type τ , [τ] is defined as (τ → [0, 1]) → [0, 1] the type of measures
on τ . For a functional type τ = τ1 → τ2, we define [τ] = τ1 → [τ2], as our study
is restricted to the first-order case where τ1 is a basic type.

In the monadic approach, it is sufficient to define two operators

unit : τ → [τ] bind : [τ] → (τ → [σ]) → [σ],

and for each non-functional construction of type τ (for instance random), its
functional interpretation of type [τ].

Then the interpretation of expressions follows naturally:

Computation p : τ Functional value [p] : [τ]
let x = a in b (bind [a] fun (x : σ) ⇒ [b])
fun (x : σ) ⇒ t fun (x : σ) ⇒ [t]
(t u) (bind [u] [t])
if b then e1 else e2 (bind [b] fun (x : bool) ⇒ if x then [e1] else [e2])

Definition of unit and bind. Given an expression e of base type τ , we want
[e] to be a measure, that is a functional object of type (τ → [0, 1]) → [0, 1]. [e] is
analogous to the monadic interpretation of continuations. Assume τ and σ are
base types, one defines:

unitτ : τ → [τ]
= fun (x : τ) ⇒ fun (f : τ → [0, 1]) ⇒ (f x)

bindσ : [τ] → (τ → [σ]) → [σ]
= fun (µ : [τ]) ⇒ fun (M : τ → [σ]) ⇒

fun (f : σ → [0, 1]) ⇒ (µ fun (x : τ) ⇒ (M x f))

This definition obviously satisfies the expected monadic properties, for instance
(bind (unitτ x) M) = (M x) and (bind (bind µ M1) M2) = (bind µ (fun x ⇒
(bind (M1x) M2)). It is actually possible to extend these operators to functional
types:

unitτ1→τ2 : (τ1 → τ2) → [τ1 → τ2]
= fun (f : τ1 → τ2) ⇒ fun (x : τ1) ⇒ unitτ2(f x)

bindσ1→σ2 : [τ] → (τ → [σ1 → σ2]) → [σ1 → σ2]
= fun (µ : [τ]) ⇒ fun (M : τ → [σ1 → σ2]) ⇒

fun (y : σ1) ⇒ bindσ2 µ (fun (x : τ) ⇒ (M x y))

Notice that, since we are only manipulating first-order programs in this paper,
these generalized operators will not be needed in the examples. Following the
translation scheme, if f has type τ1 → τ2 → σ, the binary application ((f a) b)
should be translated into bindσ [b] (bindτ2→σ [a] [f]) but it is always possible, and
probably more readable, to use the equivalent expanded form: bindσ [b] (fun (y :
τ2) ⇒ bindσ [a] fun(x : τ1) ⇒ ([f] x y)).

Interpretation. From the measure point of view, (unitτ x) is the Dirac measure
at point x. If x is an expression of type τ with no randomized construction then
it evaluates deterministically to a value v and the probability of the result to
satisfy P is one when P (v) is true and zero otherwise.

In the definition of bindσ, µ is a measure on τ , and M is a family of measures
on σ parameterized with x ∈ τ . Given a function f on σ, bind µ M measures
with µ the function which associates with x the measure of f given by (M x). For
example, assume a is a randomized expression of type τ and e is a function which
associates with x : τ a randomized expression of type σ. Given a property P on
σ, we want to evaluate the probability for (e a) to satisfy P . Interpreting e as a
parameterized measure M we can compute, for a given value x, the probability
for (e x) to satisfy P . Then if we integrate this function with respect to x, using
the measure associated with the expression a, we end up with the probability
for (e a) to satisfy P . That is exactly what bind is doing. This definition of bind
captures the independence of random choices done in f and a.

Interpretation of randomized constructions For the additional primitives,
we get

random(n) : [int] = fun (f : int→ [0, 1]) ⇒ Σn
i=0

1
n+1 (f i)

flip() : [bool] = fun (f : bool→ [0, 1]) ⇒ 1
2 (f true) + 1

2 (f false)
e1 p+ e2 : [τ] = fun (f : τ → [0, 1]) ⇒ p× ([e1] f) + (1− p)× ([e2] f)

2.6 Functional interpretation : an example

Now that the monadic translation is defined, we can transform an expression e
which computes a value randomly into a expression [e] which does a deterministic
computation of the measure associated with the expression e. Before looking
at this interpretation for proofs, we can use it simply for computation, in a
functional language like Caml. A basic example of a randomized algorithm is
the primality test. The principle of this algorithm is the following. We want to
check whether a number p is prime. There is a deterministic test (test) which
applies to 1 ≤ k < p and p such that:

– If p is prime then (test k p) evaluates to true for all k

– If p is not prime then (test k p) evaluates to true for a limited number of
k, say N less than p−1

2 .

We choose k randomly and run the test: if the answer is false, then p is not
prime; if the answer is true then p is not prime with a probability N

p−1 which
is less than 1

2 . Iterating the test improves the level of confidence, provided the
random choices of k are independent.

In our language (extended with a simple bounded fixpoint), the function
which iterates n times the primality test for p can be written: 3

let rec prime test p n =
if n = 0 then true
else if test (random’ (p-1)) p then prime test p (n-1)
else false

Using the monadic transformation, and monadic simplification laws, we get the
functional computation of the associated measure:

let rec prime test fun p n =
if n = 0 then (unit true)
else bind (random’ (p-1))

fun a ⇒ if (test p a) then (prime test fun p (n-1))
else (unit false)

Now if we want to evaluate the probability for our program to give a correct
answer, we define the characteristic function of the correctness predicate, which
says that the result is true exactly when p is prime, and which is encoded as:

let prime correct p b = if b = exact prime p then 1. else 0.

One can now explicitly compute the probability that our program gives a correct
answer after n iterations:

let evaluate p n = prime test fun p n (prime correct p)

The function can be run in Caml and gives the following results.

evaluate 23 1;;
- : float = 1
[evaluate 9 0;evaluate 9 1;evaluate 9 2;evaluate 9 3];;
- : float list = [0.;0.75;0.9375;0.984375]

If the number is prime (example p = 23), then the result will be correct with
probability one. On the other hand, if p is not prime (example p = 9) then the
probability that the program gives a correct answer after 0 iteration is 0, after
1 iteration, we get the good answer 3 times out of 4 and it goes to more than
98% of good answers after 4 iterations.

One nice point is that we have been able to compute these probabilities with
a simple ML program without any specific knowledge on probability theory nor
number theory. On the other hand, if we analyze the program, we remark that
it is very inefficient:
3 We use a function random’ defined as random’ n = random (n − 1) + 1 in order to

get a number between 1 and n

– in order to build the characteristic function to be tested we need to know
(or to test) exactly if p is prime or not;

– because of the interpretation of random, the program is executed for all the
values of k between 1 and p − 1 before computing the average number of
good answers.

Furthermore, this computational approach does not work in all cases. Our
previous program uses a structural recursion which always terminates. Many
interesting probabilistic programs only terminate with probability one, which is
a weaker requirement. For instance the following function flips a coin and returns
how many flips it took to get false, this is a typical example of a random walk:

let rec walk x = if flip () then walk (x+1) else x

If we test this function in Caml several times, we get small number answers such
as 1, 2, 3. We may apply our translation scheme:

let rec walk fun x =
bind flip (fun (b:bool) ⇒ if b then walk fun (x+1)

else (unit x))

and measure the function which is 1 everywhere:

walk_fun 1 (fun n -> 1.);;
Stack overflow during evaluation (looping recursion?).

it loops because our interpretation tests all the cases, in particular the one where
the result of flip is always true. . .

This example shows that, when general fixpoints are involved, we cannot
anymore use computation for analyzing the probability of events. We shall need
to reason about these programs instead. For that, we first define a Coq the-
ory for representing distributions, then we prove several theorem for analyzing
programs.

3 Coq representation of randomized programs

We present now our model of randomized programs in the proof assistant Coq.
We follow the ideas presented in the previous section in order to associate with
each program a measure and to reason directly on these measures.

3.1 The set [0, 1]

Our model is based on measures seen as functionals of type (A → [0, 1]) → [0, 1].
For constructing this model in Coq, we have chosen to axiomatize a type U
which corresponds to the interval [0, 1].

Definitions Let two special constants 0 and 1 in U . The basic operations are mul-
tiplication, addition and a special inversion function. The addition is bounded: it
gives the minimum of addition on reals and 1. The inversion function associates
1 − x with x. We have also two predicates on U , x ≤ y and x = y, with the
standard meaning.

For each natural number n, we introduce a special element 1
n+1 in U

To deal with unbounded computations, we also need the least-upper bound
(lub) of any denumerable set of elements of U , represented as a function from nat
to U : we consequently adjoin a parameter lub with type (nat→ U) → U . If f is
an expression with a free variable n, we write lub(f)n instead of lub (fun n ⇒ f).

Axioms We have axioms which say that ∀x : U, 0 ≤ x ≤ 1 and that 0 6= 1.
As expected, the previous operators come with the usual axioms stating that

addition and multiplication are symmetric and associative, with 0 and 1 as their
respective neutral elements, and so on.

Our inversion function enjoys good properties such as 1− (1− x) = x. Some
properties of addition are only valid when there is no overflow during addition.
The non-overflow condition is expressed in our formalism as x ≤ 1 − y. For
instance, assuming x ≤ 1− y, we have:

(1−(x+y))+x = 1−y (x+y)×z = x×z+y×z x+y ≤ x+z ⇒ y ≤ z

The axioms for least upper bounds include the two basic properties of lubs and
the fact that lubs are compatible with addition and multiplication

lub ((f n) + k)n = lub f + k lub ((f n)× k)n = lub f × k

We also need two extra properties:

¬¬(x ≤ y) → x ≤ y x ≤ y ∨ y ≤ x

The first property is required because Coq implements an intuitionistic logic in
which ¬¬A ⇒ A is not satisfied for all propositions. The second property states
that the order is total.
The operation 1

n+1 satisfies the axiom 1
n+1 = 1 − n × 1

n+1 where n × 1
n+1 is a

generalized sum defined by induction on n.
Finally the fact that U is archimedian is axiomatized by the property

∀x, x 6= 0 ⇒ ∃n,
1

n + 1
≤ x

Remarks. Our modeling of randomized programs does not depend on our partic-
ular axiomatization of [0, 1]. Our choices are somehow arbitrary, we tried to find
an axiomatization with a minimum number of operations and axioms such that
the theory could be easily instantiated by different representations of real num-
bers (we are interested in particular by constructive reals). We use the functor
mechanism of Coq in order to keep the axiomatization of [0, 1] as a parameter
of the theory.

Derived operators The usual minus operation x− y (which is zero when x ≤ y)
can be defined using our special inverse by: x−y = 1−((1−x)+y) The operator
max can be defined as (x − y) + y. It is also easy to define n × x and xn for an
integer n by induction on n. In [14], C. Morgan and A. McIver use an operator
x&y defined on non-negative real numbers as the maximum of 0 and x + y − 1.
The same operator can be defined in our theory using the inverse operator and
addition by x&y ≡ 1 − ((1 − x) + (1 − y)). It is the dual operation of addition
because we have (1−(x&y)) = (1−x)+(1−y) and (1−(x+y)) = (1−x)&(1−y).
This operator captures intersection of properties because IP∩Q = IP &IQ.

3.2 Definition of a distribution

In the following, we extend in a standard way the operations and relations on U ,
to operations and relations on functions of type A → U using the same notations:
f ≤ g will stand for ∀x, f x ≤ g x and f + g is the function fun x ⇒ f x + g x.

Given a type A, we define a distribution on A to be a measure µ of type
(A → U) → U which furthermore satisfies stability properties, namely:

– monotonicity : ∀f g : A → U, (f ≤ g) ⇒ µ(f) ≤ µ(g)
– compatibility with addition :
∀f g : A → U, (f ≤ 1− g) ⇒ µ(f + g) = µ(f) + µ(g)

– compatibility with inverse : ∀(f : A → U), µ(1− f) ≤ 1− µ(f)
– compatibility with multiplication :
∀(k : U)(f : A → U), µ(k × f) = k × µ(f)

In Coq, we use a dependent record type in order to introduce a type (distr A)
which contains the measure µ plus the proofs of compatibility properties for µ.

Remarks. Because the addition is bounded, the compatibility with respect to
addition is only assumed when there is no overflow in the addition of f and
g. We also need the extra condition of compatibility with respect to inversion
which is usually derived from linearity.

We allow a distribution to be a sub-probability with possibly µ(1 − f) <
1−µ(f) (i.e. µ(I) < 1). This is useful for interpreting non terminating programs.

Monotonicity could be replaced by compatibility with respect to equality
∀f g : A → U, (f = g) ⇒ µ(f) = µ(g). Assuming this property, monotonicity
comes from the fact that g = (g − f) + f and stability with respect to addition.

Derived properties. From this definition, we can deduce further properties, such
as µ(fun x ⇒ 0) = 0, or µ(1− f) = µ(I)− µ(f)

It is possible to prove that µ(f +g) ≤ µ(f)+µ(g) is valid without extra non-
overflow condition. In a dual manner, we have proved µ(f)&µ(g) ≤ µ(f&g).

Monadic operators. We define the monadic operators on distributions: Munit of
type ∀A,A → distr A and Mlet of type ∀A B, distr A → (A → distr B) →
distr B. These operations are based on the transformations bind and unit for
measures, while including extra proofs stating that these operations are stable
with respect to the expected properties of distributions.

Properties We can define an order and an equality on the type (distr A) by a
simple extensions of the relations on U . This leads to proofs of monadic equali-
ties, as well as monotonicity of the bind operation.

In particular we prove [16]:

– ∀(µ : distr A), Mlet µ (fun (x : A) ⇒ Munit x) = µ

– ∀(µ : distr A) (M : A → distr B) (N : B → distr C),
Mlet (Mlet µ M) N = Mlet µ (fun (x : A) ⇒ Mlet (M x) N)

– ∀(µ1 µ2 : distr A) (M1 M2 : A → distr B),
µ1 ≤ µ2 ⇒ (∀x, (M1 x) ≤ (M2 x)) ⇒ Mlet µ1 M1 ≤ Mlet µ2 M2

Random distributions. Following the interpretation of random primitives we gave
in section 2.5, we can define in Coq the corresponding distributions, we have to
formally prove the stability properties.

The primitive flip has type (distr bool), random has type int→ (distr int)
and the choice operator has type U → (distr A) → (distr A) → (distr A).

The framework is not limited to discrete distributions. While defining com-
pletely a measure on U could require the development of a non-trivial part of
analysis, it is already possible, for example as found in [15], to introduce as a
parameter a new distribution uniform of type (distr U) with the extra assump-
tion that for all a, b ∈ U , the measure of the interval [a, b] is equal to b− a, i.e.
(uniform Ia≤.≤b) = b− a.

Interpretation of simple programs. The constructors Mlet, Munit, flip, random
are sufficient for interpreting simple random programs. Following our general
monadic translation scheme, one can also define a conditional operation Mif of
type (distr bool) → (distr A) → (distr A) → (distr A) by

Mif µb µ1 µ2 ≡ Mlet µb (fun b ⇒ if b then µ1 else µ2).

We use this operator for interpreting conditional programs:
[if b then e1 else e2] ≡ Mif [b] [e1] [e2]

3.3 Interpretation of fixpoints

As expected, the difficult part is the interpretation of general fixpoints. This is
achieved through the following steps.

Limit of distributions. In order to interpret recursive functions, we need to take
limits of sequences of distributions.

We assume given a denumerable family of distributions (µn)n∈N of type
distr A, such that ∀n m,n ≤ m ⇒ µn ≤ µm. Then we can define a new distri-
bution as the least upper bound of (µn)n. The associated measure, µlub(µn)n,
is defined by µlub(µn)n (f) ≡ lub (µn (f))n.

Fixpoints. Let us consider we want to define a function which satisfies the equa-
tion

let rec f x = F f x

where f is assumed to take an argument in type A, and returns a random value
of type B, so that it is interpreted as a function of type A → distr B. Thus, F
will have type (A → distr B) → A → distr B, and we assume this functional
to be monotonic: f ≤ g ⇒ F f ≤ F g.

Let us define the sequence Mn of functions of type A → distr B, by repeated
iterations of F from the null distribution:

M0 x = fun f ⇒ 0 Mn+1 x = F Mn x

The limit distribution Mfix is defined, for each given x, as the least upper bound
of the sequence which associates with n the distribution (Mn x):

Mfix F x ≡ µlub(Mn x)n

We can derive the inequalities

Mfix F x ≤ F (Mfix F) x and F (Mfix F) x ≤ Mfix F x

The second inequality requires an extra hypothesis of continuity namely that for
all monotonic sequences (gn)n∈N of type A → distr B,

F (fun y ⇒ µlub(gn y)n) x ≤ µlub(F gn x)n

However, as we will see in section 4.2, estimating programs built with fixpoints
can be done without using this rule.

4 Derived rules for reasoning on programs

For reasoning about programs, it is convenient to use an axiomatic semantics
that provides rules by induction on the structure of the program, stating as usual,
how some post-condition is satisfied after execution, provided some precondition
holds. In fact, in the context of probabilistic programs, we are interested (see
also [10]) in deriving that the probability for a certain property to hold is greater
than a certain value.

Thus we look forward deriving judgements of the form k ≤ [e](f) where
k ∈ [0, 1], e is an expression of type A and f is a function of type A → [0, 1].

The meaning of this judgement is that the measure associated with the pro-
gram e computed on the function f is no less than k. Usually f will be the
characteristic function IP of some predicate P of type A → bool. The judge-
ment k ≤ [e](IP) therefore means that the probability for the result of e to
satisfy P is at least k.

4.1 Basic rules

We can prove the following rule for application:

k ≤ [a](f) ∀x, f x ≤ [e x](g)
k ≤ [e a](g)

For the case of conditional, we can prove the rule:

k1 ≤ [e1](f) k2 ≤ [e2](f)
k1 × [b](I.=true) + k2 × [b](I.=false) ≤ [if b then e1 else e2](f)

4.2 Rule for fixpoints

We now justify the rule for estimating fixpoints which follows the ideas presented
in [7]. We assume F has type (A → distr B) → A → distr B and is monotonic.
We take a monotonic sequence (pi)i of functions of type A → U such that
∀x, p0 x = 0. The following rule is valid:

∀f : A → distr B, (∀x, pn x ≤ [f x](q)) ⇒ (∀x, pn+1 x ≤ [F f x](q))
∀x, lub (pn x)n ≤ [fix F x](q)

No continuity condition on F is required to validate this rule. The sequence (pn)n

can be seen as a generalized invariant for randomized programs: assuming that
the recursive goal establishes a post-condition Q with probability at least pn,
we prove that one further iteration establishes Q with probability at least pn+1,
and we finally get that the recursive program establishes Q with a probability
which is at least the lub of (pn)n.

4.3 Other rules

We can derive in our formalism useful schemes which generalize reasoning on
deterministic programs. For instance, if we have established that the an expres-
sion a satisfies a predicate P with probability 1, then it is possible to reason
subsequently exactly as if P was true for the result of the computation of a.

This is stated in the following derivable rule:

1 ≤ [a](IP) ∀x, (P x) ⇒ k ≤ [b](f)
k ≤ [let x = a in b](f)

5 Applications

We apply our approach for proving properties of simple randomized programs.

5.1 Probabilistic termination

We return to our example of section 2.6, a random walk which illustrates prob-
abilistic termination.

let rec walk x = if flip() then walk (x+1) else x

We show that this program terminates with probability one. For that it is enough
to prove that:

∀x, 1 ≤ [walk x](I).

We shall apply the fixpoint rule with a functional F defined by

F f x ≡ Mif µflip (f(x + 1)) (Munit x)

We introduce a sequence pi defined by p0 = 0 and pi+1 = 1
2pi + 1

2 . It is easy to
show that pn = 1 − 1

2n and that the least upper bound of the sequence (pi)i is
1. In order to prove 1 ≤ [Mfix F x](I), we use the fixpoint rule and show:

∀f, (∀x, pi ≤ [f x](I)) ⇒ ∀x, pi+1 ≤ [F f x](I)

We assume ∀x, pi ≤ [f x](I) and we simplify as follows

pi+1 ≤ [F f x](I) ⇔ 1
2pi + 1

2 ≤ [Mif µflip (f(x + 1)) (Munit x)](I)
⇔ 1

2pi + 1
2 ≤

1
2f(x + 1)(I) + 1

2 I(x)

This is trivially true because pi ≤ f(x + 1)(I) by hypothesis and I(x) = 1.

5.2 The Bernoulli distribution

We now apply our technique to the proof of an algorithm to simulate a Boolean
function following Bernoulli’s distribution (which is true with some probability
p and false with probability 1 − p) using only a coin flip. The algorithm which
is also taken as an example in [3] uses a simple idea : write p in binary form
Σ∞i=1pi

1
2i , if we flip a coin and get a sequence (qi)i≥1 then the first time we get

qi 6= pi, we answer true when qi < pi and false otherwise. Now this function can
be expressed recursively. If p < 1

2 then p1 = 0 and the remainder of the sequence
corresponds to 2 × p = p + p. If 1

2 ≤ p then p1 = 1 and the remainder of the
sequence corresponds to 2 × p − 1 = p&p (using the special operation x&y we
introduced in section 3.1). Our Bernoulli program can be written as

let rec bernoulli p =
if flip() then if p < 1

2 then false else bernoulli (p & p)
else if p < 1

2 then bernoulli (p + p) else true

We directly translate this definition into a distribution, as was done in the case
of the random walk. In order to analyze this program, we use the fixpoint rule
and prove that

∀p, lubn (p− 1
2n

) ≤ [bernouilli p](I.=true).

Assuming ∀p, (p− 1
2n) ≤ [bernouilli p](I.=true), we just simplify the expression

corresponding to the body of bernoulli. In case p < 1
2 , we have to show that

p− 1
2n+1

≤ 1
2
bernouilli(p + p)

and in case 1
2 ≤ p, we have to show that

p− 1
2i+1

≤ 1
2
bernouilli(p&p) +

1
2
× 1

this follows easily using the fixpoint rule hypothesis and algebraic properties.
The same reasoning allows to prove:

∀p, lubn ((1− p)− 1
2n

) ≤ [bernouilli p](I.=false).

Using the fact that I.=false = 1 − I.=true and the property of measures of
inverse functions, we conclude that [(bernouilli p)]I.=true = p.

Using I.=true + I.=false = I, we also have [(bernouilli p)]I = 1 which
shows that the process terminates with probability one.

5.3 Improving precision

Another example is an abstract version of a program scheme where a randomized
program is executed twice in order to improve the probability of getting a correct
result. The implicit assumption is that given two runs on the program we can
choose the better of the two answers. In case of primality for instance, if one of
the test answers that p is not prime, we are sure that p is not prime; only when
the two programs assert that p is prime, we can still pretend (but with higher
confidence) that p is prime.

We want to compute a value in a type A which satisfies a property Q with
a certain probability. The hypotheses are that we have two programs p1 and p2

of type A, thus interpreted as objects of type distr A. We want to combine p1

and p2 in order to get a better program i.e. we want to improve the probability
that the result is correct.

We assume we have a function choice of type A → A → A such that
(Q x) ⇒ Q (choice x y) and (Q y) ⇒ Q (choice x y) are provable.

In case of a Boolean test for primality of p, we have (Q b) defined as (b =
true ⇔ p is prime) and (choice b1 b2) defined as (b1 and b2).

Now we build a new program p:

let x = p1 in let y = p2 in choice x y

We want to show that k1 ≤ [p1](IQ) and k2 ≤ [p2](IQ) implies k1(1− k2) + k2 ≤
[p](IQ). The new estimation k1(1 − k2) + k2 (also equal to k2(1 − k1) + k1) is
greater than both k1 and k2.

Actually we established a more general result, using an arbitrary function q
of type A → U instead of the characteristic function IQ of a predicate Q. We

assume that ∀x y, (q x) + (q y) ≤ q (choice x y) (with bounded addition). It is
easy to see that when q is the characteristic function IQ, then the assumptions
(Q x) ⇒ Q (choice x y) and (Q y) ⇒ Q (choice x y) are equivalent to
(IQ x)+ (IQ y) ≤ IQ (choice x y). We also need the fact that both programs p1

and p2 terminate with probability one, otherwise our choice function could give
a result which is not as good as p1 and p2.

Now, the property to be shown amounts to

k1(1− k2) + k2 ≤ [p1](fun x ⇒ [p2](fun y ⇒ (q (choice x y))))

Using the fact that

(q x)× (1− (q y)) + (q y) ≤ (q x) + (q y) ≤ (q (choice x y))

the proof reduces to

k1(1− k2) + k2 ≤ [p1](fun x ⇒ [p2](fun y ⇒ (q x)× (1− (q y)) + (q y)))

Algebraic properties of measures lead to simplification of the right-hand side:

[p1](q)× [p2](1− q) + [p2](q)

Because p2 terminates, we have [p2](1 − q) = 1 − [p2](q) (only the inequality is
true in general) so we have to show:

k1(1− k2) + k2 ≤ [p1](q)(1− [p2](q)) + [p2](q)

which is true because k1(1−k2)+k2 = k2(1−k1)+k1 is monotonic with respect
to both k1 and k2.

This example illustrates the possibility to do abstract modular reasoning in
our framework.

6 Related work

In [15], Park and al. propose a functional language, named λ© which extends
the ML functional kernel on the basis of the monadic metalanguage developed
by Pfenning and Davies [17]. It is a reformulation of Moggi’s monadic metalan-
guage (the let...in... construction) which augments the λ-calculus, consisting of
terms, with a separate syntactic category, consisting of expressions which de-
note probabilistic computations. A term can be cast to a (random) expression.
From any expression E, the operator prob E builds the image measure. In our
work, both terms and (random) expressions are not distinguished, unit providing
the corresponding operator into measures. Besides, the current bind operation is
represented by sample x from M in E in λ©. The language introduces a new
constant S which denotes an expression, i.e. a random variable which follows the
uniform law on the real interval [0, 1]. The system is simply typed, where types
are limited to arrows and pairs, enriched with the monadic construction ©A for
each type A.

We do not have these two syntactic levels in our system where we chose to rep-
resent in Coq only the level of terms. The ©A type play the role of (distr A) in
our formalism and the value prob(E) corresponds to our definition of [E]. Their
formalism allows to build distributions on arbitrary types (possibly functional),
an extension we did not investigate yet.

λ© is mainly designed toward expressiveness as a programming language, for
which the paper provides a small steps operational semantics. This corresponds
to Kozen’s first semantics in [9], where any computation involved in a reasoning
step about a program requires the user to refer to the measurable space of
random streams over [0, 1]. As far as reasoning on programs is concerned, this
is not of great help, since axiomatic semantics relies on denotational semantics.
Therefore, examples developed with λ© are better analysed through simulation
techniques. Both approaches are complementary: we are not able to simulate
the programs as sampling functions but we can directly and easily reason on the
probabilistic properties of (a subset of) Caml expressions.

In [12], A. McIver and C. Morgan describe an axiomatic semantics for proba-
bilistic programs written in imperative style. The state-predicates in Hoare logic
are replaced by so-called expectations which are functions from states to R+, to
be evaluated following the distribution defined by the program. An important
aspect of this work is to introduce in the language a non-deterministic (demonic)
choice pu q. The probability for a property P to hold after executing pu q is the
minimum of the probabilities that P holds after executing p and after executing
q. This operator is used to represent specifications and for defining a refinement
relation. In order to adapt our approach to the non-deterministic case, an idea
could be to relax the compatibility condition for addition in the definition of a
distribution into the weaker condition µ(f + g) ≤ µ(f) + µ(g). Developing the
corresponding theory still remains to be done. A mechanization of this calculus
using the HOL theorem prover is presented in [6]. In this work programs are in-
terpreted as functionals of type (α → R+

∞) → (α → R+
∞) where R+

∞ ≡ R+∪{∞}
and α is the type of states. They propose a so-called deep-embedding where
the syntax of the language of guarded commands and the weakest-precondition
generator are explicitely encoded in the proof assistant, while we use a shallow
embedding where we directly use the semantics of the language. Their approach
allows to measure an arbitrary function with value in R+ and not only [0, 1]. We
choose to restrict ourselves to [0, 1] in order to simplify the formal development
in Coq and because it is sufficient for correctness. Measuring arbitrary function
can nevertheless be interesting in some cases. For instance, in the random walk
example, one could measure the average of the result of the function (how many
flips before we get false). It is possible to represent an element in R+ with a pair
(n, x) with n ∈ N and x ∈ [0, 1] and reuse a large part of our development in
order to extend a measure of type (A → [0, 1]) → [0, 1] into a measure of type
(A → R+) → R+. We may introduce for each n ∈ N a function fn : A → [0, 1]
such that fn(x) = y when f(x) = (n, y) and f(x) = 0 otherwise. We have
f = Σ∞n=0fn and we can define µ(f) as Σ∞n=0µ(fn) when it exists.

As already said in the introduction, our approach comes actually closer to
J. Hurd’s thesis, where formal verification of probabilistic programs is handled
with the HOL theorem prover. He uses a monadic translation based on a global
state with a stream of boolean values. Reasoning on programs required to define
within HOL an adequate distribution over this infinite structure, while we only
use simple mathematical constructions. It would be interesting to compare more
carefully the complexity of proofs of high-level programs in both systems.

7 Conclusion

We have studied the interpretation of probabilistic programs in a functional
framework using a monadic interpretation of programs as probability distribu-
tions represented by measures.

We have applied this technique for building an environment for reasoning
about probabilistic programs in the Coq proof assistant. We have developed an
axiomatization for the set [0, 1] which uses a few primitive operations : bounded
addition, multiplication and inverse (1− x).

We have derived axiomatic rules for estimating the probability that programs
satisfy certain properties, following the structure of the program. The fixpoint
rule is especially useful for dealing with probabilistic termination of programs.
We use these rules for studying a few basic examples such as the computation
of a function following a Bernoulli distribution. The development and results
presented in this paper have been formally derived and checked in the Coq
proof assistant and are available as a contribution [16].

Future works include automatic translation from functional randomized pro-
grams to Coq terms representing the corresponding distribution. One possibility
could be to use a monadic meta-language in the spirit of [15] on top of the Coq
proof assistant. Another possibility is to follow the approach of the Why tool [2,
1], a generic environment for analysing non-purely functional programs. It au-
tomatically generates verification conditions from the specification of pre and
post conditions and invariants plus a validation (the correctness proof in Coq
obtained from the monadic translation of the program).

We also plan to study advanced examples that certainly will require a more
sophisticated automation of proofs.

Acknowledgments We thank A. McIver and C. Morgan for useful comments on
an earlier version of this paper. We also thank R. Lassaigne for stimulating
discussions on formal proofs for analyzing random programs.

References

1. Jean-Christophe Filliâtre. The why verification tool, 2002. http://why.lri.fr/.
2. Jean-Christophe Filliâtre. Verification of Non-Functional Programs using Interpre-

tations in Type Theory. Journal of Functional Programming, 13(4):709–745, July
2003.

3. Joe Hurd. A formal approach to probabilistic termination. In Victor A. Carreño,
César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Log-
ics: 15th International Conference, TPHOLs 2002, volume 2410 of Lecture Notes
in Computer Science, pages 230–245, Hampton, VA, USA, August 2002. Springer-
Verlag.

4. Joe Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge, 2002.

5. Joe Hurd. Verification of the Miller-Rabin probabilistic primality test. Journal of
Logic and Algebraic Programming, 50(1–2):3–21, May–August 2003. Special issue
on Probabilistic Techniques for the Design and Analysis of Systems.

6. Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic guarded com-
mands mechanized in HOL. In A. Cerone and A. Di Pierro, editors, Proceedings
of the 2nd Workshop on Quantitative Aspects of Programming Languages (QAPL
2004), volume 112 of Electronic Notes in Theoretical Computer Science (ENTCS),
pages 95–111, Barcelona, Spain, January 2005. Elsevier.

7. Claire Jones. Probabilistic Non-determinism. PhD thesis, University of Edinburgh,
1989.

8. Claire Jones and Gordon Plotkin. A probabilistic powerdomain of evaluations.
In Proceedings of the Fourth Annual Symposium on Logic in Computer Science,
Pacific Grove, California, 1989. IEEE Comp. Soc. Press.

9. Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and
System Sciences, 1981.

10. Dexter Kozen. A probabilistic PDL. In 15th ACM Symposium on Theory of
Computing, 1983.

11. Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic symbolic
model checking with PRISM: A hybrid approach. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 2004.

12. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer-Verlag, 2005.

13. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1):55–92, 1991.

14. Carroll Morgan and Annabelle McIver. pGCL: formal reasoning for random algo-
rithms. South African Computer Journal, 1999.

15. Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language
based upon sampling functions. In Jens Palsberg and Mart́ın Abadi, editors, POPL,
pages 171–182. ACM Press, 2005.

16. Christine Paulin-Mohring. A library for reasoning on randomized algorithms in
Coq. Description of a Coq contribution, Universit Paris Sud, January 2006.

17. Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, 2001.

18. Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of prob-
ability distributions. In John Mitchell, editor, Conference Record of the 29th Sym-
posium on Principles of Programming Languages, pages 154–165, Portland, OR,
USA, January 2002. ACM Press.

19. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.0, April 2004. http://coq.inria.fr.

