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Abstract

Randomized algorithms are widely used for finding efficiently approximated solu-
tions to complex problems, for instance primality testing and for obtaining good
average behavior. Proving properties of such algorithms requires subtle reasoning
both on algorithmic and probabilistic aspects of programs. Thus, providing tools
for the mechanization of reasoning is an important issue. This paper presents a new
method for proving properties of randomized algorithms in a proof assistant based
on higher-order logic. It is based on the monadic interpretation of randomized pro-
grams as probabilistic distributions (Giry, 1982; Ramsey and Pfeffer, 2002). It does
not require the definition of an operational semantics for the language nor the de-
velopment of a complex formalization of measure theory. Instead it uses functional
and algebraic properties of unit interval. Using this model, we show the validity of
general rules for estimating the probability for a randomized algorithm to satisfy
specified properties. This approach addresses only discrete distributions and gives
rules for analysing general recursive functions.

We apply this theory to the formal proof of a program implementing a Bernoulli
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1 Introduction

Randomized algorithms are widely used either for finding efficient approximate
solutions to complex problems such as primality testing, or in order to obtain
good average behavior. Proving properties of such algorithms requires subtle
reasoning about both algorithmic and probabilistic aspects of programs. Pro-
viding tools for the mechanization of reasoning is consequently an important
issue.

1.1 Models

The first problem is to find an appropriate mathematical representation of a
randomized algorithm. Methods for modeling randomized programs go back
to the early work of Kozen (1981, 1983) which proposes to interpret random-
ized imperative programs as measure transformers. This approach has been
studied further by Morgan and McIver (1999) who extend the interpretation
to non-deterministic as well as probabilistic choices and define a refinement
relation. Using an extension of weakest-precondition computation to random-
ized programs, they propose a method to lower the probability for the result
of the program to satisfy a given property.

Studying the semantic foundations of probabilistic languages has been the
concern of much research. There are at least two different approaches.

The first one is an operational view using access to an arbitrary number of
independent random variables following a given distribution: which can be a
coin flip (Hurd, 2002b, 2003) or a uniform distribution (Park et al., 2005). This
interpretation is a monadic transformation. If Ω denotes the type of infinite
sequences of independent random values, then a computation of type A will
be interpreted as a function of type Ω → A× Ω: it computes a value of type
A and modifies the global state of type Ω after consuming a finite prefix of
the sequence of random values. Reasoning on randomized programs using this
approach requires to model the base probability distribution on Ω.

The second approach uses an interpretation of randomized programs as prob-
ability distributions. It is also possible to use a syntactic monadic transforma-
tion. In the discrete case, a probability distribution can be represented as a
functional mapping from a subset of some σ into the interval [0, 1], or, using
expectation, mapping a real-valued function on σ into an element of R. The
monadic structure of probability theory was studied in Giry (1982) develop-
ing unpublished ideas in Lawvere (1962). This approach is used for instance in
Ramsey and Pfeffer (2002) where a randomized functional term is interpreted
as an Haskell program using the so-called expectation monad, ie functions of

569



type (σ → R)→ R.

1.2 Proofs

Enabling the mechanized reasoning of probabilistic programs requires also
tools for analysing the behavior of these programs. This point is a research
topic.

Hurd, McIver and Morgan designed a mechanization of the quantitative logic
for probabilistic guarded commands using the proof assistant HOL (Hurd
et al., 2005). Their goal is very similar to ours, except that they analyse a
different source language, handling both probabilistic and non-deterministic
choice in an imperative settings, while we are only considering probabilistic
choice but in a functional language, including recursive functions. Their work
also contains the formalisation in HOL of meta-reasoning on the source lan-
guage, while we have for the moment only considered a shallow embedding of
our programs in Coq.

With regard to algorithms, Hurd (2002b, 2003) shows how to model and
prove properties of randomized programs in the HOL proof assistant using a
monadic transformation of programs, where Hurd assumes access to an infinite
sequence of independent coin flips.

1.3 Our choices

In this article, we intend to prove specifications for probabilistic programs in-
side the Coq proof assistant. We start by turning a (probabilistic) functional
program p on some type A into a pure functional term, denoted as [p], with
type MA ≡ (A→ [0, 1])→ [0, 1], where MA is provided with a monadic struc-
ture. In this setting, [p] will represent a (mathematical) discrete measure: a
sub-probability. Although this monad appears more restrictive than the one
proposed in Ramsey and Pfeffer (2002), it turns out to be sufficient for the
goal of providing approximations for probabilities. To keep the monadic trans-
formation simple, we design a tiny probabilistic language Rml, equipped with
a rather restricted type system, yet expressive enough for coding interesting
algorithms. Program specifications are then proved along a specific inference
system for axiomatic semantics.

For the proof assistant, tools are required for interactive reasoning about prob-
abilistic programs (actually through the above transformation). We thus share
Hurd’s approach, while our design choices do not require full development of
measure theory inside Coq. Our tools are based upon a specific library which
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axiomatizes the properties required on some abstract type U representing
the real interval [0, 1]. This library is developed as an independent contri-
bution (Paulin-Mohring, 2007), and designed to provide the back-end tools
needed by the user.

Our axiomatic semantics enhances previous work by Morgan and McIver
(1999), where rules allowed only weakening for probabilities. We prove their
validity with respect to our semantics. We also propose schemes to reason on
general recursive functions which generalize the usual schemes for loops.

Our framework does not rely on a particular choice of a primitive randomized
function. In this paper, we use a boolean flip and a finite random function
and we show how to interpret directly a randomized choice operator. We only
build discrete distributions: dealing with continuous distributions would re-
quire modification of the interpretation to restrict the functional to measurable
functions, an extension we plan to investigate later.

1.4 Paper outline

The paper is organized as follows. In Section 2, we introduce the input lan-
guage and its semantics: an interpretation of programs as measures using
a monadic transformation. We analyze our monadic interpretation from the
functional point of view. In Section 3 we introduce the basic Coq theories for
representing measures. In Section 4, we show the derived rules for framing the
probability for a randomized program to satisfy a given property, in particular
for the case of recursive programs. In Section 5, we apply our method to proofs
of simple probabilistic properties of programs.

The current paper extends Audebaud and Paulin-Mohring (2006) by suggest-
ing an interpretation of higher-order functional programs in section 2.5.6 and
introducing rules for intervals in section 4.1 and also more general rules for
reasoning on recursive functions in section 4.4. We also develop an example of
partial termination in section 5.2.

1.5 Remark

The possible interpretation of random functional programs as probabilistic
distributions using a monadic interpretation is not new, it appears in many
theoretical works on semantics, see Giry (1982), or more concretely for rep-
resenting random programs in Haskell by Ramsey and Pfeffer (2002). To our
knowledge, however, the approach of mechanizing reasoning about random
functional expressions is new. In Ramsey and Pfeffer (2002), the interpreta-
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tion does not cover general recursive programs and its inefficiency is criticized,
the authors propose instead an alternative method which only covers discrete
distributions. The possibility to cover recursion was however studied in Jones
(1989), on which the approach of this paper is based. That the interpreta-
tion can lead to inefficient or even unfeasible computations in practice will be
illustrated in Sections 2.6.1 and 2.6.2. Our work advocates that operational
behavior is not relevant, since our model allows anyway for abstract reasoning
on programs, using the general rules presented in Section 4 and illustrated
on examples in Section 5. This is to be related to Hoare rules for axiomatic
semantics, which do not rely on computations per se, but to denotational se-
mantics. From this point of view, we compare with Kozen’s second semantics
in Kozen (1981), and to the framework proposed in (Kozen, 1983).

2 Monadic interpretation of randomized algorithms

Sections 2.1 and 2.2 provide background results on probabilities which underlie
our framework. We present in Section 2.3 a reasonably simple probabilistic
language Rml. The monadic interpretation is the subject of Section 2.4, where
we discuss also the consequences of relaxing the typing rules. We conclude
this section by putting our interpretation at work on concrete examples in
Section 2.6.

The approach in this part is very similar to the one proposed in Ramsey and
Pfeffer (2002). The main differences are that we measure functions with values
in the interval [0, 1] instead of real numbers, we concentrate on a first-order
language, which is sufficient for the applications we want to address, but we
also show how to extend the approach for the general functional case. Unlike
what is done in Ramsey and Pfeffer (2002), we shall address the question of
general recursive functions in section 4.

2.1 Randomized programs as measure transformers

Usually, an imperative or functional program returns at most one state (or
value in the functional case), from any given initial state. Moreover, the re-
turned state is entirely determined by the program and the initial state. When
dealing with probabilistic programs, this is no longer the case, even when run-
ning the program several times, starting with the same initial state. Rather,
the distribution of returned states can be represented as some random vari-
able, hence a measure over the states set. This change of view has been investi-
gated in works by Kozen (1981, 1983); Jones and Plotkin (1989); Jones (1989);
McIver and Morgan (2005) among others. Whilst the observation of the actual
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returned states is non-deterministic, the measure which can be built from the
initial state by applying the denotation of a probabilistic program provides
a deterministic value. This approach is then easily extended into randomized
programs viewed as measure transformers.

The distribution of these output states is interesting. If this distribution is
known, given a property P on the output state, we can compute the probabil-
ity for the result of the program to satisfy P . A randomized program uses basic
randomized primitives such as a random function which, given a natural num-
ber n, produces a number between 0 and n with uniform probability 1

1+n
, or a

more basic flip function which produces boolean values true or false with
equal probability 1

2
. Another classical operator is probabilistic choice P p+ Q

which behaves like the program P with probability p and as Q with probability
1−p.

The implicit assumption is that any access to a given random primitive in the
program is independent of the others.

Since we are concerned with a functional language, we do not have to take
global states into consideration. Programs are interpreted as functions which
compute values, and our aim is to estimate the distribution of these return
values.

2.2 Representation of distributions

In this section, we explain our choice for a mathematical representation of
probability distributions. We introduce the notation [0, 1] for the set of real
numbers x such that 0 ≤ x ≤ 1.

2.2.1 The measure perspective

A (positive) measure on a set A, is a linear functional µ which given a (mea-
surable) function f from A to R+, computes a non-negative real number, its
integral

∫
fdµ. A required condition on µ to be a measure, besides linearity,

is that µ preserves least upper bounds :
∫ ∨

n fndµ =
∨
n

∫
fndµ.

In the following, we shall use the notation µ(f) instead of
∫
fdµ.

2.2.2 Notations for characteristic functions

If X is a subset of A, IX ∈ A → [0, 1] will denote the characteristic function
of X such that ∀x ∈ A, IX(x) = 0⇔ x 6∈ X ∧ IX(x) = 1⇔ x ∈ X. We write
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simply I for the function which is 1 everywhere. If P (x) is a formula with a
free variable x, we write IP (.) for the characteristic function of the set X such
that x ∈ X ⇔ P (x). For instance, I.=k is the characteristic function of the
singleton {k}.

2.2.3 Our abstract notion of measure

From now on in this article, probability distributions are represented as posi-
tive measures, which norm is bounded by 1.

In order to define a probability distribution, it is sufficient to be able to mea-
sure functions which take values in the unit interval [0, 1]. We can remark
that if ∀x.f(x) ∈ [0, 1] then µ(f) ∈ [0, 1] because a probability distribution is
bounded by one. Hence, a measure µ on A can be interpreted as a function
of type (A → [0, 1]) → [0, 1] satisfying some extra algebraic properties, to be
precised in section 3.2.

2.3 Basic language for randomized programs

For sake of simplicity, we shall use in the following a simple first-order func-
tional language. We will explain in section 2.5.6 how it could be extended to
full functional constructions.

2.3.1 Expressions

Our language (called Rml) contains the following constructions:

• Variables: x
• Primitive constants: c
• Conditional: if b then e1 else e2
• Local binding: let x = e1 in e2
• Application: f e1 . . . en with f a primitive or user-defined function.

We shall introduce parentheses in concrete notations when needed.

Functions can be declared the following way:

let f x1 . . . xn = e

Remark. Recursive definitions can be defined as well:

let rec f x1 . . . xn = e
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However, their introduction raise some technical issues with respect to the
material developed in this section. Therefore, we postpone any further detail
to section 3.3.

In order to deal with probabilistic programs, Rml includes also a few random
primitive functions, such as the random function which given a positive integer
n, computes with uniform distribution an integer k such that 0 ≤ k ≤ n and
the flip function which computes a boolean which is true with probability 1

2
.

2.3.2 Types

Our assumption on Rml, is that all expressions will be well-formed using a
restricted simple types system. This system is built over base types such as
bool for boolean values and nat for natural numbers (non-negative integers),
and allows arrow types in the restricted case where arguments have a base type.
In the following we write β, βi . . . in order to denote a base type. We shall write
e : β when e is a well-formed expression of type β and f : β1 → · · · → βn → β
when f e1 . . . en : β whenever ei : βi for i = 1 . . . n.

2.3.3 Meta-language

Randomized expressions are interpreted in an higher-order functional lan-
guage. The target type system is richer: a type τ will be either a base type β
(including the base type [0, 1] for reals between 0 and 1) or some functional
type τ1 → τ2.

We use the same notations as in Rml for local bindings and conditionals, but
we also introduce typed abstraction fun (x : τ) ⇒ e and binary application
(e1 e2). Application is left associative and types can be omitted in lambda-
abstraction, written fun x ⇒ e, when the type is clear from the context.
As a matter of fact, Rml (except for the randomized primitive functions)
corresponds to a restricted subset of our meta-language where variables are
always in base types and functions are in eta-long normal form.

An alternative could have been to use a monadic meta-language as in Moggi
(1991) or Pfenning and Davies (2001), but it would have introduced an extra
level of syntax that we are able to avoid here, owing to the restrictions on Rml
syntax. Doing otherwise would result in introducing more complex notations,
which would have obscure the key ideas. The section 2.5.6 develops these
points further.

575



2.4 Interpretation of random expressions

A (random) expression e in a base type β actually represents a set of values of
type β, as different evaluations of the expression will lead to different values
in general.

As pointed out above, for analyzing the distribution of these values, we inter-
pret e : β as a measure on β, i.e. a function of type (β → [0, 1]) → [0, 1]. In
the following, Mτ will represent the type (τ → [0, 1]) → [0, 1] of measures on
values of type τ .

We write [e] to represent the measure associated to the expression e. If we
know [e], given a property Q on β, it is possible to compute the probability
for the evaluation of e to satisfy Q, it is just [e]IQ, namely the application of
the measure associated to the expression e to the characteristic function of
the predicate Q, interpreted as a subset of β.

2.5 Monadic transformation

The interpretation of e of type β as a measure [e] of type Mβ = (β → [0, 1])→
[0, 1] is defined by structural induction on e.

2.5.1 Definition of unit and bind

As usual in monadic transformations, we first introduce two operators:

unit : τ → Mτ

= fun (x : τ)⇒ fun (f : τ → [0, 1])⇒ f x

bind : Mτ → (τ → Mσ)→ Mσ

= fun (µ : Mτ)⇒ fun (M : τ → Mσ)⇒

fun (f : σ → [0, 1])⇒ µ (fun (x : τ)⇒M x f)

As expected, theses definitions satisfy the usual monadic properties. The
equality on Mβ is defined point-wise (µ1 = µ2 ⇔ ∀f, µ1(f) = µ2(f)).

• bind (unit x) M = M x
• bind (bind µ M1) M2 = bind µ (fun x⇒ bind (M1 x) M2)
• bind µ unit = µ
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2.5.2 Interpretation of functions

A function with name f and type τ ≡ β1 → · · · → βn → β will lead to a new
function name [f ] of type [τ ] ≡ β1 → · · · → βn → Mβ.

Primitive randomized functions Each primitive randomized function is
given a functional interpretation of the corresponding type. In this paper, we
shall use the following constructions:

[random]n : Mnat

= fun (f : nat→ [0, 1])⇒ Σn
i=0

1
1+n

(f i)

[flip] () : Mbool

= fun (f : bool→ [0, 1])⇒ 1
2
(f true) + 1

2
(f false)

It is also possible to start from other primitive notions of randomness, like the
random choice operator used in Ramsey and Pfeffer (2002):

e1 p+ e2 : Mβ

= fun (f : β → [0, 1])⇒ p× ([e1]f) + (1−p)× ([e2]f)

User defined functions For a (non-recursive) user-defined function intro-
duced by let f x1 . . . xn = e, the interpretation [f ] will be introduced by
let [f ]x1 . . . xn = [e]. This turn [f ] into a function with type β1 → · · · βn →
Mβ, belonging to the target language.

Shortcut More generally, when f is any Rml function of type β1 → · · · βn →
β, when x1, . . . , xn are terms of the meta-language such that xi has type βi
(for each 1 ≤ i ≤ n) and g : β → [0, 1] is any function, we allow ourselves to
write [f x1 . . . xn]g (instead of ([f ]x1 . . . xn)g) for the expectation of g by the
measure [f ]x1 . . . xn.
We also abusively use the same notation [φx1 . . . xn]g (instead of (φx1 . . . xn)g)
when φ is some function of type β1 → · · · βn → Mβ defined in the meta-
language, in order to emphasize the fact that we are computing the expectation
of g with respect to the measure (φx1 . . . xn).

Recursively defined functions When dealing with let rec f x1 . . . xn =
e, we define as well [f ] as a new recursively defined function in the target
language, introduced by let rec [f ]x1 . . . xn = [e]. However, this is not as
simple, in spite of being quite the same from the sole syntactic point of view.
We address this issue more deeply in section 3.3.
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2.5.3 Interpretation of expressions

Computation a : β Functional value [a] : Mβ

v unit v v variable or constant

let x = a in b bind [a] (fun x⇒ [b])

f a1 . . . an bind [a1] (fun x1 ⇒ . . . bind [an] (fun xn ⇒ [f ]x1 . . . xn) . . .)

if b then a1 else a2 bind [b] (fun (x : bool)⇒ if x then [a1] else [a2])

2.5.4 Properties of the interpretation

It is easy to prove that our interpretation is well-typed:

Proposition 1 Given an expression e in Rml of (base) type β, [e] is defined
and has type Mβ

PROOF. We prove a more precise result by a simple induction on the expres-
sion e: assume e has type β, contains the finite set of free variables (xi)i, where
for each i, xi has type βi, and make calls to some finite set (fj)j of functions.
Then [e] has type Mβ in an environment containing the same variables (xi)i
of same type (βi)i and contains the corresponding functions symbols ([fj])j,
such that [fj] has now type [τj] when fj has type τj.

If random primitives are left aside in a term e then it is possible to simplify
the translation [e]:

Proposition 2 Let e be a pure expression of base type β in Rml, i.e. an ex-
pression in which no randomized construction occurs, then e can be translated
in our meta-language into a term of type β (still written e) and [e] = unit e.

PROOF. The proof is by induction on the structure of terms not involving
randomized constructions. The translation uses the meta-language abstrac-
tion, application and local definition for the interpretation of the corresponding
Rml constructions. The equality [e] = unit e is a consequence of the monadic
properties of unit and bind.
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2.5.5 On the meaning of the interpretation

Let us have a look at this interpretation from the measure theory point of
view,

• The monad operator unit x represents the Dirac measure δx at point x. If
x : β and θ : β → [0, 1], then

[x]θ= unit x θ = θ(x) =
∫
θ(y)dδx(y)

• Given µ a measure on Mα and fun x ⇒ e of type α → Mβ a family of
measures on β parametrized with x ∈ α, the measure bind µ (fun x⇒ e)
is defined as

bind µ (fun x⇒ e) θ=
∫ (∫

θ(y)de(y)
)
dµ(x)

In particular

[let x = a in b]θ=
∫ (∫

θ(y)d[b](y)
)
d[a](x)

in such a way that both let and summation constructs bind the variable x.
• The measure associated to the conditional e = if e0 then e1 else e2 behaves

as expected:

[e]θ=
∫  ∫

b=true

θ(y)d[e1](y) +
∫

b=false

θ(y)d[e2](y)

 d[e0](b)

= ([e0]Ib=true)
∫
θ(y)d[e1](y) + ([e0]Ib=false)

∫
θ(y)d[e2](y)

as the variable b occurs neither in e1 nor in e2.
• Accordingly, the application e = (f a1 . . . an) corresponds to a multiple sum-

mation

[e]θ=
∫ (
· · ·

∫ (∫
θ(y)d[f x1 . . . xn](y)

)
d[an](xn) . . .

)
d[a1](x1)

• The definitions for random primitives such as flip and randomn involve
actually finite summations, as already presented in section 2.5.2. The gen-
eral summation symbol includes obviously the particular case of finite and
denumerable ones.

2.5.6 A general higher-order interpretation

The basic term language presented in section 2.3 will turn out to be sufficient
for dealing with interesting examples. Its main restriction however results from
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its proper design: we do not take into account programs which could generate
randomized functions. For instance, the program Φ defined as

let Φ = let x = random 100 in fun (n:nat) ⇒ let y = random n in y+x

provides a random variable on type nat→ nat. As such, one would expect its
monadic interpretation to be given over some type expression [[nat→ nat]] ≡
Mρ ≡ (ρ → [0, 1]) → [0, 1], where ρ is some type, which is described more
precisely below.

This leads to the general high-order interpretation, based upon the fact that
[[β]] = Mβ for any base type β, and the observation that variables (as well
as abstractions) are expected to be considered values with respect to our
interpretation. Given an arbitrary expression e : σ, we still want to turn e
into a measure on some type expression σ̄, i.e. a function of type [[σ]] = Mσ̄.
The transformation turns out to be the well known Plotkin’s Call-by-Value
transformation, with β̄ ≡ β and σ → τ ≡ σ̄ → Mτ̄ .

As for e : σ, we define [[e]] : [[σ]] such that:

Term e : τ Interpretation [[e]] : [[τ ]]

x unit x

fun (x : σ)⇒ t unit (fun (x : σ̄)⇒ [[t]])

let x = a in b bind [[a]] (fun (x : σ̄)⇒ [[b]])

t u bind [[t]] (bind [[u]])

if b then e1 else e2 bind [[b]] (fun (x : bool)⇒ if x then [[e1]] else [[e2]])

In other words, turning our former monadic transformation (section 2.3) over
Rml into a more general transformation amounts at applying CPS transfor-
mations to our programs, where measurable functions f : β → [0, 1] are now
seen as particular cases of continuations . This interpretation extends this sit-
uation by interpreting random primitives such as flip() (resp. random n) as
a genuine inhabitant in Mbool (resp. Mnat) as shown in section 2.5.2.

It can be shown that this interpretation is a conservative extension from the
former monadic one. They compare, when we restrict ourselves to the Rml
case:

Proposition 3 Assume p is a well formed term from Rml. If p : β, where β
is a base type, then [p] = [[p]] as elements of Mβ.

In this paper, randomized functions such as Φ cannot be considered since
the type system chosen in this work does not allow for building measures on
functional types.
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2.6 Examples of functional interpretation

Now that the monadic translation is defined, we can transform an expression
e which computes a value randomly into an deterministic expression [e] which
returns the measure associated with the expression e. Before looking at this
interpretation in the prospect of proving facts over some program e, notice
that [e] is an ordinary functional term, and can be evaluated as such in the
interactive main loop of, say, O’Caml.

2.6.1 Primality test

A basic example of a randomized algorithm is the primality test. The principle
of this algorithm is the following. We want to check whether a number p is
prime. There is a deterministic test (test) which applies to 1 ≤ k < p and p
such that:

• If p is prime then (test k p) evaluates to true for all k
• If p is not prime then (test k p) evaluates to true for a limited number of
k, say N less than p−1

2
.

We choose k randomly and run the test: if the answer is false, then p is not
prime; if the answer is true then p is not prime with a probability N

p−1
which

is less than 1
2
. Iterating the test improves the level of confidence, provided the

random choices of k are independent.

In our language, the function which iterates n times the primality test for p
can be written:

let rec prime test p n =

if n = 0 then true

else let k = random (p-2) in
if test (k+1) p then prime test p (n-1) else false

Using the monadic transformation, and monad simplification laws, we get the
functional computation of the associated measure:

let rec prime test fun p n =

if n = 0 then unit true

else bind (random fun (p-2))

fun k ⇒ if test (k+1) p then prime test fun p (n-1)

else unit false

Now if we want to evaluate the probability for our program to give a correct
answer, we define prime correct, the characteristic function of the correctness
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predicate, which says that the result is true exactly when p is prime:

let prime correct p b = if b = exact prime p then 1. else 0.

One can now explicitly compute the probability that our program gives a
correct answer after n iterations:

let evaluate p n = prime test fun p n (prime correct p)

The function can be run in O’Caml and gives the following results.

# evaluate 23 1;;

- : float = 1

# [evaluate 9 0;evaluate 9 1;evaluate 9 2;evaluate 9 3];;

- : float list = [0.;0.75;0.9375;0.984375]

If the number is prime (example p = 23), then the result will be correct with
probability one. On the other hand, if p is not prime (example p = 9) then
the probability that the program gives a correct answer after 0 iteration is 0,
after 1 iteration, we get the good answer 3 times out of 4 and it goes to more
than 98% of good answers after 4 iterations.

One nice point is that we have been able to compute these probabilities with a
simple ML program without any specific knowledge on probability theory nor
number theory (except for the interpretation of random). On the other hand,
if we analyze the program, we remark that it is very inefficient:

• in order to build the characteristic function to be tested we need to know
(or to test) exactly if p is prime or not;
• because of the interpretation of random, the program is executed for all the

values of k between 1 and p − 1 before computing the average number of
good answers.

2.6.2 Random walk

Furthermore, this computational approach does not work in all cases. Our
previous program uses a structural recursion which always terminates. Many
interesting probabilistic programs only terminate with probability one, which
is a weaker requirement. For instance the following function flips a coin and
returns how many flips it took to get false, this is a typical example of a
random walk:

let rec walk x = if flip () then x else walk (x+1)
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If we test this function in O’Caml several times, we get small number answers
such as 1, 2, 3. We may apply our translation scheme:

let rec walk fun x =

bind flip fun

(fun (b:bool) ⇒ if b then unit x else walk fun (x+1))

and measure the function which is 1 everywhere:

# walk_fun 1 (fun n -> 1.);;

Stack overflow during evaluation (looping recursion?).

it loops because our interpretation tests all the cases, in particular the one
where the result of flip is always false.

This example shows that, when general fix-points are involved, we cannot
anymore use computation of the monadic interpretation for analyzing the
probability of events. We shall need to reason about these programs instead.
For that, we first define a Coq theory for representing distributions, then we
prove several theorem for analyzing programs.

3 Coq representation of randomized programs

The monadic interpretation transforms a probabilistic term e of type β into
a purely functional one, [e] which is understood as a measure on this same
type. Our next step towards reasoning on these randomized terms consists
in providing tools on proof assistant Coq side to reason on e through its
interpretation [e]. As a matter of consequence, we develop tools to reason on
measures instead. The section 3.1 presents an axiomatization U of the unit
interval [0, 1], sufficient for the purpose, and representation for types and terms
from Rml is explained in sections 3.2 and 3.3.

3.1 U : an axiomatization of the set [0, 1]

Our model is based on measures seen as functionals of type (A → [0, 1]) →
[0, 1]. For constructing this model in Coq, we have chosen to axiomatize a
type U which corresponds to the interval [0, 1]. The complete development is
available as a Coq contribution (see http://coq.inria.fr) 1

1 Our development currently runs with Coq V8.1.
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3.1.1 Notations for complete partial orders

Our development extensively uses the notion of complete partial order. Our
Coq library consequently starts with the definition of a structure for ordered
sets, and one for complete partial orders.

An ordered set is given by a type O, a relation ≤ which is reflexive and
transitive. An equality on O is defined by x == y iff x ≤ y ∧ y ≤ x. Given
two ordered sets O1 and O2, we introduce the type of monotonic functions
O1

m→ O2.

A ω-complete partial order (ω-cpo) is given by an ordered set D, a minimal
element 0 and a least-upper bound operation lub f on monotonic sequences
f : nat

m→ D. Given two ω-cposD1 andD2, a monotonic function F : D1
m→ D2

is defined to be continuous whenever F (lub f) ≤ lub(F ◦ f). Because the
opposite inequality is always provable, a continuous function also satisfies
F (lub f) == lub(F ◦ f).

There is a standard way to introduce fix-points in an ω-cpo D. Let F be a
monotonic operator on D (ie F : D

m→ D), we introduce the sequence Fn
defined by Fn ≡ F n0 (with F n+1 = F ◦ F n) and define fix F = lubFn.

It is easy to show that fix F ≤ F (fix F ), the equality fix F == F (fix F )
requires that F is continuous.

The ω-cpo structure can be extended to functions spaces. If we have an ω-cpo
structure on a set D, then we can define the same structure on the set A→ D
of functions with values in D, just taking:

f ≤A→D g ⇔ ∀x, f x ≤D g x

0A→D = fun x⇒ 0D lubA→Dfn = fun x⇒ lubD(fn x)

Given an ordered set O and an ω-cpo D, the set of monotonic functions from
O to D is also an ω-cpo.

3.1.2 Definitions

Our axiomatisation of [0, 1], starts by introducing an ω-cpo U . Consequentely
we can use the following symbols:

• Constant : 0
• Predicates : x ≤ y, x == y with x, y ∈ U
• Least-upper bounds for monotonic sequences: lub f with f ∈ nat

m→ U .
If f is an expression with a free variable n, we write lub(f)n instead of
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lub (fun n⇒ f).

We also introduce the following constructions building new elements in U :

• bounded addition: x+ y with x, y ∈ U
• multiplication: x× y with x, y ∈ U
• inverse: 1−x with x ∈ U
• values: 1

1+n
with n : nat

The addition in U is bounded: it gives the minimum of addition on reals and 1.

3.1.3 Axioms

In addition to the ω-cpo properties, we introduce a set of axioms for the
operations on U .

3.1.3.1 Order We assume that 1 is different from 0 and not less than any
element in U and that the order is total:

• Non-confusion: ¬0 == 1
• Bounds: ∀x, x ≤ 1
• Totality: ∀xy, x ≤ y ∨c y ≤ x

Coq implements an intuitionistic logic, we did not want to commit ourselves to
a classical axiomatisation of real numbers. Consequentely, we choose a classical
version of disjunction for expressing the totality: the property A∨cB is defined
as ∀C, (¬¬C → C) → (A → C) → (B → C) → C and we added an axiom
stating that the order relation is classical:

• Classical: ¬¬(x ≤ y)→ x ≤ y

3.1.3.2 Addition, multiplication and inverse As expected, we include
the usual axioms stating that addition and multiplication are symmetric and
associative, with 0 and 1 as their respective neutral elements.

Some properties of addition are only valid when there is no overflow during
addition. The non-overflow condition is expressed in our formalism as x ≤ 1−y.

We express the relationship between least upper bounds (lubs) and addition
and multiplication by the assumption of continuity of addition and multipli-
cation with respect to their second argument.
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The complete set of axioms is:

• Addition
· Symmetry: ∀x y, x+ y == y + x
· Associativity: ∀x y z, x+ (y + z) == (x+ y) + z
· Neutral element: ∀x, 0 + x == x
· Compatibility: ∀x y z, y ≤ z ⇒ x+ y ≤ x+ z
· Simplification: ∀x y z, z ≤ 1− x⇒ x+ z ≤ y + z ⇒ x ≤ y
· lub and addition: ∀(f : nat

m→ U) k, k + lub f ≤ lub(k + f n)n
• Multiplication
· Symmetry: ∀x y, x× y == y × x
· Associativity: ∀x y z, x× (y × z) == (x× y)× z
· Neutral element: ∀x, 1× x == x
· Distributivity on addition: ∀x y z, x ≤ 1−y ⇒ (x+y)×z == x×z+y×z
· Compatibility: ∀x y z, y ≤ z ⇒ x× y ≤ x× z
· Simplification: ∀x y z,¬0 == z ⇒ z × x ≤ z × y ⇒ x ≤ y
· lub and multiplication: ∀(f : nat

m→ U) k, k × lub f ≤ lub(k × f n)n
• Inverse
· Inverse maps 1 to 0 : 1− 1 == 0
· Inverse property: ∀x, (1− x) + x == 1
· Compatibility: ∀x y, x ≤ y ⇒ 1− y ≤ 1− x
· Inverse and addition: ∀x y, y ≤ 1− x⇒ (1− (x+ y)) + x == 1− y
· Inverse and multiplication: ∀x y, 1− (x× y) == (1− x)× y + 1− y

3.1.3.3 Constant 1
1+n

The constant 1
1+n

satisfies the axiom:

• 1
1+n

== 1−(n× 1
1+n

)

where n× 1
1+n

is a generalized sum defined by induction on n.

Finally the fact that U is archimedian is axiomatized by the property

• ∀x,¬x == 0⇒ ∃cn, 1
1+n
≤ x

As for the total order property, we use a classical version of existential.

3.1.4 Remarks

Our modeling of randomized programs does not depend on our particular
axiomatization of [0, 1]. Our choices are somehow arbitrary, we tried to find
an axiomatization with a few number of operations and axioms such that
the theory could be easily instantiated by different representations of real
numbers. We are interested in particular by constructive reals, and we plan to
investigate a possible encoding using the reals defined by Geuvers and Niqui
(2002) or the axioms proposed for interval objects as described by Escardo
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and Simpson (2001). We use the functor mechanism of Coq in order to keep
the axiomatization of [0, 1] as a parameter of the theory.

3.1.5 Derived operations

The usual minus operation x − y (which is zero when x ≤ y) can be defined
using our special inverse by: x − y ≡ 1− ((1−x) + y) The operation max

can be defined as (x − y) + y. Using the max operation, we can define the
least-upper bound of an arbitrary sequence. The greatest lower bound can be
defined by glb f ≡ 1−lub(1−f). It is also easy to define n× x and xn for an
integer n by induction on n. In Morgan and McIver (1999), the authors use
an operation x & y defined on non-negative real numbers as the maximum
of 0 and x + y − 1. The same operation can be defined in our theory using
the inverse operation and addition by x & y ≡ 1−((1−x) + (1−y)). It is the
dual operation of addition because we have (1−(x & y)) == (1−x) + (1−y)
and 1−(x + y) == (1−x) & (1−y). This operation captures intersection of
properties because IP∩Q == IP & IQ and will be used in fix-point rules in
section 4.4.2.

Altogether, the Coq theory for [0, 1] contains approximately 1100 lines of
definitions and lemmas (and almost twice as many lines of proofs).

3.2 Dealing with Rml in Coq

Given e : β, we get [e] : Mβ = (β → [0, 1]) → [0, 1]. The type Mβ is first
represented in Coq as some record type (distr β) which captures functionals
in Mβ with good measure properties.

3.2.1 Representation of types

In the following, we extend in a standard way the operations on U , to opera-
tions and relations on functions of type β → U using the same notations: f+g
is the function fun x⇒ f x+ g x and k × f is the function fun x⇒ k × f x.

Given a type β, we define a distribution on β to be a monotonic function µ of
type (β → U)

m→ U which furthermore satisfies stability properties, namely:

• linearity :
· ∀f g : β → U, f ≤ 1− g ⇒ µ(f + g) == µ(f) + µ(g)
· ∀(k : U)(f : β → U), µ(k × f) == k × µ(f)
• compatibility with inverse : ∀f : β → U, µ(1−f) ≤ 1−µ(f)
• continuity : ∀f : nat

m→ (β → U), µ(lub f) ≤ lub (µ ◦ f)
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In Coq, we introduce a type (distr β) as a dependent record which contains
the measure µ plus the proofs of compatibility properties for µ.
There is a natural order on that type inherited from the functional order on
(β → U)→ U .

Formally in the Coq development, there is a difference between the type Mβ
of functionals and the type (distr β) which contains the functional of type
Mβ plus the proofs of stability properties. However, for the sake of readability
we shall not emphasize this distinction in this paper and use simply the type
Mβ in place of (distr β) assuming all the objects in that type satisfy the
requested stability properties.

3.2.2 Remarks

We allow a distribution to be a sub-probability with possibly µ(1−f) < 1−µ(f)
(i.e. µ(I) < 1). This is useful for interpreting non terminating programs.

The definition and properties in Coq of a measure on a type β is done for an
arbitrary Coq type and not just base types coming from the Rml interpreta-
tion.

3.2.3 Derived properties

From this definition, we can deduce further properties, such as

• µ(fun x⇒ 0) == 0,
• µ(1−f) == µ(I)− µ(f),
• ∀fg, µ(f + g) ≤ µ(f) + µ(g) (even when there is an overflow),
• ∀fg, µ(f) & µ(g) ≤ µ(f & g).

3.2.4 Representation for Rml terms

We easily check that the monadic operators unit and bind introduced in 2.5
satisfy the stability properties of measures given in section 3.2.1. This is also
the case for the primitive random constructions introduced in section 2.5.2:
[random] and [flip] or the choice operator P p+ Q .

With the help of these operators, we can represent our Rml terms. For exam-
ple, following our general monadic translation scheme, one can also define a
conditional operation Mif of type Mbool→ Mβ → Mβ → Mβ:

Mif µb µ1 µ2 ≡ bind µb (fun b⇒ if b then µ1 else µ2).
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We use this operator for interpreting conditional programs:

[if b then e1 else e2] ≡ Mif [b] [e1] [e2]

3.2.5 Properties

We prove the monotonicity of the bind operation. Assuming µ1, µ2 : Mα,
M1,M2 : α→ Mβ:

µ1 ≤ µ2 M1 ≤M2

bind µ1 M1 ≤ bind µ2 M2

3.3 Managing recursive definitions

As expected, the difficult part is the interpretation of general fix-points. We
distinguish two cases, one where termination is total, like in the case of pri-
mality testing, in which case we can use the fix-point constructions of Coq
in order to interpret the recursively defined distribution and the general case,
like in the example of the Random walk, where we use a limit construction.

3.3.1 Total recursive functions

We assume the function f is recursively defined in Rml and has type β1 →
· · · → βn → β.

let rec f x1 . . . xn = e

A natural idea in order to interpret f in Coq as a function [f ] defining a
measure of type β1 → · · · → βn → Mβ, would be to use the same recursive
definition in Coq:

let rec [f ]x1 . . . xn = [e]

However, this is not always possible in Coq. The prover accepts a recursive
definition for f when there is an argument xi of type βi with βi an inductive
type and all recursive calls (f a1 . . . an) in the body e are such that ai is a
value structurally smaller than xi.

If the definition of f in Rml satisfies this criteria (for one of its arguments)
and if the structurally smaller elements ai do not contain randomized con-
structions, then this is also the case of recursive calls to [f ] in [e] and the
recursive definition of [f ] in Coq will be valid. The function prime test in
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section 2.6 gives an example of this case: it is a structural recursion on the
variable n.

Another important case of recursive definitions in Coq is the case of well-
founded recursive definitions. We assume given a relation ≺ on one of the
arguments xi of type βi which is proved to be well-founded and such that all
recursive calls (f a1 . . . an) in the body e are such that ai is a non randomized
construction and ai ≺ xi is provable. Such that the Coq definition of [f ] using
well-founded recursion is also valid.

3.3.2 Limit of distributions

In order to interpret recursive functions in which recursive calls are not obvi-
ously terminating as in the previous cases, we need to take limits of sequences
of distributions.

As mentioned in section 3.1.1, there is a ω-cpo structure on the functional
type Mβ = (β → [0, 1])

m→ [0, 1], it is not difficult to show that the least-upper
bound operation preserves the measure stability properties, such that the set
distr β is also an ω-cpo.

3.3.3 Fix-points

For the sake of clarity, this explanation is restricted to unary recursive defini-
tions; the n-ary case is handled similarly. Let us consider we want to define a
function which satisfies the equation

let rec f x = e

where f is assumed to take an argument in type α, and returns a random value
of type β, such that it has type α→ β and [f ] will have type α→ Mβ. We in-
troduce F of type (α→ Mβ)→ α→ Mβ defined by (fun [f ]⇒ fun x⇒ [e]).
We assume F to be monotonic: h ≤ g ⇒ F h ≤ F g. Using the ω-cpo structure
on α → Mβ, we construct the fix-point fixF of type α → Mβ, this function
will be our interpretation of f .

As mentioned in section 3.1.1, the inequality fixF x ≤ F (fixF )x holds. The
equality is only provable when F is continuous.

We have proven lemmas stating that the bind operation seen as a monotonic
function of type distr A

m→ (A → distr B)
m→ distr B is continuous.

We have also that the fixpoint operation seen as a monotonic function from
D

c→ D to D is continuous with D
c→ D the set of continuous functions

from D to D. We can deduce (as a meta-theorem that we did not formalize)
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that functionals generated from Rml expressions will satisfy the continuity
hypothesis.

To summarize this section, when a recursive function is introduced in Rml
using the declaration:

let rec f x = e

we interpret it as a function [f ] defined in our meta-language by

let rec [f ] x = fix (fun [f ]
m⇒ fun x⇒ [e]) x

We will explain in the next section how to prove properties of such programs.

4 Derived rules for reasoning on programs

As far as fix-points are concerned, well founded recursive definitions are dealt
with as usual in Coq, and need no further development in this article. In
this section, we develop an extended axiomatic semantics for Rml programs
(section 4.1), with some particular attention to general recursive definitions.
Actually, the very novelty when considering some probabilistic program e is
the fact that e may not terminate on every initial state, but rather terminates
almost surely, which is is a weaker property. From the operational point of
view, this property expresses that e will terminate eventually. This is developed
further in section 4.4.

4.1 Extending Kozen’s minoring derivation rules

For reasoning about programs, it is convenient to use an axiomatic seman-
tics that provides rules by induction on the structure of the program, stating
as usual, how some post-condition is satisfied after execution, provided some
precondition holds. In fact, in the context of probabilistic programs, we are
interested (see also (Kozen, 1983)) in deriving some information on the prob-
ability for a certain property to hold. Given e : β, its monadic interpretation
[e] : Mβ is meant to represent a measure on β, which computes for a function
f : β → [0, 1], its expectation [e]f ∈ [0, 1]. (Usually f will be the character-
istic function IP of some predicate P of type β → bool, in which case [e]IP
computes the probability for the property P .)

The expression [e]f computes the exact expectation, while in general it would
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be easier to reason on approximation of this value that will be given by a
possible interval of values.

Obviously, 0 6 [e]f 6 1 is the worst surrounding we can get for this expec-
tation. Whenever [e]I = 1, we understand that [e] is a probability, which also
means that e terminates almost surely . On the contrary, the obvious meaning
of [e]I = 0 is that e diverges almost surely . Besides these particular cases, we
expect to derive a 6 [e]f 6 b framings, where a 6 b ∈ [0, 1], that is to say
[e]f ∈ [a, b]. Therefore, our precondition is going to be some interval I ⊆ [0, 1].

Post-conditions should be similar, but expected to depend on the value re-
turned from the computation of e, since we are dealing with functional pro-
grams. Thus, post-conditions are taken to be interval-valued functions F , such
that ∀x : A,F x ⊆ [0, 1].

As a matter of consequence, we provide rules for deriving judgements of the
form [e]F ⊆ I, which extends Kozen’s k ≤ [e]f rules (where k ∈ [0, 1], e is
an expression of type β and f is a function of type β → [0, 1]) in a consistent
way:

The minoration k ≤ [e]f is rewritten as k 6 [e]f ∧ [e]I 6 1, owing to the fact
the interpretation [e] is monotonic.

Before going through the details, let us notice that this presentation could have
been settled in the usual Scott’s domains framework (Scott, 1972), where the
set I of intervals included in [0, 1] is turned into an ω-cpo, with ordering the
converse of inclusion, [0, 1] as bottom element and intersection as the least
upper-bound operation. As a matter of fact, if we do not restrict ourselves to
the unit interval, this is Scott’s Interval Domain, which is the interpretation
for abstract data type R in his model for functional programming. We do not
need to deal with the full presentation for our purpose, but for two important
points. First of, maximal elements of the Interval Domain are singleton sets
{r} ≡ [r, r], where r ∈ R. In our framework, maximal elements are the same,
restricted to r ∈ [0, 1], and are associated (obviously) to equality proofs. In
other words, maximal interval matches the best information we can derive for
some probability, while [0, 1] matches the worst, useless information. Secondly,
we have to cope with recursive definitions, in which case we shall need mono-
tonic interval sequences (In)n such that for all n, In+1 ⊆ In. Then, the least
upper bound ∩nIn is well defined. This is going to be sufficient in this setting.

4.2 Definition on intervals

An interval I is given by its lower bound low I and its upper bound up I such
that 0 ≤ low I ≤ up I ≤ 1, and we write it [low I, up I], we use the notation
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{r} for the singleton interval [r, r]. We write I the set of intervals.

We have the expected definition on membership and inclusion :

• x ∈ [a, b] is defined as a ≤ x ≤ b
• [a, b] ⊆ [c, d] is defined as c ≤ a ∧ b ≤ d.

Operations on intervals can be lifted to interval functions. For an interval
function F , we write lowF for the function fun x ⇒ low (F x) and similarly
upF for the function fun x⇒ up (F x).

The operation of a distribution e on A on an interval function F on A is written
[e]F, it is an interval defined by [[e](lowF ), [e](upF )]. Given two functions
f and g of type β → [0, 1], we shall write [f, g] for the interval function
fun x⇒ [f x, g x] and {f} for the singleton function [f, f ].

Because of the monotonicity of distributions, it is easy to show that for a
function f in β → [0, 1], if for all x, f x belongs to the interval F x, then
[e]f ∈ [e]F . We have also that [e]{f} = {[e]f} such that nothing is lost when
considering intervals.

We also extend operations of addition and multiplication to intervals:

• [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2]
• k × [a, b] = [k × a, k × b]

4.3 Basic (non recursive) rules

From now on, I, J,K ⊆ [0, 1] stand for intervals and F,G,H for interval-valued
functions. We derive proofs for [e]F ⊆ I along the following cases.

Representation of intervals on the Coq is done with no additional effort. The
interpretation of Rml terms however need now being reconsidered as acting on
interval-valued functions instead of simple functions. This is straightforward
along the following points:

• [v]G = G v when v is a variable, a constant or a non-randomized term
• [let x = a in e]G = [a] (fun x⇒ [e]G)
• [if e0 then e1 else e2]G = [e0]I.=true × [e1]G+ [e0]I.=false × [e2]G

The functions [random] and [flip] associated to the primitive randomized
constructions also operate on intervals functions like on real functions.

• [randomn]G = Σn
i=0

1
1+n

(G i)

• [flip ()]G = 1
2
(G true) + 1

2
(G false)
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From these equalities, we can derive the following rules:

G2 ⊆ G1 [e]G1 ⊆ I1 I1 ⊆ I2
[e]G2 ⊆ I2

[a]F ⊆ I ∀x, [e]G ⊆ F x

[let x = a in e]G ⊆ I

[e1]G ⊆ I1 [e2]G ⊆ I2
[if e0 then e1 else e2]G ⊆ [e0]I.=true × I1 + [e0]I.=false × I2

We can derive in our formalism useful schemes which generalize reasoning on
deterministic programs. For instance, if we have established that an expres-
sion a satisfies a predicate P with probability 1, then it is possible to reason
subsequently exactly as if P was true for the result of the computation of a.
This is stated in the following derivable rule:

[a]IP = 1 ∀x, P x⇒ [e]F ⊆ I

[let x = a in e]F ⊆ I

4.4 Rules for fix-points

In that part, we use the same notations as in section 3.3.3. We want to prove
properties of a recursive definition in Rml: let rec f x = e with x of type α,
and e of type β. We introduce F a monotonic operator of type (α→ Mβ)

m→
α→ Mβ as in 3.3.3 such that [f ] = fixF .

We also introduce the notation f · G when f has type α → Mβ and G has
type α → β → I. The expression f · G will denote a function of type α → I
defined by (f ·G)x is the value [f x](Gx) of the measure (f x) on the function
(Gx).

We allow ourselves to use the same notation when g is a real-valued function
of type α→ β → [0, 1], in which case f ·g will be a function of type α→ [0, 1].

The function g plays the role of an input-output relation: given a binary
relation R on α and β then we can take g of type α → β → [0, 1] to be the
characteristic function of R, in that case f · g corresponds to the function
which associates to x the probability of R(x, f x).

4.4.1 Basic estimation

We now justify the rule for estimating fix-points which agrees and extends
the ideas presented by Jones (1989). Let us give the general idea in the first
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place. The Rml definition let rec f x = e for f can also be considered as the
fix-point of some functional F such that [f ]x = fixF x.

Given the interval-valued function G, we want to estimate [f x]G, so to find
I such that [f x]G ⊆ I. The maximal interval I = [0, 1] is a trivial solution.
Now the fix-point is the result of the iteration of the functional F , so if it is
possible to decrease the interval at each step, we can deduce an approximation
for f .

This leads to the following provable rule, assuming a given monotonic sequence
(In)n of interval-valued functions on type α such that: ∀x, 0 ∈ I0 x, and for
n ≥ 0, In+1 ⊆ In.

∀n,∀h : α→ Mβ, (h ·G ⊆ In)⇒ (F h) ·G ⊆ In+1

fixF ·G ⊆ ⋂n In
The proof is a direct consequence of the following equalities with G = [g1, g2]
and In = [pn, qn], where (pn)n is an increasing sequence starting from 0 and
(qn)n is a decreasing sequence:

fixF · [g1, g2] = [lub(F n0) · g1, lub(F n0) · g2] ⊆ [lub (pn), glb (qn)]

The rule above estimates an upper-bound of the fix-point using a decreasing
sequence, it is sometimes more convenient to use increasing sequences both
for lower and upper bounds of the intervals. In this case, assuming (pn)n and
(qn)n are both increasing sequences of functions of type α → [0, 1] with the
proviso that for all x, p0 x = 0, we can prove the following result:

∀n,∀h : α→ Mβ, (h ·G ⊆ [pn, qn])⇒ (F h) ·G ⊆ [pn+1, qn+1]

fixF ·G ⊆ [lub (pn), lub (qn)]

No continuity condition on F is required to validate the above rules. As men-
tioned in section 3.3.3, continuity is only necessary to ensure that fixF is
indeed a fixpoint of F .

4.4.2 Advanced schemes

The previous scheme gives the general idea. However, reasoning with fix-points
is always tricky, and it would be handy to involve some more advanced schema
in the process. While one is required to find an appropriate invariant, there are
some systematic ways to find it depending on the form of F . In this section,
we make intensive use of notations introduced at the beginning of the section.

595



In this part, we took inspiration from the loop rules in pGCL introduced by
Morgan (as described in McIver and Morgan (2005)) and propose a systematic
generalization to the case of recursive functions.

Let us make some preliminary observations. We start from a recursive defini-
tion let rec f x = e on type α→ β. Assuming f is deterministic and we want
to prove that ∀x, P (f x), a natural approach is to try to find an inductive
argument which shows that the body e of the function f satisfies P assuming
the recursive calls in e do. More formally, if the definition f corresponds to the
functional F , we can try to prove for an arbitrary function h that, ∀x, P (hx)
implies ∀x, P (F hx).

We use a similar approach for randomized programs. Instead of the property
P , we start from a function g : α → β → [0, 1] to be estimated and we try
to relate the estimation of the body of the recursive function (F [f ] · g) to the
estimation of the recursive calls by using properties of F . If we succeed, it
means that we found a functional Fg (of type (α→ U)

m→ (α→ U)) such that
the following diagram commutes for an arbitrary h of type α→ Mβ.

h_

F

��

� ωg //h · g_

Fg

��

F h
� ωg // (F h) · g

Whenever Fg exists, we get for all n > 0, the relation : ωg ◦ F n = F n
g ◦ ωg

which expresses a simulation relation between the fix-point issued from the
source program through iterations of the functional F when applied to g, and
the fix-point which can be computed by applying the functional Fg.

Therefore, we understand that the value [f ] · g can be reached as well from
the sequence of iterations F n

g . In fact:

[f ] · g = fixF · g = lub (F n0) · g = lub (F n0 · g) = lub (F n
g (0 · g)) = fixFg

We now give the general definition.

Definition 4 Given a functional F of type (α → Mβ)
m→ (α → Mβ) a

function g of type α → β → [0, 1], we say that a functional Fg of type
(α → [0, 1])

m→ (α → [0, 1]) commutes with F for the expectation g when
the following property holds:

∀h, (F h) · g = Fg (h · g) (1)

We will say that Fg weakly commutes with F when
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∀h, (F h) · g ≤ Fg (h · g) (2)

An important consequence of the existence of Fg is that the estimation of
expectation for the fix-point can be related to the fix-point of Fg as stated in
the following lemma.

Proposition 5 Given a real-valued function g of type α → β → [0, 1] and a
monotonic operator Fg of type (α→ [0, 1])

m→ (α→ [0, 1]):

• if Fg weakly commutes with F for g then fixF · g ≤ fixFg.
• if Fg commutes with F for g then fixF · g = fixFg.

Now we can use the fact that fixFg is an initial fix-point, such that if we can
find a real-valued function φ of type α → [0, 1] such that Fg φ ≤ φ then we
deduce fixFg ≤ φ and combining this result with the last property, we obtain
the following result:

Proposition 6 Given a real function g of type α → β → [0, 1] such that
there exists a monotonic operator Fg which weakly commutes with F for g, if
Fg φ ≤ φ then fixF · g ≤ φ.

In most cases, we also want a minoration for fixF · g. For that, we have to
reverse this result and consider how the distribution fixF operates on 1−g.

Proposition 7 Given a real function g of type α→ β → [0, 1] such that there
exists a monotonic operator F1−g which weakly commutes with F for 1−g, if
F1−g (1−φ) ≤ (1−φ) then φ & (fixF · I) ≤ fixF · g.

The function fixF · I associates to each x the probability that the recursive
function terminates on x.

PROOF. The value x & y is defined in our formalism as 1−((1−x) + (1−y))
using our bounded addition and corresponds to the real max(0, x+ y − 1). In
particular x & 1 = x so for any function f , f & I = f .

The proof uses the fact that for any distribution µ of type Mβ, we have
(1−µ(1−h1)) & µ(h2) ≤ µ(h1 & h2). From the previous proposition applied
to 1−φ we have fixF · (1−g) ≤ 1−φ. so φ ≤ 1−fixF · (1−g) then:

φ & (fixF · I) ≤ (1−fixF · (1−g)) & (fixF · I)

≤ fixF · (g & I) = fixF · g

There is a special case where we can get a minoration by φ, this is when
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φ ≤ fixF ·I which can be seen as a generalisation of the fact that our invariant
estimation φ implies termination of the fix-point. In order to obtain this result,
we need (fixF · I)− φ to be a pre-fixpoint of F1−g.

Proposition 8 Let g be a real function of type α→ β → [0, 1] such that there
exists a monotonic operator F1−g which weakly commutes with F for 1−g. If
the properties F1−g ((fixF · I)− φ) ≤ (fixF · I)− φ and φ ≤ fixF · I hold, then
φ ≤ fixF · g.

PROOF. This results is obtained using the previous proposition with the
invariant φ′ = φ + 1−(fixF · I). We have 1−φ′ = (fixF · I) − φ such that
F1−g (1−φ′) ≤ 1−φ′ by hypothesis, consequently φ′ & fixF · I ≤ fixF · g.

The final result comes from properties of + and & on [0, 1]:

φ′ & fixF · I = (φ+ (1−fixF · I ) & fixF · I = φ

4.4.3 Application to loops

We can define recursively a loop function in Rml. We assume given a type S
for states, a boolean condition cond of type S → bool and a body body of
type S → S.

let rec loop s =

if cond s then let s’ = body s in loop s’ else s

The interpretation [cond] will have type S → Mbool and [body] will have type
S → MS.

We introduce the terms ctrue s = [cond s]I.=true and cfalse s = [cond s]I.=false

We want to measure a function g of type S → [0, 1] on the output state of
loop, which does not depend on the input state. We still use the notation f ·g
in place of the more verbose f · fun s⇒ g.

We write F for the functional associated to loop. We have:

(F f) · g = fun s⇒ (ctrue s)× [body s](f · g) + (cfalse s)× (g s)

Such that the functional Fg which commutes with F for g can be defined the
following way:

Fg h = fun s⇒ (ctrue s)× [body s]h+ (cfalse s)× (g s)
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It is easy to check the following property : F1−g (1−h) ≤ 1−(Fg h) such that
the condition φ ≤ Fg φ is sufficient to ensure F1−g (1−φ) ≤ 1−φ. And we can
derive the following theorem :

Proposition 9 Given g, φ and ψ of type S → [0, 1],
assuming ∀s, φ s ≤ (ctrue s)× [body s]φ+ (cfalse s)× (g s)
and ∀s, (ctrue s)× [body s]ψ + (cfalse s)× (g s) ≤ ψ s
we can deduce φ & [loop] · I ≤ [loop] · g ≤ ψ

In case cond is a non randomized construction, let C s be the property cond s =
true. The condition:
φ s ≤ (ctrue s)× [body s]φ+ (cfalse s)× (g s) becomes:
C s⇒ φ s ≤ [body s]φ and ¬C s⇒ φ s ≤ g s
which is a generalization of the loop rule in axiomatic semantics, φ being the
invariant which should be preserved in the body (when the condition is true)
and should establish the post-condition at the end (when the condition is
false).

We consequently have the following rule which corresponds to the total loop
correctness rule in McIver and Morgan (2005):

∀s, C s⇒ φ s ≤ [body s]φ

∀s, φ s & [loop s]I ≤ [loop s](φ & I¬C)

5 Applications

We apply our approach for proving properties of simple randomized programs.

5.1 Probabilistic termination

We return to our example of section 2.6.2, a random walk which illustrates
probabilistic termination.

let rec walk x = if flip() then x else walk (x+1)

We show that this program terminates with probability one. For that it is
enough to prove that:

∀x, [walkx]I = 1.
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The functional F to be considered is:

fun [walk]
m⇒ fun x⇒ [if flip() then x else walk (x+ 1)]

when w : nat→ Mnat, x : nat and g : nat→ [0, 1] to be measured, we have:

(F w · g)x =
1

2
(g x) +

1

2
(w · g) (x+ 1)

We can introduce Fg of type (nat→ [0, 1])
m→ (nat→ [0, 1]) such that

Fg hx =
1

2
g x+

1

2
(h (x+ 1))

and check the commutation property between Fg and F .

In case g is the function I we get the functional

FI hx =
1

2
+

1

2
(h (x+ 1))

we know by proposition 5 that

[walkx]I = fixFI x

what remains to be computed is fixFI x.

The real fixFI x is the least-upper bound of a sequence (pi)i such that p0 = 0
and pi+1 = 1

2
+ 1

2
pi.

It is easy to show that pn = 1− 1
2n , that the least upper bound of the sequence

(pi)i is 1 such that fixFI x = lub(pn)n = 1.

5.2 Parametrized termination

This example is taken from Ycart (2002), adapted here to fit with our restric-
tion to discrete random distributions. It can be seen as a generalisation of
walk where the probability to stop or continue is given in each point by an
arbitrary function K x.

We assume given a non-randomized function K of type nat → nat and an
integer N . We write also Y x for the element of [0, 1] defined as (K x)/1 +N .
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The function we want to study is defined by the following Rml program:

let rec ω x = if randomN < K x then x else ω (x+ 1)

We have [ω] = fix F , where F f x ≡ [if randomN < K x then x else f (x+1)].

Let us start with some informal observations. Given θ : nat → [0, 1], assume
we want to approximate the value of [ω x]θ ∈ [0, 1]. From a mathematical
point of view, this is a summation. Let us have a naive look at it:

∫
θ(y)d[ω x](y) = (Y x)θ x+ (1−(Y x))

∫
θ(y)d[ω (x+ 1)](y)

From the section 2.5.5, we know our monadic interpretation expresses the
same idea, in a more formal setting.

5.2.1 Putting advanced schemes at work

[ω x]θ= (Y x)θ x+ (1−(Y x))[ω (x+ 1)]θ

= (Y x)θ x+ (1−(Y x))(Y (x+ 1))θ (x+ 1)

+(1−(Y x))(1−(Y (x+ 1))[ω (x+ 2)]θ

= . . .

= (Y x)× θ x+ · · ·+
x+n∏
k=x

(1−Y k)[ω (x+ 1 + n)]θ

We observe that the potential source of divergence depends on the behaviour
of the infinite product R∞(x), limit of the sequence Rn(x) ≡ ∏x+n−1

k=x (1−Y k).
Let us make this observation more formal. Considering the functional F which
defines the fix-point, we rather get:

[F f x]θ= (Y x)θ x+ (1−(Y x))[f (x+ 1)]θ (3)

This turns out to be an application of the properties presented in section 4.4.2.

From equation 3, we get that the commutation property holds with the func-
tional

Fθ hx = (Y x)× (θ x) + (1−Y x)× (h (x+ 1))

When θ is the unit function I, we obtain :

FI hx = (Y x) + (1−Y x)× (h (x+ 1))
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The proposition 5 ensures that [ω x]I = fixFI x so it remains to compute this
fixpoint, it is the limit of a sequence sn such that s0 x = 0 and sn+1 x =
(Y x) + (1−Y x)× (sn (x+ 1)).

One shows by induction on n that

sn x =
n−1∑
k=0

Y (x+ k)×Rk(x)

with Rn(x) as defined above. then using the fact that Y (x + k) × Rk(x) =
Rk(x)−Rk+1(x) we deduce sn x = R0(x)−Rn(x) = 1−Rn(x) and consequently
the expected limit of sn x is equal to 1−∏∞i=x 1−(Y i). We deduce the expected
result:

[ω x]I = 1−
∞∏
i=x

1−(Y i)

We now illustrate the use of other rules for fix-points. We may be interested to
show that the function ω applied on x never outputs value less than x. Because
it is a property always true, one possibility would be to use the power of the
Coq type system and have a semantic which associates to x a distribution on
numbers greater or equal to x. However, if we stay in our Rml framework, we
may want to prove that the probability for ω x to output a value less than x is
0, which can be rephrased as [ω x]I.<x = 0. This is a case where the function to
be measured I.<x depends on the input x. With g of type nat→ nat→ [0, 1]
we have

(F f · g)x = [F f x](g x) = (Y x)× (g x x) + (1−Y x)× [f (x+ 1)](g x)

We consider g x = I.<x. This does not lead directly to a commutation property,
because we need a sub-expression of the form [f (x+ 1)](g (x+ 1)) in order to
abstract with respect to the function f · g. We remark that g x x = I.<x x = 0
and also that g x = I.<x ≤ I.<x+1 = g (x + 1) such that we have for this
particular g:

(F f · g)x ≤ (1−Y x)× (f · g) (x+ 1)

and we can introduce the function Fg which weakly-commutes with F

Fg hx = (1−Y x)× (h (x+ 1))

Now we remark that h = 0 is an invariant of Fg such that using proposition 6,
we deduce [ω x]I.<x ≤ 0 which is the expected result.
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We can deduce using the same kind of reasoning that [ω x]I.=x = Y x. The
general method is again to rewrite F f · g for that particular case. We obtain
because g x x = 1:

(F f · g)x = (Y x) + (1−Y x)× [f (x+ 1)](g x)

now we would like to reuse our previous result which ensures that ω (x +
1) · I.=x ≤ ω (x + 1) · I.<x+1 = 0. This is possible using a stronger notion of
commutation in proposition 5 where we force the variable f to be less than
the fixpoint we analyse, in our case, we may assume f ≤ [ω] and consequently
use [f (x+ 1)](g x) = 0.

We obtain (F f · g)x = (Y x) so the (constant) functional Fg hx = Y x com-
mutes with F for g and [ω x]I.=x = fix Fg = Y x.

The lemmas in Coq involving commutation in section 4.4.2 have been devel-
oped with this stronger notion of commutation ie ∀h, h ≤ fixF ⇒ F h · g =
Fg (h · g).

5.2.2 Some practical consequences

Turning back to our program ω, taking x = 0 as an example, we have proved
so far:

∫
(I y)d[ω 0](y) = 1−

∞∏
k≥0

(1−Y k)

Therefore, the termination depends upon the asymptotic behaviour of Y x =
(K x)/1+N , through the existence of the limit R∞(x). For instance, whenever
K is non-zero, (ω 0) terminates almost surely; while if K always returns the 0
value, then this program diverges almost surely. If K n = 0 as soon as n ≥ p
for some integer p > 0, then (ω 0) terminates with probability 1−∏p

k=0(1−Y k).

5.3 The Bernoulli distribution

We now apply our technique to the proof of an algorithm to simulate a Boolean
function following Bernoulli’s distribution (which is true with some probabil-
ity p and false with probability 1−p) using only a coin flip. The algorithm
which is also taken as an example by Hurd (2002a) uses a simple idea : write
p in binary form

∑∞
i=1 pi

1
2i , if we flip a coin and get a sequence (qi)i≥1 then

the first time we get qi 6= pi, we answer true when qi < pi and false otherwise.
Now this function can be expressed recursively. If p < 1

2
then p1 = 0 and the
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remainder of the sequence corresponds to 2× p = p+ p. If 1
2
≤ p then p1 = 1

and the remainder of the sequence corresponds to 2 × p − 1 = p & p (using
the special operation x & y we introduced in section 3.1.5). Our Bernoulli
program can be written as

let rec bernoulli p =

if flip() then if p < 1
2

then false else bernoulli (p & p)

else if p < 1
2

then bernoulli (p + p) else true

As before, given a function g of type bool → [0, 1] (not depending on the
input p of the function), we compute the value of the functional F associated
to bernoulli:

[F f p]g = if p < 1
2

then 1
2
(g false) + 1

2
[f (p+ p)]g

else 1
2
[f (p & p)]g + 1

2
(g true)

So Fg commutes with F for g with Fg defined by:

Fg h p = if p < 1
2

then 1
2
(g false) + 1

2
(h (p+ p))

else 1
2
(h (p & p)) + 1

2
(g true)

In case g is the function I, we have

FI h p = if p < 1
2

then 1
2

+ 1
2
(h (p+ p)) else 1

2
(h (p & p)) + 1

2

In order to compute fixFI we introduce the sequence p0 = 0 pn+1 = 1
2

+ 1
2
pn,

which is the same sequence we used for the termination of walk, its limit is 1.

So we know that bernoulli terminates almost surely ie fixF · I = 1 we
consequently can use propositions 6 and 7 in order to study the probability of
the result to be true.

With g = I.=true we have

Fg h p= if p < 1
2

then 1
2
h (p+ p) else 1

2
h (p & p) + 1

2

F1−g h p= if p < 1
2

then 1
2

+ 1
2
h (p+ p) else 1

2
h (p & p)

We take for invariant φ p = p, in order to deduce fixF p · I.=true = p it is
enough to prove that φ is a pre fix-point of Fg (ie Fg φ ≤ φ) and 1−φ is a
pre fix-point of F1−g (ie F1−g (1−φ) ≤ 1−φ). So we simply have to prove the
following properties which are consequences of properties of [0, 1]:

• if p < 1
2

then 1
2
(p+ p) else 1

2
(p & p) + 1

2
≤ p
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• if p < 1
2

then 1
2

+ 1
2
(1−(p+ p)) else 1

2
(1−(p & p)) ≤ 1−p

5.4 Improving precision

The previous examples show the proof of properties of particular programs.
Our Coq development gives us the possibility to also derive more abstract
properties involving program schemes.

We study a program scheme where a randomized program is executed twice
in order to improve the probability of getting a correct result. The implicit
assumption is that given two runs on the program we can choose the better of
the two answers. In case of primality for instance, if one of the tests answers
that p is not prime, we are sure that p is not prime; only when the two programs
assert that p is prime, we can still pretend (but with higher confidence) that
p is prime.

We want to compute a value in a type β which satisfies a property Q with a
certain probability. The hypotheses are that we have two programs p1 and p2

of type β, thus interpreted as objects of type Mβ. We want to combine p1 and
p2 in order to get a better program i.e. we want to improve the probability
that the result is correct.

We assume we have a non-randomized function choice of type β → β → β
such that (Q x)⇒ Q (choicex y) and (Q y)⇒ Q (choicex y) are provable.

In case of a Boolean test for primality of p, we have (Q b) defined as (b =
true ⇒ p is prime) and (choice b1 b2) defined as (b1 and b2). The opposite
direction p is prime ⇒ b = true is always satisfied for the output of the
program so does not require further analysis.

Now we build a new program p:

let x = p1 in let y = p2 in choice x y

We assume that we have estimations for the probability of p1 (resp p2) to
satisfy Q, ie k1 ≤ [p1]IQ (resp. k2 ≤ [p2]IQ) and we want to prove that the
program p satisfies Q with a better probability.

Let k stands for the expression k1 +k2−k1k2, and notice that k = k1(1−k2) +
k2 = k2(1−k1) + k1 such that k is greater than both k1 and k2.

We are going to show that k1 ≤ [p1]IQ and k2 ≤ [p2]IQ implies k ≤ [p]IQ.

Actually we establish a more general result, using an arbitrary function q of
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type β → [0, 1] instead of the characteristic function IQ of a predicate Q. We
assume that ∀x y, (q x)+(q y) ≤ q (choicex y) (with bounded addition). It is
easy to see that when q is the characteristic function IQ, then the assumptions
(Q x)⇒ Q (choicex y) and (Q y)⇒ Q (choicex y) are equivalent to (IQ x)+
(IQ y) ≤ IQ (choicex y). We also need the fact that both programs p1 and p2

terminate with probability one, otherwise our choice function could give a
result which is not as good as p1 and p2. Now, the property to be shown
amounts to

k ≤ [p1] (fun x⇒ [p2] (fun y ⇒ q (choicex y)))

Using the fact that

(q x)× (1−q y) + q y ≤ q x+ q y ≤ q (choicex y)

the proof reduces to

k ≤ [p1](fun x⇒ [p2](fun y ⇒ (q x)× (1−q y) + q y))

Algebraic properties of measures lead to simplification of the right-hand side:

[p1]q × [p2](1−q) + [p2]q

Because p2 terminates, we have [p2](1−q) = 1−[p2](q) (only the inequality is
true in general) so we have to show:

k1(1−k2) + k2 ≤ [p1]q × (1−[p2]q) + [p2]q

which is true because k is, by construction, monotonic with respect to both
k1 and k2.

This example illustrates the possibility to do abstract modular reasoning in
our framework. In Coq, the expressions [p1] and [p2] are just represented as
variables of type Mβ.

6 Related work

Park et al. (2005) propose a probabilistic functional language, named λ© which
extends the ML functional kernel on the basis of the monadic metalanguage
developed by Pfenning and Davies (2001). A key feature is the clear syntacti-
cal separation between deterministic terms and probabilistic expressions. The
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latter correspond to mathematical random variables. Any term can be seen as
an expression : the Dirac mass distribution on this term. From any expression
E, the operator prob E builds the associated image measure. As for random
primitives, the language introduces the constant expression S which denotes
a random variable following the uniform law on [0, 1]. In Rml, one does not
distinguish between these two syntactic categories; the monadic transforma-
tion forces any Rml term into a measure of some kind. The monadic opera-
tors unit and bind get as close as possible from the corresponding prob and
sample x from · · · in · · · from λ©.

The language λ© is mainly designed toward expressiveness as a programming
language, for which the paper provides a small steps operational semantics.
This corresponds to Kozen’s first semantics in Kozen (1981), where any com-
putation involved in a reasoning step about a program requires the user to
refer to the measurable space of random streams over [0, 1]. As far as reasoning
on programs is concerned, this is not of great help, since axiomatic semantics
relies on denotational semantics instead. Therefore, examples developed with
λ© are better analysed through simulation techniques. These approaches are
complementary: we are not able to simulate the programs as sampling func-
tions but we can directly and easily reason on the probabilistic properties of
(a subset of) O’Caml expressions.

In this paper, we have limited ourselves to discrete distributions, with the ben-
efit of ensuring our monadic transformation to interpret properly programs as
mathematical measures. We think the continuous case could be reached, start-
ing from the formal development done so far with the U axiomatization, but
this point requires further investigations. The current presentation does not
take measurability property into account. This is not required in the discrete
case, but cannot be ignored in the general case anymore. We strongly con-
sider Jones and Plotkin (1989) work as a possible direction to follow, provid-
ing that the interpretation of type β is given a cpo-structure. Also the recent
work by Hasan and Tahar (2007), which develops a formalization of continuous
probability distributions based on Hurd’s approach, deserves interest towards
this goal.

McIver and Morgan (2005) describe an axiomatic semantics for probabilistic
programs written in imperative style. The state-predicates in Hoare logic are
replaced by so-called expectations which are functions from states to R+, to
be evaluated according to the distribution defined by the program. An impor-
tant aspect of this work is to introduce in the language a non-deterministic
(demonic) choice p u q. The probability for a property P to hold after exe-
cuting p u q is the minimum of the probabilities that P holds after execut-
ing p and after executing q. This operator is used to represent specifications
and for defining a refinement relation. In order to adapt our approach to
the non-deterministic case, an idea could be to relax the compatibility condi-
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tion for addition in the definition of a distribution into the weaker condition
µ(f) + µ(g) ≤ µ(f + g). Developing the corresponding theory still remains
to be done. A mechanization of this calculus using the HOL theorem prover
is presented in Hurd et al. (2005). In this work programs are interpreted as
functionals of type (α→ R+

∞)→ (α→ R+
∞) where R+

∞ ≡ R+ ∪ {∞} and α is
the type of states. A so-called deep-embedding is proposed. The syntax of the
language of guarded commands and the weakest-precondition generator are
explicitly encoded in the proof assistant. Our approach uses instead a shallow
embedding where we directly encode the semantics of the language. Also, their
approach allows to measure an arbitrary (measurable) R+-valued function; We
choose to restrict ourselves to [0, 1]-valued ones in order to simplify the formal
development in Coq and because it is sufficient for correctness. Measuring
arbitrary function can nevertheless be interesting in some cases. For instance,
in the random walk example, one could measure the average of the result of
the function (how many flips before we get false). We plan to investigate how
to extend our development in that direction.

As already said in the introduction, our approach owes much to Kozen as
well as to Hurd’s thesis, where formal verification of probabilistic programs is
handled with the HOL theorem prover. Hurd uses a monadic translation based
on a global state with a stream of boolean values. Reasoning on programs
required to define within HOL an adequate distribution over this infinite
structure, while we only use simple mathematical constructions. It would be
interesting to compare more carefully the complexity of proofs of high-level
programs in both systems.

7 Conclusion

We have studied the interpretation of probabilistic programs in a functional
framework using a monadic interpretation of programs as probability distri-
butions represented by measures.

We have applied this technique for building an environment for reasoning
about probabilistic programs in the Coq proof assistant. We have developed
an axiomatization for the set [0, 1] which uses a few primitive operations :
bounded addition, multiplication, inverse (1−x), least upper-bounds of mono-
tonic sequences.

We have derived axiomatic rules for estimating the probability that programs
satisfy some given properties, following the structure of the program. When
dealing with probabilistic termination of programs, we provide several fix-
point rules, which could cover a wide class of situations. We provide few basic
examples for showing how to take benefit of them. The development and
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results presented in this paper have been formally derived and checked in
the Coq proof assistant and are available as a contribution (Paulin-Mohring,
2007).

Futher research topics concern both theoretical issues and more practical con-
cerns. On the former side, we want to deepen the relations between the [0, 1]-
segment of R which is formalized by our axiomatization type U and other
axiomatizations for the reals studied elsewhere. We are also interested in the
approach taken by Escardo and Simpson (2001) in the development of Real
PCF. See also Geuvers et al. (2007) for a quite comprehensive survey.

On the other side, we plan the development of an environment for analysing
randomized functional programs. Basically, the tool should automatically gen-
erate verification conditions from the specification of pre and post conditions
plus a validation (the correctness proof in Coq obtained from the monadic
translation of the program). This gets close to design infrastructure offered
by the Why tool (Filliâtre, 2002, 2003), with the consequence of allowing
eventually other prover assistants as well for the logical backend.

We are also looking forward to more advanced examples that certainly will
require more challenging automation of their proofs.

Acknowledgments We thank A. McIver and C. Morgan for useful comments
on the first version of this paper and the referees for pointing out inaccuracies
in an early version of this paper. We also thank R. Lassaigne for stimulating
discussions on formal proofs for analyzing random programs and P. Lescanne
for his feedback on the introduction part.

References

Audebaud, P., Paulin-Mohring, C., 2006. Proofs of randomized algorithms
in Coq. In: Uustalu, T. (Ed.), Mathematics of Program Construction,
MPC’2006. Vol. 4014 of Lecture Notes in Computer Science. Springer-
Verlag, Kuressaare, Estonia, pp. 49–68.

Escardo, M., Simpson, A., 2001. A universal characterization of the closed eu-
clidean interval (extended abstract). In: IEEE Symp. on Logic in Computer
Science. Boston, Massachusetts, pp. 115–125.
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