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1 First steps in COQ

1.1 Launching COQ

The COQ system is available at http://coq.inria.fr. This document has been prepared using
COQ version V8.3pl2.

The command coqide starts the COQ graphical interface. It is composed of three windows. The
left one contains the user input script. The right-top window contains the current goal when building a
proof. The right-bottom window contains the output of commands.

A COQ command ends with a dot.

The COQ reference manual is available online at http://coq.inria.fr/refman/ and ac-
cessible from the Help menu of coqide. It provides details for the different commands presented in
this note.

We also recommend the course notes Coq in a Hurry by Y. Bertot available at http://cel.
archives-ouvertes.fr/inria-00001173, as an alternative quick introduction to the COQ

system.
More advanced books to learn COQ includes the book by Y. Bertot and P. Casteran known as the

COQ’Art [1]. The course by B. Pierce on software foundations [6] using COQ is available online. The
book by A. Chlipala [4] concentrates on programming with COQ and make intensive use of dependent
types.

1.2 Syntax of Terms

COQ objects represent types, propositions, terms and proofs. Every object as a type (which is itself a
COQ object). In COQ, t : T represents the fact that t is an object of type T .

Types. Useful types are:

nat natural numbers (3:nat)
bool boolean values (true:bool, false:bool)
Prop type of logical properties (False:Prop)

Type (or Set) type of types (nat:Set, Prop:Type )
T1 -> T2 type of functions from T1 to T2
T -> Prop type of unary predicate on T
T1 * T2 type of pairs of objects of type T1 and T2

Propositional connectives. This is a summary of COQ syntax for logical propositions (first line presents
paper notation and second line the corresponding COQ input).

⊥ > t = u t 6= u ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q

False True t=u t<>u ˜P P /\ Q P \/ Q P -> Q P <-> Q

The arrow associates to the right such that T1->T2->T3 is interpreted as T1->(T2->T3)
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Quantifiers. Syntax for universal and existential quantifiers is given below with possible variants:

∀x, P forall x, P forall x:T, P forall (x y:T) (z:U),P
∃x, P exists x, P exists x:T, P no multiple bindings

Remark on COQ theory. Universal quantification is an essential construction in COQ which serves
different purposes. It can be used for first-order quantification like in ∀x :, x = x, but also for higher-
order quantification like in ∀A : Type, ∀x : A, x = x or ∀A : Prop, A ⇒ A, both the functional arrow
and the logical implication are special cases of universal quantification with no dependencies: T1 → T2

stands for ∀ : T1, T2.

Syntax of functional terms.

• Application of function f to term t is written f t or with parentheses (f t). It associates to the left
such that f t1 t2 represents (f t1) t2.

• Abstraction of term t with respect to variable x is written funx⇒ t or fun (x : T )⇒ t to indicate
the type T of variable x.

• A local definition is introduced by let x:=t1 in t2.

• Pairs are written (t1, t2) and have type T1 ∗ T2 when ti has type Ti, the components of a pair can
be accessed using the notation: let (x, y):=t1 in t2.

In the following, term will denote any COQ term, name or id represents an identifier, type represents a
so-called “type” which is a term with type Type, Set or Prop. We use prop instead of type when we
expect a term of type prop, however the same commands will usually also work with a more general
type.

1.3 Queries in COQ

The following interactive commands are useful to find information in libraries when doing proofs. They
can be executed from the coqide so called Command Pane (use the menu Queries or Windows/Show
Query Pane and then click on new page on the left of the panel).

• Check term: checks if term can be typed and displays its type.

Coq < Check (2,true).
(2, true)

: nat * bool

Coq < Check (fun x:nat => x + 0).
fun x : nat => x + 0

: nat -> nat

Coq < Check fst.
fst

: forall A B : Type, A * B -> A

Application: What is proved by lemma bool ind? Are the following terms well-typed: 0+1,
true+false?
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• SearchAbout name: displays all declarations id : type in the environment such that nameappears
in type.

Coq < SearchAbout fst.
surjective pairing: forall (A B : Type) (p : A * B), p = (fst p, snd p)
injective projections:

forall (A B : Type) (p1 p2 : A * B),
fst p1 = fst p2 -> snd p1 = snd p2 -> p1 = p2

Application: Find all lemmas about conjunction and, disjunction or, equality eq and order re-
lation le.
Useful variants are SearchAbout [name1 · · · namen] to find objects with types mentioning all
the names namei and also SearchAbout pattern to find objects with types mentioning an in-
stance of the pattern which is a term possibly using the special symbol “ ” to represent an arbitrary
term.

Coq < SearchAbout [plus 0].
plus n O: forall n : nat, n = n + 0
plus O n: forall n : nat, 0 + n = n

Coq < SearchAbout ( ˜ <-> ).
neg false: forall A : Prop, ˜ A <-> (A <-> False)

• Print name: prints the definition of name together with its type.

Application: Find the definitions of type nat, order relations le and lt and of the proofs eq S.
Find the definitions of operations plus and mult. Note that the latter are printed as infix symbols
+ and *.

1.4 Loading new libraries

The command Require Import name checks if module name is already present in the environment.
If not, and if a file name.vo occurs in the loadpath, then it is loaded and opened (its contents is revealed).

The set of loaded modules and the loadpath can be displayed with commands Print Libraries
and Print LoadPath. The default loadpath is the set of all subdirectories of the COQ standard
library.

The libraries related to natural numbers arithmetic are gathered in a single module Arith in such a
way that the command Require Import Arith loads and opens all these modules.

Coq < Require Import Arith.

Applications: Display the loadpath. Load the module Bool on boolean operations and search for
theorems about the boolean conjunction andb.

The command Require name only loads the library, the objects inside are refered by a qualified
name: name.id. This long name is also useful when the same identifier exists in different libraries. The
command Locate id helps find all occurrence of id in loaded libraries.
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1.5 Compilation

It is advisable to split large developments into several files. Then each file can be compiled (with the
COQ compiler coqc) in order to be subsequently loaded in a very efficient way with the Require
command.

A Unix tool coq makefile is provided to generate a Makefile to automate such a compilation.
It is used as follows:

unix% coq_makefile f1.v ... fn.v -o Makefile

2 Doing basic proofs with COQ

To prove a theorem, one first enunciates the corresponding statement using declaration:

Theorem name : prop or Lemma name : prop or Goal prop

where name is the name of the theorem (for later reference) and prop the type corresponding to its
statement.

A proof in COQ is developed interactively using tactics. A tactic is a program which transforms a
goal to be proved into a (possible empty) set of new subgoals which are sufficient conditions to establish
the original result.

The Theorem Lemma or Goal instructions generate a top-level goal. After each tactic application,
the system will display all the goals which remain to be proved in order to finish the proof of the theorem.
At the end, when there is no more subgoals, the command Qed will construct from the tactics a proof-
term that will be saved as the definition of the theorem for further reuse.

In coqide you can use the arrows up and down in the menu to navigate in your script interpreting
tactics and undoing them. The part which as been interpreted is highlighted in green and cannot be
edited in order to preserve the system consistency.

If the proof is not finished then the command Admitted can be used and will introduce the theorem
as an axiom.

The tactic admit will just admit the current subgoal as an axiom and skip to the following subgoals
to be solved.

2.1 First-Order Reasoning

Tactic for explicit proof. The basic case to solve a goal corresponding to a proposition P is to produce
a term t of type P (usually an hypothesis). The tactic exact t will solve the goal.

The assumption tactic searches in the hypotheses of the goal an exact proof for the current con-
clusion.

Tactic for logical connectives. COQ logic uses natural deduction rules for a higher-order (intuitionis-
tic) predicate calculus. Each connective is associated to introduction and elimination rules, as usual. For
instance, the introduction rules for conjunction is

A B

A ∧B

whereas the two elimination rules are usually given as

A ∧B

A

A ∧B

B
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which is equivalent to the following rule used by COQ:

A ∧B A⇒ B ⇒ C

C

A tactic can be associated to each inference rule of the logic, in a natural way: starting with a goal
which is an instance of the rule conclusion, we generate one subgoal for each premise of the rule, side-
conditions being checked if any. For instance, the introduction rule for conjunction is implemented by
the split tactic. Thus it transforms a goal A ∧ B into two goals A and B. For elimination rules, the
information in the conclusion is not sufficient to instantiate the premises (one has to know A and B).
Thus tactics may have arguments to indicate the missing information. In the case of the conjunction for
instance, the tactic will take a proof of the main premise, that is a proof of A ∧B.

The following table gives the correspondence between COQ syntax, usual connectives and tactics
implementing introduction and elimination rules.

Proposition (P ) COQ syntax Introduction Elimination (H of type P )
⊥ False destruct H, contradiction
¬A ˜ A intro x apply H
A ∧B A /\ B split destruct H as (x, y)
A⇒ B A -> B intro x, intros apply H
A ∨B A \/ B left, right destruct H as [ x | y ]
∀x : A.P forall (x : A), P intro x, intros apply H
∃x : A.P exists (x : A), P exists witness destruct H as (x, Hx)
x =A y x = y reflexivity rewrite H

It is highly recommended to give explicit names to objects introduced during the proof but the tactics
intro and destruct can also be used without explicit naming.

Coq < Lemma conj sym : forall A B, A /\ B -> B /\ A.
1 subgoal

============================
forall A B : Prop, A /\ B -> B /\ A

Coq < intros A B p.
1 subgoal

A : Prop
B : Prop
p : A /\ B
============================
B /\ A

Coq < destruct p as (a,b).
1 subgoal

A : Prop
B : Prop
a : A
b : B
============================
B /\ A

Coq < split.
2 subgoals
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A : Prop
B : Prop
a : A
b : B
============================
B

subgoal 2 is:
A

Coq < exact b. (* or assumption *)
1 subgoal

A : Prop
B : Prop
a : A
b : B
============================
A

Coq < exact a. (* or assumption *)
Proof completed.

Coq < Qed.
intros A B p.
destruct p as (a, b).
split.
exact b.

exact a.

conj sym is defined

Exercises. Prove the following tautologies:

A ∧ (B ∨ C)⇒ (A ∧B) ∨ (A ∧ C) ¬¬¬A⇒ ¬A
A ∨ (∀x.(P x))⇒ ∀x.(A ∨ (P x)) ∃x.∀y.(Q x y)⇒ ∀y.∃x.(Q x y)

The fact that COQ logic is intuitionistic implies that there are no way to prove A∨¬A or ¬¬A⇒ A
of ∀x, P ∨ ∃x,¬P for arbitrary properties A and P . The quantifiers ∃ and ∨ have a stronger meaning
than in classical logic: they are interpreted as the existence of an effective way to compute the witness
for an existential or the case for a disjunction. A lot of property does not require the use of classical
logic. But if needed, COQ provides a library which adds the axiom of excluded middle and derive useful
consequences like.

Coq < Require Import Classical.

Coq < Check not all not ex.
not all not ex

: forall (U : Type) (P : U -> Prop),
˜ (forall n : U, ˜ P n) -> exists n : U, P n

It is possible to test if a given theorem depends on unproved assumptions:
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Coq < Print Assumptions not all not ex.
Axioms:
classic : forall P : Prop, P \/ ˜ P

2.2 Combining Tactics

The basic tactics can be combined into more powerful tactics using tactics combinators, also called
tacticals. Here are some of them:

Tactical Meaning
t1 ; t2 applies tactic t1 to the current goal and then t2 to each generated subgoal
t1 || t2 applies tactic t1; if it fails then applies t2
try t applies t if it does not fail; otherwise does nothing
repeat t repeats t as long as it does not fail

2.3 Equational Reasoning

Proving Equalities. We give a correspondence between standard rule for equality and COQ tactics.
The relation t ≡ u means that t and u represents the same value after computation (we say t and u are
convertible).

reflexivity
t ≡ u

t = u

symmetry
u = t

t = u

transitivity v
t = v v = u

t = u

f equal
f = g t1 = u1 . . . tn = un
f t1 . . . tn = g u1 . . . un

Using Equality to Rewrite. The elimination rule for equality is :

t = u P (t)

P (u)

it is implemented by the tactic replace u with t.
Very often one knows a proof H of t = u (or a generalisation of it) and one can use the tactic

rewrite <- H or simply rewrite H when H proves u = t to perform the rewriting in the goal.
The rewrite tactic by default replace all the occurrences of u in P (u). To rewrite selected occur-

rences, there is a variant: rewrite H at occs.
Another useful tactic for dealing with equalities is subst. It x is a variable and the context contains

an hypothesis x = t (or x = t) with x not occurring in t, then the tactic subst x will substitute t for
x and remove both x and the hypothesis from the context. The tactic subst without argument do the
substitution on all possible variables in the context.

2.4 Guiding the proof process

The apply with tactic. In elimination rules for implication and universal quantification, the main
premise is a proof of A⇒ B or forall x, P .
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Usually, one does not have a theorem or an hypothesis H which exactly proves the main premise
P but a generalisation, typically forall (x1 : A1)..(xn : An), P

′ (remember that internally forall
capture also implication). The tactic apply works in this more general case. It tries to find out an
adequate instance of H which can be eliminated and will generate additional subgoals if necessary.

If this instance cannot be inferred automatically, the apply tactics fails. Then some variants can be
used to explicitly provide missing information:

• apply H with t1 . . . tk where t1 . . . tk are exactly the missing arguments.

• apply H with (xi := ti) to give explicitly an argument.

A typical case where it is needed is with transitivity proofs as shown below:

Coq < Check le trans.
le trans

: forall n m p : nat, n <= m -> m <= p -> n <= p

Coq < Goal forall x y, x <= 2 -> 2 <= y -> x <= y.
1 subgoal

============================
forall x y : nat, x <= 2 -> 2 <= y -> x <= y

Coq < intros x y H1 H2.
1 subgoal

x : nat
y : nat
H1 : x <= 2
H2 : 2 <= y
============================
x <= y

Coq < apply le trans.
Toplevel input, characters 6-14:
> apply le trans.
> ˆˆˆˆˆˆˆˆ
Error: Unable to find an instance for the variable m.

apply compares the current goal with the conclusion of le trans leading to values for n and p but
does not guess how to instantiate the middle value m which has to be given explicitly.

Coq < apply le trans with 2.
2 subgoals

x : nat
y : nat
H1 : x <= 2
H2 : 2 <= y
============================
x <= 2

subgoal 2 is:
2 <= y

or alternatively:
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Coq < apply le trans with (m:=2).
2 subgoals

x : nat
y : nat
H1 : x <= 2
H2 : 2 <= y
============================
x <= 2

subgoal 2 is:
2 <= y

The rewrite tactic may also need partial instantiation information to work properly.

Introducing intermediate steps with assert. The tactic style of proof development is centred on
the goal which is transformed until no more subgoals are left.

Sometimes it is useful to work in a more direct way, deducing facts from hypotheses. To help achieve
this kind of reasoning, the tactic assert prop will introduce prop as a new goal to be proved and add
prop as a new hypothesis of the current goal.

Coq < Goal forall (f : nat->nat) a b c, b = c -> f b = c -> f c = a -> c = a.
1 subgoal

============================
forall (f : nat -> nat) (a b c : nat),
b = c -> f b = c -> f c = a -> c = a

Coq < intros f a b c H1 H2 H3.
1 subgoal

f : nat -> nat
a : nat
b : nat
c : nat
H1 : b = c
H2 : f b = c
H3 : f c = a
============================
c = a

Coq < assert (f b = f c).
2 subgoals

f : nat -> nat
a : nat
b : nat
c : nat
H1 : b = c
H2 : f b = c
H3 : f c = a
============================
f b = f c

subgoal 2 is:
c = a
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Coq < apply f equal; assumption.
1 subgoal

f : nat -> nat
a : nat
b : nat
c : nat
H1 : b = c
H2 : f b = c
H3 : f c = a
H : f b = f c
============================
c = a

Coq < rewrite <- H2; rewrite <- H3; assumption.
Proof completed.

2.5 Automated proofs

The previous section present tactics corresponding to atomic steps of deduction. COQ has also more
advanced tactics to solve complex goals. COQ is build on a safe kernel, a complex automated tactic
ultimately generates a proof term which is checked again when the proof is finished.

Applying automatically known results. The auto tactic uses databases of known lemmas that are
successively tried in order to complete the current goal. It performs introductions and conclude with
assumptions. If the goal is not solved it is left unchanged. The user may add new lemmas to a database
using the command Hint Resolve name and also look at the hints database applicable to current
goal using command Print Hint.

Coq < Lemma pair3 : forall A B C : Prop, A -> B -> C -> A /\ B /\ C.
1 subgoal

============================
forall A B C : Prop, A -> B -> C -> A /\ B /\ C

Coq < auto.
Proof completed.

The auto tactic does not try to decompose properties in the environment such that the following appli-
cation of auto does not make any progress.

Coq < Lemma pair3 : forall A B C : Prop, (A /\ C) -> B -> A /\ B /\ C.
1 subgoal

============================
forall A B C : Prop, A /\ C -> B -> A /\ B /\ C

Coq < auto.
1 subgoal

============================
forall A B C : Prop, A /\ C -> B -> A /\ B /\ C
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The tactic intuition will first destruct the propositional connectives before applying auto on the
generated goals.

Coq < intuition.
Proof completed.

The trivial tactic is a variant of auto which only tries trivial lemmas, not generating subgoals.

Solving arithmetical problems. The omega tactic solves propositional problems from linear arith-
metic (also known as Presburger arithmetic) involving only addition, equalities, inequality. It works on
natural numbers or on integers.

Coq < Require Import Omega.

Coq < Lemma neq equiv : forall x y, x <> y <-> x < y \/ y < x.
1 subgoal

============================
forall x y : nat, x <> y <-> x < y \/ y < x

Coq < intros x y; omega.
Proof completed.

When multiplication is involved, a useful automated tactic is ring which solves consequences of ring
properties (or semi-ring properties in the case of nat).

Coq < Lemma ring ex : forall x y z, x * y + x * z = (z + y) * x.
1 subgoal

============================
forall x y z : nat, x * y + x * z = (z + y) * x

Coq < intros; ring.
Proof completed.

Exercise. Prove the following property: ∀f, (∀xy, f (x+ y) = fx+ fy)⇒ f 0 = 0.

3 Introducing new COQ objects

The language of COQ is not limited to basic logic and natural numbers. It is possible to introduce new
objects. These can be definitions (abbreviation for complex terms) or undefined objects presented in
an axiomatic way. The other way to enrich a theory is the use of a general mechanism for inductive
definitions that will be introduced in the next section.

3.1 Definitions

A new definition is introduced by:

Definition name : type := term

The identifier name is then an abbreviation for the term term. The type type is optional.
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Example. The square function can be defined as follows:

Coq < Definition square := fun x:nat => x * x.
square is defined

or equivalently as follows:

Coq < Definition square (x:nat) : nat := x * x.
square is defined

A COQ definition name can be unfolded in a goal by using the tactic unfold name (in the conclusion)
or unfold name in H (in hypothesis H).

3.2 Parameters and sections

The logic of COQ is powerful enough to develop inside a large part of mathematics, such that a theory
will be a set of definitions and theorems and does not require to introduce axioms.

However, it is sometimes useful to be able to introduce parameters for the theory under development.
The syntax is:

Parameter name : type or Axiom name : prop

where name is the name of the hypothesis or variable to introduce and type its type. The following
specification introduces a type A with only one element a : A.

Coq < Parameter A : Type.
A is assumed

Coq < Parameter a : A.
a is assumed

Coq < Axiom A1 : forall y:A, y=a.
A1 is assumed

However, it is up to the user to make sure the axioms introduced do not lead to a contradiction.

Sections It is often convenient to introduce a local context of variables and properties, which are shared
between several definitions. It is done with a section mechanism. A section name is opened using the
command Section name. Then objects can be introduced using the syntax:

Variable name : type or Hypothesis name : prop

Several variables with the same type can be introduced with a single command, using the variants
Variables and Hypotheses and a blank-separated list of names. The following definitions can
refer to the objects in the context of the section. The section is ended by the command End name; then
all definitions are automatically abstracted with respect to the variables they depend on.

For instance, we can introduce a type A and two variables of this type using the commands:

Coq < Section test.

Coq < Variable A : Type.
A is assumed
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Coq < Variables x y : A.
x is assumed
y is assumed

Coq < Definition double : A * A := (x,x).
double is defined

Coq < Definition triple : A * A * A := (x,y,x).
triple is defined

Coq < End test.

After ending the section, the objects A, x and y are not accessible anymore and one can observe the new
types of double and triple.

Coq < Print double.
double =
fun (A : Type) (x : A) => (x, x)

: forall A : Type, A -> A * A
Argument scopes are [type scope ]

Coq < Print triple.
triple =
fun (A : Type) (x y : A) => (x, y, x)

: forall A : Type, A -> A -> A * A * A
Argument scopes are [type scope ]

3.3 Notations

The COQ kernel interprets a term in which all the type information is present. It makes the type-checking
mechanism easier it also makes the term unreadable and writing them very cumbersome.

COQ provides different mechanisms to hide part of the term structure either for input or output; the
system being responsible to build the missing information before the term is sent to the kernel.

Implicit Arguments. Some typing information in terms is redundant. For instance, let us consider the
constructor of polymorphic pairs:

Coq < Check pair.
pair

: forall A B : Type, A -> B -> A * B

To build a pair of two natural numbers, it is not necessary to give the four arguments, but only the last
two, since types A and B can be inferred to be the types of the last two arguments, respectively:

Coq < Check (pair 0 0).
(0, 0)

: nat * nat

A general mechanism, called implicit arguments, allows such shortcuts. It defines a set of arguments
that can be inferred from other arguments.
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More precisely, if the type of a constant c is forall (x1 : type1) . . . (xn : typen), type then argu-
ment xi is considered implicit if xi is a free variable in one of the types typej , in a position which cannot
be erased by reduction. Such arguments are then omitted.

This mechanism is enabled with the following command:

Coq < Set Implicit Arguments.

Then one can define for instance:

Coq < Definition pair3 (A B C:Set) (x:A) (y:B) (z:C) : A * (B * C)
Coq < := pair x (pair y z).
pair3 is defined

and implicit arguments can be inspected using the Print Implicit command:

Coq < Print Implicit pair3.
pair3 : forall A B C : Set, A -> B -> C -> A * (B * C)
Arguments A, B, C are implicit

If the constant is applied to an argument then this argument is considered as the first non implicit ar-
gument. A special syntax @pair3 allows to refer to the constant without implicit arguments. It is
also possible to specify an explicit value for an implicit argument with syntax (x:=t). Here are some
examples:

Coq < Check (pair3 0 true 1).
pair3 0 true 1

: nat * (bool * nat)

Coq < Check (pair3 (A:=nat)).
pair3 (A:=nat)

: forall B C : Set, nat -> B -> C -> nat * (B * C)

Coq < Check (pair3 (B:=bool) (C:=nat) 0).
pair3 (B:=bool) (C:=nat) 0

: bool -> nat -> nat * (bool * nat)

The generation of implicit arguments can be disabled with the command

Coq < Unset Implicit Arguments.

Finally, it is also possible to enforce some implicit arguments. For instance, it is possible to keep only A
as an implicit argument for pair3, as follows:

Coq < Implicit Arguments pair3 [A].

Coq < Print Implicit pair3.
pair3 : forall A B C : Set, A -> B -> C -> A * (B * C)
Argument A is implicit
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Incomplete Terms A subterm can be replaced by the symbol if it can be inferred from the other parts
of the term during type-checking.

Coq < Check (pair3 0 1 2).
pair3 nat nat 0 1 2

: nat * (nat * nat)

More on hiding information Other powerful techniques allow to infer automatically part of the term.
For instance the coercion mechanism allows to use an object of type A when an object of type B is
expected by silently applying a user-declared function (coercion) from A to B. For instance a boolean
value b : bool can be considered as an object of type Prop using the function fun b⇒ b = true.

The Display menu allows to turn off some of the pretty-printing options; it can sometimes be
useful for debugging proofs.

4 Inductive Declarations

Inductive definitions are another main ingredient of COQ language. It is a generic mechanism which
captures different notions such as data-types, logical connectives, primitive relations.

4.1 Inductive Data Types

A data-type name can be declared by specifying a set of constructors. Each constructor ci is given a
type Ci which declare the type of its expected arguments. A constructor possibly accepts arguments
(which can be recursively of type name), and when applied to all its arguments, a constructor has type
the inductive definition name itself. There are some syntactic restrictions over the type of constructors
to make sure that the definition is well-founded.

The syntax for declaring an inductively defined type is:

Inductive name : sort := c1 : C1 | . . . | cn : Cn

where name is the name of the type to be defined; sort is one of Set or Type; ci are the names of the
constructors and Ci is the type of constructor ci.

The declaration of an inductive definition introduces new primitive objects for the type itself and its
constructors it also generates theorems which are abbreviations for terms combining pattern-matching
and possibly a fixpoint which proves induction principles.

Examples. The data type of booleans and natural numbers are defined inductively as follows:

Coq < Print bool.
Inductive bool : Set := true : bool | false : bool

Coq < Check bool ind.
bool ind

: forall P : bool -> Prop,
P true -> P false -> forall b : bool, P b

Coq < Print nat.
Inductive nat : Set := O : nat | S : nat -> nat
For S: Argument scope is [nat scope]

Coq < Check nat ind.
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nat ind
: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Note that constructor names must be valid identifiers and thus O is the capital character and not the
number 0. However, there is a notation for natural numbers which allows the user to write them using
the usual decimal notation (and thus O as 0, and S (S (S O)) as 3).

Exercises. Follow the same scheme to define types for the following representations:

• the set Z of integers as a free structure with zero and two injections pos and neg from nat to
Z, where the term (pos n) stands for n+ 1 and (neg n) for −n− 1;

• arithmetic expressions corresponding to the following abstract syntax:

expr::= 0 | 1 | expr+ expr | expr− expr

• lists over a type A (to be declared):

list::= nil | cons(A,list)

Inductive type and equality The constructors of an inductive type are injective and distinct. For
instance for natural numbers, one can prove Sn = Sm → n = m and Sn 6= 0. These lemmas are
part of the standard library for natural numbers but have to be proved for new inductive types. There are
tactics to automate this process.

• discriminate H will prove any goal if H is a proof of t1 = t2 with t1 and t2 starting with
different constructors. With no argument discriminate will try to find such a contradiction in
the context.

• injectionH assumes H is a proof of t1 = t2 with t1 and t2 starting with the same constructor.
It will deduce equalities u1 = u2, v1 = v2, . . . between corresponding subterms and add these
equalities as new hypotheses.

Coq < Goal (forall n, S (S n) = 1 -> 0=1).
1 subgoal

============================
forall n : nat, S (S n) = 1 -> 0 = 1

Coq < intros n H.
1 subgoal

n : nat
H : S (S n) = 1
============================
0 = 1

Coq < discriminate H.
Proof completed.
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Coq < Goal (forall n m, S n = S (S m) -> 0 < n).
1 subgoal

============================
forall n m : nat, S n = S (S m) -> 0 < n

Coq < intros n m H.
1 subgoal

n : nat
m : nat
H : S n = S (S m)
============================
0 < n

Coq < injection H.
1 subgoal

n : nat
m : nat
H : S n = S (S m)
============================
n = S m -> 0 < n

Remark on inductive propositions. (only if you want to better understand COQ underlying theory)

The sort in an inductive definition can also be Prop allowing the inductive declaration of logical
propositions. Following the Curry-Howard correspondence between proposition and types, all proposi-
tional connectives except for negation, implication and universal quantifier are declared using inductive
definitions. False is a degenerate case where there are no constructors. True is the proposition with
only one proof I corresponding to the unit type with only one constructor.

Coq < Print False.
Inductive False : Prop :=

Coq < Check False ind.
False ind

: forall P : Prop, False -> P

Coq < Print True.
Inductive True : Prop := I : True

Exercises on inductive propositions.

• Check for the definition of conjunction (and) and disjunction (or) as well as existential quantifi-
cation (ex).

• Try to introduce your own connector ifp such that ifpA B C is equivalent to (A∧B)∨(¬A∧C)
but defined directly as an inductive proposition with two constructors without using conjunction
or disjunction.

• Prove that ∀ABC, ifp A B C ⇔ (A∧B)∨ (¬A∧C). The tactics destruct/left/right
will also work for ifp.
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4.2 Definitions by pattern-matching and fixpoint

The Pattern-Matching Operator. When a term t belongs to some inductive type, it is possible to
build a new term by case analysis over the various constructors which may occur as the head of t when
it is evaluated. Such definitions are known in functional programming languages as pattern-matching.
The COQ syntax is the following:

match term with c1 args1 ⇒ term1 . . . cn argsn ⇒ termn end

In this construct, the expression term has an inductive type with n constructors c1, ..., cn. The term
termi is the term to build when the evaluation of t produces the constructor ci. It is possible to give the
expected type for the result with the following variant:

match term return type with c1 args1 ⇒ term1 . . . cn argsn ⇒ termn end

Natural Numbers. If n has type nat, the function checking whether n is O can be defined as follows:

Coq < Definition iszero n := match n with
Coq < | O => true
Coq < | S x => false
Coq < end.
iszero is defined

Generalised Pattern-Matching Definitions More generally, patterns can match several terms at the
same time, can be nested and can contain the universal pattern which filters any expression. Patterns
are examined in a sequential way (as in functional programming languages) and must cover the whole
domain of the inductive type. Thus one may write for instance

Coq < Definition nozero n m := match n, m with
Coq < | O, => false | , O => false | , => true
Coq < end.
nozero is defined

However, the generalised pattern-matching is not considered as a primitive construct and is actually
compiled into a sequence of primitive patterns.

Some Equivalent Notations In the case of an inductive type with a single constructor C:

let (x1, .., xn):=t in u

can be used as an equivalent to match t with Cx1..xn ⇒ u end.
In the case of an inductive type with two constructors (like booleans) c1 and c2 (such as the type of

booleans for instance) the construct
if t then u1 else u2

can be used as an equivalent to match t with c1 ⇒ u1|c2 ⇒ u2 end.

Exercise.

• Define the predecessor function of type Z→ Z.
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Fixpoint Definitions To define interesting functions over recursive data types, we use recursive func-
tions. General fixpoints are not allowed since they lead to an unsound logic.

Only structural recursion is allowed. It means that a function can be defined by fixpoint if one of its
formal arguments, say x, as an inductive type and if each recursive call is performed on a term which
can be checked as structurally smaller than x. The basic idea is that x will usually be the main argument
of a match construct and then recursive calls can be performed in each branch on some variables of the
corresponding pattern.

The Fixpoint Construct. The syntax for a fixpoint definition is the following:

Fixpoint name (x1 : type1) . . . (xp : typep){struct xi} : typef := term

The variable xi following the struct keyword is the recursive argument. Its type typei must be an in-
stance of an inductive type. If the clause {struct xi} is omitted, the system will try to infer an appropriate
argument.

The type of name is forall (x1 : type1) . . . (xp : typep), typef . Occurrences of name in
term must be applied to at least i arguments and the ith must be recognised as structurally smaller than
xi. Note that the struct keyword may be omitted when i = 1.

Examples. The following two definitions of plus by recursion over the first and the second argument
respectively are correct:

Coq < Fixpoint plus1 (n m:nat) : nat :=
Coq < match n with
Coq < | O => m
Coq < | S p => S (plus1 p m)
Coq < end.
plus1 is recursively defined (decreasing on 1st argument)

Coq < Fixpoint plus2 (n m:nat) : nat :=
Coq < match m with
Coq < | O => n
Coq < | S p => S (plus2 n p)
Coq < end.
plus2 is recursively defined (decreasing on 2nd argument)

A fixpoint can be computed when the recursive argument starts with a constructor. So plus1 0 n and n
are convertible but plus1 n 0 is in normal form when n is a variable. The equation corresponding to the
fixpoint definition is not trivial but can be proved by simple case analysis over the recursive argument.

Coq < Lemma plus1 eq : forall n m,
Coq < plus1 n m = match n with
Coq < | O => m
Coq < | S p => S (plus1 p m)
Coq < end.
1 subgoal

============================
forall n m : nat,
plus1 n m = match n with

| 0 => m
| S p => S (plus1 p m)
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end

Coq < destruct n; trivial.
Proof completed.

The tactic simpl name when name is a fixpoint definition will simplify the expression whenever it
is applied to a constructor. The tactic simpl simplifies all fixpoint definitions in the goal (which is
sometimes too much, in which case it is recommended to prove the relevant equations as theorems and
use them in a controled way with the rewrite tactic).

Remark. COQ does not prevent to define empty inductive data-types. For instance:

Coq < Inductive E : Set := Ei : E -> E.
E is defined
E rect is defined
E ind is defined
E rec is defined

But of course, there are no way to build a value (term without variable) in type E and furthermore, one
can build a function which given an argument in E build an element in any type A:

Coq < Variable A : Type.
A is assumed

Coq < Fixpoint Eany (x : E) : A :=
Coq < match x with (Ei y) => Eany y end.
Eany is recursively defined (decreasing on 1st argument)

In particular one can prove False from an hypothesis x : E.

Computing One can reduce a term and prints its normal form with Eval compute in term. For
instance:

Coq < Eval compute in (fun x:nat => 2 + x) 3.
= 5
: nat

Exercises

• Define an xor function over booleans. Check the properties xor true true = false, xor
true false = true and xor false b = b.

• Define a function from Z to Z for the negation of an integer.

• Define the canonical injection from nat to Z.

• Define a function of type nat → nat → Z which computes the difference between two natural
numbers, with the following specification:

diff 0 0 = zero diff 0 (S n) = neg n
diff (S n) 0 = pos n diff (S n) (S m) = diff n m
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• Use the function diff above to define addition and subtraction over type Z (i.e. as functions of
type Z→ Z→ Z).

• Define a function which maps each expression of type expr to its “semantics” as an element of
Z.

4.3 Inductive Relations

Inductive definitions can be used to introduce relations specified by a set of closure properties (like
inference rules or Prolog clauses). Each clause is given a name, seen as a constructor of the relation and
whose type is the logical formula associated to the clause.

The syntax of such a definition is:

Inductive name : arity := c1 : C1 | . . . | cn : Cn

where name is the name of the relation to be defined, arity its type (for instance nat->nat->Prop
for a binary relation over natural numbers) and, as for data types, ci and Ci are the names and types of
constructors respectively.

Example. The definition of the order relation over natural numbers can be defined as the smallest
relation verifying:

∀n : nat, 0 ≤ n ∀nm : nat, n ≤ m⇒ (Sn) ≤ (Sm)

which is sometimes presented as a set of inference rules

0 ≤ n

n ≤ m

(Sn) ≤ (Sm)

In COQ, such a relation is defined as follows:

Coq < Inductive LE : nat -> nat -> Prop :=
Coq < | LE O : forall n:nat, LE 0 n
Coq < | LE S : forall n m:nat, LE n m -> LE (S n) (S m).
LE is defined
LE ind is defined

This declaration introduces identifiers LE, LE O and LE S, each having the type specified in the decla-
ration. The LE ind theorem is introduced which captures the minimality of the relation.

Coq < Check LE ind.
LE ind

: forall P : nat -> nat -> Prop,
(forall n : nat, P 0 n) ->
(forall n m : nat, LE n m -> P n m -> P (S n) (S m)) ->
forall n n0 : nat, LE n n0 -> P n n0

Actually, the definition of the order relation on natural numbers in COQ standard library is slightly
different:
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Coq < Print le.
Inductive le (n : nat) : nat -> Prop :=

le n : n <= n | le S : forall m : nat, n <= m -> n <= S m
For le: Argument scopes are [nat scope nat scope]
For le n: Argument scope is [nat scope]
For le S: Argument scopes are [nat scope nat scope ]

The parameter (n:nat) after le is used to factor out n in the whole inductive definition. As a coun-
terpart, the first argument of le must be n everywhere in the definition. In particular, n could not have
been a parameter in the definition of LE since LE must be applied to (S n) in the second clause. Both
definitions of the order can be proved equivalent. In general there are multiple ways to define the same
relation by inductive declarations (or possibly recursive functions). One has to keep in mind that they
are different implementations of the same notion and that like in programming some of the choices will
have consequences on the easiness of doing subsequent proofs with these notions.

Exercises.

• Define an inductive predicate Natural over Z which characterises zero and the positive num-
bers.

• Define a relation Diff such that (Diff nm z) means that the value of n−m is z, for two natural
numbers n and m and an integer z.

• Define a relation SubZ which specifies the difference between two elements of Z.

• Define a relation Sem which relates any expression of type expr to its “semantics” as an integer.

4.4 Elimination of Inductive Definitions

Proof by case analysis: the destruct tactic. An object in an inductive definition I , when fully
instantiated and evaluated will be formed after one of the constructors of I . When we have a term t in I ,
we can reason by case on the constructors the term t can be evaluated to using the destruct t tactic.
This tactic generates a new subgoal by constructor and introduces new variables and hypothesis corre-
sponding to the arguments of the constructor. COQ generates automatically names for these variables. It
is recommended to use destruct t as pat; with pat a pattern for naming variables. pat will be written
[p1| . . . |pn] with n the number of constructors of I . The pattern pi will be written (x1, . . . , xk) if the
constructor ci expects k arguments.

If the goal has the form ∀x : I, P , then the tactic intros pat, will do the introduction of x and will
immediately after destruct this variable using the pattern as in the following example:

Coq < Goal forall A B : Prop, (A /\ ˜ B) \/ B -> ˜A -> B.
1 subgoal

============================
forall A B : Prop, A /\ ˜ B \/ B -> ˜ A -> B

Coq < intros A B [ (Ha,Hnb) | Hb ] Hna.
2 subgoals

A : Prop
B : Prop

23



Ha : A
Hnb : ˜ B
Hna : ˜ A
============================
B

subgoal 2 is:
B

Coq < contradiction.
1 subgoal

A : Prop
B : Prop
Hb : B
Hna : ˜ A
============================
B

Coq < auto.
Proof completed.

The induction Tactic. The tactic to perform proofs by induction is induction term where
term is an expression in an inductive type. It can be an induction over a natural number or a list but also
a usual elimination rule for a logical connective or a minimality principle over some inductive relation.
More precisely, an induction is the application of one of the principles which are automatically generated
when the inductive type is declared.

The induction tactic can also be applied to variables or hypotheses bound in the goal. To refer
to some unnamed hypothesis from the conclusion (i.e. the left hand-side of an implication), one has to
use induction num where num is the num-th unnamed hypothesis in the conclusion.

The induction tactic generalises the dependent hypotheses of the expression on which induction
applies.

Induction over Data Types. For an inductive type I , the induction scheme is given by the theorem
I ind; it generalises the standard induction over natural numbers. The main difficulty is to tell the
system what is the property to be proved by induction. The default (inferred) property for the tactic
induction term is the abstraction of the goal w.r.t. all occurrences of term. If only some occurrences
must be abstracted (but not all) then the tactic “pattern term at occs” can be applied first.

It is sometimes necessary to generalise the goal before performing induction. This can be done using
the cut prop tactic, which changes the goal G into prop ⇒ G and generates a new subgoal prop.
If the generalisation involves some hypotheses, one may use the generalise tactic first (if x is a
variable of type A, then generalise x changes the goal G into the new goal forall x : A, G).

Induction over Proofs. If term belongs to an inductive relation then the elimination tactic corresponds
to the use of the minimality principle for this relation. Generally speaking, the property to be proved is
(I x1 . . . xn)⇒ G where I is the inductive relation. The goal G is abstracted w.r.t. x1 . . . xn to build the
relation used in the induction. It works well when x1 . . . xn are either parameter of the inductive relation
or variables. If some of the xi are complex terms, the system may fail to find a well-typed abstraction or
may infer a non-provable property.

If no recursion is necessary then the tactic inversion term is to be preferred (it exploits all
informations in x1 . . . xn). If recursion is needed then one can try to first change the goal into the
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equivalent one (assuming xi is a non-variable, non-parameter argument):

∀y, (I x1 . . . y . . . xn)⇒ xi = y ⇒ G

and then do the induction on the proof of (I x1 . . . y . . . xn).

Exercises.

• Prove the stability of the constructors of type Z for equality (n = m⇒ neg n = negm, etc.).

• Prove the opposite direction, for instance neg n = negm⇒ n = m.
Hint: start by defining a projection from Z to nat, or use the injection tactic.

• Prove one of the definitional equalities for function diff; for instance

diff (S n) (S m) = diff n m

• Prove the properties Diff n n zero and Diff (S n) n (pos 0).

• Prove that for all natural numbers n and m, if m ≤ n then there exists z such that Natural z
and Diff n m z.

• Prove that for all natural numbers n and m the property Diff n m (diff n m) holds.

5 Solving some of the LASER 2011 Benchmark challenges

These are indications, partial or full solutions to some of the given challenges. It is the occasion to
cover more advanced features of COQ from the user interface (notations) or from the theoretical side
(dependent types) as well as to illustrate different styles of modeling problems in COQ.

We only present functional solutions to the problems, using mathematical objects.

5.1 Arithmetic

5.1.1 Absolute value

The challenge is about constructing and proving the absolute function on machine integers.
We show this challenge on mathematical integers. The COQ standard library contains a module for

31-bit integer arithmetic. The Compcert project[5] provides a library http://compcert.inria.
fr/src/lib/Integers.v defining machine integers as mathematical numbers modulo 2N . Both
can be used as the basis for the full challenge.

Mathematical integers in COQ are defined as a type Z. They have a representation similar to the
one of Z introduced before except that the positive part uses a binary representation (type positive)
instead of the type nat of unary numbers.

Coq < Require Import ZArith.

Coq < Print Z.
Inductive Z : Set :=

Z0 : Z | Zpos : positive -> Z | Zneg : positive -> Z
For Zpos: Argument scope is [positive scope]
For Zneg: Argument scope is [positive scope]
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The library on integers introduces the same arithmetic notations available for natural numbers. One can
force the interpretation in one category by using a suffix e%nat or e%Z and also define the default
interpretation to be the one of integers using the command Open Scope Z scope.

Coq < Check 0.
0

: nat

Coq < Check 0%Z.
0%Z

: Z

Coq < Open Scope Z scope.

Coq < Check 0.
0

: Z

Coq < Check 0%nat.
0%nat

: nat

The absolute value function is part of COQ standard arithmetic library (function Zabs), and the ex-
pected result is a theorem named Zabs pos). However we may define it more naively. We need a
function which tests the sign of an integer. In COQ it is possible to mix programs and specifications.
In particular, given two properties A and B, the type {A} + {B} generalises both boolean values and
logical disjunction. When given a proof b of {A}+{B}, one can build another program by case analysis
like if b was a boolean value: if b then c1 else c2 as for booleans.

Coq < Require Import ZArith dec.

Coq < SearchAbout ({ <= }+{ }).
Z le dec: forall x y : Z, {x <= y} + {˜ x <= y}
Z le gt dec: forall x y : Z, {x <= y} + {x > y}
Zmin le prime inf:

forall n m p : Z, Zmin n m <= p -> {n <= p} + {m <= p}

Coq < Definition abs (z : Z) : Z := if Z le dec 0 z then z else -z.
abs is defined

When reasoning on such a program (using destruct), we shall get an extra hypothesis (A or B) in
each case.

Coq < Lemma abs pos : forall z, 0 <= abs z.
1 subgoal

============================
forall z : Z, 0 <= abs z

Coq < intro z; unfold abs.
1 subgoal

z : Z
============================
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0 <= (if Z le dec 0 z then z else - z)

Coq < destruct (Z le dec 0 z).
2 subgoals

z : Z
z0 : 0 <= z
============================
0 <= z

subgoal 2 is:
0 <= - z

Coq < trivial.
1 subgoal

z : Z
n : ˜ 0 <= z
============================
0 <= - z

The proof is completed using the auto tactic on the database zarith containing lemmas on arithmetic.

Coq < auto with zarith.
Proof completed.

5.1.2 Bank account

The challenge is to implement a class for an account with a balance represented as an IEEE floating
point number and to specify a deposit method.

Of course the difficulty comes from the interpretation of the plus operation which will be a floating
point number operation with rounding in the program ans possibly a more mathematical operation in the
specification.

In COQ, it is possible to manipulate real numbers (library Reals, with arithmetic notations) and
there are also external libraries dealing with IEEE floating point real numbers, the most recent one being
Flocq [2].

Coq < Require Import Reals.

Coq < Open Local Scope R scope.

Coq < Require Import Fappli IEEE.

The type binary32 represents a single precision (normalised) floating point number with its sign (a
boolean), its mantissa (a positive binary number between 223 and 223 − 1) and its exponent (between
−126 and 126). COQ is able to compute with these numbers. We can also choose the rounding mode of
the addition.

Coq < Print binary32.
binary32 = binary float 24 128

: Set

Coq < Check b32 plus.
b32 plus
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: mode ->
binary float 24 128 ->
binary float 24 128 -> binary float 24 128

Coq < Print mode.
Inductive mode : Set :=

mode NE : mode
| mode ZR : mode
| mode DN : mode
| mode UP : mode
| mode NA : mode

The function B2R transforms a floating point into the corresponding real number. We introduce conve-
nient notations.

Coq < Implicit Arguments B2R [prec emax].

Coq < Notation bin32 b m e :=
Coq < (B754 finite 24 128 b m e (eq refl true)).

Coq < Notation "2 ˆ x" := (shift x 1) (at level 30) : positive scope.

Coq < (* binary32 representation of 1, 2ˆ(-23) and 2ˆ(-24) *)
Coq < Definition b32 one : binary32 := bin32 false (2ˆ23) (-23).

Coq < Definition b32 2 minus23 : binary32 := bin32 false (2ˆ23) (-46).

Coq < Definition b32 2 minus24 := bin32 false (2ˆ23) (-47).

We can now implement the deposit function and introduce the property corresponding to its correctness.

Coq < Definition deposit (olda amount:binary32) : binary32
Coq < := b32 plus mode NE olda amount.
deposit is defined

Coq < Definition deposit correct olda amount : Prop :=
Coq < B2R (deposit olda amount) = (B2R olda + B2R amount)%R.
deposit correct is defined

We can now show correct and incorrect behaviours.

Coq < Lemma ex1: deposit correct b32 one b32 2 minus23.
1 subgoal

============================
deposit correct b32 one b32 2 minus23

Coq < compute.
1 subgoal

============================
8388609 * / 8388608 =
8388608 * / 8388608 + 8388608 * / 70368744177664

The proof can be finished using the field tactic to reason on real numbers. The following case can be
proved to be incorrect:
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Coq < Lemma ex2: ˜ (deposit correct b32 one b32 2 minus24).
1 subgoal

============================
˜ deposit correct b32 one b32 2 minus24

Coq < compute; intro.
1 subgoal

H : 8388608 * / 8388608 =
8388608 * / 8388608 + 8388608 * / 140737488355328

============================
False

The proof comes from the fact that we have an hypothesis (x = x+y) with y 6= 0 but unfortunately it is
not direct in COQ (the automation on real numbers is still rudimentary); we do not give the details here.

5.2 Algorithms on arrays
We represent arrays by lists.

Coq < Import Datatypes.

Coq < Require Import List.

Coq < Print list.
Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A
For nil: Argument A is implicit and maximally inserted
For cons: Argument A is implicit
For list: Argument scope is [type scope]
For nil: Argument scope is [type scope]
For cons: Argument scopes are [type scope ]

Coq < Open Scope Z scope.

Coq < Open Scope list scope.

Notations for lists include a::l for the operator cons and l1++l2 for the concatenation of two lists.

5.2.1 Sum and maximum

Computing the sum and the maximum value of a list is done by a simple induction.

Coq < Fixpoint sum (l : list Z) : Z :=
Coq < match l with nil => 0 | a::m => a + sum m end.
sum is recursively defined (decreasing on 1st argument)

Coq < Fixpoint max (l : list Z) : Z :=
Coq < match l with nil => 0
Coq < | a::nil => a
Coq < | a::m => let b:= max m in if Z le dec a b then b else a
Coq < end.
max is recursively defined (decreasing on 1st argument)
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Because the pattern-matching for defining max is not elementary, it is useful to prove the corresponding
equation to be used for rewriting.

Coq < Lemma max cons : forall a m,
Coq < m <> nil ->
Coq < max (a::m) = let b:= max m in if Z le dec a b then b else a.

Coq < intro a; destruct m; trivial; intro H.

Coq < destruct H; trivial.

Coq < Qed.

We can after that enunciate the correctness property we want to prove:

Coq < Lemma sum max prop : forall l, sum l <= Z of nat (length l) * max l.

It will be proved by induction on l, then using the tactic simpl to do some of the simplifications on
sum and length and then arithmetical reasoning.

correctness of max. To specify the behaviour of max, we could use the predicate In of the List
library and say that whenever l is non empty then max l is in l and it is not less than all elements in l.

Correctness of sum. Our function sum satisfies the two equations:

sum nil = 0 sum (a::l) = a+ sum l

which can be considered as a valid functional specification.

Termination. All functions in COQ terminate.

5.2.2 Linear search

With linear search of a zero in an array of non-negative integers, we go back to natural numbers.

Coq < Open Scope nat scope.

In order to capture the special case where there is no 0 in the list, we prefer to use an option type with
no or one value.

Coq < Print option.
Inductive option (A : Type) : Type :=

Some : A -> option A | None : option A
For Some: Argument A is implicit
For None: Argument A is implicit and maximally inserted
For option: Argument scope is [type scope]
For Some: Argument scopes are [type scope ]
For None: Argument scope is [type scope]

We use a recursive terminal definition:
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Coq < Fixpoint linear (n:nat) (l:list nat) : option nat :=
Coq < match l with nil => None
Coq < | a::m => if zerop a then Some n else linear (S n) m
Coq < end.

Coq < Definition linear search := linear 0.

In order to specify this function, it is convenient to introduce an inductive predicate correct such that
correct k l is true when l starts with k non-zero elements and then contains a zero.

Coq < Inductive correct : nat -> list nat -> Prop :=
Coq < correct hd : forall a l, a=0 -> correct 0 (a::l)
Coq < | correct tl : forall a l n, a<>0 -> correct n l -> correct (S n) (a::l).

Coq < Hint Constructors correct.

The Hint Constructors command adds the constructors of the inductive definition in the hints
database to be used by the auto tactic. Then the correctness of the function is the following lemma:

Coq < Lemma linear correct : forall l n k,
Coq < linear n l = Some k <-> (n <= k /\ correct (k-n) l).

which is proved by induction on l. The special case is a simple instantiation:

Coq < Lemma linear search correct :
Coq < forall l k, linear search l = Some k <-> correct k l.

The optimised case is a bit more tricky. First we can introduce an inductive definition for the limited
decreasing property:

Coq < Inductive decrease : list nat -> Prop :=
Coq < decrease nil : decrease nil
Coq < | decrease cons : forall a b l,
Coq < decrease (b::l) -> a <= S b -> decrease (a::b::l).

Coq < Hint Constructors decrease.

We shall use the function skipn from the List library which removes the first elements of a list. The
definition we want looks like:

Coq < Fixpoint linear2 (n : nat) (l : list nat) : option nat :=
Coq < match l with nil => None
Coq < | a::m => if zerop a then Some n
Coq < else linear2 (a+n) (skipn (a-1) m)
Coq < end.
Error: Cannot guess decreasing argument of fix.
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However, it is not accepted by COQ because there is no evident structural recursion. Actually this
function terminates because the length of (skipn (a-1) m) is not greater than the one of m which is less
than the one of l. So we have to move to a general recursion involving a well-founded ordering. COQ
provides some definitions for that:

Coq < Check Fix.
Fix

: forall (A : Type) (R : A -> A -> Prop),
well founded R ->
forall P : A -> Type,
(forall x : A, (forall y : A, R y x -> P y) -> P x) ->
forall x : A, P x

Coq < Check Fix eq.
Fix eq

: forall (A : Type) (R : A -> A -> Prop) (Rwf : well founded R)
(P : A -> Type)
(F : forall x : A, (forall y : A, R y x -> P y) -> P x),

(forall (x : A) (f g : forall y : A, R y x -> P y),
(forall (y : A) (p : R y x), f y p = g y p) -> F x f = F x g) ->

forall x : A,
Fix Rwf P F x = F x (fun (y : A) ( : R y x) => Fix Rwf P F y)

Fix is a general combinator for fixpoint definitions. Each time we do a recursive call, we have to
provide a proof that the given element on the recursive call is less than the original one.

In COQ we have explicit proof terms that can be written explicitly in a program or we can use
tactics for interactively building a computational term. None of these solutions is very convenient. COQ
provides special tools to write programs containing logical parts but to solve these parts using tactic.
This is the Program facility designed by M. Sozeau [7].

Coq < Require Export Program.

Coq < Program Fixpoint linear2 (n : nat) (l : list nat) {measure (length l)}
Coq < : option nat
Coq < := match l with nil => None
Coq < | a::m => if zerop a then Some n
Coq < else linear2 (a+n) (skipn (a-1) m)
Coq < end.

We have one obligation to solve in order to make sure the recursive call decreases the measure. This
property comes from the following lemma proved by induction on l:

Coq < Check skip length.
skip length

: forall (A : Type) (n : nat) (l : list A),
length (skipn n l) <= length l

We now solve the obligation:

Coq < Next Obligation.
1 subgoal
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n : nat
a : nat
m : list nat
H : 0 < a
linear2 : nat ->

forall l : list nat,
length l < length (a :: m) -> option nat

============================
length (skipn (a - 1) m) < length (a :: m)

Coq < intros; apply le lt trans with (length m); simpl; auto with arith.
Proof completed.

If we want to prove the correctness of this program, one can proceed as before except that we will have to
follow the definition scheme of the function, namely a well-founded induction, then a pattern-matching
on l then a case analysis on the head value.

It is more convenient to do the proof while building the function, and the Program environment
will help doing that.

The idea is to enrich the return type of the function with the property we expect using the COQ

construction for {x : A|P} which is the type of pairs (t, p) with t an object of type A and p a proof of
P [x← t]. This type is almost a subtype construction, except that in COQ an object t of type {x : A|P}
is not an object of type A, but there is a projection function from {x : A|P} to A (the term ‘t denotes
the projection of t, and if we destruct t of type {x : A|P} as (x, p) we get x of type A and p of type P .

We shall need the following properties of decrease:

Coq < Lemma decrease skip : forall n l, decrease l -> decrease (skipn n l).

Coq < Lemma decrease correct skip :
Coq < forall l, decrease l ->
Coq < forall m n, n <= hd 0 l -> correct m (skipn n l) -> correct (n+m) l.

Coq < Lemma skip correct :
Coq < forall n l, correct n l ->
Coq < forall m, m <= n -> correct m (skipn (n-m) l).

The fixpoint definition looks now like:

Coq < Program Fixpoint linear3 (n : nat) (l : list nat) {measure (length l)} :
Coq < { res : option nat |
Coq < decrease l -> forall k, res=Some k <-> (n<=k /\ correct (k-n) l) }
Coq < := match l with nil => None
Coq < | a::m => if zerop a then Some n
Coq < else linear3 (a+n) (skipn (a-1) m)
Coq < end.

It generates 4 proof obligations (correctness in the three branches and termination).

Coq < Obligations.
4 obligation(s) remaining:
Obligation 1 of linear3 func:
forall (n : nat) (l : list nat),
(forall (n0 : nat) (l0 : list nat),
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length l0 < length l ->
{res : option nat |
decrease l0 ->
forall k : nat, res = Some k <-> n0 <= k /\ correct (k - n0) l0}) ->

[] = l ->
decrease [] ->
forall k : nat, None = Some k <-> n <= k /\ correct (k - n) [].

Obligation 2 of linear3 func:
forall (n : nat) (l : list nat),
(forall (n0 : nat) (l0 : list nat),
length l0 < length l ->
{res : option nat |
decrease l0 ->
forall k : nat, res = Some k <-> n0 <= k /\ correct (k - n0) l0}) ->

forall (a : nat) (m : list nat),
a :: m = l ->
a = 0 ->
decrease (a :: m) ->
forall k : nat, Some n = Some k <-> n <= k /\ correct (k - n) (a :: m).

Obligation 3 of linear3 func:
nat ->
forall l : list nat,
(forall (n0 : nat) (l0 : list nat),
length l0 < length l ->
{res : option nat |
decrease l0 ->
forall k : nat, res = Some k <-> n0 <= k /\ correct (k - n0) l0}) ->

forall (a : nat) (m : list nat),
a :: m = l -> 0 < a -> length (skipn (a - 1) m) < length l.

Obligation 4 of linear3 func:
forall (n : nat) (l : list nat)

(linear3 : forall (n0 : nat) (l0 : list nat),
length l0 < length l ->
{res : option nat |
decrease l0 ->
forall k : nat,
res = Some k <-> n0 <= k /\ correct (k - n0) l0})

(a : nat) (m : list nat) (Heq l : a :: m = l) (H : 0 < a),
decrease (a :: m) ->
forall k : nat,
‘(linear3 (a + n) (skipn (a - 1) m)

(linear3 func obligation 3 n l linear3 a m Heq l H)) =
Some k <-> n <= k /\ correct (k - n) (a :: m).

5.2.3 Sorting

There is a Sorting library in COQ with proofs of mergesort and heapsort.
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5.2.4 Binary search

Binary search on lists is not so interesting, we suggest to implement and prove it using an array repre-
sented as a function from nat to a type A and the length of the array.

5.3 Linked lists
In order to represent structures with pointers, on need to exhibit a model for the memory. We can take
Z for the set of addresses and add a special value for the null pointer. We enter in a mode with implicit
arguments automatically computed.

Coq < Set Implicit Arguments.

Coq < Definition adr := option Z.
adr is defined

Coq < Definition null : adr := None.
null is defined

We define a node in a linked list as a record with a field for the value (here a natural number) and a next
field with the address of the rest of the list.

Coq < Record node : Type := mknode { value : nat ; next : adr}.
node is defined
node rect is defined
node ind is defined
node rec is defined
value is defined
next is defined

A record is a special case of inductive definition where there is only on constructor. The system derives
automatically terms for the two projections value of type node → nat and next of type node →
adr. Then the heap is a partial function from addresses to node which is represented as a total function
from Z to option node. We

Coq < Definition heap := Z -> option node.
heap is defined

Coq < Definition val (h : heap) (a : adr) : option node
Coq < := match a with None => None | Some z => h z end.
val is defined

We define the property for an object in an option type to be different of None.

Coq < Definition alloc A (a:option A) : Prop
Coq < := match a with Some => True | None => False end.
alloc is defined

It is equivalent to a 6= None but defined in a computational way: a proof of alloc a will reduce either
to True or False. We define another partial function for access but instead to output an optional type,
it takes an extra argument as input which ensures the value exists.
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Coq < Definition access (h:heap) (a:adr) : alloc (val h a) -> node
Coq < := match (val h a) as x return alloc x -> node
Coq < with None => fun (H:False) => False rect H
Coq < | Some n => fun (H:True) => n
Coq < end.
access is defined

We see an example of dependent pattern matching:

match tas x return P with p1 ⇒ c1| . . . pn ⇒ cn end

The type of the match expression is P [x← t] and in each branch, x is substituted by the pattern.
In the first case we have to build an object in the type alloc None → node but because

alloc None is equivalent to False this branch will never be accessed, so we provide a dummy
element built form the proof of False.

In COQ all functions have to be total and terminating. If a list is cyclic or at some point an address
is not allocated then the program will go wrong. So we introduce a predicate depending on an address
and a heap which captures that following the links we always find allocated addresses until we reach the
null address.

Coq < Inductive LList (h : heap) (a:adr) : Prop :=
Coq < mkLL : forall (LLa : alloc a -> alloc (val h a)),
Coq < (forall (p:alloc a), LList h (next (access h a (LLa p))))
Coq < -> LList h a.

It says that (LList h a) if whenever a is not null, it is allocated in the heap and the next address is itself
a well-formed list. The strange form comes from the fact that the access function depends on a proof
that the value in not None.

We easily derive the expected properties:

Coq < Lemma LL null : forall h, LList h null.

Coq < Lemma LL cons : forall h a (q:alloc (val h a)),
Coq < LList h (next (access h a q)) -> LList h a.

We can also prove the other direction :

Coq < Lemma LL alloc val : forall h a, LList h a -> alloc a -> alloc (val h a).

Coq < destruct 1; trivial.

Coq < Defined.

Coq < Lemma LL next : forall h a (L:LList h a) (p:alloc a),
Coq < LList h (next (access h a (LL alloc val L p))).

Coq < unfold LL alloc val; destruct L; trivial.

Coq < Defined.
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We use the keyword Defined instead of Qed. In COQ a constant can be defined as Opaque and will
never be unfolded or reduced, which is the expected behaviour for most theorems. Or it can be declared
as transparent. In this case, the proof of LList will be used inside Coq to control fixpoint definitions
and need to be transparent, which is obtained with the Defined command.

Now, in order to build a function by following the links starting from an address a which corresponds
to a well-formed list, we use a fixpoint that will be structurally decreasing on the proof of (LList h a).

We first introduce a program to test whether or not an address is null.

Coq < Definition nullp (a:adr) : {a=null}+{alloc a}.

Coq < destruct a; simpl; auto.

Coq < Defined.

As a first example, we build a logical list from a well-formed linked list.

Coq < Variable h : heap.
h is assumed

Coq < Fixpoint LL list (a:adr) (La: LList h a) : list nat :=
Coq < match nullp a with
Coq < left p => nil
Coq < | right p => value (access h a (LL alloc val La p))
Coq < ::LL list (LL next La p)
Coq < end.
LL list is recursively defined (decreasing on 2nd argument)

If we want to prove the fixpoint equation, we need a case analysis in the proof of LList.

Coq < Lemma LL list eq : forall (a:adr) (La: LList h a),
Coq < LL list La = match nullp a with
Coq < left p => nil
Coq < | right p => value (access h a (LL alloc val La p))
Coq < ::LL list (LL next La p)
Coq < end.

Coq < destruct La; trivial.

Coq < Qed.

5.3.1 Linear search

Doing the naive linear search follows the same scheme:

Coq < Fixpoint LL linear (a:adr) (La: LList h a) (n:nat) : option nat :=
Coq < match nullp a with
Coq < left p => None
Coq < | right p => if zerop (value (access h a (LL alloc val La p)))
Coq < then Some n
Coq < else LL linear (LL next La p) (S n)
Coq < end.
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It is possible to specify this program using the same predicate correct as before:

Coq < Lemma linear correct : forall a (La:LList h a) n k,
Coq < LL linear La n = Some k <-> (n <= k /\ correct (k-n) (LL list La)).

The proof will go by induction on the proof La of (LList h a) but because LList has type Prop, the
induction principle automatically generated by COQ is not powerful enough.

Coq < Check LList ind.
LList ind

: forall (h : heap) (P : adr -> Prop),
(forall (a : adr) (LLa : alloc a -> alloc (val h a)),
(forall p : alloc a, LList h (next (access h a (LLa p)))) ->
(forall p : alloc a, P (next (access h a (LLa p)))) -> P a) ->

forall a : adr, LList h a -> P a

We need a principle which allows to prove ∀a (La : LListh a), P a La.
There is a special command to derive this more powerful principle:

Coq < Scheme LList indd := Induction for LList Sort Prop.
LList indd is defined
LList indd is recursively defined

Then the proof of the lemma starts with:

Coq < induction La using LList indd; simpl; intros.
1 subgoal

h : heap
a : adr
LLa : alloc a -> alloc (val h a)
l : forall p : alloc a, LList h (next (access h a (LLa p)))
H : forall (p : alloc a) (n k : nat),

LL linear (l p) n = Some k <->
n <= k /\ correct (k - n) (LL list (l p))

n : nat
k : nat
============================
match nullp a with
| in left => None
| right p =>

if zerop (value (access h a (LLa p)))
then Some n
else LL linear (l p) (S n)

end = Some k <->
n <= k /\
correct (k - n)

match nullp a with
| in left => []
| right p => value (access h a (LLa p)) :: LL list (l p)
end
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Coq < case (nullp a); intros.
2 subgoals

h : heap
a : adr
LLa : alloc a -> alloc (val h a)
l : forall p : alloc a, LList h (next (access h a (LLa p)))
H : forall (p : alloc a) (n k : nat),

LL linear (l p) n = Some k <->
n <= k /\ correct (k - n) (LL list (l p))

n : nat
k : nat
e : a = null
============================
None = Some k <-> n <= k /\ correct (k - n) []

subgoal 2 is:
(if zerop (value (access h a (LLa a0)))
then Some n
else LL linear (l a0) (S n)) = Some k <->
n <= k /\
correct (k - n) (value (access h a (LLa a0)) :: LL list (l a0))

The rest of the proof is quite similar to the proof using logical lists.

5.3.2 Concatenation

The program for concatenation will modify the heap. We first define updating functions. We use a
function to test equalities on addresses.

Coq < Lemma adr eq dec : forall (a b:adr), {a=b}+{˜a=b}.

Coq < Definition upd node next (n:node) (a:adr) := mknode (value n) a.

Coq < Definition upd heap next (h:heap) a b (p : alloc (val h a)) : heap :=
Coq < fun z => if adr eq dec (Some z) a
Coq < then Some (upd node next (access h a p) b)
Coq < else h z.

Then the concatenation is defined by:

Coq < Fixpoint LL concat (h:heap) (a:adr) (La:LList h a)
Coq < (p:alloc a) (b:adr) : heap :=
Coq < match nullp (next (access h a (LL alloc val La p))) with
Coq < left => upd heap next h a b (LL alloc val La p)
Coq < | right q => LL concat (LL next La p) q b
Coq < end.

However, proving the correctness of this program is much more involved. We first have to prove that if
a and b are well-formed lists in the heap h, then they still are in the heap obtained after concatenation.
But it is not true if they share some nodes. So it involves reasoning on separation properties of the heap.
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It can be done just for the example or by building first a library which derives principles from separation
logic.

This example uses dependent types, and objects depending on logical properties. With this style
of programming, the proof scripts can quickly become unreadable. However tools like Program (that
we introduced before) or Type classes can be used to hide this information and let the system infer the
missing terms. However, the user has to be aware that the COQ kernel manipulates the fully expanded
terms.

5.4 Needham-Schroeder Public Key protocol

The formalisation of Needham-Schroeder Public Key protocol in COQ was first experimented by D.
Bolignano [3].

The modelling uses inductive definitions which model the exchanges. We have three agents A, B, I
for Alice, Bob and the Intruder.

Coq < Inductive agent : Set := A | B | I .

A nonce is a secret that is generated by one agent to be shared with another, in or formalisation, they
have two agents as parameter. The atomic messages are names of the agents, nonces, secret keys. a
message can be encoded or combined with another.

Coq < Inductive message : Set :=
Coq < Name : agent -> message
Coq < | Nonce : agent*agent -> message
Coq < | SK : agent -> message
Coq < | Enc : message -> agent -> message
Coq < | P : message -> message -> message.

The assumptions are that every message sent is received by everybody. Alice and Bob follow the protocol
but the intruder can transform the messages (pairing, unpairing, encoding with public keys, decoding
when he knows the secret key).

We define three mutually inductive definitions:

• send which takes an agent and a message and implements the protocol rules plus the intruder
capabilities;

• receive which takes an agent and a message and just says that everybody receive everything;

• known which characterises the knowledge of the intruder, some basic facts such as the name of
the agents, his/her own secret key, plus the capability to eavesdrop the messages and massage
them.

The protocol is parametrised by an agent X with which Alice starts the protocol.

Coq < Section Protocol.

Coq < Variable X:agent.

Coq < Inductive send : agent -> message -> Prop :=
Coq < init : send A (Enc (P (Nonce (A,X)) (Name A)) X)
Coq < | trans1 : forall d Y,
Coq < receive B (Enc (P (Nonce d) (Name Y)) B)
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Coq < -> send B (Enc (P (Nonce d) (Nonce (B,Y))) Y)
Coq < | trans2 : forall d, receive A (Enc (P (Nonce (A,X)) (Nonce d)) A)
Coq < -> send A (Enc (Nonce d) X)
Coq < | cheat : forall m, known m -> send I m
Coq < with receive : agent -> message -> Prop :=
Coq < link : forall m Y Z, send Y m -> receive Z m
Coq < with known : message -> Prop :=
Coq < spy : forall m, receive I m -> known m
Coq < | name : forall a, known (Name a)
Coq < | secret KI : known (SK I)
Coq < | decomp l : forall m m’, known (P m m’) -> known m
Coq < | decomp r : forall m m’, known (P m m’) -> known m’
Coq < | compose : forall m m’, known m -> known m’ -> known (P m m’)
Coq < | crypt : forall m a, known m -> known (Enc m a)
Coq < | decrypt : forall m a, known (Enc m a) -> known (SK a) -> known m.

Coq < End Protocol.

It is correct if the fact that B receives the acknowledgement (the nounce he generated for Alice) means
that the protocol was initiated by Alice to talk with Bob. Also in that case, the nounces which are
generated by Alice and Bob for each other should remain a shared secret. With this version, it is pos-
sible to prove that the protocol goes wrong, namely Alice starts the protocol with I and B gets the
acknowledgement.

Coq < Lemma flaw : receive I B (Enc (Nonce (B,A)) B).

Coq < Lemma flawB : known I (Nonce (B,A)).
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