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1 Using the Coq Proof Assistant

1.1 Launching Coq

The command coqide starts the Coq graphical interface. It is composed of three windows. The left one
contains the user input script. The right-top window contains the current goal. The right-bottom window
contains the output of commands. All commands ends with a dot. There is also a pure ASCII toplevel
(coqtop) and a batch compiler (coqc, see Section 3.1). The Coq reference manual is available online
at

coq.inria.fr/V8.1/refman/index.html

1.2 Syntax of Terms

We assume that the syntax of terms is already known (see Christine’s lecture).

1.3 The Coq environment

The following interactive commands are useful to navigate through libraries when doing proofs. They
can be executed from the coqide Query window (use the menu Queries or Windows/Show
Query Window).

• Inspect num: displays the type of the last num declarations. A declaration is either the intro-
duction of a new identifier or the loading of a module.

Coq < Definition x := 0.
Coq < Inductive y : Set := C : y.

Coq < Inspect 5.
x : nat
Inductive y : Set := C : y
y_rect : forall P : y -> Type, P C -> forall y : y, P y
y_ind : forall P : y -> Prop, P C -> forall y : y, P y
y_rec : forall P : y -> Set, P C -> forall y : y, P y
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• Search name: displays all declaration id : type where name is the head constant of type, i.e. type
is of the form

forall (x1 : A1) . . . (xn : An), name t1 . . . tp

Coq < Search not.
sym_not_eq: forall (A : Type) (x y : A), x <> y -> y <> x
sym_not_equal: forall (A : Type) (x y : A), x <> y -> y <> x
not_eq_S: forall n m : nat, n <> m -> S n <> S m
O_S: forall n : nat, 0 <> S n
n_Sn: forall n : nat, n <> S n

Application: Find all lemmas about conjunction and, disjunction or, equality eq and order
relation le.

• Print name: prints the definition of name together with its type.

Application: Find the definitions of type nat, order relations le and lt and of the proofs eq_S
and f_equal. Find the definitions of operations plus and mult. Note that the latter are printed
as infix symbols + and *.

• Check term: checks if term can be typed and displays its type. If term is an identifier, it is another
way to get its type.

Coq < Check (fun x:nat => x + 0).
fun x : nat => x + 0

: nat -> nat

Application: What is proved by lemma nat_case? Are the following terms well-typed: (plus
O (S O)), (plus true false)?

• Require Export name: checks if module name is already present in the environment. If not,
and if a file name.vo occurs in the loadpath, then it is loaded and opened (its contents is revealed).

The set of loaded modules and the loadpath can be displayed with the commands Print Modules
and Print LoadPath. The default loadpath is the set of all subdirectories of the Coq standard
library.

The libraries related to natural numbers arithmetic are Le, Lt, Gt, Plus, Mult, Between.
They are gathered in a single module Arith in such a way that the command Require Export
Arith loads and opens all these modules.

Coq < Require Export Arith.

Applications: Display the loadpath. Load one of the arithmetic modules and search for theorems
about relation le.

• Reset name: Restore the system as it was before the declaration of name. It is not useful in
coqide where navigation through the input script is provided by menus and key shortcuts.
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1.4 Parameters and Definitions

1.4.1 Parameters

It is possible to introduce parameters for the theory under development. The syntax is

{Hypothesis | Variable | Axiom | Parameter} name : type

where name is the name of the hypothesis or variable to introduce and type its type. The four variants
Hypothesis, Variable, Axiom and Parameter are all equivalent; they are provided for the
(mathematical) clarity of the development. Several variables of the same type can be introduced with
a single command, using the variants Variables and Hypotheses and a blank-separated list of
names.

For instance, we can introduce a type A and two variables of this type using the commands:

Coq < Variable A : Set.
Coq < Variables x y : A.

1.4.2 Definitions

The usual way to introduce a new definition is

Definition name := term : type

The identifier name is then an abbreviation for the term term. The type type is optional (and inferred
when omitted).

Example. The square function can be defined as follows:

Coq < Definition square := fun x:nat => x * x.

or equivalently as follows:

Coq < Definition square (x:nat) : nat := x * x.

1.5 Inductive Declarations

1.5.1 Inductive Data Types

Possibly recursive data types can be declared as a set of constructors. Each constructor is associated to
a type which describes its arity. There are some syntactic restrictions over arities.

The syntax of inductive declarations is:

Inductive name : Set := c1 : C1 | . . . | cn : Cn

where name is the name of the type to be defined, ci the names of the constructors and each Ci the type
of constructor ci.

Example. The data type of natural numbers can be declared as follows:

Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.

Note that constructor names must be valid identifiers and thus O is the capital character and not the
number 0. However, there is a notation for natural numbers which allows the user to write them using
the usual decimal notation (and thus O as 0, and S (S (S O)) as 3).
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Exercises. Follow the same schema to define types for the following representations:

• the set Z of integers as a free structure with zero and two injections pos and neg from nat to
Z, where the term (pos n) stands for n + 1 and (neg n) for −n− 1;

• arithmetic expressions corresponding to the following abstract syntax:

expr::= 0 | 1 | expr+ expr | expr− expr

• binary trees over a type A (to be declared):

tree::= empty | node(A,tree,tree)

1.5.2 Inductive Predicates

Inductive definitions can be used to introduced predicates specified by a set of closure properties, as
some kind of generalized Prolog clauses. Each clause is given a name, seen as a constructor of the
relation and whose type is the logical formula associated to the clause.

The syntax of such a definition is:

Inductive name : arity := c1 : C1 | . . . | cn : Cn

where name is the name of the relation to be defined, arity its type (for instance nat->nat->Prop
for a binary relation over natural numbers) and, as for data types, ci and Ci the names and types of
constructors respectively.

Example. The definition of the order relation over natural numbers can be defined as the smallest
relation verifying:

forall n:nat, LE O n
forall n m:nat, LE n m -> LE (S n) (S m)

In Coq, such a relation is defined as follows:

Coq < Inductive LE : nat -> nat -> Prop :=
Coq < | LE_O : forall n:nat, LE 0 n
Coq < | LE_S : forall n m:nat, LE n m -> LE (S n) (S m).

This declaration introduces identifiers LE, LE_O and LE_S, each having the type specified in the dec-
laration. Moreover, case analysis operations and recursive definitions are associated to inductive types
which allow to capture the minimality of the relation.

Actually, the definition if this order relation in Coq standard library is slightly different:

Coq < Inductive le (n: nat) : nat -> Prop :=
Coq < | le_n : le n n
Coq < | le_S : forall m:nat, le n m -> le n (S m).

The parameter (n:nat) after le is used to factor out n in the whole inductive definition. As a coun-
terpart, the first argument of le must be n everywhere in the definition. In particular, n could not have
been a parameter in the definition of LE since LE must be applied to (S n) in the second clause.
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Exercises.

• Define an inductive predicate Natural over Z which characterizes zero and the positive num-
bers.

• Define a relation Diff such that (Diff n m z) means that the value of n−m is z, for two natural
numbers n and m and an integer z.

• Define a relation SubZ which specifies the difference between two elements of Z.

• Define a relation Sem which relates any expression of type expr to its “semantics” as an integer.

1.6 Function Definitions

1.6.1 The Pattern-Matching Operator

When a term t belongs to some inductive type, it is possible to build a new term by case analysis over the
various constructors which may occur as the head of t when it is evaluated. Such definitions are known
in functional programming languages as pattern-matching. The Coq syntax is the following:

match term with c1 args1 => term1 ... cn argsn => termn end

In this construct, the expression term has an inductive type with n constructors c1, ..., cn. The term
termi is the term to build when the evaluation of t produces the constructor ci. It is possible to give the
expected type for the result with the following variant:

match term return type with c1 args1 => term1 ... cn argsn => termn end

Natural Numbers. If n has type nat, the function checking whether n is O can be defined as follows:

Coq < Check (fun n:nat => match n with
Coq < | O => true
Coq < | S x => false
Coq < end).

1.6.2 Generalized Pattern-Matching Definitions

More generally, patterns can match several terms at the same time, can be nested and can contain the
universal pattern _ which filters any expression. Patterns are examined in a sequential way (as in func-
tional programming languages) and must cover the whole domain of the inductive type. Thus one may
write for instance

Coq < Check (fun n m:nat =>
Coq < match n, m with
Coq < | O, _ => true
Coq < | _, S O => false
Coq < | _, _ => true
Coq < end).

However, the generalized pattern-matching is not considered as a primitive construct and is actually
compiled in primitive patterns as described in the previous section.
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1.6.3 Some Equivalent Definitions

In the case of an inductive type with a single constructor C, the construct construction :

let (x1,..,xn) := t in u

can be used as an equivalent to match t with C x1..xn => u end.
In the case of an inductive type with two constructors c1 and c2 (such as the type of booleans for

instance) the construct
if t then u1 else u2

can be used as an equivalent to match t of c1 _ => u1 | c2 _ => u2 end.

1.6.4 Dependant Elimination

To prove a property P n on a natural number n, one may distinguish the case n = O and the case n = S p
for another natural number p. Thus we simply need to prove P O and forall p : nat, P (S p). The
term which encodes this proof is also built by pattern-matching using the match operator.

In that case, the predicate P over which the case analysis is built is usually difficult (or even impos-
sible) to infer automatically. Thus it must be given explicitly by the user, using the following variant of
match:

match term as x return type(x) with C1 args1 => term1 ... Cn argsn => termn end

.

Exercises.

• Define the predecessor function of type nat->nat and a function of type Z->bool which
checks whether its argument is 0.

• Let A:Set and P:A->Set be parameters. Define the dependant sum of type Set with a single
constructor intro : forall x:A, P x ->sum. Then define the two projections pi1 of
type sum->A and pi2 of type forall s:sum, P (pi1 s).

1.6.5 Fixpoint Definitions

To define functions over inductive data types, it is necessary to use recursion. General recursion cannot
be used since it would lead to an unsound logic.

Only structural recursion is allowed. It means that a function can be defined by fixpoint if one of its
formal arguments, say x, as an inductive type and if each recursive call is performed on a term which
can be checked as structurally smaller than x. The basic idea is that x will usually be the main argument
of a match construct and then recursive calls can be performed in each branch on some variables of the
corresponding pattern.

The Fixpoint Construct. The syntax for a fixpoint definition is the following:

Fixpoint name (x1:type1) ... (xp:typep) {struct xi}: typef :=term

The variable xi following the struct keyword is the recursive argument. Its type typei must be an
instance of an inductive type. The type of name is forall (x1:type1)...(xp:typep), typef .
Occurrences of name in term must be applied to at least i arguments and the ith must be recognized as
structurally smaller than xi. Note that the struct keyword may be omitted when i = 1.
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Examples. The following two definitions of plus by recursion over the first and the second argument
respectively are correct:

Fixpoint plus1 (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (plus1 p m)
end.

Fixpoint plus2 (n m:nat) {struct m} : nat :=
match m with
| O => n
| S p => S (plus2 n p)
end.

1.6.6 Combinators

In Coq, the constructs match and fix (the internal construct for Fixpoint definitions) are used for
all definitions over inductive types. We have seen that a higher-level construct can be used for complex
pattern-matching and recursive function definitions.

In other logical frameworks such as system T or Martin-Löf’s type theory, we rather use combinators
implementing primitive recursion or axioms corresponding to structural induction schemas.

In Coq, such combinators are automatically introduced when an inductive type is declared. For
instance, the two constants Ind_ind and Ind_rec are automatically defined when the inductive type
Ind is declared. Other schemas can be manually generated using command Scheme.

1.6.7 Computing

One can reduce a term and prints its normal form with Eval compute in term. For instance:

Coq < Eval compute in (fun x:nat => 2 + x) 3.
= 5
: nat

1.6.8 Exercises

• Define an or function over booleans. Check the properties or true _ = true and or
false b = b.

• Define a function from Z to Z for the negation of an integer.

• Define the canonical injection from nat to Z.

• Define a function of type nat → nat → Z which computes the difference between two natural
numbers, with the following specification:

diff 0 0 = zero diff 0 (S n) = neg n
diff (S n) 0 = pos n diff (S n) (S m) = diff n m

• Use the function diff above to define addition and subtraction over type Z (i.e. as functions of
type Z → Z → Z).

• Define a function which maps each expression of type expr to its “semantics” as an element of
Z.
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1.7 Proofs

To prove a theorem with Coq, one has to state it first, with one of the following two declarations:

{Theorem | Lemma} name : type

where name is the name of the theorem and type its statement.

1.7.1 First-Order Reasoning

Coq logic uses natural deduction rules for a higher-order predicate calculus. Each connective is associ-
ated to introduction and elimination rules, as usual. For instance, the introduction rules for conjunction
is

A B

A ∧B
whereas the two elimination rules are usually given as

A ∧B

A

A ∧B

B

which is equivalent to the following rule used by Coq:

A ∧B A ⇒ B ⇒ C

C

A tactic can be associated to each inference rule of the logic, in a natural way: starting with a goal
which is an instance of the rule conclusion, we generate one subgoal for each premise of the rule, side-
conditions being checked if any. For instance, conjunction is associated to the split tactic, which
corresponds to the introduction rule. Thus it transforms a goal A ∧ B into two goals A and B. For
elimination rules, the information in the conclusion is not sufficient to instantiate the premises (one has
to know A and B). Thus tactics may have arguments to indicate the missing information. In the case of
the conjunction for instance, the tactic will take a proof of the main premise, that is a proof of A ∧ B.
The following table gives the correspondence between Coq syntax, usual connectives and introduction
and elimination tactics.

Proposition (P ) Coq syntax Introduction Elimination (H of type P )
⊥ False elim H, contradiction
¬A ~A intro apply H
A ∧B A/\B split elim H
A ⇒ B A->B intro apply H
A ∨B A\/B left, right elim H
∀x : A.P forall (x:A), P intro apply H
∃x : A.P exists (x:A), P exists witness elim H
x =A y x=y reflexivity, trivial elim H, rewrite H

The assumptionTactic. The axiom rule is implemented by the assumption tactic, which searches
the context for a proof of the current goal.

The apply with and elim with Tactics. In elimination rules, the argument of the apply and
elim tactics is a term which proves the main premise. Usually, one does not have a theorem or an
hypothesis H which exactly proves the main premise P but a generalization, typically forall (x1 :
A1)..(xn : An), P ′. The tactics try to find out an adequate instance of H which can be eliminated
and will generate additional subgoals if necessary. If this instance cannot be inferred automatically, the
apply and elim tactics fail. Then some variants can be used to explicitly provide the terms which
cannot be inferred: {apply | elim} H with t1 . . . tk.
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Some Useful Commands. The following commands can be used to build a theorem proof:

• Proof term: gives an explicit proof term for the current theorem.

• Qed: saves a proof in the environment once it is completed (no more subgoal).

• Admitted : aborts a proof and replaces the statement by an axiom that can be used in later
proofs.

Exercises. Prove the following tautologies:

A ∧ (B ∨ C) ⇒ (A ∧B) ∨ (A ∧ C) ¬¬¬A ⇒ ¬A
A ∨ (∀x.(P x)) ⇒ ∀x.(A ∨ (P x)) ∃x.∀y.(Q x y) ⇒ ∀y.∃x.(Q x y)

1.7.2 Combining Tactics

The basic tactics can be combined into more powerful tactics using tactics combinators, also called
tacticals. Here are some of them:

Tactical Meaning
t1 ; t2 applies tactic t1 to the current goal and then t2 to each generated subgoal
t1 || t2 applies tactic t1; if it fails then applies t2
t ; [ t1 | ...| tn] applies t and then ti to the i-th generated subgoals; there must be exactly

n subgoals generated by t

idtac does nothing
try t applies t if it does not fail; otherwise does nothing
repeat t repeats t as long as it does not fail
solve t applies t only if it solves the current goal

1.7.3 Equational Reasoning

Proving Equalities. If two terms t and u are convertible, then the reflexivity tactic solves the
goal t = u. The symmetry tactic replaces the goal t = u by the goal u = t. To use a transitivity step,
one uses the transitivity v tactic which produces two subgoals t = v and v = u.

Using Equality to Rewrite. The elimination rule for equality says that if there is a proof of t = u then
for each property P such that P (t) holds, we also have P (u). The elimination tactic on a proof of t = u
will replace the goal P (t) by the goal P (u). In practice, the effect is to replace each occurrence of u by
t in the goal.

Some variants are:

• If H proves t = u then one can replace t by u using the tactic rewrite -> H.

• To replace t by u while generating the subgoal u = t one uses the tactic replace t with u.

• To replace some (but not all) occurrences of u, one first uses the tactic pattern u at occs, where
occs is a list of occurrences to be rewritten, before using the elim, rewrite or replace tactic.

Convertibility. The tactics simpl and unfold name reduce the goal by transforming (some part
of) the goal into a convertible term.
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Exercises.

• Prove the stability of the constructors of type Z for equality (n = m ⇒ neg n = neg m, etc.).

• Prove the opposite direction, for instance neg n = neg m ⇒ n = m. Hint: start by defining a
projection from Z to nat, or use the injection tactic.

• Prove one of the definitional equalities for function diff; for instance

diff (S n) (S m) = diff n m

1.7.4 Proofs by Induction

The induction Tactic. The tactic to perform proofs by induction is induction term where
term is an expression in an inductive type. It can be an induction over a natural number or a list but also
a usual elimination rule for a logical connective or a minimality principle over some inductive relation.
More precisely, an induction is the application of one of the principles which are automatically generated
when the inductive type is declared.

The induction tactic can also be applied to variables or hypotheses from the context. To refer to
some unnamed hypothesis from the conclusion (i.e. the left hand-side of an implication), one has to use
induction num where num is the num-th unnamed hypothesis in the conclusion.

The induction tactic generalizes the dependent hypotheses of the expression on which induction
applies. To avoid this behavior, on may clear some hypotheses with clear, or use elim or simple
induction which are simplified versions of induction.

Induction over Data Types. If term has an inductive type then the induction used in the natural gen-
eralization of the induction over natural numbers. The main difficulty is to tell the system what is the
property to be proved by induction. The default (inferred) property is the abstraction of the goal w.r.t.
all occurrences of term. If only some occurrences must be abstracted (but not all) then the pattern
tactic must be applied first (as we did above for the rewrite tactic).

It is sometimes necessary to generalize the goal before doing the induction. This can be done using
the cut type tactic, which changes the goal G into type ⇒ G and generates a new subgoal type. If
the generalization must include some hypotheses, one may use the generalize tactic first (if x is a
variable of type A, then generalize x changes the goal G into the new goal forall x:A, G.

Induction over Proofs. If term belongs to an inductive relation then the elimination tactic corresponds
to the use of the minimality principle for this relation. Generally speaking, the property to be proved
is (I x1 . . . xn) ⇒ G where I is the inductive relation. The goal G is abstracted w.r.t. x1 . . . xn to
build the relation used in the induction. It works automatically when x1 . . . xn are variables. If not, the
system cannot infer a well-typed abstraction or infers a non-provable property. In that case, the tactic
inversion term is to be preferred (it exploits all information in x1 . . . xn).

Exercises.

• Prove the properties Diff n n zero and Diff (S n) n (pos 0).

• Prove that for all natural numbers n and m, if m ≤ n then there exists z such that Natural z
and Diff n m z.

• Prove that for all natural numbers n and m the property Diff n m (diff n m) holds.
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2 Programming with Coq

We propose a few exercises as an introduction to certified functional programming using Coq.

2.1 Functional Programming with Coq

We assume an environment where a parameter type A is given, as well as an order relation inf over A,
of type A→ A→ bool.

1. [Type list, primitive recursive functions singl,lgth,app,rev] Define the data type
list for the lists of elements of type A. Define a function singl which takes an element and
builds a list containing only this element, a function lgth computing the length of a list, a func-
tion app catenating two lists and a function rev to reverse a list (either using app or using an
accumulator to get a recursive terminal function).

2. [Function Evaluation] Introduce some variables a,b,c of type A. Test the functions above on
small examples using the Eval compute command.

3. [Function nb_occ] Using inf, define a function checking for the equality of two terms of type
A. Then define a function nb_occ computing the number of occurrences of a given element in a
given list.

4. [Insertion in a sorted list] Assuming a given element and a sorted list, define a function inserting
the element in the list such that the resulting list is sorted.

2.2 Quicksort

1. [Function split_list] Define a function split_list which takes a term a of type A and
a list l and returns two lists, one containing the elements of l smaller than a and the other
containing the elements of l greater or equal than a. Show that both lists have a length smaller or
equal than the length of l.

2. [Well-founded induction] Define a function which takes a list as argument and returns a sorted
list containing the same elements. It will use a divide-and-conquer approach (quicksort), as fol-
lows: is the list is not empty, we take its first element, split the remaining list according to this
element, sort the two sublists recursively and finally catenate the three parts (the two sorted
sublists and the element) to get a sorted list. Hint: use the well-founded induction operator
well_founded_induction from the standard library (module Wf_nat).

2.3 Specifying and Proving Programs

1. [Predicate equiv] Define a predicate equiv of type list→list→Prop which holds when
any element occurs exactly the same number of times in each list.

2. Prove that the insertion of a in the sorted list l is a list equivalent (that is, equiv) to (cons a
l).

3. [Predicate all] Given an arbitrary property R:A→Prop, define a property all which says that
all the elements in a given list satisfy R.

4. Show that if (all l) and (R a) then (all (insert a l)).
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5. [Elimination over booleans] The induction principle over booleans says that to show (P b) it
is sufficient to prove (P true) and (P false). Prove a stronger principle which says that to
prove (P b) it is sufficient to prove b=true→(P true) and b=false→(P false).

6. [Predicate sorted] Define a predicate sorted to characterize sorted lists. Show that the inser-
tion into a sorted list is also a sorted list.

2.4 Programming with Proofs

1. Show the following property by induction over l:

forall (a:A)(l:list), sorted l ->{m:list | equiv m (cons a l) & sorted m}

2. Is it possible to perform an induction over hypothesis (sorted l)?

3. Show an induction principle sorted_rec similar to sorted_ind but where predicate P has
type list→Set. What is now the answer to the previous question?

4. Give function split_list a specification and prove its correctness.

5. Prove the following theorem: forall l:list, {m:list | sorted m & equiv l m}

3 Practical Use of Coq

3.1 Compilation

It is advisable to split large developments into several files. Then each file can be compiled (with the Coq
compiler coqc) in order to be subsequently loaded in a very efficient way. Each file f.v is compiled in
a file f.vo to be loaded with the Require command (as seen above).

A Unix tool coq_makefile is provided to generate a Makefile to automate such a compilation.
It is used as follows:

unix% coq_makefile f1.v ... fn.v -o Makefile

The dependencies between the various Coq files are maintained into the file .depend (initially, it has
to be created by the user, using for instance the command touch .depend). Then it can be updated
with the command:

unix% make depend

3.2 Notations

3.2.1 Implicit Arguments

Some typing informations in terms are redundant. For instance, let us consider the constructor of poly-
morphic pairs:

Coq < Check pair.
pair

: forall A B : Type, A -> B -> A * B

To build a pair of two natural numbers, it is not necessary to give the four arguments, but only the last
two, since types A and B can be inferred as the types of the last two arguments, respectively:
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Coq < Check (pair 0 0).
(0, 0)

: nat * nat

A general mechanism, called implicit arguments, allows such shortcuts. It defines a set of arguments that
can be inferred from other arguments. More precisely, if the type of a constant c is forall (x1 : type1) . . . (xn : typen), type
then argument xi is considered implicit if xi is a free variable in one of the types typej , in a position
which cannot be erased by reduction. Such arguments are then omitted. This mechanism is enabled with
the following command:

Coq < Set Implicit Arguments.

Then one can define for instance:

Coq < Definition pair3 (A B C:Set) (x:A) (y:B) (z:C) :
Coq < A * (B * C) := pair x (pair y z).

and implicit arguments can be inspected using the Print Implicit command:

Coq < Print Implicit pair3.
pair3 : forall A B C : Set, A -> B -> C -> A * (B * C)
Arguments A, B, C are implicit

If the constant is applied to an argument then this argument is considered as the first non implicit ar-
gument. A special syntax @pair3 allows to refer to the constant without implicit arguments. It is
also possible to specify an explicit value for an implicit argument with syntax (x:=t). Here are some
examples:

Coq < Check (pair3 0 true 1).
pair3 0 true 1

: nat * (bool * nat)

Coq < Check (pair3 (A:=nat)).
pair3 (A:=nat)

: forall B C : Set, nat -> B -> C -> nat * (B * C)

Coq < Check (pair3 (B:=bool) (C:=nat) 0).
pair3 (B:=bool) (C:=nat) 0

: bool -> nat -> nat * (bool * nat)

The generation of implicit arguments can be disabled with the command

Coq < Unset Implicit Arguments.

Finally, it is also possible to enforce some implicit arguments. For instance, it is possible to keep
only A as an implicit argument for pair3, as follows:

Coq < Implicit Arguments pair3 [A].
Coq < Print Implicit pair3.
pair3 : forall A B C : Set, A -> B -> C -> A * (B * C)
Argument A is implicit

Since version 8.0 of Coq, all constants in the standard library are defined with the implicit arguments
mechanism enabled.
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3.2.2 Incomplete Terms

A subterm can be replaced by the symbol _ if it can be inferred from the other parts of the term during
typing.

Coq < Parameter f : forall (n:nat), n=O -> nat.
Coq < Check (f _ (refl_equal O)).

(Note that with implicit arguments enabled, the first argument of f could be simply omitted.)

3.2.3 Untyped Abstractions

If the expected type for a variable can be inferred during typing, then it can be omitted in binders:

Coq < Definition istrue b := b = true.
Coq < Definition istrue’ := fun b => b = true.
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