Module Master Recherche
Apprentissage et Fouille

Michele Sebag
http://tao.lri.fr

Automne 2009



Apprentissage non supervisé

» Case Study
» Data Clustering

» Data Streaming



Case study: Autonomic Computing

Considering current technologies, we expect that the total number of
device administrators will exceed 220 millions by 2010.
Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006
Irina Rish & Gerry Tesauro.



Autonomic Computing

The need

» Main bottleneck of the deployment of complex systems:
shortage of skilled administrators

Vision
» Computing systems take care of the mundane elements of
management by themselves.

» Inspiration: central nervous system (regulating temperature,
breathing, and heart rate without conscious thought)

Goal
Computing systems that manage themselves in accordance with
high-level objectives from humans

Kephart & Chess, IEEE Computer 2003



Autonomic Grid System

» Grid Systems
Presentation of EGEE, Enabling Grids for e-Science in Europe

» Acquiring the data
The grid observatory
» Preparation of the data

» Functional dependencies
» Dimensionality reduction
» Propositionalization



EGEE: Enabling Grids for E-Science in Europe




EGEE, 2

Infrastructure project started in 2001 — FP6 and FP7
Large scale, production quality grid

Core node: Lab. Accelerateur Linéaire, Université Paris-Sud
240 partners, 41,000 CPUs, all over the world

5 Peta bytes storage

24 x 7, 20 K concurrent jobs

Web: www.eu-egee.org
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Storage as important as CPU



Applications
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High energy physics

Life sciences
Astrophysics
Computational chemistry
Earth sciences

Financial simulation
Fusion

Multimedia

Geophysics




Autonomic Grid

Requisite: The Grid Observatory

» Cluster in the EGEE-III proposal 2008-2010

» Data collection and publication: filtering, clustering

Workload management

» Models of the grid dynamics
» Models of requirements and middleware reaction: time series and beyond
» Utility based-scheduling, local and global: MAB problem

» Policy evaluations: very large scale optimization

Fault detection and diagnosis

» Categorization of failure modes from the Logging and Bookkeeping:
feature construction, clustering,

» Abrupt changepoint detection



Autonomic Grid: The Grid Observatory

Data acquisition

» Data have not been stored with DM in mind never

» Data [partially] automatically generated here
for EGEE services

» redundant
> little expert help

It's no longer: the expert feeds the machine with data. Rather,
machines feed machines... J. Gama

Data preprocessing

» 80% of the human cost

» Governs the quality of the output



The grid system and the data

The Workload Management System

» User Interface User submits job description
and requirements, and gets the results

» Resource Broker Decides Computing Element
» Job Submission Service Submits to CE and Checks
» Logging and Bookkeeping Service Archive the data

Job Lifecycle
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The data

@& sub-service description:

L2 T A 2 2

jobid: -008HR9SLHRcSr7JWNR1dQ
vserid: 38f1fd102b587230adc5dc309fe525df
timestamp:  2004-10-03 07:33:07

event code: 1 (Transfer) or 2 (Accepted)
prog: Userlnterface or WorkloadManager

event

L2 R N 7

event table|

internals sub-components of an events
From: UserInterface short fields
From_host: egee-rb-01.cnaf.infn.it
Destination: NetworkServer

Dest_host: grid10.lalin2p3.fr (undefined)

long fields

Job

ew job

event

registration

event 1

event 2

Accepted

event 3

event 4

Result: ok
Reason: Successfully Cancelled ..............

First long fields table: re-describe the job
(based on user's description):

+ Following ones: add job services in the event

» Requirements: GlueHostMemorySize > 512
» Executable:  "/usrbin/wget"

event n

G

Enqueued




Data Tables

Events

| jobid | event | code | host | time_stanp | arrived | level |

| ---BrI1BgbIqkutszqGimA | @ | 17 | atlfarm008.mi.infn.it | 2004-08-17 16:17:48 | 2004-09-17 16:17:49 | 8|

| ---BrIi1BgbIqkwtszqGimh | il 1 | atlfarm00.mi.infn.it | 2004-09-17 16:17:48 | 2004-09-17 16:17:49 | a |

| ——-BrI1BgbIqkwtszqGfmA | 2| 2 | 1xb0728.cern.ch | 2004-08-17 16:17:53 | 2004-08-17 16:17:53 | a |

| —--BrI1BgbIqkwtszqGfmA | 3| 4 | 1xb0728.cern.ch | 2004-09-17 16:18:00 | 2004-09-17 16:18:01 | 8 |

| ---BrI1BgbIqkwtszqGimA | 4| 1| atlfarm008.mi.infn.it | 2004-09-17 16:18:00 | 2004-09-17 18:18:01 | 8|

| ---BrI1BgbIqkwtezqGimh | 5| 5| lxb0728.cern.ch | 2004-00-17 16:18:01 | 2004-09-17 16:18:01 | 8 |
Short Fields

1 0 | JOBTYPE | STMPLE

1 0| ws | 1xboT28.cern.ch:7T772

| 0 | NSUBJOBS | o

1 0 | SEED | uLUOBArrdVe8041PLThISH

| 0 | SEQCODE | UI=000001:N: : WM=000000: BE : LRMS=000000 : APP=000000

1 0 | SRC_INSTANCE |

1 1| DESTINATION | MetworkServer

1 1 | DEST_HOST | 1xb0728. cern.ch

1 1 | DEST_INSTANCE | 1xb0T28.carn.ch:7772

1 1 | DEST_JOBID |

1 1 | REASON |

1 1 | RESULT | START

1 1 | SEQCODE | UI=000002: NS= {WH=000000 1 BE : LRMS=000000 : APP=000000

1 1 | SRC_INSTANCE |

1 2 | FROM | UssrInterface

1 2 | FROM_HOST | 1xb0728.cern.ch

1 2 | FROM_INSTANCE |

1 2 | LOCAL_JOBID |

1 2 | SEQCODE | UT=000003: N3= 1 WH=000000 ¢ : BE : LES=000000 : AFP=000000

1 2 | SRC_INSTANCE | 7772

| 3 | QUEVE | /fvar/edgwl/workload_manager/input.f1l

| 3 | REASON |

1 3 | RESULT | ox

1 3 | SEQCODE | UT=000003: NS= {WH=000000 1 BE : LRMS=000000 : APP=000000

1 3 | SRC_INSTANCE |




Data Tables

Long Fields (4Gb)

| jobid | event | name | value

| ---BrIiBgbIqkwtezqGima | 0 | 0L |[ requirements = ( ( { ( Member("V0-atlas-lcg-release

-0.0.2" ,other.GlueHostApplicationSoftwareRunTineEnvironment) )} &k Member("VD-atlas-release

-8.0.5" ,other.GlueHostApplicationSoftwareRunTimeEnvironment) )} && ( other.GlueCEPolicyMaxCPUTime »= ( Member("LCG

-2%_1_0" other GlueHostApplicationSoftwareRunTimeEnvironment) 7 { 38000000 / B0 ) : 38000000 ) / other GlueHostBenchmarkSTOO ) ) ki
(other.¢lueHostHetworkAdapterutboundIP == true } } &k { other.GlueHostMainMemoryRAMSize >= 512 ); RetryCount = 0; edg_jebid =
“https://1xb0728 . carn. ch: 9000/---Br11BghlqkwtazqCimA"; Arguments = "de2.003048 evgen.H4_170_WW._00002.peol.raat

dc2. 003048 . simul (H4_1T0_WW._00208.pool.root.2 -6 6 50 350 208"; Environment = {

"LEXOR_WRAPPER_LOC=lexor_wrapper.log" ,"LEXOR_STAGEOUT_MAXATTEMPT=E","LEXDR_STACEDUT_INTERVAL=60",
"LEXOR_LCG_GFAL_INFOSYS=1xb2011.cern.ch:2170", "LEXOR_T_RELEASE=8.0.5",

"LEXDR_T_PACKAGE=8.0.5.6/JobTransforms" , "LEXOR_T_BASEDIR=JobTransforma-08-00-05-06",

“LEXDR_TRANSFORMATION=ghare,

de2.gdeim. trf" "LEXOR_STAGEIN_LOG=dq_233387_stagein.leg","LEXOR_STAGEIN_SCRIPT=dq_233387_stagein.sh",
"LEXDR_STAGEDUT_LOG=dq_233387_stageout.log" ,"LEXOR_STAGEDUT_SCRIPT=dq_233387_stageout.sh” };

MyProxyServer = "1lxb0727.cern.ch"; JobType = "normal"; Executable =

"lexor_wrap.sh"; Stdlutput = "dc2.003048.simul.H4_170_WW._00208.job.log.2"; DutputSandbox = {

"metadata.xml”,"lexor wrapper.log","dg 233387 _stagein.log","dg 233387_ atageout.log",

"dc2.003048.5imul (H&_170_WW._00208. Jo'h log.2" }; VirtualOrganisation = "atlaa”

rank = { other.GlueCEStateEstis Time > 999 } 7 -{ other. E‘.lueCEStateEatm,ated.ReaponaeT)me ¥t
other.GlusCEStateRunningJobs ); Type = "job"; StdError = "dc2,003048.aizul.E4_170_WW._00208. job.10g.2";
DefaultRank = -other.GlueCEStateEstimatedResponzeTime;

InputSandbox = {

"/home/negri/windmill-0.9. 15/1lexor/inputsandbox/lexor_wrap.sh",
"/home/negri/windmill-0.9, 15/lexor/inputsandbox/dgleg. py"
"/home/negrifvindmill-0.9. 15/1lexor/inputsandbox/edgropi.sh",

"/home/negri/windnill-0.9. 15/lexor/inputsandbox/dqrep.pl",
"/home/negri/windmill-0.9.15/1lexor/inputsandbox,/run_dglcg.sh","/top/lexor/negri/dq 233387 _stagein.sh”,
"/tzp/lexor/negri/dq_ 233387 _stageout.sh" } ]
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Part 1. Clustering

K-Means
Expectation Maximization
Selecting the number of clusters

Case study
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Affinity propagation



Clustering

http://www.ofai.at/ elias.pampalk/music/




Clustering Questions

Hard or soft 7

» Hard: find a partition of the data

> Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?

» Parametric: number K of clusters is known

» Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:

» Complexity
> Outliers

» Validation



Formal Background

Notations
& {x1,...xn} dataset
N number of data points
K number of clusters given or optimized
Cx k-th cluster Hard clustering

7(i)  index of cluster containing x;

fx k-th model Soft clustering
’yk(l) PF(X,'|fk)

Solution

Hard Clustering  Partition A = (Cy, ... Ck)
Soft Clustering Vi Y, (i) =1



Formal Background, 2

Quality / Cost function
Measures how well the clusters characterize the data

> (log)likelihood soft clustering
» dispersion hard clustering
AR
2
Side X dsm)
k=1 X;,X; in Ck
Tradeoff

Quality increases with K = Regularization needed
to avoid one cluster per data point



Clustering vs Classification

Classification

K # classes (given)
Quality  Generalization error
Focus on Test set
Goal Prediction
Analysis discriminant

Field mature

Marina Meila

http://videolectures.net/

Clustering

# clusters (unknown)
many cost functions
Training set
Interpretation
exploratory
new



Non-Parametric Clustering

Hierarchical Clustering

Principle

> agglomerative (join nearest clusters)

» divisive (split most dispersed cluster)

| n,m%

CONS: Complexity O(N3)



Hierarchical Clustering, example
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Influence of distance/similarity

b s ————

—

- L L5 L

Euclidean Vector angle Pearson
> oilxi —xI)? Euclidean distance
!
N 1oz Cosine angle
d(x, x') = IIAIE] g

1 Sil-R)(-x)

| 1= Toamr—=y  Pearson



Parametric Clustering

K is known

Algorithms based on distances

» K-means

» graph / cut

Algorithms based on models

» Mixture of models: EM algorithm



Clustering

K-Means

Expectation Maximization
Selecting the number of clusters
Affinity propagation

Scalability
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K-Means

Algorithm

1.

No o e

Init:
Uniformly draw K’ points x;, in &
Set G = {x;;}
Repeat
Draw without replacement x; from &
7(7) = argming=1. k{d(x;, Cx)} find best cluster for x;
CT(,-) = CT(,-) UX,‘ add x; to CT(,-)
Until all points have been drawn

If partition C ... Cxk has changed Stabilize
Define xj, = best point in Cx, Cx = {x;, }, goto 2.

Algorithm terminates



K-Means, Knobs

Knob 1 : define d(x;, Cx)

> min{d(x;,x;),x; € Cx}
* average{d(x;,x;),x; € Cx}
> max{d(x,-,xj),xj S Ck}

Knob 2 : define “best” in Cy
» Medoid

* Average
(does not belong to &)

favors

long clusters
compact clusters

spheric clusters

argmin;{zxjeck d(xj,x;)}

1 )
TG ijeck Xj



No single best choice

Fig. 1. Optimizing the diameter produces B while A is clearly more desirable.

Fic. 2. The inferior clustering B is found by optimizing the 2-median measure.



K-Means, Discussion

PROS
» Complexity O(K x N)

» Can incorporate prior knowledge

CONS
» Sensitive to initialization
» Sensitive to outliers

» Sensitive to irrelevant attributes

initialization



K-Means, Convergence

» For cost function
L) =Y > d(xi, x;)

» for d(x;, Cx) = average {d(x;,x;),x; € Cx}
> for "best” in C = average of x; € C;

K-means converges toward a (local) minimum of L.



K-Means, Practicalities

Initialization

» Uniform sampling
> Average of £ 4+ random perturbations
> Average of £ + orthogonal perturbations

» Extreme points: select x;, uniformly in &, then

J
Select x; = argmax{z d(xij, %)}
k=1

Pre-processing

» Mean-centering the dataset



Clustering

K-Means

Expectation Maximization
Selecting the number of clusters
Affinity propagation

Scalability
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Model-based clustering

Mixture of components

» Density f = Z,’le Ty Fi
» fi: the k-th component of the mixture
g fi(x)

> 7k(i) = Tf(x)
» induces Cx = {x; / k = argmax{v«(j)}}

Nature of components: prior knowledge

» Most often Gaussian: fx = (uk, Xk)

» Beware: clusters are not always Gaussian...

@ o, 0
;?Qﬂ * t?’%o
¢ W}\ Qgc -
o % s . A °§ R




Model-based clustering, 2

Search space

» Solution : (ﬂk,ﬂk,zk) 1 =10

Criterion: log-likelihood of dataset

to be maximized.



Model-based clustering with EM
Formalization

> Define z; , = 1 iff x; belongs to Cx.
> Elzj k] = v(i) prob. x; generated by 7 fy
» Expectation of log likelihood

E[(0)] o< oy iy ilk) log(mifi(xi))

=N Sk (k) log m + Sy ST (k) log fi(x;)

EM optimization

E step Given @, compute

M step Given (i), compute

0* = (mx, ik, Lk ) = argminE[0(0)]



Maximization step

7 Fraction of points in Cj

1 N
Tk = ;’yk(/)

ti: Mean of Cy

e ZI,V:]_ Vi (7)

Y «: Covariance

s ity ) — ) (% — ju)
k

- S i)



Clustering

K-Means

Expectation Maximization
Selecting the number of clusters
Affinity propagation

Scalability
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Choosing the number of clusters

K-means constructs a partition whatever the K value is.
Selection of K

» Bayesian approaches
Tradeoff between accuracy / richness of the model

» Stability
Varying the data should not change the result

» Gap statistics
Compare with null hypothesis: all data in same cluster.



Bayesian approaches

Bayesian Information Criterion

mcw)zewy—ﬁ?mgN

Select K = argmax BIC(0)
where #6 = number of free parameters in 6:

» if all components have same scalar variance o
#9=K—-1+1+ Kd
» if each component has a scalar variance o
#0=K -1+ K(d+1)
» if each component has a full covariance matrix X,

#0=K—1+K(d+d(d —1)/2)



Gap statistics

Principle: hypothesis testing

1. Consider hypothesis Hp: there is no cluster in the data.
& is generated from a no-cluster distribution 7.

2. Estimate the distribution fy x of L(Cy, ... Ck) for data
generated after 7. Analytically if 7 is simple
Use Monte-Carlo methods otherwise

3. Reject Hy with confidence « if the probability of generating
the true value £(Cy, ... Ck) under fy i is less than a.

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm

Assume & extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample & according to this distribution
2. Apply K-means on this sample
3. Measure the associated loss function

Repeat : compute the average Lo(K) and variance oo(K)
Define the gap:

Gap(K) = Lo(K) — L(Cy, ... Ck)
Rule Select min K s.t.

Gap(K) > Gap(K + 1) —oo(K + 1)

What is nice: also tells if there are no clusters in the data...



Stability
Principle

» Consider &£ perturbed from £

» Construct i, ... Cj from &’

> Evaluate the “distance” between (Cy,...Ck) and (Cf,... Cy)
> If small distance (stability), K is OK

Distortion D(A)

Define S S; = <x;,x; >
(Mi,vi)  i-th (eigenvalue, eigenvector) of S
X X,'J: 1iffX,’€C,’
D(A) =Y |Ixi — ur(i|I? = tr(S) — tr(X'SX)

Minimal distortion D* = tr(S) — S K A,



Stability, 2
Results

» A has low distortion = (p1, ... uk) close to space (v, ... vk).
» Aj, and A have low distortion = ‘“close”

» (and close to “optimal” clustering)

Meila ICML 06

Counter-example

©




Part 1. Clustering

K-Means
Expectation Maximization
Selecting the number of clusters

Case study
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Job representation

@i sub-service description: Job e\fv JOb_
> jobid: -008HR9SLHRcSr7TWNR1dQ event 0 E’eg's"at“’"]
> wpserid: 38f1fd102b587230adc5dc309fc525df
* timestamp:  2004-10-03 07:33:07 event 1
> event code: 1 (Transfer) or 2 (Accepted) event @
2 prog: Userlnterface or WorkloadManager event 2
event table|
internals sub-components of an events event 3
2 From: UserInterface short ficlds
2 Fron:l_h(.)st: egee-rb-01.cnaf.infn.it long fields event 4
» Destination: NetworkServer
> Dest_host: grid10.lalin2p3.fr (undefined)
+ Result: ok .
» Reason: Successfully Cancelled ............. eventn
First long fields table: re-describe the job ’

(based on user's description):
+ Following ones: add job services in the event

> Requirements: GlueHostMemorySize > 512
> Executable:  "/usrbin/wget"

Xiangliang Zhang et al., ICDM wshop on Data streams, 2007



Job representation

Challenges

» Sparse representation, e.g. “user id"

» No natural distance

Prior knowledge

» Coarse job classification: succeeds (SUC) or fails (FAIL)

» Many failure types: Not Available Resources (NAR); User
Aborted (ABU); Generic and non-Generic Error (GNG).
» Jobs are heterogeneous

» Due to users (advanced or naive)
» Due to virtual organizations (jobs in physics # jobs in biology)
» Due to time: grid load depends on the community activity



Feature extraction

Slicing data
to get rid of heterogeneity
» Split jobs per user: U; = { jobs of i-th user }
> Split jobs per week: W; = { jobs launched in j-th week }

Building features

» Each data slice: a supervised learning problem
(discriminating SUCC from FAIL)

h:X— 1R

» Supervised Learning Algorithms:

» Support Vector Machine SVMLight
» Optimization of AUC ROGER



Feature Extraction, 2

New features

Define
hy,i hypothesis learned from data slice U;
U:X— R#

U(x) = (hu,1(x), ... hy #u(x))
Symmetrically  h,, ; hypothesis learned from data slice W;
W X — R#Y

W(x) = (hw,1(x), . .. hw zw(x))

Change of representation

E — Eu={(U(x),yi),i=1...N}
— Ew={(W(xj),yi),i=1...N}

Discussion

» Natural distance on RY

» But new attributes h,, ; likely to be redundant



Feature Extraction: Double clustering

Slonim & Tishby, 2000

feature clustering
(Dimensionality reduction)

@ T<<1700

All test jobs Job, Xpg o o= Xppo oo Nygmg fia o Far
U-representation j;b, =l xa e Xy s Xiasoe fia - Fur D
(W-representation) b} |x., .. %, « Xeowl [Far o For
example
clustering
Clusters of test jobs o
Ce

KE==m



Experimental setting

The datasets

» Training set £: 222,500 jobs 36% SUCC, 74% FAIL
» Test set 7: 21,512 jobs

Hypothesis construction

» SVM: one hypothesis per slice: U:x—R*
W: X — R®
» ROGER: 50 hypotheses per slice U: X — RY0
W: X — R?0

Clustering

Foreach K =5...30, Apply K-means to 7
» Considering new representations U and W
» Learned after SVM and Roger.



Goal of Experiments

Interpretation
Examine the clusters

Stability

» Compare Ak and Ak
» Compare Ak ¢y and Ak w



Interpretation

mm T T T T T
=
[

3001 - o 11T
[ B

e * Canceled by User (Mo

specitied reasons)
2000 - = unspecified error / cannot

download file result in Canceling

= Job prosy is expired
= varions reasons result in Job
RetryCount {==1) hit

= cannot receive/read data

= unspecified ermor

= user 15 not anthorized on any resource
= insert Data failed
* Problems during runk evaluation

= various reasons result in
Job RetryCount (0} hit
» loh proxy 15 expired




Interpretation, 2

25

Errar Rate (%)

U-clustered

—— averageonal T

¥ minimumn of &l T
—&— average on al T excluding ABU
—#— minimum of 3l T excluding AEU

Lz
PRV S S e S

e

. ; LN
Traedex we r'*".’-

»
=y v




Interpretation, 3

Pure clusters
» Most clusters are pure wrt sub-classes NAR, GNG
which were unknown from the algorithm

» Finer-grained classes are discovered:  Problem during rank
evaluation; job proxy expired; insert Data failed

» ABU class (1.2%) is not properly identified:
many reasons why job might be Aborted by User

Usage
Use prediction for user-friendly service
Anticipate job failures



Stability
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Stability, 2

» Stability wrt initialization, for both W and U representations
» Stability of clusters based on W and U-based representations

» Decreases gracefully with K
(optimal value = 1)



Grid Modelling, wrap-up

Conclusion

» Importance of representation as usual

» Clustering: stable wrt K and representation change
re-discovers types of failures
discovers finer-grained failures

Future work

» Cluster users (= sets of jobs)

v

Cluster weeks (= sets of jobs)

» Find scenarios
naive users gaining expertise;
grid load & temporal regularities

» Identify communities of users.

» Use scenarios to test/optimize grid services (e.g. scheduler)



Autonomic Computing, wrap-up

Huge needs

» Modelling systems
Black box to calibrate, train, optimize services

» Understanding systems Hints to repair, re-design systems

Dealing with Complex Systems

» Findings often challenge conventional wisdom
» Theoretical vs Empirical models

» Complex systems are counter-intuitive sometimes



Autonomic Computing, wrap-up, 2

Good practice
» No Magic !
I don't see anything, I'll use ML or DM

» Use all of your prior knowledge
If you can measure/model it, don't guess it!

» Have conjectures

» Test them! Beware: False Discovery Rate
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From K-Means to K-Centers

Assumptions for K-Means

» A distance or dissimilarity
» Possibility to create artefacts barycenters

» Not applicable in some domains average molecule?
average sentence?

K-Centers, position of the problem

» A combinatorial optimization problem.
Find o:{1,...,N}— {1,..., N} minimizing:

N
E[U] = Z d(X,’, Xa(i))
i=1

(What is missing here ?)



Clustering

K-Means
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Motivations

Clustering: Unsupervised learning

Affinity Propagation and State of the art

K-means K-centers AP
exemplar artefact actual point actual point
parameter K K s* (penalty)
algorithm greedy search | greedy search | message passing

performance not stable not stable stable
complexity N x K N x K NZlog(N)

Clustering by Passing Messages Between Data Points. B.J. Frey, D. Dueck.

Science 2007



Affinity Propagation

Given
E={e,e,...,en} elements
d(ei, €) their dissimilarity
Findo: & & o(e;), exemplar representing ¢;
such that:

N
0 = argmax Z S(ei) O-(ei))
i=1

S(ei,ej) = —d?(ej, &) ifi#j
where (er, ¢) *( i€) 7J s*:  penalty parameter
S(ej,ei) =—s
Particular cases
» s* = 00, only one exemplar 1 cluster

» s* =0, every point is an exemplar N clusters



Affinity Propagation, Principle

Algorithm: Message propagation

» Responsibility r(i, k)
> Availability a(i, k).

B
Sending respensibilities
Canclidats
exernplar k s+l
. exemplar &’
i k) /ﬂl.i..fi')
o —_ ®
Data paint i

could x,x be examplar for x;

c

Sending availabilities

Candidate
axemplar &

Supporting
data point ¢




Affinity Propagation, 2

Two types of messages
» r(i, k) : Responsibility of i to k

» a(i, k) : Availability of i as examplar for k
Rules of propagation

r(i, k) = 5(6,’, ek) - maxk/7k/¢k{a(i, k/) + 5(6,’, e,’()}
r(k, k) S(ek,ek) — maxk/,k/¢k{5(ek,e,’<)}

a(i,k) = min{0,r(k, k) + 3 iz max{0, r(i’,k)}}
a(k, k) = > i max{0, r(i’, k)}



lterations of Message passing
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lterations of Message passing
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lterations of Message passing

ITERATION #2

Y




lterations of Message passing

ITERATION #3
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lterations of Message passing

ITERATION #4
s
\z;\ ¥
{ 34

N

Y



lterations of Message passing

ITERATION #5
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lterations of Message passing

ITERATION #6
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lterations of Message passing

CONVERGENCE




Affinity Propagation, cont'd
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Affinity Propagation, cont'd
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Affinity Propagation in a Nutshell

WHEN to use it ?
When averages don’t make sense e.g., molecules; documents

PROS vs K-centers
Lower distortion D([o]) = N, d%(ej, o(e;))

CONS: Computational complexity
» Similarity computation: O(N?)
> Message passing: O(N?log N)



Clustering

K-Means

Expectation Maximization
Selecting the number of clusters
Affinity propagation

Scalability

vV v v v Y



Hierarchical AP

Data

w Randomly divided into T subsets
S o P s

Clustering by AP

1 2 3 T
{e;} {ef} {e]] lel} exemplars
aggregation
lel el ..., el
(n,n} nl .
L ‘ i Clustering by AP ??

Clustering data streams: Theory and practice. S. Guha, A. Meyerson, N.
Mishra, R. Motwani. TKDE 2003.



Weighted AP

AP WAP

e (ei, ni)
5(6,’, ej) — n; X 5(6,’, ej)
5(6,‘,6,‘) — 5(6,‘,6,’)4-([7,’— 1) X €

S(ej, &) price for e; to select ¢; as an exemplar

With i )
€ variance of n; points

Proposition

WAP = AP with duplicated elements



Hierarchical WAP

Data

w Randomly divided into
‘ ‘ ‘ ‘ ‘ ‘ Tt E VN subsets

@ Clustering by AP

exemplars

tnlonk,.om™) Clustering by WAP

» Complexity of HIWAP is O(N3/2)

» — can be iteratively reduced to O(N'*7)



Apprentissage non supervisé

» Case Study
» Data Clustering

» Data Streaming



Part 2. Data Streaming

» When: data, specificities
» What: goals

» How: algorithms

More: see Joao Gama’s tutorial,
http://wiki.kdubiq.org/summerschool2008 /index.php/Main/Materials



Motivations

Electric Power Network



Data

Input
» Continuous flow of (possibly corrupted) data, high speed
» Huge number of sensors, variable along time (failures)
» Spatio-temporal data
Output
» Cluster: profiles of consumers
» Prediction: peaks of demand

» Monitor Evolution: Change detection, anomaly detection



Where is the problem 7

Standard Data Analysis

» Select a sample

» Generate a model (clustering, neural nets, ...)



Where is the problem 7

Standard Data Analysis

» Select a sample

» Generate a model (clustering, neural nets, ...

Does not work...

» World is not static

» Options, Users, Climate, ... change



Specificities of data

Domain
» Radar: meteorological observations
» Satellite: images, radiation
» Astronomical surveys: radio
» Internet: traffic logs, user queries, ...
» Sensor networks
» Telecommunications
Features
» Most data never seen by humans

» Need for REAL-TIME monitoring, (intrusion, outliers,
anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically
distributed)



Data streaming Challenges

Maintain Decision Models in real-time
> incorporate new information
» forget old/outdated information

» detect changes and adapt models accordingly

comply with speed

Unbounded training sets Prefer fast approximate answers...

» Approximation: Find answer with factor 1 + ¢
» Probably correct: Pr(answer correct ) = 1 -0
» PAC: €, (Probably Approximately Correct)
» Space ~ O(1/e?log(1/9))



Data Mining vs Data Streaming

Traditional Stream
Nr. of Passes Multiple Single
Processing Time | Unlimited Restricted
Memory Usage Unlimited Restricted
Type of Result Accurate | Approximate
Distributed No Yes




What: queries on a data stream

» Sample
» Count number of distinct values / attribute
» Estimate sliding average (number of 1's in a sliding window)

> Get top-k elements

Application: Compute entropy of the stream

H(x) = pilog>(pi)

useful to detect anomalies



Sampling

Uniform sampling: each one out of n examples is sampled with
probability 1/n.

What if we don't know the size ?

Standard

» Sample instances at periodic time intervals

» Loss of information
Reservoir Sampling

» Create buffer size k

> Insert first k elements

> Insert i-th element with probability k/i

» Delete a buffer element at random
Limitations

» Unlikely to detect changes/anomalies

» Hard to parallelize



Count number of values

Problem

Domain of the attribute is {1,... M}

Piece of cake if memory available... What if the memory available
is log(M) ?

Flajolet-Martin 1983

Based on hashing: {1,... M} — {0,...2L} with L = log(M).

x — hash(x) =y — position least significant bit, Isb(x)



Count number of values, followed

Init: BITMAP({0,...L}) =0

Loop: Read x, BITMAP(Isb(x)) = 1

- BITMAP
olaflofo o Ll ol13o0}b1 L1111 111
Y - amnt
T fringe of 0/1s I
position >= around logid) position <<
lag(d) ) logl(d}

Result

R = position of rightmost 0 in H

M ~ 2R /7735




Decision Trees for Data Streaming

Principle
Grow the tree if evidence best attribute > second best

Algorithm parameter: confidence ¢ (user-defined)
While true
Read example, propagate until a leaf
If enough examples in leaf
Compute IG for all attributes;

o/ Fema/e)

Keep best if IG(best) - 1G(second best ) > ¢

Mining High Speed Data Streams, Pedro Domingos, Geoffrey
Hulten, KDD-00



Stream clustering

cooOQOQ o000 0000

Model i0Q Reservoir




Stream clustering

ocooOO OO o000 0

Model (0O Reservoir

Does e, fit the current model 77

» if yes, update the model

» otherwise, put outlier e; in reservoir




Stream clustering

00000 0000000 0D

Model (0 Reservoir

Does e, fit the current model 77

» if yes, update the model

» otherwise, put outlier e; in reservoir




Stream clustering

00000 000 0000 00N

Model

Does e, fit the current model 77

» if yes, update the model

]@)

Reservoir

» otherwise, put outlier e; in reservoir




Stream clustering

00000 0000000 0O

Model

Has the distribution changed 7
» if yes, rebuild the model

» otherwise, continue

O

oO

Reservoir

NN N

CHANGE TEST




Stream clustering

00000 0000000 00D

Model

Has the distribution changed 7

» if yes, rebuild the model

O

o /.

» otherwise, continue

Reservoir

CHANGE TEST




Strap

data

data streaming
process system

,models

Does ¢, fit the current model ?

» if yes, update the model

» otherwise, put e; in reservoir

Has the distribution changed ?

» if yes, rebuild the model

» otherwise, continue

{ eiv ni,z[, tl }



Update the model

Stream Model: {(ej, nj, Xj, tj)}
> ¢ examplar
» n; number of items represented by e;
» 3> ; sum of distortions incurred by ¢;

> t; last time step when a point was affected to ¢;
Update with decay: A: time window

e, A 1
ni = nj X <A+(t—t,-) + n;+1)

- A i 2
Z,‘ = Z,‘ X Ar(t—t) + #d(eh ei)
ti =t



Rebuild the model

Trigger

» when reservoir is full

» when changes are detected
Page-Hinkley statistic

Pt = % Z;Ll Pr
me =341 (Pe— Pe+9)
PH; = max{my} — m;

HINKLEY D. Inference about the change-point in a sequence of random
variables. Biometrika, 1970
PAGE E. Continuous inspection schemes. Biometrika, 1954



Experimental validation

Data used

» Artificial dataset
» Real world data: KDD99 data

» intrusion detection benchmark
» 494,021 network connection records in R
» 23 classes: 1 normal + 22 attacks

» Baseline: DenStream
F. Cao, M. Ester, W. Qian, A. Zhou. Density-Based Clustering over an
Evolving Data Stream with Noise. SDM 2006.

Performance indicator
» Distortion
» Clustering accuracy / Clustering purity (supervised setting)

KDD Cup 1999 data: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.



Accuracy along time
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Restart criteria: MaxSizeR vs PH
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Discussion

Rebuild: ReservoirSize vs PH
» PH is 10% better than ReservoirSize

» PH is less stable

Strap vs DenStream
» Pros

> better accuracy
» model available at any time

» Cons

» DenStream: 7 seconds
» Strap : 7 mins



Conclusion

Scalability: Hi-WAP
» Reduce complexity from O(N?) to O(N3/?)
> iteratively reduce toward O(N(+7))

Stream clustering: Strap
» Hybridized with an efficient change detection method, Page-Hinkley
> Model available at any time
» BUT: slower than DenStream

Future work Provide an upper bound on the distortion loss caused by
Hi-WAP



Open issues

What's new
Forget about iid;
Forget about more than linear complexity (and log space)

Challenges
Online, Anytime algs
Distributed alg.
Criteria of performance
Integration of change detection



