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Case study: Autonomic Computing

Considering current technologies, we expect that the total number of
device administrators will exceed 220 millions by 2010.

Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006

Irina Rish & Gerry Tesauro.



Autonomic Computing

The need

I Main bottleneck of the deployment of complex systems:
shortage of skilled administrators

Vision

I Computing systems take care of the mundane elements of
management by themselves.

I Inspiration: central nervous system (regulating temperature,
breathing, and heart rate without conscious thought)

Goal
Computing systems that manage themselves in accordance with
high-level objectives from humans

Kephart & Chess, IEEE Computer 2003



Autonomic Grid System

I Grid Systems
Presentation of EGEE, Enabling Grids for e-Science in Europe

I Acquiring the data
The grid observatory

I Preparation of the data
I Functional dependencies
I Dimensionality reduction
I Propositionalization



EGEE: Enabling Grids for E-Science in Europe



EGEE, 2

I Infrastructure project started in 2001 → FP6 and FP7

I Large scale, production quality grid

I Core node: Lab. Accelerateur Linéaire, Université Paris-Sud

I 240 partners, 41,000 CPUs, all over the world

I 5 Peta bytes storage

I 24 × 7, 20 K concurrent jobs

I Web: www.eu-egee.org

Storage as important as CPU



Applications

I High energy physics

I Life sciences

I Astrophysics

I Computational chemistry

I Earth sciences

I Financial simulation

I Fusion

I Multimedia

I Geophysics



Autonomic Grid

Requisite: The Grid Observatory

I Cluster in the EGEE-III proposal 2008-2010

I Data collection and publication: filtering, clustering

Workload management

I Models of the grid dynamics

I Models of requirements and middleware reaction: time series and beyond

I Utility based-scheduling, local and global: MAB problem

I Policy evaluations: very large scale optimization

Fault detection and diagnosis

I Categorization of failure modes from the Logging and Bookkeeping:
feature construction, clustering,

I Abrupt changepoint detection



Autonomic Grid: The Grid Observatory

Data acquisition

I Data have not been stored with DM in mind never

I Data [partially] automatically generated here
for EGEE services

I redundant
I little expert help

It’s no longer: the expert feeds the machine with data. Rather,
machines feed machines... J. Gama

Data preprocessing

I 80% of the human cost

I Governs the quality of the output



The grid system and the data

The Workload Management System

I User Interface User submits job description
and requirements, and gets the results

I Resource Broker Decides Computing Element

I Job Submission Service Submits to CE and Checks

I Logging and Bookkeeping Service Archive the data

Job Lifecycle



The data



Data Tables

Events

Short Fields



Data Tables

Long Fields (4Gb)
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Part 1. Clustering

I K-Means

I Expectation Maximization

I Selecting the number of clusters

I Case study

I Affinity propagation



Clustering

http://www.ofai.at/ elias.pampalk/music/



Clustering Questions

Hard or soft ?

I Hard: find a partition of the data

I Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?

I Parametric: number K of clusters is known

I Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:

I Complexity

I Outliers

I Validation



Formal Background

Notations

E {x1, . . . xN} dataset
N number of data points
K number of clusters given or optimized

Ck k-th cluster Hard clustering
τ(i) index of cluster containing xi

fk k-th model Soft clustering
γk(i) Pr(xi |fk)

Solution

Hard Clustering Partition ∆ = (C1, . . .Ck)
Soft Clustering ∀i

∑
k γk(i) = 1



Formal Background, 2

Quality / Cost function

Measures how well the clusters characterize the data

I (log)likelihood soft clustering

I dispersion hard clustering

K∑
k=1

1

|Ck |2
∑

xi ,xj in Ck

d(xi , xj)
2

Tradeoff
Quality increases with K ⇒ Regularization needed

to avoid one cluster per data point



Clustering vs Classification

Marina Meila

http://videolectures.net/

Classification Clustering

K # classes (given) # clusters (unknown)
Quality Generalization error many cost functions

Focus on Test set Training set
Goal Prediction Interpretation

Analysis discriminant exploratory
Field mature new



Non-Parametric Clustering
Hierarchical Clustering

Principle

I agglomerative (join nearest clusters)

I divisive (split most dispersed cluster)

CONS: Complexity O(N3)



Hierarchical Clustering, example



Influence of distance/similarity

d(x , x ′) =



√∑
i (xi − x ′i )

2 Euclidean distance

1−
P

i xix
′
i

||x ||.||x ′|| Cosine angle

1−
P

i (xi−x̄)(x ′i−x̄ ′)
||x−x̄ ||.||x ′−x̄ ′|| Pearson



Parametric Clustering

K is known

Algorithms based on distances

I K -means

I graph / cut

Algorithms based on models

I Mixture of models: EM algorithm



Clustering

I K-Means

I Expectation Maximization

I Selecting the number of clusters

I Affinity propagation

I Scalability



K -Means

Algorithm

1. Init:
Uniformly draw K points xij in E
Set Cj = {xij}

2. Repeat

3. Draw without replacement xi from E
4. τ(i) = argmink=1...K{d(xi ,Ck)} find best cluster for xi

5. Cτ(i) = Cτ(i)

⋃
xi add xi to Cτ(i)

6. Until all points have been drawn

7. If partition C1 . . .CK has changed Stabilize
Define xik = best point in Ck , Ck = {xik}, goto 2.

Algorithm terminates



K -Means, Knobs

Knob 1 : define d(xi , Ck) favors

I min{d(xi , xj), xj ∈ Ck} long clusters

* average{d(xi , xj), xj ∈ Ck} compact clusters

I max{d(xi , xj), xj ∈ Ck} spheric clusters

Knob 2 : define “best” in Ck

I Medoid argmini{
∑

xj∈Ck
d(xi , xj)}

* Average 1
|Ck |
∑

xj∈Ck
xj

(does not belong to E)



No single best choice



K -Means, Discussion

PROS

I Complexity O(K × N)

I Can incorporate prior knowledge initialization

CONS

I Sensitive to initialization

I Sensitive to outliers

I Sensitive to irrelevant attributes



K -Means, Convergence

I For cost function

L(∆) =
∑
k

∑
i ,j / τ(i)=τ(j)=k

d(xi , xj)

I for d(xi ,Ck) = average {d(xi , xj), xj ∈ Ck}
I for “best” in Ck = average of xj ∈ Ck

K -means converges toward a (local) minimum of L.



K -Means, Practicalities

Initialization

I Uniform sampling

I Average of E + random perturbations

I Average of E + orthogonal perturbations

I Extreme points: select xi1 uniformly in E , then

Select xij = argmax{
j∑

k=1

d(xi , xik )}

Pre-processing

I Mean-centering the dataset
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Model-based clustering

Mixture of components

I Density f =
∑K

k=1 πk fk
I fk : the k-th component of the mixture

I γk(i) = πk fk (x)
f (x)

I induces Ck = {xj / k = argmax{γk(j)}}

Nature of components: prior knowledge

I Most often Gaussian: fk = (µk ,Σk)

I Beware: clusters are not always Gaussian...



Model-based clustering, 2

Search space

I Solution : (πk , µk ,Σk)K
k=1 = θ

Criterion: log-likelihood of dataset

`(θ) = log(Pr(E)) =
N∑

i=1

log Pr(xi ) ∝
N∑

i=1

K∑
k=1

log(πk fk(xi ))

to be maximized.



Model-based clustering with EM

Formalization

I Define zi ,k = 1 iff xi belongs to Ck .

I E [zi ,k ] = γk(i) prob. xi generated by πk fk
I Expectation of log likelihood

E [`(θ)] ∝
∑N

i=1

∑K
k=1 γi (k) log(πk fk(xi ))

=
∑N

i=1

∑K
k=1 γi (k) log πk +

∑N
i=1

∑K
k=1 γi (k) log fk(xi )

EM optimization

E step Given θ, compute

γk(i) =
πk fk(xi )

f (x)

M step Given γk(i), compute

θ∗ = (πk , µk ,Σk)∗ = argminE [`(θ)]



Maximization step

πk : Fraction of points in Ck

πk =
1

N

N∑
i=1

γk(i)

µk : Mean of Ck

µk =

∑N
i=1 γk(i)xi∑N
i=1 γk(i)

Σk : Covariance

Σk =

∑N
i=1 γk(i)(xi − µk)(xi − µk)′∑N

i=1 γk(i)
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Choosing the number of clusters

K -means constructs a partition whatever the K value is.

Selection of K

I Bayesian approaches
Tradeoff between accuracy / richness of the model

I Stability
Varying the data should not change the result

I Gap statistics
Compare with null hypothesis: all data in same cluster.



Bayesian approaches

Bayesian Information Criterion

BIC (θ) = `(θ)− #θ

2
log N

Select K = argmax BIC (θ)
where #θ = number of free parameters in θ:

I if all components have same scalar variance σ

#θ = K − 1 + 1 + Kd

I if each component has a scalar variance σk

#θ = K − 1 + K (d + 1)

I if each component has a full covariance matrix Σk

#θ = K − 1 + K (d + d(d − 1)/2)



Gap statistics

Principle: hypothesis testing

1. Consider hypothesis H0: there is no cluster in the data.
E is generated from a no-cluster distribution π.

2. Estimate the distribution f0,K of L(C1, . . .CK ) for data
generated after π. Analytically if π is simple

Use Monte-Carlo methods otherwise

3. Reject H0 with confidence α if the probability of generating
the true value L(C1, . . .CK ) under f0,K is less than α.

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm

Assume E extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample E according to this distribution

2. Apply K -means on this sample

3. Measure the associated loss function

Repeat : compute the average L̄0(K ) and variance σ0(K )
Define the gap:

Gap(K ) = L̄0(K )− L(C1, . . .CK )

Rule Select min K s.t.

Gap(K ) ≥ Gap(K + 1)− σ0(K + 1)

What is nice: also tells if there are no clusters in the data...



Stability

Principle

I Consider E ′ perturbed from E
I Construct C ′1, . . .C

′
K from E ′

I Evaluate the “distance” between (C1, . . .CK ) and (C ′1, . . .C
′
K )

I If small distance (stability), K is OK

Distortion D(∆)

Define S Sij = < xi , xj >
(λi , vi ) i-th (eigenvalue, eigenvector) of S

X Xi ,j = 1 iff xi ∈ Cj

D(∆) =
∑

i

||xi − µτ(i)||2 = tr(S)− tr(X ′SX )

Minimal distortion D∗ = tr(S)−
∑K−1

k=1 λk



Stability, 2

Results

I ∆ has low distortion⇒ (µ1, . . . µK ) close to space (v1, . . . vK ).

I ∆1, and ∆2 have low distortion ⇒ “close”

I (and close to “optimal” clustering)

Meila ICML 06

Counter-example
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Job representation

Xiangliang Zhang et al., ICDM wshop on Data streams, 2007



Job representation

Challenges

I Sparse representation, e.g. “user id”

I No natural distance

Prior knowledge

I Coarse job classification: succeeds (SUC) or fails (FAIL)

I Many failure types: Not Available Resources (NAR); User
Aborted (ABU); Generic and non-Generic Error (GNG).

I Jobs are heterogeneous
I Due to users (advanced or naive)
I Due to virtual organizations (jobs in physics 6= jobs in biology)
I Due to time: grid load depends on the community activity



Feature extraction

Slicing data

to get rid of heterogeneity

I Split jobs per user: Ui = { jobs of i-th user }
I Split jobs per week: Wj = { jobs launched in j-th week }

Building features

I Each data slice: a supervised learning problem
(discriminating SUCC from FAIL)

h : X 7→ IR

I Supervised Learning Algorithms:
I Support Vector Machine SVMLight
I Optimization of AUC ROGER



Feature Extraction, 2

New features
Define

hu,i hypothesis learned from data slice Ui

U : X 7→ IR#u

U(x) = (hu,1(x), . . . hu,#u(x))
Symmetrically hw ,i hypothesis learned from data slice Wi

W : X 7→ IR#w

W (x) = (hw ,1(x), . . . hw ,#w (x))

Change of representation

E → EU = {(U(xi ), yi ), i = 1 . . .N}
→ EW = {(W (xi ), yi ), i = 1 . . .N}

Discussion

I Natural distance on IRd

I But new attributes hu,i likely to be redundant



Feature Extraction: Double clustering

Slonim & Tishby, 2000



Experimental setting

The datasets

I Training set E : 222,500 jobs 36% SUCC, 74% FAIL

I Test set T : 21,512 jobs

Hypothesis construction

I SVM: one hypothesis per slice: U : X 7→ IR34

W : X 7→ IR45

I ROGER: 50 hypotheses per slice U : X 7→ IR1700

W : X 7→ IR2250

Clustering

Foreach K = 5 . . . 30, Apply K -means to T
I Considering new representations U and W

I Learned after SVM and Roger.



Goal of Experiments

Interpretation

Examine the clusters

Stability

I Compare ∆K and ∆K ′

I Compare ∆K ,U and ∆K ,W



Interpretation



Interpretation, 2



Interpretation, 3

Pure clusters

I Most clusters are pure wrt sub-classes NAR, GNG
which were unknown from the algorithm

I Finer-grained classes are discovered: Problem during rank
evaluation; job proxy expired; insert Data failed

I ABU class (1.2%) is not properly identified:
many reasons why job might be Aborted by User

Usage

Use prediction for user-friendly service
Anticipate job failures



Stability



Stability, 2

I Stability wrt initialization, for both W and U representations

I Stability of clusters based on W and U-based representations

I Decreases gracefully with K
(optimal value = 1)



Grid Modelling, wrap-up

Conclusion

I Importance of representation as usual

I Clustering: stable wrt K and representation change
re-discovers types of failures
discovers finer-grained failures

Future work

I Cluster users (= sets of jobs)

I Cluster weeks (= sets of jobs)

I Find scenarios
naive users gaining expertise;
grid load & temporal regularities

I Identify communities of users.

I Use scenarios to test/optimize grid services (e.g. scheduler)



Autonomic Computing, wrap-up

Huge needs

I Modelling systems
Black box to calibrate, train, optimize services

I Understanding systems Hints to repair, re-design systems

Dealing with Complex Systems

I Findings often challenge conventional wisdom

I Theoretical vs Empirical models

I Complex systems are counter-intuitive sometimes



Autonomic Computing, wrap-up, 2

Good practice

I No Magic !
I don’t see anything, I’ll use ML or DM

I Use all of your prior knowledge
If you can measure/model it, don’t guess it!

I Have conjectures

I Test them! Beware: False Discovery Rate
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From K-Means to K-Centers

Assumptions for K-Means

I A distance or dissimilarity

I Possibility to create artefacts barycenters

I Not applicable in some domains average molecule?
average sentence?

K-Centers, position of the problem

I A combinatorial optimization problem.
Find σ : {1, . . . ,N} 7→ {1, . . . ,N} minimizing:

E [σ] =
N∑

i=1

d(xi , xσ(i))

(What is missing here ?)
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Motivations

Clustering: Unsupervised learning
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Affinity Propagation and State of the art
K-means K-centers AP

exemplar artefact actual point actual point

parameter K K s∗ (penalty)

algorithm greedy search greedy search message passing

performance not stable not stable stable

complexity N × K N × K N2log(N)

Clustering by Passing Messages Between Data Points. B.J. Frey, D. Dueck.

Science 2007



Affinity Propagation

Given
E = {e1, e2, ..., eN} elements
d(ei , ej) their dissimilarity

Find σ : E 7→ E σ(ei ), exemplar representing ei

such that:

σ = argmax
N∑

i=1

S(ei , σ(ei ))

where

{
S(ei , ej) = −d2(ei , ej) if i 6= j
S(ei , ei ) = −s∗

s∗: penalty parameter

Particular cases

I s∗ =∞, only one exemplar 1 cluster

I s∗ = 0, every point is an exemplar N clusters



Affinity Propagation, Principle

Algorithm: Message propagation

I Responsibility r(i , k) could xk be examplar for xi

I Availability a(i , k).



Affinity Propagation, 2

Two types of messages

I r(i , k) : Responsibility of i to k

I a(i , k) : Availability of i as examplar for k

Rules of propagation

r(i , k) = S(ei , ek)−maxk ′,k ′ 6=k{a(i , k ′) + S(ei , e
′
k)}

r(k, k) = S(ek , ek)−maxk ′,k ′ 6=k{S(ek , e
′
k)}

a(i , k) = min {0, r(k, k) +
∑

i ′,i ′ 6=i ,k max{0, r(i ′, k)}}
a(k, k) =

∑
i ′,i ′ 6=k max{0, r(i ′, k)}



Iterations of Message passing



Iterations of Message passing



Iterations of Message passing



Iterations of Message passing



Iterations of Message passing



Iterations of Message passing



Iterations of Message passing



Iterations of Message passing



Affinity Propagation, cont’d



Affinity Propagation, cont’d



Affinity Propagation in a Nutshell

WHEN to use it ?
When averages don’t make sense e.g., molecules; documents

PROS vs K -centers
Lower distortion D([σ]) =

∑N
i=1 d2(ei , σ(ei ))

CONS: Computational complexity

I Similarity computation: O(N2)

I Message passing: O(N2 log N)



Clustering

I K-Means

I Expectation Maximization

I Selecting the number of clusters

I Affinity propagation

I Scalability



Hierarchical AP

Clustering data streams: Theory and practice. S. Guha, A. Meyerson, N.

Mishra, R. Motwani. TKDE 2003.



Weighted AP

AP WAP

ei (ei , ni )
S(ei , ej) → ni × S(ei , ej)
S(ei , ei ) → S(ei , ei ) + (ni − 1)× ε

With
S(ei , ej) price for ei to select ej as an exemplar

ε variance of ni points

Proposition

WAP ≡ AP with duplicated elements



Hierarchical WAP

I Complexity of HiWAP is O(N3/2)

I −→ can be iteratively reduced to O(N1+γ)
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Part 2. Data Streaming

I When: data, specificities

I What: goals

I How: algorithms

More: see Joao Gama’s tutorial,
http://wiki.kdubiq.org/summerschool2008/index.php/Main/Materials



Motivations

Electric Power Network



Data

Input

I Continuous flow of (possibly corrupted) data, high speed

I Huge number of sensors, variable along time (failures)

I Spatio-temporal data

Output

I Cluster: profiles of consumers

I Prediction: peaks of demand

I Monitor Evolution: Change detection, anomaly detection



Where is the problem ?

Standard Data Analysis

I Select a sample

I Generate a model (clustering, neural nets, ...)

Does not work...

I World is not static

I Options, Users, Climate, ... change



Where is the problem ?

Standard Data Analysis

I Select a sample

I Generate a model (clustering, neural nets, ...)

Does not work...

I World is not static

I Options, Users, Climate, ... change



Specificities of data

Domain

I Radar: meteorological observations

I Satellite: images, radiation

I Astronomical surveys: radio

I Internet: traffic logs, user queries, ...

I Sensor networks

I Telecommunications

Features

I Most data never seen by humans

I Need for REAL-TIME monitoring, (intrusion, outliers,
anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically

distributed)



Data streaming Challenges

Maintain Decision Models in real-time

I incorporate new information comply with speed

I forget old/outdated information

I detect changes and adapt models accordingly

Unbounded training sets Prefer fast approximate answers...

I Approximation: Find answer with factor 1± ε
I Probably correct: Pr(answer correct ) = 1 -δ

I PAC: ε, δ (Probably Approximately Correct)

I Space ≈ O(1/ε2log(1/δ))



Data Mining vs Data Streaming



What: queries on a data stream

I Sample

I Count number of distinct values / attribute

I Estimate sliding average (number of 1’s in a sliding window)

I Get top-k elements

Application: Compute entropy of the stream

H(x) =
∑

pi log2(pi )

useful to detect anomalies



Sampling

Uniform sampling: each one out of n examples is sampled with
probability 1/n.
What if we don’t know the size ?
Standard

I Sample instances at periodic time intervals

I Loss of information

Reservoir Sampling

I Create buffer size k

I Insert first k elements

I Insert i-th element with probability k/i

I Delete a buffer element at random

Limitations

I Unlikely to detect changes/anomalies

I Hard to parallelize



Count number of values

Problem
Domain of the attribute is {1, . . .M}
Piece of cake if memory available... What if the memory available
is log(M) ?
Flajolet-Martin 1983
Based on hashing: {1, . . .M} 7→ {0, . . . 2L} with L = log(M).

x → hash(x) = y → position least significant bit, lsb(x)



Count number of values, followed

Init: BITMAP({0, . . . L}) = 0
Loop: Read x , BITMAP(lsb(x)) = 1

Result

R = position of rightmost 0 in H

M ≈ 2R/.7735



Decision Trees for Data Streaming

Principle
Grow the tree if evidence best attribute > second best

Algorithm parameter: confidence δ (user-defined)
While true

Read example, propagate until a leaf
If enough examples in leaf

Compute IG for all attributes;

ε =

√
R2ln(1/δ)

2n

Keep best if IG(best) - IG(second best ) > ε

Mining High Speed Data Streams, Pedro Domingos, Geoffrey
Hulten, KDD-00



Stream clustering
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Stream clustering
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Stream clustering

e e e i i e i i e e i i e i�@ i e� �@ @ �@

Model Reservoireeeeeeef jjjiiiij�@
Has the distribution changed ? CHANGE TEST

I if yes, rebuild the model

I otherwise, continue



Strap

data - -
data streaming
process system models { ei , ni ,Σi , ti }

Does et fit the current model ?

I if yes, update the model

I otherwise, put et in reservoir

Has the distribution changed ?

I if yes, rebuild the model

I otherwise, continue



Update the model

Stream Model: {(ei , ni ,Σi , ti )}
I ei examplar

I ni number of items represented by ei

I Σi sum of distortions incurred by ei

I ti last time step when a point was affected to ei

Update with decay: ∆: time window

ni := ni ×
(

∆
∆+(t−ti )

+ 1
ni +1

)
Σi := Σi × ∆

∆+(t−ti )
+ ni

ni +1 d(et , ei )
2

ti := t



Rebuild the model

Trigger

I when reservoir is full

I when changes are detected

Page-Hinkley statistic

p̄t = 1
t

∑t
`=1 p`

mt =
∑t

`=1 (p` − p̄` + δ)
PHt = max{m`} −mt

HINKLEY D. Inference about the change-point in a sequence of random

variables. Biometrika, 1970
PAGE E. Continuous inspection schemes. Biometrika, 1954



Experimental validation

Data used

I Artificial dataset
I Real world data: KDD99 data

I intrusion detection benchmark
I 494,021 network connection records in IR34

I 23 classes: 1 normal + 22 attacks

I Baseline: DenStream
F. Cao, M. Ester, W. Qian, A. Zhou. Density-Based Clustering over an

Evolving Data Stream with Noise. SDM 2006.

Performance indicator

I Distortion

I Clustering accuracy / Clustering purity (supervised setting)

KDD Cup 1999 data: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.



Accuracy along time



Restart criteria: MaxSizeR vs PH



Discussion

Rebuild: ReservoirSize vs PH

I PH is 10% better than ReservoirSize

I PH is less stable

Strap vs DenStream
I Pros

I better accuracy
I model available at any time

I Cons
I DenStream: 7 seconds
I Strap : 7 mins



Conclusion

Scalability: Hi-WAP
I Reduce complexity from O(N2) to O(N3/2)

I iteratively reduce toward O(N(1+γ))

Stream clustering: Strap
I Hybridized with an efficient change detection method, Page-Hinkley

I Model available at any time

I BUT: slower than DenStream

Future work Provide an upper bound on the distortion loss caused by
Hi-WAP



Open issues

What’s new
Forget about iid;
Forget about more than linear complexity (and log space)

Challenges
Online, Anytime algs
Distributed alg.
Criteria of performance
Integration of change detection


