Module Master Recherche Apprentissage et Fouille

> Michele Sebag http://tao.lri.fr

Automne 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Apprentissage non supervisé

- Case Study
- Data Clustering
- Data Streaming

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Case study: Autonomic Computing

Considering current technologies, we expect that the total number of device administrators will exceed 220 millions by 2010.

Gartner 6/2001 in Autonomic Computing Wshop, ECML / PKDD 2006 Irina Rish & Gerry Tesauro.

(日)、

Autonomic Computing

The need

Main bottleneck of the deployment of complex systems: shortage of skilled administrators

Vision

- Computing systems take care of the mundane elements of management by themselves.
- Inspiration: central nervous system (regulating temperature, breathing, and heart rate without conscious thought)

Goal

Computing systems that manage themselves in accordance with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003

Autonomic Grid System

Grid Systems

Presentation of EGEE, Enabling Grids for e-Science in Europe

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Acquiring the data The grid observatory
- Preparation of the data
 - Functional dependencies
 - Dimensionality reduction
 - Propositionalization

EGEE: Enabling Grids for E-Science in Europe

EGEE, 2

- \blacktriangleright Infrastructure project started in 2001 \rightarrow FP6 and FP7
- Large scale, production quality grid
- Core node: Lab. Accelerateur Linéaire, Université Paris-Sud
- ▶ 240 partners, 41,000 CPUs, all over the world
- 5 Peta bytes storage
- 24 \times 7, 20 K concurrent jobs
- ► Web: www.eu-egee.org

Storage as important as CPU

Applications

- High energy physics
- Life sciences
- Astrophysics
- Computational chemistry
- Earth sciences
- Financial simulation
- Fusion
- Multimedia
- Geophysics

(日)、

э

Autonomic Grid

Requisite: The Grid Observatory

- Cluster in the EGEE-III proposal 2008-2010
- Data collection and publication: filtering, clustering

Workload management

- Models of the grid dynamics
- Models of requirements and middleware reaction: time series and beyond
- Utility based-scheduling, local and global: MAB problem
- Policy evaluations: very large scale optimization

Fault detection and diagnosis

 Categorization of failure modes from the Logging and Bookkeeping: feature construction, clustering,

Abrupt changepoint detection

Autonomic Grid: The Grid Observatory

Data acquisition

- Data have not been stored with DM in mind never
- Data [partially] automatically generated here for EGEE services
 - redundant
 - little expert help

It's no longer: the expert feeds the machine with data. Rather, machines feed machines... J. Gama

Data preprocessing

- ▶ 80% of the human cost
- Governs the quality of the output

The grid system and the data

The Workload Management System

 User Interface
 User submits job description and requirements, and gets the results
 Resource Broker
 Job Submission Service
 Logging and Bookkeeping Service
 User submits job description Decides Computing Element
 Submits to CE and Checks
 Archive the data

Job Lifecycle

The data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Data Tables

Events

**	
BrIIBgbIqkvtzaqGfmA 0 17 atlfarm008.mi.infn.it 2004-09-17 16:17:48 2004-09-17 16:17:49 BrIIBgbIqkvtzaqGfmA 1 1 atlfarm008.mi.infn.it 2004-09-17 16:17:49 2004-09-17 16:17:49 BrIIBgbIqkvtzaqGfmA 1 1 atlfarm008.mi.infn.it 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:17:49 2004-09-17 16:18:00 2004-09-17 16:18:00 2004-09-17 16:18:00 2004-09-17 16:18:00 2004-09-17 16:18:00 2004-09-17 16:18:00 2004-09-17 16:18:00 2004-09-17 16:18:00 2004-09-17 16:18:01 2004-09-17 16:18:01 2004-09-17 16:18:01 2004-09-17 16:18:01 2004-09-17 16:18:01 2004-09-17	8 8 8 8 8 8

Short Fields

+		+	*
i	0	. JOBTYPE	SIMPLE
i i	0	NS	1 1xb0728.cern.ch:7772
i	0	NSUBJOBS	0
i	0	SEED	uLU0BArrdV98041PLThJ50
i	0	SEDCODE	UI=000001:NS=0000000000:WM=000000:BH=0000000000:JSS=000000:LM=000000:LRMS=000000:APP=000000
i i	0	SRC_INSTANCE	
1	1	DESTINATION	NetworkServer
1	1	DEST_HOST	1xb0728.cern.ch
1	1	DEST_INSTANCE	1xb0728.cern.ch:7772
1	1	DEST_JOBID	1
1	1	REASON	1
1	1	RESULT	START
1	1	SEQCODE	UI=000002:NS=0000000000:WM=000000:BH=000000000:JSS=000000:LM=000000:LMS=000000:APP=000000
1	1	SRC_INSTANCE	1
1	2	FROM	UserInterface
1	2	FROM_HOST	1xb0728.cern.ch
1	2	FROM_INSTANCE	1
1	2	LOCAL_JOBID	1
1	2	SEQCODE	UI=000003:NS=0000000001:WM=000000:BH=000000000:JSS=000000:LM=000000:LMMS=000000:APP=000000
1	2	SRC_INSTANCE	7772
1	3	I QUEVE	/ /var/edgwl/workload_manager/input.fl
1	3	REASON	1
1	з	RESULT	I OK
1	3	SEQCODE	UI=000003:NS=000000003:WM=000000:BH=000000000:JSS=000000:LM=000000:LMS=000000:APP=000000
1	3	SRC_INSTANCE	1
+		+	*

Data Tables

Long Fields (4Gb)

| jobid | event | name | value

| ---BrI1BgbIqkwtszqGfmA | 0 | JDL |[requirements = (((Member("VO-atlas-lcg-release -0.0.2", other.GlueHostApplicationSoftwareRunTimeEnvironment)) && Member("VO-atlas-release -8.0.5".other.GlueHostApplicationSoftwareRunTimeEnvironment)) && (other.GlueCEPolicyMaxCPUTime >= (Member("LCG -2_1_0",other.GlueHostApplicationSoftwareRunTimeEnvironment) ? (36000000 / 60) : 36000000) / other.GlueHostBenchmarkSI00)) && (other.GlueHostNetworkAdapterOutboundIP == true)) 総 (other.GlueHostMainMemoryRAMSize >= 512); RetryCount = 0; edg_jobid = "https://lxb0728.cern.ch:9000/---BrI1BgbIqkwtszqGfmA"; Arguments = "dc2.003048.evgen.H4_170_WW._00002.pool.root dc2.003048.simul.H4_170_WW._00208.pool.root.2 -6 6 50 350 208"; Environment = { "LEXOR WRAPPER LOG=lexor wrapper.log", "LEXOR STAGEOUT MAXATTEMPT=5", "LEXOR STAGEOUT INTERVAL=60", "LEXOR LCG_GFAL_INFOSYS=1xb2011.cern.ch:2170","LEXOR_T_RELEASE=8.0.5", "LEXOR_T_PACKAGE=8.0.5.6/JobTransforms","LEXOR_T_BASEDIR=JobTransforms-08-00-05-06", "LEXOR_TRANSFORMATION=share/ dc2.g4sim.trf"."LEXOR STAGEIN_LOG=dq_233387_stagein.log","LEXOR_STAGEIN_SCRIPT=dq_233387_stagein.sh", "LEXOR_STAGEOUT_LOG=dg_233387_stageout.log","LEXOR_STAGEOUT_SCRIPT=dg_233387_stageout.sh" }; MyProxyServer = "lxb0727.cern.ch"; JobType = "normal"; Executable = "lexor_wrap.sh"; StdOutput = "dc2.003048.simul.H4_170_WW._00208.job.log.2"; OutputSandbox = { "metadata.xml","lexor_wrapper.log","dq_233387_stagein.log","dq_233387_stageout.log", "dc2.003048.simul.H4_170_WW._00208.job.log.2" }; VirtualOrganisation = "atlas"; rank = (other.GlueCEStateEstimatedResponseTime > 999) ? -(other.GlueCEStateEstimatedResponseTime) : -(other.GlueCEStateRunningJobs); Type = "job"; StdError = "dc2.003048.simul.H4_170_WW._00208.job.log.2"; DefaultRank = -other.GlueCEStateEstimatedResponseTime; InputSandbox = { "/home/negri/windmill-0.9.15/lexor/inputsandbox/lexor_wrap.sh". "/home/negri/windmill-0.9.15/lexor/inputsandbox/dqlcg.pv", "/home/negri/windmill-0.9.15/lexor/inputsandbox/edgrmpi.sh", "/home/negri/windmill-0.9.15/lexor/inputsandbox/dgrep.pl", "/home/negri/windmill-0.9.15/lexor/inputsandbox/run_dqlcg.sh", "/tmp/lexor/negri/dq_233387_stagein.sh", "/tmp/lexor/negri/dq_233387_stageout.sh" }]

Apprentissage non supervisé

- Case Study
- Data Clustering
- Data Streaming

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part 1. Clustering

- K-Means
- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Case study
- Affinity propagation

Clustering

Clustering Questions

Hard or soft ?

- Hard: find a partition of the data
- Soft: estimate the distribution of the data as a mixture of components.

Parametric vs non Parametric ?

- Parametric: number K of clusters is known
- Non-Parametric: find K (wrapping a parametric clustering algorithm)

Caveat:

- Complexity
- Outliers
- Validation

Formal Background

Notations

${\mathcal E}$	$\{\mathbf{x}_1,\ldots,$. x _N }	dataset
----------------	--------------------------	---------------------------	---------

- Ν number of data points
- Κ number of clusters

given or optimized

C_k	<i>k</i> -th cluster	Hard clustering	
$\tau(i)$	index of cluster containing \mathbf{x}_i		

f _k	<i>k</i> -th model	Soft clustering
$\gamma_k(i)$	$Pr(\mathbf{x}_i f_k)$	

Solution

Soft Clustering

Hard Clustering Partition $\Delta = (C_1, \ldots, C_k)$ $\forall i \sum_{k} \gamma_k(i) = 1$

Formal Background, 2

Quality / Cost function

Measures how well the clusters characterize the data

- ► (log)likelihood soft clustering
- dispersion

hard clustering

$$\sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} d(\mathbf{x}_i, \mathbf{x}_j)^2$$

Tradeoff

Quality increases with $K \Rightarrow$ Regularization needed

to avoid one cluster per data point

Clustering vs Classification

Marina Meila http://videolectures.net/

Classification

Clustering

K# classes (given)QualityGeneralization errorFocus onTest setGoalPredictionAnalysisdiscriminantFieldmature

clusters (unknown) many cost functions Training set Interpretation exploratory new

Non-Parametric Clustering

Hierarchical Clustering

Principle

- agglomerative (join nearest clusters)
- divisive (split most dispersed cluster)

イロト イポト イヨト イヨト

э

CONS: Complexity $\mathcal{O}(N^3)$

Hierarchical Clustering, example

790

Influence of distance/similarity

Parametric Clustering

K is known

Algorithms based on distances

- ► *K*-means
- ► graph / cut

Algorithms based on models

Mixture of models: EM algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clustering

K-Means

- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Affinity propagation
- Scalability

K-Means

Algorithm

1. Init: Uniformly draw K points \mathbf{x}_{i_i} in \mathcal{E} Set $C_i = \{\mathbf{x}_{i_i}\}$ 2. Repeat Draw without replacement \mathbf{x}_i from \mathcal{E} 3. 4. $\tau(i) = \operatorname{argmin}_{k=1\dots K} \{ d(\mathbf{x}_i, C_k) \}$ find best cluster for \mathbf{x}_i $C_{\tau(i)} = C_{\tau(i)} \bigcup \mathbf{x}_i$ 5. add \mathbf{x}_i to $C_{\tau(i)}$ Until all points have been drawn 7. If partition $C_1 \ldots C_K$ has changed Stabilize Define $\mathbf{x}_{i_k} = \text{best point in } C_k, C_k = \{x_{i_k}\}, \text{ goto } 2.$

Algorithm terminates

K-Means, Knobs

Knob 1 : define $d(\mathbf{x}_i, C_k)$

$$intermath{intermath{n}} min\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$$

* average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$

•
$$max\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$$

favors

long clusters compact clusters spheric clusters

Knob 2 : define "best" in C_k

- Medoid
- * Average
 (does not belong to *E*)

$$\begin{aligned} \operatorname{argmin}_{i} \{ \sum_{\mathbf{x}_{j} \in C_{k}} d(\mathbf{x}_{i}, \mathbf{x}_{j}) \} \\ \frac{1}{|C_{k}|} \sum_{\mathbf{x}_{j} \in C_{k}} \mathbf{x}_{j} \end{aligned}$$

No single best choice

FIG. 1. Optimizing the diameter produces B while A is clearly more desirable.

FIG. 2. The inferior clustering B is found by optimizing the 2-median measure.

K-Means, Discussion

PROS

- Complexity $\mathcal{O}(K \times N)$
- Can incorporate prior knowledge

initialization

CONS

- Sensitive to initialization
- Sensitive to outliers
- Sensitive to irrelevant attributes

K-Means, Convergence

For cost function

$$\mathcal{L}(\Delta) = \sum_{k} \sum_{i,j \neq \tau(i) = \tau(j) = k} d(\mathbf{x}_i, \mathbf{x}_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ for
$$d(\mathbf{x}_i, C_k) =$$
 average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$

▶ for "best" in
$$C_k$$
 = average of $\mathbf{x}_j \in C_k$

K-means converges toward a (local) minimum of \mathcal{L} .

K-Means, Practicalities

Initialization

- Uniform sampling
- Average of \mathcal{E} + random perturbations
- Average of \mathcal{E} + orthogonal perturbations
- Extreme points: select \mathbf{x}_{i_1} uniformly in \mathcal{E} , then

Select
$$x_{i_j} = argmax\{\sum_{k=1}^{j} d(\mathbf{x}_i, x_{i_k})\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pre-processing

Mean-centering the dataset

Clustering

- K-Means
- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Affinity propagation
- Scalability

Model-based clustering

Mixture of components

• Density
$$f = \sum_{k=1}^{K} \pi_k f_k$$

• f_k : the k-th component of the mixture

$$\blacktriangleright \gamma_k(i) = \frac{\pi_k f_k(x)}{f(x)}$$

• induces
$$C_k = \{\mathbf{x}_j \mid k = \operatorname{argmax}\{\gamma_k(j)\}\}$$

Nature of components: prior knowledge

- Most often Gaussian: $f_k = (\mu_k, \Sigma_k)$
- Beware: clusters are not always Gaussian...

Model-based clustering, 2

Search space

• Solution :
$$(\pi_k, \mu_k, \Sigma_k)_{k=1}^K = \theta$$

Criterion: log-likelihood of dataset

$$\ell(\theta) = \log(\Pr(\mathcal{E})) = \sum_{i=1}^{N} \log \Pr(\mathbf{x}_i) \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \log(\pi_k f_k(\mathbf{x}_i))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

to be maximized.

Model-based clustering with EM

Formalization

- Define $z_{i,k} = 1$ iff \mathbf{x}_i belongs to C_k .
- $E[z_{i,k}] = \gamma_k(i)$ prob. **x**_i generated by $\pi_k f_k$
- Expectation of log likelihood

$$E[\ell(\theta)] \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log(\pi_k f_k(\mathbf{x}_i))$$
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log f_k(\mathbf{x}_i)$$

EM optimization

E step Given θ , compute

$$\gamma_k(i) = \frac{\pi_k f_k(\mathbf{x}_i)}{f(x)}$$

M step Given $\gamma_k(i)$, compute

$$\theta^* = (\pi_k, \mu_k, \Sigma_k)^* = \operatorname{argminE}[\ell(\theta)]$$
 is in the second se
Maximization step

 π_k : Fraction of points in C_k

$$\pi_k = \frac{1}{N} \sum_{i=1}^N \gamma_k(i)$$

 μ_k : Mean of C_k

$$\mu_k = \frac{\sum_{i=1}^N \gamma_k(i) \mathbf{x}_i}{\sum_{i=1}^N \gamma_k(i)}$$

 Σ_k : Covariance

$$\Sigma_k = \frac{\sum_{i=1}^N \gamma_k(i)(\mathbf{x}_i - \mu_k)(\mathbf{x}_i - \mu_k)'}{\sum_{i=1}^N \gamma_k(i)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Clustering

- K-Means
- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Affinity propagation
- Scalability

Choosing the number of clusters

K-means constructs a partition whatever the K value is.

Selection of K

Bayesian approaches

Tradeoff between accuracy / richness of the model

Stability

Varying the data should not change the result

Gap statistics

Compare with null hypothesis: all data in same cluster.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bayesian approaches

Bayesian Information Criterion

$$BIC(heta) = \ell(heta) - rac{\# heta}{2} \log N$$

Select $K = \operatorname{argmax} BIC(\theta)$ where $\#\theta = \operatorname{number}$ of free parameters in θ :

 \blacktriangleright if all components have same scalar variance σ

$$\#\theta = K - 1 + 1 + Kd$$

• if each component has a scalar variance σ_k

$$\#\theta = K - 1 + K(d+1)$$

• if each component has a full covariance matrix Σ_k

$$\#\theta = K - 1 + K(d + d(d - 1)/2)$$

Gap statistics

Principle: hypothesis testing

- 1. Consider hypothesis H_0 : there is no cluster in the data. \mathcal{E} is generated from a no-cluster distribution π .
- Estimate the distribution f_{0,K} of L(C₁,...C_K) for data generated after π. Analytically if π is simple Use Monte-Carlo methods otherwise
- 3. Reject H_0 with confidence α if the probability of generating the true value $\mathcal{L}(C_1, \ldots, C_K)$ under $f_{0,K}$ is less than α .

(日) (同) (三) (三) (三) (○) (○)

Beware: the test is done for all K values...

Gap statistics, 2

Algorithm

Assume $\ensuremath{\mathcal{E}}$ extracted from a no-cluster distribution, e.g. a single Gaussian.

- 1. Sample ${\ensuremath{\mathcal E}}$ according to this distribution
- 2. Apply K-means on this sample
- 3. Measure the associated loss function

Repeat : compute the average $\overline{\mathcal{L}}_0(K)$ and variance $\sigma_0(K)$ Define the gap:

$$Gap(K) = \overline{\mathcal{L}}_0(K) - \mathcal{L}(C_1, \dots C_K)$$

Rule Select min K s.t.

$$Gap(K) \geq Gap(K+1) - \sigma_0(K+1)$$

What is nice: also tells if there are no clusters in the data...

Stability

Principle

- Consider \mathcal{E}' perturbed from \mathcal{E}
- Construct $C'_1, \ldots C'_K$ from \mathcal{E}'
- Evaluate the "distance" between (C_1, \ldots, C_K) and (C'_1, \ldots, C'_K)
- ▶ If small distance (stability), K is OK

Distortion $D(\Delta)$

Define
$$S$$
 $S_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$
 (λ_i, v_i) i-th (eigenvalue, eigenvector) of S
 X $X_{i,j} = 1$ iff $\mathbf{x}_i \in C_j$
 $D(\Delta) = \sum_i ||\mathbf{x}_i - \mu_{\tau(i)}||^2 = tr(S) - tr(X'SX)$

Minimal distortion $D^* = tr(S) - \sum_{k=1}^{K-1} \lambda_k$

Stability, 2

Results

- Δ has low distortion $\Rightarrow (\mu_1, \dots \mu_K)$ close to space $(v_1, \dots v_K)$.
- Δ_1 , and Δ_2 have low distortion \Rightarrow "close"
- (and close to "optimal" clustering)

```
Meila ICML 06
```

Counter-example

Part 1. Clustering

- K-Means
- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Case study
- Affinity propagation

Job representation

Xiangliang Zhang et al., ICDM wshop on Data streams, 2007

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Job representation

Challenges

- Sparse representation, e.g. "user id"
- No natural distance

Prior knowledge

- Coarse job classification: succeeds (SUC) or fails (FAIL)
- Many failure types: Not Available Resources (NAR); User Aborted (ABU); Generic and non-Generic Error (GNG).
- Jobs are heterogeneous
 - Due to users (advanced or naive)
 - Due to virtual organizations (jobs in physics \neq jobs in biology)
 - Due to time: grid load depends on the community activity

Feature extraction

Slicing data

to get rid of heterogeneity

- Split jobs per user: $U_i = \{ \text{ jobs of } i\text{-th user } \}$
- Split jobs per week: W_j = { jobs launched in j-th week }

Building features

 Each data slice: a supervised learning problem (discriminating SUCC from FAIL)

$$h: \mathcal{X} \mapsto \mathbb{R}$$

- Supervised Learning Algorithms:
 - Support Vector Machine
 - Optimization of AUC

SVMLight ROGER

Feature Extraction, 2

New features Define

 $\begin{array}{l} h_{u,i} \text{ hypothesis learned from data slice } U_i \\ U : \mathcal{X} \mapsto \mathbb{R}^{\# u} \\ U(\mathbf{x}) = (h_{u,1}(\mathbf{x}), \dots h_{u,\# u}(\mathbf{x})) \\ \text{Symmetrically} \quad h_{w,i} \text{ hypothesis learned from data slice } W_i \\ W : \mathcal{X} \mapsto \mathbb{R}^{\# w} \\ W(\mathbf{x}) = (h_{w,1}(\mathbf{x}), \dots h_{w,\# w}(\mathbf{x})) \end{array}$

Change of representation

$$\begin{array}{ll} \mathcal{E} & \to & \mathcal{E}_U = \{(U(\mathbf{x}_i), y_i), i = 1 \dots N\} \\ & \to & \mathcal{E}_W = \{(W(\mathbf{x}_i), y_i), i = 1 \dots N\} \end{array}$$

Discussion

- Natural distance
- But new attributes $h_{u,i}$ likely to be redundant

on \mathbb{R}^d

Feature Extraction: Double clustering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Experimental setting

The datasets

- ► Training set *E*: 222,500 jobs
- Test set T: 21,512 jobs

Hypothesis construction

- SVM: one hypothesis per slice:
- ROGER: 50 hypotheses per slice

36% SUCC, 74% FAIL

$U: \mathcal{X} \mapsto \mathbb{R}^{34}$ $W: \mathcal{X} \mapsto \mathbb{R}^{45}$ $U: \mathcal{X} \mapsto \mathbb{R}^{1700}$ $W: \mathcal{X} \mapsto \mathbb{R}^{2250}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Clustering

Foreach $K = 5 \dots 30$, Apply K-means to T

- Considering new representations U and W
- Learned after SVM and Roger.

Goal of Experiments

Interpretation

Examine the clusters

Stability

- Compare Δ_K and $\Delta_{K'}$
- Compare $\Delta_{K,U}$ and $\Delta_{K,W}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interpretation

Interpretation, 2

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Interpretation, 3

Pure clusters

- Most clusters are pure wrt sub-classes NAR, GNG which were unknown from the algorithm
- Finer-grained classes are discovered: Problem during rank evaluation; job proxy expired; insert Data failed

 ABU class (1.2%) is not properly identified: many reasons why job might be Aborted by User

Usage

Use prediction for user-friendly service Anticipate job failures

Stability

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - の久(で)

Stability, 2

- \blacktriangleright Stability wrt initialization, for both W and U representations
- ► Stability of clusters based on W and U-based representations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Decreases gracefully with K (optimal value = 1)

Grid Modelling, wrap-up

Conclusion

- Importance of representation
- Clustering: stable wrt K and representation change re-discovers types of failures discovers finer-grained failures

Future work

- Cluster users (= sets of jobs)
- Cluster weeks (= sets of jobs)
- Find scenarios

 naive users gaining expertise;
 grid load & temporal regularities
- Identify communities of users.
- Use scenarios to test/optimize grid services (e.g. scheduler)

as usual

Autonomic Computing, wrap-up

Huge needs

Modelling systems

Black box to calibrate, train, optimize services

Understanding systems

Hints to repair, re-design systems

Dealing with Complex Systems

- Findings often challenge conventional wisdom
- Theoretical vs Empirical models
- Complex systems are counter-intuitive sometimes

Autonomic Computing, wrap-up, 2

Good practice

- No Magic ! I don't see anything, I'll use ML or DM
- Use all of your prior knowledge If you can measure/model it, don't guess it!
- Have conjectures
- Test them!

Beware: False Discovery Rate

Part 1. Clustering

- K-Means
- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Case study
- Affinity propagation

From K-Means to K-Centers

Assumptions for K-Means

- A distance or dissimilarity
- Possibility to create artefacts
- Not applicable in some domains

barycenters average molecule? average sentence?

K-Centers, position of the problem

A combinatorial optimization problem. Find σ: {1,..., N} ↦ {1,..., N} minimizing:

$$E[\sigma] = \sum_{i=1}^{N} d(\mathbf{x}_i, \mathbf{x}_{\sigma(i)})$$

(What is missing here ?)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Clustering

- K-Means
- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Affinity propagation
- Scalability

Motivations

Clustering: Unsupervised learning

Affinity Propagation and State of the art

	K-means	K-centers	AP
exemplar	artefact	actual point	actual point
parameter	K	K	s [*] (penalty)
algorithm	greedy search	greedy search	message passing
performance	not stable	not stable	stable
complexity	N imes K	N imes K	$N^2 \log(N)$

Clustering by Passing Messages Between Data Points. B.J. Frey, D. Dueck. Science 2007

Affinity Propagation

Given	
$\mathcal{E} = \{e_1, e_2,, e_N\}$	elements
$d(e_i, e_j)$	their dissimilarity
Find $\sigma: \mathcal{E} \mapsto \mathcal{E}$	$\sigma(e_i)$, exemplar representing e_i
such that:	
$\sigma = \operatorname{argmax} \sum_{i=1}^{N}$	$\sum_{i=1}^{n} S(e_i, \sigma(e_i))$
where $\left\{ egin{array}{l} S(e_i,e_j)=-d^2(e_i,e_j) & ext{if} \\ S(e_i,e_i)=-s^* \end{array} ight.$	f $i \neq j$ s^* : penalty parameter
Particular cases	
• $s^* = \infty$, only one exemplar	1 cluster
• $s^* = 0$, every point is an exem	nplar N clusters

Affinity Propagation, Principle

Algorithm: Message propagation

- Responsibility r(i, k)
- Availability a(i, k).

could \mathbf{x}_k be examplar for \mathbf{x}_i

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

в

С

Affinity Propagation, 2

Two types of messages

• r(i, k) : Responsibility of *i* to *k*

▶ a(i, k) : Availability of i as examplar for k
 Rules of propagation

$$\begin{array}{lll} r(i,k) &=& S(e_i,e_k) - \max_{k',k' \neq k} \{ a(i,k') + S(e_i,e_k') \} \\ r(k,k) &=& S(e_k,e_k) - \max_{k',k' \neq k} \{ S(e_k,e_k') \} \end{array}$$

$$\begin{array}{lll} a(i,k) &=& \min\{0,r(k,k) + \sum_{i',i' \neq i,k} \max\{0,r(i',k)\}\}\\ a(k,k) &=& \sum_{i',i' \neq k} \max\{0,r(i',k)\} \end{array}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで
Iterations of Message passing

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Iterations of Message passing

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Iterations of Message passing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Affinity Propagation, cont'd

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

Affinity Propagation, cont'd

Affinity Propagation in a Nutshell

WHEN to use it ?

When averages don't make sense

PROS vs *K*-centers Lower distortion e.g., molecules; documents

$$D([\sigma]) = \sum_{i=1}^{N} d^2(e_i, \sigma(e_i))$$

CONS: Computational complexity

- Similarity computation: O(N²)
- Message passing: $\mathcal{O}(N^2 \log N)$

Clustering

- K-Means
- Expectation Maximization
- Selecting the number of clusters

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Affinity propagation
- Scalability

Hierarchical AP

Clustering data streams: Theory and practice. S. Guha, A. Meyerson, N. Mishra, R. Motwani. TKDE 2003.

Weighted AP

$$\begin{array}{c|c} \mathsf{AP} & \mathsf{WAP} \\ \hline e_i & (e_i, n_i) \\ S(e_i, e_j) & \to & n_i \times S(e_i, e_j) \\ S(e_i, e_i) & \to & S(e_i, e_i) + (n_i - 1) \times \epsilon \end{array}$$

With $\begin{array}{c} S(e_i, e_j) & \text{price for } e_i \text{ to select } e_j \text{ as an exemplar} \\ \epsilon & \text{variance of } n_i \text{ points} \end{array}$

Proposition

 $WAP \equiv AP$ with duplicated elements

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hierarchical WAP

- Complexity of HiWAP is $\mathcal{O}(N^{3/2})$
- \longrightarrow can be iteratively reduced to $\mathcal{O}(N^{1+\gamma})$

Apprentissage non supervisé

- Case Study
- Data Clustering
- Data Streaming

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part 2. Data Streaming

- When: data, specificities
- What: goals
- How: algorithms

More: see Joao Gama's tutorial,

http://wiki.kdubiq.org/summerschool2008/index.php/Main/Materials

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivations

Electric Power Network

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Data

Input

- Continuous flow of (possibly corrupted) data, high speed
- Huge number of sensors, variable along time (failures)
- Spatio-temporal data

Output

- Cluster: profiles of consumers
- Prediction: peaks of demand
- Monitor Evolution: Change detection, anomaly detection

Where is the problem ?

Standard Data Analysis

- Select a sample
- Generate a model (clustering, neural nets, ...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Where is the problem ?

Standard Data Analysis

- Select a sample
- Generate a model (clustering, neural nets, ...)

Does not work ...

- World is not static
- Options, Users, Climate, ... change

Specificities of data

Domain

- Radar: meteorological observations
- Satellite: images, radiation
- Astronomical surveys: radio
- Internet: traffic logs, user queries, ...
- Sensor networks
- Telecommunications

Features

- Most data never seen by humans
- Need for REAL-TIME monitoring, (intrusion, outliers, anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically distributed)

Data streaming Challenges

Maintain Decision Models in real-time

incorporate new information

comply with speed

- forget old/outdated information
- detect changes and adapt models accordingly

Unbounded training sets Prefer fast approximate answers...

- Approximation: Find answer with factor $1 \pm \epsilon$
- Probably correct: $Pr(answer correct) = 1 \delta$
- PAC: ϵ, δ (Probably Approximately Correct)
- Space $\approx \mathcal{O}(1/\epsilon^2 \log(1/\delta))$

Data Mining vs Data Streaming

	Traditional	Stream
Nr. of Passes	Multiple	Single
Processing Time	Unlimited	Restricted
Memory Usage	Unlimited	Restricted
Type of Result	Accurate	Approximate
Distributed	No	Yes

What: queries on a data stream

Sample

- Count number of distinct values / attribute
- Estimate sliding average (number of 1's in a sliding window)
- Get top-k elements

Application: Compute entropy of the stream

$$H(x) = \sum p_i \log_2(p_i)$$

useful to detect anomalies

Sampling

Uniform sampling: each one out of n examples is sampled with probability 1/n. What if we don't know the size ? Standard

- Sample instances at periodic time intervals
- Loss of information

Reservoir Sampling

- Create buffer size k
- Insert first k elements
- Insert *i*-th element with probability k/i
- Delete a buffer element at random

Limitations

- Unlikely to detect changes/anomalies
- Hard to parallelize

Count number of values

Problem

Domain of the attribute is $\{1, \ldots, M\}$ Piece of cake if memory available... What if the memory available is log(M)? Flajolet-Martin 1983 Paged on backing: $\{1, \ldots, M\}$ is $\{0, \ldots, 2h\}$ with l = log(M)

Based on hashing: $\{1, \ldots, M\} \mapsto \{0, \ldots, 2^L\}$ with L = log(M).

 $x \rightarrow hash(x) = y \rightarrow position least significant bit, lsb(x)$

Count number of values, followed

Result

$$R = \text{ position of rightmost 0 in } H$$

 $M \approx 2^R / .7735$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Decision Trees for Data Streaming

Principle

Grow the tree if evidence best attribute > second best

Algorithm

parameter: confidence δ (user-defined)

While true

Read example, propagate until a leaf

If enough examples in leaf

Compute IG for all attributes;

 $\begin{aligned} \epsilon &= \sqrt{\frac{R^2 \ln(1/\delta)}{2n}} \\ \text{Keep best if IG(best) - IG(second best }) > \epsilon \end{aligned}$

Mining High Speed Data Streams, Pedro Domingos, Geoffrey Hulten, KDD-00

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Model OO Reservoir

Does e_t fit the current model ??

- ▶ if yes, update the model
- otherwise, put outlier e_t in reservoir

Does e_t fit the current model ??

- ▶ if yes, update the model
- otherwise, put outlier e_t in reservoir

▲日▼ ▲□▼ ▲日▼ ▲日▼ □ ● ○○○

Does e_t fit the current model ??

- ▶ if yes, update the model
- otherwise, put outlier e_t in reservoir

Reservoir

Model OO

Has the distribution changed ?

- ▶ if yes, rebuild the model
- otherwise, continue

CHANGE TEST

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Model OO \bigtriangleup

Reservoir

Has the distribution changed ?

- ▶ if yes, rebuild the model
- otherwise, continue

CHANGE TEST

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Strap

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Does e_t fit the current model ?

- if yes, update the model
- otherwise, put e_t in reservoir

Has the distribution changed ?

- if yes, rebuild the model
- otherwise, continue

Update the model

Stream Model: $\{(e_i, n_i, \Sigma_i, t_i)\}$

e; examplar

- *n_i* number of items represented by *e_i*
- \triangleright Σ_i sum of distortions incurred by e_i
- ▶ *t_i* last time step when a point was affected to *e_i*

Update with decay:

 Δ : time window

$$n_i := n_i \times \left(\frac{\Delta}{\Delta + (t - t_i)} + \frac{1}{n_i + 1}\right)$$

$$\Sigma_i := \Sigma_i \times \frac{\Delta}{\Delta + (t - t_i)} + \frac{n_i}{n_i + 1} d(e_t, e_i)^2$$

$$t_i := t$$

Rebuild the model

Trigger

- when reservoir is full
- when changes are detected

Page-Hinkley statistic

$$\begin{split} \bar{p}_t &= \frac{1}{t} \sum_{\ell=1}^t p_\ell \\ m_t &= \sum_{\ell=1}^t \left(p_\ell - \bar{p}_\ell + \delta \right) \\ PH_t &= max\{m_\ell\} - m_t \end{split}$$

HINKLEY D. Inference about the change-point in a sequence of random variables. Biometrika, 1970 PAGE E. Continuous inspection schemes. Biometrika, 1954

Experimental validation

Data used

- Artificial dataset
- Real world data: KDD99 data
 - intrusion detection benchmark
 - ▶ 494,021 network connection records in \mathbb{R}^{34}
 - 23 classes: 1 normal + 22 attacks
- Baseline: DenStream

F. Cao, M. Ester, W. Qian, A. Zhou. Density-Based Clustering over an Evolving Data Stream with Noise. SDM 2006.

Performance indicator

- Distortion
- Clustering accuracy / Clustering purity (supervised setting)

KDD Cup 1999 data: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Accuracy along time

E 990

Restart criteria: MaxSizeR vs PH

Discussion

Rebuild: ReservoirSize vs PH

- ▶ PH is 10% better than ReservoirSize
- PH is less stable

Strap vs DenStream

- Pros
 - better accuracy
 - model available at any time

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Cons
 - DenStream: 7 seconds
 - Strap : 7 mins

Conclusion

Scalability: Hi-WAP

- Reduce complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(N^{3/2})$
- iteratively reduce toward $\mathcal{O}(N^{(1+\gamma)})$

Stream clustering: Strap

- Hybridized with an efficient change detection method, Page-Hinkley
- Model available at any time
- BUT: slower than DenStream

Future work Provide an upper bound on the distortion loss caused by Hi-WAP

Open issues

What's new

Forget about iid;

Forget about more than linear complexity (and log space)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Challenges

Online, Anytime algs Distributed alg. Criteria of performance Integration of change detection