
Game of Go and Computer-Go
Evaluation function
Tree based search

MoGo: Improvements in Monte-Carlo
Computer-Go using UCT and sequence-like

simulations

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1

1: Université Paris-Sud, INRIA, CNRS, TAO Group, FRANCE
2: Centre de Mathématiques Appliquées, Ecole Polytechnique, FRANCE

3: INRIA, SEQUEL Group, FRANCE

December 12, 2006

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

A short history of MoGo

July 2006: first participation in tournaments: 1650 ELO on CGOS
(Computer Go Server) (9x9);

Aug. 2006 (beg.): ranked best program on CGOS: 1920 ELO;

Aug. 2006 (end): MoGo reached 2000 ELO;

Oct. 2006: MoGo won the 2 KGS tournaments (9x9 and 13x13);

Nov. 2006: MoGo won the 2 KGS tournaments (9x9 and 13x13);

Nov. 2006: MoGo reached 2200 ELO on CGOS;

Dec. 2006: MoGo 2nd on KGS formal tournament (19x19);

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Quick introduction to game of Go
Computer-Go

A Quick introduction to game of Go

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Quick introduction to game of Go
Computer-Go

A Quick introduction to game of Go

Go-board (Goban): 19× 19
intersections;

Back and White play alternatively.
Black starts the game;

Adjacent stones are called a string.
Liberties are the empty intersections
next to the string;

Stones do not move, there are only
added and removed from the board. A
string is removed iff its number of
liberties is 0;

Score: territories (number of occupied
or surrounded intersections).

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Quick introduction to game of Go
Computer-Go

Beginning of Computer-Go, 1970s

Classical methods

Expert knowledge based evaluation function;
Minimax tree search;

Comparison with chess

Chess: Deeper Blue won against Kasparov, 1997;
Go: The strongest programs are about 10kyu in 2006
(amateurs of good level can win with 9 stones handicap)

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Quick introduction to game of Go
Computer-Go

Difficulties in computer-Go

Huge branching factor ≈ 200, chess ≈ 40
(John Tromp and Gunnar Farnebäck, 2006)
Legal positions number
2.0× 10170 on 19× 19, 1.0× 1038 on 9× 9

Good evaluation function difficult to build (Stern et al. 2004,
Wu L. and P. Baldi 2006, Silver D. et al. 2007). Must take
into account local, and global information.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Quick introduction to game of Go
Computer-Go

MoGo player

Two components

Simple simulation policy finishing the game as an evaluation
function;

bandit based tree search.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Evaluation function: Outline

Monte-Carlo Go

Improvements using sequences

Perspectives in the simulations

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Monte-Carlo evaluation function

(B. Bruegmann, 1993)

Let p the position to evaluate;

let π a (stochastic) player;

from p, π plays against itself until the end of the game;

the final score is then allocated to p;

possibly iterate and average.

→ → score

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Monte-Carlo evaluation function

(B. Bruegmann, 1993)

Let p the position to evaluate;

let π a (stochastic) player;

from p, π plays against itself until the end of the game;

the final score is then allocated to p;

possibly iterate and average.

→ → score

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Monte-Carlo evaluation function: Pros

even if π plays uniformly among legal moves, gives suprising
good results;

very precise for the end of games;

simple;

fast;

easy to improve.

Monte-Carlo evaluation function: Cons

stochastic evaluation;

bad for early position;

precision decrease with game length;

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Playing uniformly randomly can’t be the best

what can be better?

derandomize?

change the distribution to play better local moves?

change the distribution to play better global moves?

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Move sequences matter

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

How it works in MoGo

Look at the 8 intersections around the previous move;

for each such intersection, try to match a pattern (including
symetries);

if at least one pattern matched: play uniformly among
matching intersections;

else play uniformly among legal moves.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Some results

Winning rate with 70k simulations per move, against gnugo 3.6,
level 8:

simulation winning rate
mode

uniform 46.9%
Aug. 2006 65%
Sept. 2006 70.5%
Oct. 2006 77.5%
Nov. 2006 81%

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Reinforcement Learning

RL for the player

Playing Go is clearly a control problem;

RL can be used to directly learn a good player;

However build a good approximation function is difficult
(some succeed e.g. NeuroGo);

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Reinforcement Learning

RL for the player

Playing Go is clearly a control problem;

RL can be used to directly learn a good player;

However build a good approximation function is difficult
(some succeed e.g. NeuroGo);

What about RL for the simulation player?

Building the player π used in the MC simulations is also a
control problem;

Experiments showed that ”improving” π a little improved a
lot MoGo;

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Learning the simulation player

Reward function

Let π a simulation player, and MoGo(π) the MoGo player using π.
Some rewards:

1 if MoGo(π) wins against GNUGo, 0 else:

it is exactly what we are looking for;
too slow (6 minutes a game, 80h for 800 games. . .).

In fact it is what he do ”by hand”.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Learning the simulation player

Reward function

Let π a simulation player, and MoGo(π) the MoGo player using π.
Some rewards:

1 if π wins against a fixed π0, 0 else:

fast;
asymptotically great (minimax);
not monotonous at all.

Bad estimation players can have a high winning rate against our
best player.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Learning the simulation player

Reward function

Let π a simulation player, and MoGo(π) the MoGo player using π.
Some rewards:

evaluation precision of some given positions:

tractable;
asymptotically (in π and number of positions) great;
can have overfitting.

Not so bad in practice.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Learning the simulation player: what we tried

Optimizing π

Non parametric policy search;

π has almost the same structure as previously described: we
optimize the patterns;

Reward: average on position evaluations.

Results

winning rate of MoGo(π) close to w.r. of
MoGo(πhuman patterns);

we have a strong player with almost no Go knowledge!

sometimes strange results.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Monte-Carlo Go
Improvement of simulations
further improvements in evaluation

Beyond these results

Other approaches to get sequences

Position contains all information. But: Instead of searching
π : position→ move, we could think at:

π : position ×moveSequence → move;

π : startingPosition × position ×moveSequence → move;

π : position→ sequenceOfMoves;

any mixing combination.

It is also not mandatory to play legal moves, as long as the result
is consistent with the starting position.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Tree based search: Outline

Exploration-Exploitation: from alpha-beta to UCT

Extensions to UCT

Algorithmic issues

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Tree based search

Minimax

We want to approximate the min-max value of the position.
Not necessarily the best strategy: we could try to model the
opponent.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Alpha-Beta algorithm

Alpha-Beta computes the minimax value in a tree (exact given an
evaluation function).

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

UCT algorithm

Game as a multi-armed bandit

each position is a bandit;

each move is an arm;

play the best move ←→ maximize the reward.

UCT in Go

MoGo was the first Go program to use UCT (July 2006).

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

UCB and UCT algorithms

UCB algorithm (P. Auer et al.) 2002

let X̂i the empirical average rewards for i th arm;

let Ti the number of trials for arm i ;

let T =
∑

i Ti

Then iteratively:

if one arm has not been played, play it;

else, play the arm maximizing X̂i +
√

2 log T
Ti

.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

UCB and UCT algorithms

UCT algorithm (L. Kocsis and C. Szepesvari. 2006)

start from the root;

until stopping criterion (e.g. the end of the game):

choose a move according to UCB;
update the position.

score the game;

update all visited nodes with this score (without discount).

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Efficient memory management

Tree management after CrazyStone (R. Coulom 2006).

Stop as soon as UCT gets an unseen position;

add this node to the tree;

evaluate the position.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Value of a position/move

value(move) = value(positiont + move)
value(position) = 1

T

∑
i Tivalue(movei)

value(position)→ value(bestMove)

Why it is efficient compared to alpha-beta?

Alpha-Beta never reconsider a cut; dangerous with random
non accurate evaluation function;

value(node) → max(node) as confidence increases.

efficient tree exploiration

breadth first search;
move ordering efficiently managed;
asymmetric growing;

anytime.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Stationarity

Bandit problems are not stationary in the tree:
distribution of each arm change after each addition of a
descendant.

leaf node: reward ∼ evaluation function distribution

addition of a subnode → draws the distribution toward max;

we should use at least a discount factor;

that gives bad results.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Stationarity: results with discount

Some explanations:

we iteratively find a good move, then its refutation: algorithm
must be robust to that;

if we took a long time to find a refutation, then it is difficult
for the opponent too;

at a level we compare rewards with subtrees of different
depths → prevent give advantage to shallower subtrees.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Improvements

Specific extensions required

from asymptotic quality to efficient move selection;

trials < # moves;

arms are not independent.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Improvements in UCT when # trials ≈ nb arms

First Play Urgency

Starting with playing all arms is not optimal; Let c a default
constant. Let Xi

′ such that

Xi
′ = X̂i +

√
2 log T

Ti
if Ti > 0;

Xi
′ = c if Ti = 0;

Choose the highest Xi
′.

Empirically c ≈ 1 → +50 ELO.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Variant in UCB

Tested formulas

With previous notation and σ̂i the empirical standard deviation of
rewards for arm i , we experimented:

X̂i + p
√

log T
Ti

X̂i + max(pσ̂i

√
log T
Ti

, ε)

X̂i + p
√

log T
Ti

min{1/4,Vi}, with Vi = σ̂i
2 + q

√
log T
Ti

X̂i + pσ̂i

√
log T
Ti

+ qσ̂i
log T
Ti

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Exploiting dependencies

Share information between arms

There is no independence between arms vertically and horizontally.
The goal is to improve the performance when T is small.

Average results from neihbor moves (add a term
1

|Ni |
∑

j∈Ni
X̂j);

use results from ancestors: set a ci for each move according
to X̂i of its grandfather.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Parallelization

Parallelization

Results showed that MC/UCT algorithm scales well.
Parallelization open great perspectives in Go and other
applications.
We tried two kind of parallelizations:

multi-processors computer with shared memory

parallelization on a cluster

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Parallelization

Shared memory parallelization

Straightforward parallelization:
3 methods:

DescendTheTreeUsingUCT

MCSimulation

UpdateTheTree

Algorithm loop:

mutex.lock(); DescendTheTreeUsingUCT(); mutex.unlock();
MCSimulation();
mutex.lock(); UpdateTheTree(); mutex.unlock();

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Shared memory parallelization: Results

Not equivalent to the ”mono-threaded UCT”;

with the same number of simulations, same performance (4
threads);

as it allows more simulations per second → +100 ELO on
CGOS;

what happens with many more processors?

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Parallelization on a cluster

Time of one simulation < communication time
→ regroup nodes;

We tried several algorithms but not significant results so far;

However there are great perspectives.

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Conclusion

Summary

Monte-Carlo Go program with sequence like simulations

MoGo first Go program using UCT

Specific adaptation of UCT improving non asymptotic
behavior

Algorithm issues: parallelization of UCT (12000
nodes/second, 400000 nodes/move)

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Perspectives

Further works

Improvements in the simulation policy

Shifting towards exploitation for 19× 19 Go boards

Exploiting arm dependencies

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

Game of Go and Computer-Go
Evaluation function
Tree based search

Exploration-Exploitation: from alpha-beta to UCT
Nodes with small number of trials
parallelization

Thank You

Thank you

play against MoGo on KGS

Sylvain Gelly1, Yizao Wang1,2, Rémi Munos2,3, Olivier Teytaud1 MoGo: Improvements in Monte-Carlo Computer-Go using UCT and sequence-like simulations

	Game of Go and Computer-Go
	Quick introduction to game of Go
	Computer-Go

	Evaluation function
	Monte-Carlo Go
	Improvement of simulations
	further improvements in evaluation

	Tree based search
	Exploration-Exploitation: from alpha-beta to UCT
	Nodes with small number of trials
	parallelization

