
To appear in Proceedings of the Eighteenth International Conference on Machine Learning ICML-2001.

Pairwise Comparison of Hypotheses in Evolutionary Learning

Krzysztof Krawiec KRAWIEC@CS.PUT.POZNAN.PL
Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60965 Poznan, Poland

Abstract

This paper investigates the use of evolutionary
algorithms for the search of hypothesis space in
machine learning tasks. As opposed to the
common scalar evaluation function imposing a
complete order onto the hypothesis space, we
propose genetic search incorporating pairwise
comparison of hypotheses. Particularly, we allow
incomparability of hypotheses, what implies a
partial order in the hypothesis space. We claim
that such an extension protects the ‘interesting’
hypotheses from being discarded in the search
process, and thus increases the diversity of the
population, allowing better exploration of the
solution space. As a result it is more probable to
reach hypotheses with good predictive accuracy.
This supposition has been positively verified in
an extensive comparative experiment of
evolutionary visual learning concerning the
recognition of handwritten characters.

1. Introduction

Evolutionary computation (De Jong, 1975; Holland,
1975) has been used in machine learning for quite a long
time (Mitchell, 1996). Now it is recognized as a useful
approach or even as one of its paradigms (Langley, 1996;
Mitchell, 1997, Chapter 9). It is highly appreciated due to
its ability to perform global parallel search of the solution
space with low probability of getting stuck in local
minima. Its most renowned applications include feature
selection (Yang & Honavar; 1998), feature construction,
and concept induction (DeJong, Spears, & Gordon; 1993;
Goldberg, 1989). In this paper, we focus on the last of the
aforementioned tasks, with solutions corresponding to
hypotheses; from now on, these terms will be used
interchangeably.

Like all metaheuristics, evolutionary algorithm needs an
evaluation (fitness) function to guide the search. In the
machine learning framework, this evaluation is commonly
based on an estimate of predictive accuracy of the
hypothesis (Langley, 1996), eventually including the
hypothesis -size factor to prevent overfitting, introduced
explicitly or in a more sophisticated way (as it is, for

instance, in the minimum description length by Rissanen
(1983)).

Such a scalar evaluation function imposes a complete
order onto the hypothesis space. As a result, it is assumed
that all hypotheses are comparable with respect to their
predictive ability and, given a pair of them, it is always
possible to point the better one, unless they have the same
evaluation.

In this contribution we argue that the above statement is
in general not valid. The following section of this paper
presents some negative consequences of forcing the
hypotheses to be always comparable. Then, in Section 3
we propose the replacement the scalar evaluation by the
pairwise comparison of hypotheses. Section 4 describes
how it is possible to embed this idea into learning based
on evolutionary search of the hypothesis space. Section 5
contains the description of an experimental evaluation of
the approach on the visual learning task of handwritten
character recognition, followed by conclusions.

2. The Need for Incomparability of Hypotheses

The main claim of this paper is that scalar evaluation of
hypotheses implies the complete order of solutions, which
does not reflect well the structure of the hypothesis space.
A numerical evaluation function, like for instance the
accuracy of classification, reflects well the utility of
particular hypothesis, however, it reveals some
shortcomings when used for hypothesis comparison. This
is mainly due to the fact that such measures have by
definition aggregating and compensatory character
(Vincke, 1992). They may yield similar or even equal
values for very different hypotheses.

We suggest that when the considered hypotheses ‘behave’
in a significantly different way, for instance they produce
different outcomes on particular parts of the decision
space, we should allow them to be incomparable . The
need of such incomparability grows with the dissimilarity
between the compared hypotheses and becomes especially
important when their scalar evaluations are relatively
close.

Let us illustrate this problem with the following example.
For a hypothesis h, let C(h) denote the s ubset of examples
from the training set T that are classified correctly by h
(C(h)⊆T). Then, let the hypotheses be evaluated by means

of scalar evaluation function f, computing the accuracy of
classification of h on T (f(h) = |C(h)| / |T|). Let us consider
three hypotheses, a, b, and c, for which |C(a)| > |C(b)| =
|C(c)|. Thus, with respect to f, hypotheses b and c are of
the same quality and are worse than a. This evaluation
method cannot differentiate the pairs of hypotheses (a,b)
and (a,c).

The above reasoning ignores the mutual relations between
C(a), C(b) and C(c). If, for instance, C(b) ⊂ C(a), we
probably would not doubt the superiority of a over b. But
what about the relation between a and c, assumed that
C(c) ⊄ C(a) and |C(c) ∩ C(a)| << |C(a)| ? In such a case,
although a classifies correctly more examples than c,
there is a remarkable subset of examples (C(c) \ C(a)),
which it does not cope with, while they are successfully
classified by c. Thus, superiority of a over c is rather
questionable. Moreover, if also C(a) ⊄ C(c), the question
concerning mutual relation between a and c should
probably remain without answer, leading us to the
concept of hypothesis incomparability. n

Scalar evaluation ignores the issue illustrated in the above
example and forces the hypotheses to be always
comparable. As a result, some novel and ‘interesting’
hypotheses may be discarded in the search due to their
minor evaluation. The loss of such solutions may
influence significantly the effectiveness of the search. In
the further processing, they could explore some new,
hitherto unrevealed parts of the hypothesis space and
attain better evaluation than the solutions that won the
scalar competition.

Note that the above observation is valid for any machine
learning algorithm (or other heuristics) that explicitly
evaluates and compares hypotheses. However, it is of
special importance in genetic programming, where the
offspring solutions have often low fitness due to the
destructive nature of mutation and recombination
operators.

3. Pairwise Comparison of Hypotheses

3.1 From Incomparability to Outranking

In this part we will present an alternative approach,
devoid of the shortcomings discussed in the previous
section. We showed that it is reasonable in some cases to
allow hypotheses to remain incomparable. This suggests
us that we should move on from the functional method of
hypothesis evaluation to the relational one. The resulting
structure of complete order is very popular in, for
instance, relational approaches to multiple criteria
decision aid, where it is often being described by means
of a binary outranking relation 1, denoted thereafter by ‘≥’

—————
1 Formally, an outranking relation induces partial preorder, as it permits
indiscernibility.

(see, for instance, Chapter 5 of (Vincke, 1992)).
According to the definition, for a pair a,b of solutions,
a ≥ b should express the fact that a is at least as good as
b. Then, one of the following cases is possible:

• a is indiscernible with b (a ≥ b and b ≥ a), or

• a is strictly better than b (a ≥ b and not b ≥ a), or

• b is strictly better than a (b ≥ a and not a ≥ b), or

• a and b are incomparable (neither a ≥ b nor b ≥ a).

Partial order has a natural graphical representation of a
directed graph. The nodes of outranking graph correspond
to hypotheses, whereas arcs express the outranking.
Particularly, the ‘best’ solutions match the initial
(predecessor-free) nodes. Note also that outranking is in
general reflexive and non-symmetric.

3.2 Hypothesis Outranking

3.2.1 PRELIMINARY ASSUMPTIONS
The outranking relation ≥ may be defined in many
different ways. Generally, we could consider here the
definitions based on the representation (form) of the
hypothesis (like in the well-known Candidate-Elimination
by Mitchell (1997)) or the definitions based on the
functioning (behavior) of the hypothesis on the training
set. Obviously, the partial orders imposed on the
hypothesis space by both these types of outranking are
different. The approach presented here implements the
latter case, which has an advantage of not making any
assumption about knowledge representation used by the
induction algorithm.

Particularly, we focus on the paradigm of supervised
learning from examples, the one used most often in the
real-world applications. For the sake of simplicity,
however without loss of generality, we also limit our
considerations to the binary (two-class) classification
problems (the positive and negative decision classes).

3.2.2 DEFINITION OF HYPOTHESIS OUTRANKING BASED
ON TRAINING SET CLASSIFICATION

The presence of the training set T in learning from
examples paradigm allows us to define the outranking in
terms of sets. However, instead of using an aggregating
measure like accuracy of classification, we go more into
detail and analyze the behavior of the hypotheses on
particular instances from the training set.

The example presented in Section 2 shows that it seems to
be useful to refer here to the set difference of the sets of
instances properly classified by the considered hypotheses
a and b (C(a) and C(b), respectively). In particular, the
more examples belong to C(b) \ C(a), the less likely is the
outranking a ≥ b.

An outranking relation that follows this intuition may be
reasonably defined in several different ways. An elegant
idea could be to refer here to the notion of set inclusion

grade (Dubois & Prade, 1980), or fuzzy inclusion relation
(Dubois & Prade, 2000, Section 2.4). However, as the
goal of this research was to investigate the issues of
partial order of hypotheses and incomparability, it was
undesirable at that point to apply sophisticated and
parameterized relations. Thus, we employ here the crisp
inclusion of sets and define the outranking of a over b as
follows:

 a ≥ b ⇔ C (b) ⊆ C (a). (1)

This definition states that a hypothesis a is at least as
good as a hypothesis b iff a classifiers correctly at least all
the examples which are classified correctly by b. Note
that the outranking of a over b may be disabled by just a
single training example x (C(b) \ C(a) = {x}). This
sensitivity is surely a weak point, we decided however to
pay such a price for keeping this study simple and non-
parametric. For real-world implementations a more
sophisticated definition should be engaged. On the other
hand, outranking relation as defined in (1) is transitive;
this property, in general not required, may be
advantageous when computing some of the entities
introduced further in the paper.

4. GPPO - Embedding Pairwise Hypothesis
Comparison into Evolutionary Learning

Genetic Programming using Partial Order of solutions,
referred hereafter to as GPPO, requires redefinition of
some parts of the evolutionary search procedure
(Goldberg, 1989). This applies to the selection process, to
the maintenance of the set of best solutions found so far,
and to the interpretation of the final result. The following
subsections describe these changes.

4.1 Outranking-based Selection of Hypotheses

Selection is the central step of any evolutionary algorithm
procedure and consists in choosing the set of parent
solutions P* (often referred to as mating pool) from the
population P evolved in considered generation of
evolutionary search. In the outranking-based selection
process we have to take into account the potential
presence of hypotheses incomparability. In the
preliminary research (Krawiec, 2001), we tried to extend
for this purpose the popular tournament selection scheme
(Goldberg, Deb, & Korb, 1991). Unfortunately, that
approach did not yield satisfactory results in experimental
evaluation, probably due to the fact, that, as tournaments
for incomparable hypotheses remain unsettled, the
selection pressure decreases.

Thus, in GPPO we take an alternate way and start with
computing the subset N(P) of non-outranked solutions
from P, i.e.

 N(P) = {h ∈ P: ¬∃ h’∈ P : h’ ≥ h}. (2)

This definition is straightforward, but troublesome in the
sense that we cannot directly control the cardinality of

N(P). In practice N(P) usually contains a small fraction of
P, nevertheless in extreme cases it can be empty may or
encompass all the individuals from P. This is
contradictory to a reasonable assumption that we should
preserve constant size of the population (at least
approximately).

Thus, the approach described in this paper combines the
standard tournament selection with the outranking-based
selection in the following steps:

1. P* ← N(P)

2. If |P*| is smaller than a predefined fraction of the
population size α|P|, α∈(0,1〉, the solutions in P* are
‘cloned’ to reach that size.

3. The missing part of the mating pool (P \ P*) is filled
with solutions obtained by means of the standard
tournament selection on P.

The α parameter controls the penetration of the mating
pool by the non-outranked solutions P* and ensures that
this influence is relatively constant, no matter what the
actual size of P* is.

4.2 Outranking-based Maintenance of Best Solutions

The presence of solution incomparability implies also
some changes in the way we should keep track of the best
solutions found in the evolution process. We have to be
prepared to face many ‘leaders’ in the population and
maintain the set of all non-outranked solutions found
during the search, denoted further by N*. Starting with
N* = ∅, the update of N* for consecutive generations
requires the following operation in GPPO:

 N* ← N(P ∪ N*). (3)

4.3 Utilization of the Best Solutions

The set N* of non-outranked solutions resulting from the
completed evolution process may be used in a usual way,
i.e. one can select from it the best solution with respect to
the scalar evaluation function and treat it as the final
outcome of the learning process. This was the method
applied in the forthcoming case study (Section 5), as it
ensures the comparability of results with the standard
genetic programming.

However, the mutual incomparability of solutions from N*
suggests that they are significantly different in terms of
particular definition of outranking. In the case of training
set performance-based outranking (1), that means
different performance in various parts of the decision
space. Therefore, it seems reasonable to benefit from the
knowledge acquired by (potentially all) solutions from N*.
A natural approach here is to refer to the methodology of
meta-classifiers, which offers a broad scope of methods
for combining classifiers, usually aiming at boosting the
accuracy of classification (see, for instance, (Chan &

Stolfo, 1993)). We plan to devote a part of our future
research on GPPO to this topic.

4.4 Remarks and Related Research

Methods of improving the exploration of the solution
space (or maintenance of diversity) appear in evolutionary
computation under the name of niching and multimodal
genetic search. Some of those methods operate on the
solution level and base the selection on a random, usually
small sample of the population (e.g. tournament selection
by Goldberg, Deb, and Korb (1991), or restricted
tournament selection by Harik (1995)). Others use a more
careful pairing of selected parents (Mitchell, 1997, p.
259). Yet another approaches rely on a more intermediate
influence and modify the evaluation scheme, penalizing
the solutions for ‘crowding’ in the same parts of the
solution space, as in the popular fitness sharing by
Goldberg and Richardson (1987) or sequential niche
technique by Beasley, Bull and Martin (1993). In
particular, niches may be maintained during the entire
evolution process (parallelly) or only temporarily
(sequentially); Mahfoud (1995) provided an interesting
comparison of these groups of methods.

The specificity of GPPO method in comparison to the
aforementioned approaches consists in the following
features:

• GPPO supports niching in an explicit way, by means
of the concept of outranking. In particular, GPPO
does not require any extra distance metric in the
search space (whereas, for instance, many fitness
sharing methods do).

• GPPO carries out the search without making any
reference to the scalar evaluation function, which, as
pointed out in Section 2, has some drawbacks due to
its aggregative character in machine learning tasks.
Thus, GPPO is more than a mere niching method; it
is rather a variety of evolutionary search procedure
that maintains the set of mutually non-outranking
solutions during the search process.

• GPPO makes direct use of the detailed and very basic
information on performance of the solution on
particular training examples. Thus, the comparisons
of individuals in the genetic GPPO search are tied
very closely to the mutual relationships of hypotheses
in the hypothesis space.

A reader familiar with the topic may notice some
analogies between GPPO and multiobjective genetic
search and optimization (Schaffer, 1985; Van Veldhuizen,
1989). However, the multiobjective approach refers to the
dominance relation, which assumes the existence of a
multidimensional space spanned over a finite number of
ordered objectives. The concept of outranking presented
in Section 3 and, in particular, the outranking definition
(1) used in this paper, do not assume an existence of such
a space. The incomparability of solutions in dominance-

based methodology is a consequence of the presence of
multiple dimensions (objectives) and the tradeoffs
between them, whereas in our case of outranking we do
not explicitly define such dimensions.

5. Genetic Programming using Partial Order of
Hypotheses in Visual Learning

5.1 Genetic Programming for Visual Learning

The proposed idea has been adopted in genetic
programming-based visual learning, which was the
subject of our previous research (Krawiec & Slowinski,
1997; Krawiec, 2000; Krawiec, 2001). The goal of the
learning process is here to induce the complete pattern
analysis and recognition program, without explicit
division into stages of feature extraction and reasoning.

As the experimental test bed for the approach, we chose
the problem of off-line handwritten character recognition.
This task is often referred to in the literature due to its
wide scope of real-world applications. The methods
proposed in literature incorporate statistics, structural and
syntactic methodology, sophisticated neural networks, or
ad hoc feature extraction procedures, to mention only a
few (for review, see (LeCun, Jackel, Bottou, Brunot, et al.
1995)). The genetic programming approach presented in
this paper cannot be univocally classified into any of
these categories, combining the elasticity and learning
capability of adaptive systems with comprehensibility of
symbolic knowledge representation.

5.2 Related Research on GP -based Learning

Genetic programming (GP) proposed by Koza (1994) is
reported to be very effective in solving a broad scope of
learning and optimization problems. The major difference
in comparison with standard genetic algorithms is here the
more sophisticated solution representation (usually LISP-
like expressions or programs), which gives more
elasticity, but requires also more sophisticated
recombination operators (see Section 5.4.3).

A remarkable part of research on evolutionary algorithms
concerns machine learning (see (Mitchell, 1996; Mitchell
1997) for review). There are also some results in
application of evolutionary algorithms for image
processing and analysis (e.g. (Bala, De Jong, &
Pachowicz, 1994). However, there are relatively few,
which try to combine both these aspects and refer to the
visual learning, understood as the search for pattern
recognition programs (Johnson, 1995; Teller & Veloso,
1995; Poli, 1996; Krawiec, 1997; Krawiec, 2000). Only a
small fraction of research aims at inducing the complete
image analysis program based on training examples,
which direction is in our opinion very promising and
universal.

5.3 Representation of Image Analysis Programs

In conventional approaches to image analysis and
interpretation, the processing is usually split into the
feature extraction and reasoning (Gonzalez & Woods,
1992). The reasoning is based on the feature vector
provided by image analysis methods and usually employs
(statistical or machine learning) classifier. Such a
separation of the reasoning process from the image
analysis and feature extraction suffers from several
drawbacks (Krawiec, 2000). The use of GP for image
analysis and interpretation was motivated by this
shortcoming and is aimed at expressing the complete
program of image analysis and interpretation without the
need for an external classifier. The major advantage of
such setting is that the training process is no more limited
to the decision space predefined by a human expert, but
encompasses also the search for an appropriate image
representation.

In this case study, the search takes place in the space of
hypotheses being pattern recognition procedures
formulated in a specialized language called GPVIS
(Krawiec 2000). GPVIS is an image analysis -oriented
language encompassing a set of operators responsible for
simple feature extraction, region-of-interest selection, and
arithmetic and logic operators. The programs performing
image analysis and recognition are tree-like GPVIS
expressions composed of such operations.

To give the reader a general idea what GPVIS is like,
Figure 1 presents a simple example of image analysis
program formulated in that language. Its interpretation is
as follows: if the x coordinate of the mass center of the
contents of rectangular region of interest (roi) limited by
upper left corner (19,8) and lower right corner (2,4) is less
than 12 or there are more than 8 pixels in the ‘on’ state in
another region of interest (the right branch of the tree),
then the return value is true. This returned value could be
then further processed to yield binary class assignment, as
in the case study described in this section.

(or (< (x (massCent (roi 19 8 2 4))) 12)
 (> (nPixOn (roi 7 23 10 18)) 8)

Figure 1. Tree-like and LISP-like representations of an
exemplary solution formulated in GPVIS language (numerical
values omitted in the tree).

5.4 The Experiment

5.4.1 THE GOAL OF THE EXPERIMENT
The goal of the computational experiment was to compare
the performance of the proposed genetic programming
with partial order of solutions (GPPO) with the ‘plain’
genetic programming (GP). The main subject of
comparison was the accuracy of classification of the best
evolved solutions (hypotheses) on the training and test
set.

Figure 2. Selected difficult examples from the MNIST
database.

5.4.2 IMAGE DATA
The source of images was the MNIST database of
handwritten digits made available by LeCun et al. (1995).
The database contains 70,000 digits written by approx.
250 persons (students and clerks), each represented by a
28×28 matrix of gray level pixels (Fig. 2). Characters are
centered and scaled with respect to their horizontal and
vertical dimensions, however, not ‘deskewed’.

5.4.3 EXPERIMENT DESIGN
To ensure a statistically strong support for the results, a
extensive computational experiment with different
training and test data has been carried out. First of all,
instead of considering the complete ten-class digit
recognition problem we ran a separate series of
experiments for each pair of ten digit classes; there were
10×9/2 = 45 of them. Each such series consisted of three
simulations. Corresponding GP and GPPO runs started
from the same initial population. Thus, the results
presented hereafter summarize 135 pairs of genetic runs.

The experiments have been also carefully prepared and
carried out so as to ensure credible comparability of
results. The particular GP and GPPO runs were ‘paired’
in the sense that they started from the same initial
population and used the same training and test sets as well

or

< >

x 12

massCent

roi

nPixOn

roi

8

as the values of parameters. The most important of them
were set as follows: population size: 200; probability of
mutation: .05; maximal number of generations: 100;
training set size: 100 instances (50 images per class,
randomly selected from the training subset of the MNIST
database); tournament size: 5 (Goldberg et al., 1991), and
α = .5 (see Section 4.1).

In each generation, half of the population was retained
unchanged, whereas the other fifty percent underwent
modifications. The GP runs used the standard tournament
selection based on scalar fitness function, whereas GPPO
runs followed the selection procedure described in
Section 4.1. Then, the offspring were created by means of
the crossover operator, which randomly selects
subexpressions (corresponding to subtrees in the graphical
representation shown in Fig. 1) in the two parent solutions
and exchanges them. The mutation operator applied to a
solution randomly selects a subexpression and replaces it
by other subexpression generated at random. In these
operations the so-called strong typing principle must be
obeyed (Koza, 1994).

Special precautions have been taken to prevent overfitting
of hypotheses to the training data. In the GP case, the
scalar fitness function was extended by additional penalty
term implementing parsimony pressure. Particularly,
solutions growing over 100 terms were linearly penalized
with the evaluation decreasing to 0 when the threshold of
200 terms is reached. In the GPPO approach, a solution
composed of 100 or more terms was always outranked, no
matter how it performed on the training data.

5.4.4 PRESENTATION OF RESULTS
Table 1 presents the comparison of the best solutions (see
Section 4.3) obtained in GP and GPPO runs. Table rows
reflect consecutive stages of the evolution process
(selected generations). Each row summarizes the
comparison of 135 paired GP and GPPO runs (see Section
5.4.3). The description includes:

• the number of pairs of GP and GPPO runs (per total
of 135) for which the best solution2 evolved in
GPPO yielded strictly better accuracy of
classification on the training set than the best one
obtained from ‘plain’ GP (‘#GPPO BETTER’),

• the average increase of accuracy of classification of
GPPO in comparison to GP (‘AVERAGE INCREASE’),

• the false reject probability of Wilcoxon matched
pairs signed rank test (‘FALSE POSITIVE
PROBABILITY’); the test takes into account the
relative magnitude of differences in GP and GPPO
accuracy.

—————
2 For both GP and GPPO, the term ‘best’ in this context refers to the best
solution found in the evolution process, with respect to the scalar
evaluation function, i.e. the accuracy of classification (see Section 4.3).

Table 2 presents the summary of the performance of the
same solutions as in Table 1 when evaluated on an
independent test set. The test set for each task contains
1600 objects, i.e. 800 images for both positive and
negative classes, selected randomly from the testing part
of the MNIST database. Note that the training (fitness) set
and testing set are independent in a strong sense, i.e.
contain digits written by another people (LeCun et al.,
1995).

The tables do not refer directly to the (average) accuracy
of classification, as it would not make much sense due to
the heterogeneity of particular experiments (different
pairs of decision classes). However, to give the reader an
idea about the absolute performances of hypotheses
elaborated by both algorithms, we provide the average
accuracy of classification at the end of evolutionary runs
(training and testing set, respectively): 90.3±6.0% and
85.2±10.2% for GP, 92.2±4.9% and 87.7±7.4% for GPPO
(standard deviations included).

Table 1. Comparison of the best solutions evolved in GP and
GPPO runs with respect to the accuracy of classification on the
training set.

GENERATION #GPPO
BETTER

AVERAGE
INCRASE

[%]

FALSE
POSITIVE

PROBABILITY

20 74/135 0.55 .8681
40 76/135 0.93 .2880
60 89/135 1.67 .0085
80 88/135 1.46 .0096

100 105/135 1.97 .0002

Table 2. Comparison of the best solutions evolved in GP and
GPPO runs with respect to the accuracy of classification on the
test set.

GENERATION #GPPO
BETTER

AVERAGE
INCRASE

[%]

FALSE
POSITIVE

PROBABILITY

20 69/135 -0.02 .6234
40 82/135 1.68 .1093
60 86/135 1.92 .0461
80 89/135 1.69 .0325

100 92/135 2.63 .0061

6. Conclusions and Future Research Directions

The main qualitative result obtained in the experiment is
that evolutionary search taking into account the partial
order of solutions and allowing hypothesis
incomparability (GPPO) outperforms the ‘plain’ genetic
programming (GP) on average. The longer the time
devoted to the search, the more best solutions obtained by
means of GPPO outperform that obtained by GP. Tables 1
and 2 show that, as both algorithms proceed, the increase
(difference) of accuracy of classification of best GPPO
solutions grows in comparison to the best GP solutions.
Starting from generation 60, this difference becomes
statistically significant at the .05 level; at the end of the
runs the probability of false reject error is lower than .01.
Importantly, this applies to the training set as well as to
the test set. The GPPO hypotheses (classifiers) are not
only superior on the training set, but also reveal better
predictive ability. The average 2.6% gain on accuracy of
classification seems to be attractive, remembering the
complexity of the visual learning task and the fact, that
the accuracies provided by both the methods at the end of
runs are close to 100%.

The result not shown in the tables is that the obtained
GPPO solutions have similar size to those reached by GP
(we define the solution size as the total number of GPVIS
subexpressions; see Section 5.3). As far as time factor is
concerned, although pairwise comparison of solutions
introduces obviously an extra overhead, that additional
cost does not exceed on average 10% of the total
computing time.

The general conclusion of this work is that it is
worthwhile to control the search of the hypothesis space
by means of an incomparability-allowing, pairwise
comparison relation. Such evaluation method protects the
novel solutions from being discarded in the search
process, even if they exhibit minor fitness in scalar terms.
The more abstract conclusion could be formulated as
follows: in the presence of an order, we do not have to
look for an intermediation of numbers.

It seems also that such an observation is not limited to
evolutionary search and could be generalized to other
machine learning inducers, especially those, which
explicitly evaluate and compare the hypotheses in the
context of training data.

The proposed approach to evolutionary learning has the
advantage of being independent of the knowledge
representation. From the viewpoint of information theory,
the method makes use of the information concerning th
performance of the hypothesis on training sense in a much
more extent than the scalar evaluation.

Further work on this approach may concern different
aspects, some of them are however of special importance.
In particular, it seems to be interesting to consider the
more sophisticated definitions of hypothesis outranking,
mentioned in Section 3.2.2, which should be less sensitive

to the classification of particular examples. Then, as
suggested in Section 4.3, a useful extension of the
approach could be to combine the non-outranked
hypotheses to form a meta-classifier, for instance by
simple or weighted voting. To improve further the results
and to speed up the learning we plan also to introduce the
incremental growth of the training set (called incremental
evaluation by Langley (1996), p. 60). And, last but not
least, there is a need for a more extensive computational
experiment concerning various (not necessarily visual)
tasks to evaluate the usefulness of the GPPO method in a
broader context.

Acknowledgements
The author would like to thank Jerzy Stefanowski for
valuable comments and remarks and Yann LeCun for
making the MNIST database of handwritten digits
available to the public. This work was supported from the
KBN research grant no. 8T11F 006 19.

References
Bala, J.W., De Jong, K.A., Pachowicz, P.W. (1994)

Multistrategy learning from engineering data by
integrating inductive generalization and genetic
algorithms. In R.S. Michalski, G. Tecuci, Machine
learning. A multistrategy approach. Volume IV . San
Francisco: Morgan Kaufmann, 471-487.

Beasley, D., Bull, D.R., & Martin, R.R. (1993). A
Sequential Niche Technique forMultimodal Function
Optimization. Evolutionary Computation 1 (2), 101-
125.

Chan, P.K., & Stolfo, S.J. (1993). Experiments on
multistrategy learning by meta-learning. Proceedings of
the Second International Conference on Information
and Knowledge Management.

De Jong, K.A. (1975). An analysis of the behavior of a
class of genetic adaptive systems. Doctoral dissertation,
University of Michigan, Ann Arbor.

De Jong, K.A., Spears, W.M., & Gordon, D.F. (1993).
Using genetic algorithms for concept learning. Machine
Learning , 13, 161-188.

Dubois, D., & Prade, H. (1980). Fuzzy sets and systems.
theory and applications. New York: Academic Press.

Dubois, D., & Prade, H. (2000). Fundamentals of fuzzy
sets. Boston: Kluwer Academic.

Goldberg, D. (1989). Genetic algorithms in search,
optimization and machine learning. Reading: Addison-
Wesley.

Goldberg, D., Deb, K., & Korb, B., (1991). Do not worry,
be messy. Proceedings of the Fourth International
Conference on Genetic Algorithms (pp. 24-30). San
Mateo: Morgan Kaufmann.

Goldberg, D., & Richardson, J. (1987). Genetic
algorithms with sharing for multimodal function
optimization. Genetic algorithms and their applications:
Proceedings of the Second International Conference on
Genetic Algorithms, 41-49.

Gonzalez, R.C., Woods, R.E. (1992). Digital image
processing. Reading: Addison-Wesley.

Harik, G. (1995). Finding multimodal solutions using
restricted tournament selection. In L. J. Eshelman (Ed.),
Proceedings of the Sixth International Conference on
Genetic Algorithms (pp. 24-31). San Francisco:
Morgan Kaufmann.

Holland, J.H. (1975). Adaptation in natural and artificial
systems. Ann Arbor: University of Michigan Press.

Johnson, M.P. (1995). Evolving visual routines. Master’s
Thesis, Massachusetts Institute of Technology.

Koza, J.R. (1994). Genetic programming - 2. Cambridge:
MIT Press.

Krawiec, K., & Slowinski, R. (1997). Learning
discriminating descriptions from images. Proceedings of
the Sixth International Symposium ‘Intelligent
Information Systems’ (pp. 118-127), Warsaw: IPIPAN
Press.

Krawiec, K. (2000). Constructive induction in picture-
based decision support. Doctoral dissertation, Institute
of Computing Science, Poznan University of
Technology, Poznan.

Krawiec, K. (2001). Genetic programming using partial
order of solutions for pattern recognition tasks.
Unpublished manuscript. Institute of Computing
Science, Poznan University of Technology, Poznan.

Langley, P. (1996). Elements of machine learning. San
Francisco: Morgan Kaufmann.

LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., et al.
(1995). Comparison of learning algorithms for
handwritten digit recognition. International Conference
on Artificial Neural Networks (pp. 53-60).

Mahfoud, S.W. (1995). A Comparison of Parallel and
Sequential Niching Methods. In L.J. Eshelman (Ed.),
Proceedings of the Sixth International Conference on
Genetic Algorithms (pp. 136-143). San Mateo: Morgan
Kaufmann.

Mitchell, T.M. (1996). An introduction to genetic
algorithms. Cambridge, MA: MIT Press.

Mitchell, T.M. (1997). Machine learning . New York:
McGraw-Hill.

Poli, R. (1996). Genetic programming for image analysis,
(Technical Report CSRP-96-1). The University of
Birmingham.

Rissanen, J. (1983). A universal prior for integers and
estimation by minimum description length. The Annals
of Statistics, 11, 416-431.

Schaffer, J.D. (1985). Multiple objective optimization
with vector evaluated genetic algorithms. Proceedings
of the First International Conference on Genetic
Algorithms and their Applications. Hillsdale: Lawrence
Erlbaum Associates.

Teller, A., & Veloso, M. (1995). A controlled experiment:
evolution for learning difficult image classification.
Lecture Notes in Computer Science, Vol. 990 , 165-185.

Vafaie, H., & Imam, I.F. (1994). Feature selection
methods: genetic algorithms vs. greedy-like search.
Proceedings of International Conference on Fuzzy and
Intelligent Control Systems .

Van Veldhuizen, D.A. (1999). Multiobjective
evolutionary algorithms: classifications, analyses, and
new innovations. Doctoral dissertation, Department of
Electrical and Computer Engineering. Graduate School
of Engineering. Air Force Institute of Technology,
Wright-Patterson AFB, Ohio.

Vincke, P. (1992). Multicriteria decision-aid. New York:
John Wiley & Sons.

Yang, J., & Honavar, V. (1998). Feature subset selection
using a genetic algorithm. In H. Motoda, & H. Liu
(Eds.), Feature extraction, construction, and subset
selection: A data mining perspective. New York:
Kluwer Academic.

