Less is more: Active Learning with Support Vector Machines

Panagiota Nikolaidou

9 mars 2006

1 Introduction

Supervised learning methods find applications in many important real life activities such as routing of
electronic mail, character and voice recognition. However, such methods need a number of labeled examples,
which can be obtained costly, usually requiring the presence of domain experts. Active learning is an approach
which tries to solve this problem by using a subset of the training data that is the most informative and by
this way it achieves better performance of the classifier with less labeled data. In the article, active learning is
applied to the Support Vector Machines (SVM) method. An "optimal" approach of active learning, based on
the expected error is described (greedy optimal strategy). Because this method is computationally impractical,
the authors propose an other approach which uses selective sampling (a simple heuristic).

2 Support Vector Machines

The classifier used in the article is SVM. Given a set of labeled data D = {(z1,%1), .., (Tm,¥Ym)} , where
x; € RN and y; € {—1,+1}, SVM defines an optimal hyperplane, as the unique hyperplane that separates
positive and negative examples, for which the margin is maximized. In the case where the data are not separable,
a soft SVM is used. Soft SVM allow to separate the data with a minimal number of errors [1]. The examples
that are incorrectly classified or are within the margin of the hyperplane, are called bound examples.

3 A Greedy Optimal Strategy

The authors propose an active learning algorithm which is based on probabilities that are assigned to points
in the space that are classified by the SVM. The formula that they use is the following [2] :

- 1
 1teap(—f(x)

where f(z) is the output of the SVM. They also use the expected error defined as the sum of the error on
each training example, weighted by the distribution of test examples, which reflects how much each training
example represents the test set. The algorithm to select each new example is : For each unlabeled example x,
calculate P(y = 1|z) and P(y = —1|z). Add (x,1) to the training set, retrain, and calculate the new expected
error E(, 7). Remove (z,1), add (z,—1) to the training set, retrain, and calculate E, _;). Estimate expected
error as B, = P(y = 1]x) * E, 1) + P(y = —1|z) * E(; _1). Choose the unlabeled example x, which has the
minimum F,.

This active algorithm is optimal, however it is impractical because it requires for each example selection,
to calculate for each example two quadratic programming problems (finding the hyperplane is a quadratic
programming problem). For this reason, the authors propose a simplier and less expensive method based on a
simple heuristic.

Py = 1z)

4 A Simple Heuristic

The active algorithm uses the simple heuristic that the unlabeled example that will be chosen next, is the
one which is nearest to the dividing hyperplane. This unlabeled example is easy to find by calculating for all the
unlabeled examples the distance between them and the hyperplane (dot product computation) and by selecting
the one that has the minimum distance. This heuristic tries to reduce the uncertainty area which is situated
near the dividing hyperplane.

One alternative appoach is used in the case of high dimensional domains, where the number of the training
examples is greater than the number of the dimensions. In this case, the unlabeled examples that will be chosen
next, are those that are situated in dimensions perpendicular to those defined by the current training examples.

5 Experiments

The experiments were done in two domains : binary classification of four newsgroup pairs from the 20
Newsgroups data set and topic classification on a subset of five topics from Reuters. The number of examples
that the active algorithm uses in every iteration is set, for the experiments, to b = 8. Generally, there must be
a trade-off, against the cost of resolving a new QP problem (more examples per iteration, less QP problems)
and the cost of labelling an example.

The experiments have showed that active learning performs better than by random selecting the training
data.

They also determine when the active learning algorithm should stop. The stopping criterion is when the
margin has been exhausted (when there are no other training examples within the margin).

Using the active learner algorithm, the performance increases up to a peak and after, it starts to decrease
(and approximates the level achieved by the random learner after adding all data). The reason that this
happens is that until the margin has been exhausted (until peak) the performance increases and the model
remains consistent. But when the margin contains no available training data, then examples that make the
model inconsistent may be added (since we can use a soft SVM) and the performance decreases.

6 Conclusions

The active learning algorithm, described above, not only reduces the number of the training examples but
it also obtains a considerable reduce in time since there is no need to calculate for each example selection the
SVM for each unlabeled example (greedy optimal strategy). It determines a stopping criterion to obtain the
peak performance with the less possible training examples.

7 My opinion

The article is clear and the experimentation has been done on many examples, and shows impressive results,
in particular with the Reuters data which shows that active learning is really efficient : only 10 percent of the
test set is used to produce better results!

The algorithm they present is clear enough to be implemented, only the choice of b is not well detailed.
Maybe they should have given bounds for b : for example, Figure 2 shows that if we want to perform active
learning with only 100 examples, we can’t use b = 64. So it seems more careful to use a b < Z2ining N size

The stopping criteria could also have been mentioned on the figures. The authors say that when there are
non more examples in the margin, the algorithm should stop because the accuracy could decrease, but if we
look on Figure 2 with b = 4, we can notice that the accuracy seems to decrease very soon, for only 75% of

accuracy.

Références

[1] Corinna Cortes, Vladimir Vapnik : Support-Vector Networks

[2] John C. Platt : Probabilistic Outputs for Suport Vector Machines and Comparisons to Regularized Likeli-
hood Methods

	Introduction
	Support Vector Machines
	A Greedy Optimal Strategy
	A Simple Heuristic
	Experiments
	Conclusions
	My opinion

