The Forgetron: A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer School of Computer Science & Engineering The Hebrew University, Jerusalem 91904, Israel {oferd,shais,singer}@cs.huji.ac.il

Presented by : Mourad GUEZZOU

Contents

- Introduction
- Problem setting
- Forgetron algorithm
- Experiments
- Conclusion

Introduction

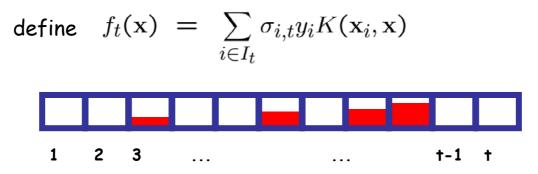
- The online classifications algorithms store a subset of observed example in its internal memory
- It continually changes as learning progresses (new hypothesis are added)
- A rapid growth of active set + Bounded memory \implies Risk to require more memory than physically available
- problem specially eminent in cases where the online Algorithm is implemented in hardware with small memory such as mobile telephone
- FORGETRON: since its update builds on that of the percepTRON and since it gradually FORGETs active example as learning progresses

Problem Setting

•Online learning:

- •Choose an initial hypothesis f_0
- •For t=1,2,...

Receive an instance x_t and predict sign(f_t(x_t)) determined by a hypothesis, stored in internal memory and updated from round to round
If (y_t f_t(x_t) <= 0) (f_t denote the hypothesis used in round t)
update the hypothesis f
Goal: minimize the number of prediction mistakes


•Kernel-based hypotheses
$$f_t(\mathbf{x}) = \sum_{i \in I_t} \sigma_{i,t} y_i K(\mathbf{x}_i, \mathbf{x})$$

•Example: the dual Perceptron

- $\sigma_{i,t}$ is always 1
- Initial hypothesis: $I_1 = \emptyset$
- Update rule: $I_{t+1} = I_t \cup \{t\}$

- K kernel Operator
- I subset of {1,...,(t-1)}
- $X_i \,$ is active on round t if i in $I_{\scriptscriptstyle t}$
- Y_i in {-1, +1}
- B positif integer, refer budget parameter

- Initilize: $I_1 = \emptyset$; $Q_1 = 0$; $M_0 = 0$ with M number of mistakes
- For t=1,2...

Receive an instance x_t , predict sign($f_t(x_t)$), and then receive y_t

If $y_t f_t(x_t) \le 0$ set $M_t = M_{t-1} + 1$ and update

Step (1) - Perceptron

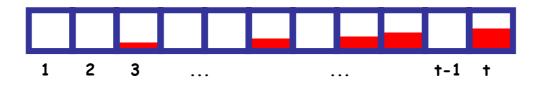
B positif integer, refer budget parameter

$$I'_{t} = I_{t} \cup \{t\}$$

define $f'_{t} = f_{t} + y_{t}K(\mathbf{x}_{t}, \cdot)$

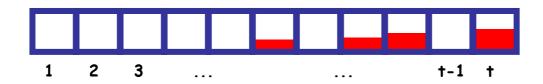
If |I'₊|<= B skip the next two steps</p>

• define $r_{t} = \min I_{t}$

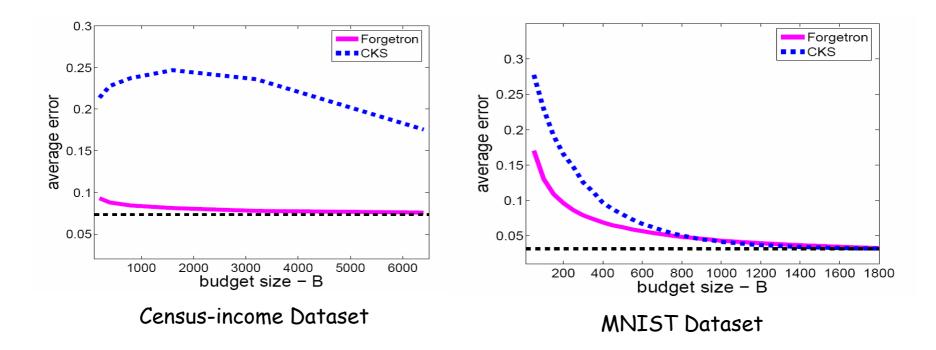

Step (2) - Shrinking

Shrinking coefficient to manage the damage caused by the removal step

$$\phi_t = \max\{\phi \in (0, 1] : \Psi(\phi, \sigma_{r_t, t}, \mu_t) + Q_t \leq (15/32) M_t\}$$


$$\forall i \in I'_t, \ \sigma_{i,t+1} = \phi_t \, \sigma_{i,t}$$

define
$$f_t'' = \phi_t f_t'$$



Step (3) - Removal

 $I_{t+1} = I_t \setminus \{r_t\}$

Experiments

Note that the Forgetron outperforms CKS on both datasets, especially when the value of B is small.

Conclusion

- Describe the FORGETRON algorithm which is kernel-based online learning with a fixed memory budget
- The analysis presented in this paper can be used to derive a family of online algorithms of which the Forgetron is only one special case.