Prediction of Probability of Survival in Critically Ill Patients Optimizing the Area Under the ROC Curve (AUC)

Oscar Luaces, José R.Quevedo, Francisco Taboada, Guillermo M.Albaiceta, Antonio Bahamonde

Lina YE

Cours: Apprentissage et Fouille de Données

M2R Informatique, mars 2007

Plan

- Introduction
- Contribution
 - Clarification des approaches de l'apprentissage
 - Comparaisons expérimentales et résultats
- Conclusion
- Mon avis

Contexte

- Introduction
- Contributions
- Conclusion
- Mon avis
- Modèles disponibles dans ICU: APACHE, SAPS, etc.
 - **□** But: estimer la probabilité de mortalité pour les patients malades
 - Méthode: régression logistique
- Importance
 - **■** La cure pour les maladies mortelles:10% -12%
 - La durée et conséquence de maladie—très crucial

Contexte

- Introduction
- Contributions
- Conclusion
- Mon avis
- Modèles disponibles dans ICU: APACHE, SAPS, etc.
 - **But: estimer la probabilité de mortalité pour les patients malades**
 - Méthode: régression logistique
- Importance
 - La cure pour les maladies mortelles:10% -12%
 - La durée et conséquence de maladie—très crucial
- Problème spécial de cet article

Proposition d'une nouvelle méthode: SVM optimisant AUC

L'état de l'art

- Introduction
- Contributions
- Conclusion
- Mon avis
- La transformation des sorties continuelles en probabilités
 SVM plus sigmoïde (platt,2000)
- L'analyse statistique de la différence entre la maximisation de AUC et la minimalisation du taux d'erreur (Cortes et Mohri, 2004)
- L'optimisation de AUC avec SVM (Herbrich et al. 2000, Joachims, 2005)

L'état de l'art

- Introduction
- Contributions
- Conclusion
- Mon avis
- La transformation des sorties continuelles en probabilités
 SVM plus sigmoïde (platt,2000)
- L'analyse statistique de la différence entre la maximisation de AUC et la minimalisation du taux d'erreur (Cortes et Mohri, 2004)
- L'optimisation de AUC avec SVM (Herbrich et al. 2000, Joachims, 2005)
- **Cet article:**

Une nouvelle méthode: multivariable SVM (AUC) plus sigmoïde Evidence expérimentale en faveur de cette proposition

Approches de l'apprentissage(1/2)

- Introduction
- Contributions
- Conclusion
- Mon avis

- **SVM(Accu): Pour minimaliser les erreurs**
 - □ Cas non linéaire: passer dans un espace de grande dimension (kern)
 - **□** SVM: résoudre le problème d'optimisation convexe
 - **□** A partir des sorties de SVM---une sigmoïde pour estimer les probabilités

Approches de l'apprentissage(1/2)

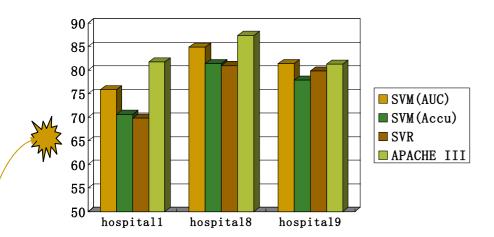
- Introduction
- Contributions
- Conclusion
- Mon avis

- **SVM(Accu): Pour minimaliser les erreurs**
 - □ Cas non linéaire: passer dans un espace de grande dimension (kern)
 - **■** SVM: résoudre le problème d'optimisation convexe
 - **□** A partir des sorties de SVM---une sigmoïde pour estimer les probabilités
- Approche de la régression: SVR
 - **■** Le premier essai pour apprendre les probabilités
 - **□** Se base sur les supports vecteurs
 - **Résolution du problème d'optimisation convexe**

Approches de l'apprentissage(2/2)

- Introduction
- Contributions
- Conclusion
- Mon avis

- Version multivariable: SVM(AUC)
 - multivariable SVM : considérer le problème d'apprentissage comme le problème de la prédiction de multivariables
 - Évaluer la performance de la prédiction de SVM par AUC
 (1-AUC): function de perte
 - □ L'optimisation de problème: l'optimisation de AUC
 - Utilisation d'une sigmoïde pour transformer des sorties en probabilités

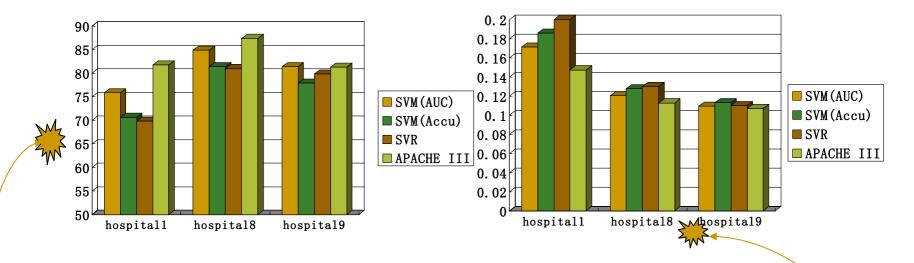

Comparaisons et résultats(1/3)

- **♦** Introduction
- Contributions
- Conclusion
- Mon avis

		SVM(AUC)		SVM(Accu.)		SVR		APACHE III	
# patients	Hospitals	Bs	AUC (%)	Bs	AUC (%)	Bs	AUC (%)	Bs	AUC (%)
108	1	0.1712	75.82	0.1860	70.60	0.2019	69.86	0.1473	81.76
189	2	0.1887	73.51	0.1998	69.23	0.2444	63.79	0.1710	77.80
194	3	0.1735	75.32	0.1897	65.88	0.1976	70.64	0.1592	78.20
194	4	0.1089	77.20	0.1142	74.93	0.1260	74.35	0.0961	86.17
195	5	0.1102	84.44	0.1094	82.41	0.1078	85.33	0.1079	88.78
239	6	0.1569	74.87	0.1637	69.12	0.1666	71.91	0.1459	77.62
269	7	0.0993	81.09	0.1096	75.75	0.1044	80.47	0.0852	88.02
297	8	0.1205	84.86	0.1277	81.44	0.1301	80.98	0.1127	87.37
337	9	0.1096	81.35	0.1128	77.91	0.1099	79.87	0.1071	81.30
479	10	0.1071	79.32	0.1120	71.74	0.1198	72.74	0.1218	78.22
Averages		0.1346	78.78	0.1425	73.90	0.1509	74.99	0.1254	82.52
919	{2,3,6,8}	0.1494	79.75	0.1500	78.46	0.1546	76.72	0.1432	80.86
1582	{1,4,5,7,9,10}	0.1086	81.79	0.1108	80.37	0.1082	80.08	0.1094	82.63
2501	all	0.1234	81.51	0.1229	81.22	0.1234	80.85	0.1218	82.27

Table: Brier scores and AUC estimated by a 10-fold cross-validation for the three Learners described in the text, and for the commercial system APACHE III.

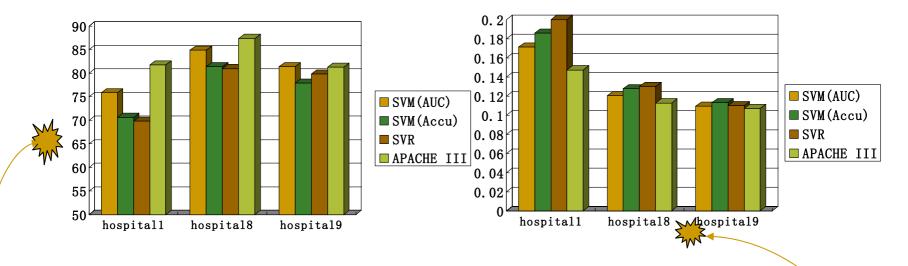
Comparaisons et résultats(2/3)



- Introduction
- Contributions
- Conclusion
- Mon avis

- Recherche des paramètres:
 - □ SVM(Accu) et SVR, pour minimiser Brier score
 - □ SVM(AUC), pour maximiser AUC
- Résultat expectant: SVM(AUC) est supérieur aux SVM(Accu) et SVR a propos de la mesure de AUC

Comparaisons et résultats(2/3)


- Introduction
- Contributions
- Conclusion
- Mon avis

- Recherche des paramètres:
 - □ SVM(Accu) et SVR, pour minimiser Brier score
 - □ SVM(AUC), pour maximise AUC
- Résultat expectant: SVM(AUC) est supérieur aux SVM(Accu) et SVR a propos de la mesure de AUC
- Résultat surpris: SVM(AUC) est aussi supérieur aux SVM(Accu) et SVR a propos de la mesure de Brier score

Comparaisons et résultats(2/3)

- Introduction
- Contributions
- Conclusion
- Mon avis

- Recherche des paramètres:
 - □ SVM(Accu) et SVR, pour minimiser Brier score
 - □ SVM(AUC), pour maximise AUC
- Résultat expectant: SVM(AUC) est supérieur aux SVM(Accu) et SVR a propos de la mesure de AUC
- Résultat surpris: SVM(AUC) est aussi supérieur aux SVM(Accu) et SVR a propos de la mesure de Brier score

Il est préférable d'optimiser AUC, plutôt que de minimiser le taux d'erreurs

Comparaisons et résultats(3/3)

- Introduction
- Contributions
- Conclusion
- Mon avis

- En comparaison de ces trois approches (sauf APACHE III): SVM(AUC) démontre la meilleure performance
- Les résultats suggèrent que la performance de ces approches change en fonction de la taille de l'échantillon d'apprentissage

Conclusion

- Introduction
- Contributions
- Conclusion
- Mon avis

- Proposition d'une nouvelle méthode: multivariable SVM optimisant AUC
- Comparaison expérimentale des résultats de cette méthode avec d'autres méthodes fondamentales
- Démonstration de la meilleure performance de la méthode SVM(AUC): dans le cas d'insuffisance de données disponibles
- La différence entre les méthodes change en fonction de la taille de l'échantillon d'apprentissage

Mon avis

- **♦** Introduction
- Contributions
- Conclusion
- Mon avis

- L'article bien écrit, la comparaison expérimentale bien détaillée
- La généralisation de la méthode proposé

Mais

- La comparaison injuste: la taille de l'échantillon dans les trois approches << celle dans APACHE III
- la supériorité de la méthode SVM (AUC) dans tous les cas?